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ABSTRACT
This article describes prediction methods for the number of future events from a population of units
associated with an on-going time-to-event process. Examples include the prediction of warranty returns
and the prediction of the number of future product failures that could cause serious threats to property
or life. Important decisions such as whether a product recall should be mandated are often based on such
predictions. Data, generally right-censored (and sometimes left truncated and right-censored), are used
to estimate the parameters of a time-to-event distribution. This distribution can then be used to predict
the number of events over future periods of time. Such predictions are sometimes called within-sample
predictions and differ from other prediction problems considered in most of the prediction literature. This
article shows that the plug-in (also known as estimative or naive) prediction method is not asymptotically
correct (i.e., for large amounts of data, the coverage probability always fails to converge to the nominal
confidence level). However, a commonly used prediction calibrationmethod is shown to be asymptotically
correct for within-sample predictions, and two alternative predictive-distribution-based methods that
perform better than the calibration method are presented and justified. Supplementary materials for this
article are available online.
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1. Introduction

There are many applications where it is necessary to predict the
number of future events from a population of units associated
with an on-going time-to-event process. Such applications also
require a prediction interval to quantify statistical prediction
uncertainty arising from the combination of process variability
and parameter uncertainty. Some motivating applications are
given below.

1.1. Product-A Data

This example is fromEscobar andMeeker (1999), where, during
a particular month, n = 10,000 units of Product-A were put
into service. Over the next 48 months, 80 failures occurred and
the failure times were recorded. A prediction interval on the
number of failures among the remaining 9920 units during the
next 12 months was requested by the management.

1.2. Heat Exchanger Tube Data

This example is based on data described in Nelson (2000).
Nuclear power plants have steam generators that contain many
stainless steel heat-exchanger tubes. Cracks initiate and grow
in the tubes due to a stress-corrosion mechanism over time.
Periodic inspections of the tubes are used to detect cracks.
Consider a fleet of steam generators having a total of n = 20,000
tubes. One crack was detected after the first year of operation,
which was followed by another crack during the second year
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and six more cracks during the third year. The data are interval-
censored as the exact initiation times are unknown.Aprediction
interval was needed for the number of tubes that would crack
from the end of the third year to the end of the tenth year.

1.3. Bearing-Cage Data

The bearing-cage failure-time data are from Abernethy et al.
(1983) and are provided in the online supplementary materials.
Groups of aircraft engines employing this bearing cage were put
into service over time (staggered entry). At the data freeze date,
6 bearing-cage failures had occurred while the remaining 1697
units with various service times were still in service (multiple
right-censored data). To assure that a sufficient number of spare
parts would be available to repair the aircraft engine in a timely
manner, management requested a prediction interval for the
number of bearing-cages that would fail in the next year, assum-
ing 300 hours of service for each aircraft.

The purpose of this article is to show how to construct
prediction intervals for the number of future events from an
on-going time-to-event process, investigate the properties of
different prediction methods, and give recommendations on
which methods to use.

This article is organized as follows. Section 2 provides
concepts and background for prediction inference. Section 3
describes the single-cohort within-sample prediction problem.
Section 4 defines how the within-sample prediction is irregular
and demonstrates that the plug-in method fails to provide an
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asymptotically correct prediction interval. Section 5 describes
the calibration method for prediction intervals and establishes
its asymptotic correctness. Section 6 presents two other pre-
diction interval methods based on predictive distributions. The
first one is a general method using parametric bootstrap sam-
ples, while the second method is inspired by generalized pivotal
quantities and applies to a log-location-scale family of distribu-
tions. Section 7 extends the single-cohort within-sample pre-
diction to the multiple-cohort problem. Section 8 compares dif-
ferent prediction methods, through simulation, while Section 9
applies the predictionmethods to themotivating examples. Sec-
tion 10 discusses the choice of distribution for the time-to-event
process and addresses the issue of distribution misspecification.
Section 11 gives recommendations and describes potential areas
for future research.

2. Background

In a general prediction problem, denote the observable data
by Dn and the future random variable by Yn ≡ Y ; while
generic for now, later this article will focus on the within-sample
prediction where Y is a count. The conditional cdf for Y given
Dn is denoted by Gn(·|Dn; θ) ≡ G(·|Dn; θ), where θ is a vector
of parameters. The goal is to make inference for Y through a
prediction interval, as a useful tool for quantifying uncertainty
in prediction.

2.1. Prediction Intervals

When parameters in θ are known, the one-sided upper 100(1−
α/2)%prediction bound Ỹ1−α/2 is defined as the 100(1−α/2)%
quantile of the conditional cdf for Y , which is

Ỹ1−α/2 = inf{y ∈ R : G(y|Dn; θ)

= Pr(Y ≤ y|Dn, θ) ≥ 1 − α/2}, (1)

and the one-sided lower 100(1 − α/2)% prediction bound may
be defined as

˜Y1−α/2 = sup{y ∈ R : Pr(Y ≥ y|Dn, θ) ≥ 1 − α/2}, (2)

where this modification of the usual α/2 quantile of Y ensures
that Pr(Y ≥ ˜Y1−α/2|Dn, θ) is at least 100(1 − α/2)% when
Y is a discrete random variable. We may obtain an equal-tail
100(1 − α)% prediction interval (approximate when Y is a
discrete random variable) by combining these two prediction
bounds.

In most applications, equal-tail prediction intervals are pre-
ferred over unequal ones, even though it is sometimes possible
to find a narrower prediction interval with unequal tail proba-
bilities. This is because the equal-tail prediction interval can be
naturally decomposed into a practical one-sided upper predic-
tion bound and a lower prediction bound where the separate
consideration of one-sided bounds is needed when the cost of
being outside the prediction bound is much higher on one side
than the other.

When the parameters in θ are unknown, an estimation of
θ from the observed data Dn is required. The plug-in method,
also known as the naive or estimative method (see Section 2.3),
is to replace θ with a consistent estimator θ̂n in the prediction

bounds (1) and (2). The 100(1 − α)% plug-in upper prediction
bound is then ỸPL

1−α = inf{y ∈ R : G(y|Dn; θ̂n) ≥ 1 − α} while
the 100(1 − α)% plug-in lower prediction bound is ˜Y

PL
1−α/2 =

sup{y ∈ R : Pr(Y ≥ y|Dn, θ̂n) ≥ 1 − α}.

2.2. Coverage Probability

Besides the plug-in method, other methods for computing pre-
diction bounds or intervals are available. Let PI(1 − α) gener-
ically denote a prediction interval (or bound) of a nominal
coverage level 100(1 − α)%, where researchers would like the
probability of Y falling within the interval to be (or close to)
1 − α (i.e., Pr[Y ∈ PI(1 − α)] = 1 − α).

To be clear, there are two possible types of coverage probabil-
ity: conditional coverage probability andunconditional (overall)
coverage probability. The conditional coverage probability of a
particular PI(1 − α) method is defined as

CP[PI(1 − α)|Dn; θ ] = Pr[Y ∈ PI(1 − α)|Dn; θ ],
where Pr(·|Dn; θ) denotes the conditional probability ofY given
the observable data Dn. The conditional coverage probability
CP[PI(1−α)|Dn; θ ] is a random variable because it is a function
of the data Dn. The unconditional coverage probability of a
prediction interval method can be obtained by taking an expec-
tation with respect to the data Dn and it is defined as

CP[PI(1 − α); θ ] = E {Pr[Y ∈ PI(1 − α)|Dn; θ ]} .
The unconditional coverage probability is a fixed property of a
predictionmethod and, as such, can bemost readily studied and
used to compare alternative prediction interval methods. We
focus on unconditional coverage probability in this article and
use the term coverage probability to refer to the unconditional
probability, unless stated otherwise.

We say a prediction method is exact if CP[PI(1 − α); θ ] =
1−α holds. If CP[PI(1−α); θ ] converges to 1−α as the sample
size n increases, we say the corresponding prediction method is
asymptotically correct. When Y is a discrete random variable,
however, asymptotic correctness and exactness may not gener-
ally hold or be possible for a prediction interval method, due to
the discreteness in the distribution of Y .

2.3. Related Literature

Extensive research exists regarding some methods for comput-
ing prediction intervals. While the plug-in method has been
criticized for ignoring the uncertainty in θ̂n, this method is
often widely viewed as being asymptotically correct (related to
“regular predictions” described in Section 4.1). For example,
Cox (1975), Beran (1990), and Hall, Peng, and Tajvidi (1999)
showed that the coverage probability of the plug-in method
has an accuracy of O(n−1) for a continuous predictand under
certain conditions. In Section 4,we show, however, that the plug-
inmethod is not asymptotically correct in the context of within-
sample prediction.

Section 5 presents a calibration method for within-sample
prediction intervals. Cox (1975) originally proposed the cali-
bration idea to improve on the plug-in method and also pro-
vided analytical forms for prediction intervals based on general
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asymptotic expansions. Atwood (1984) used a similar method.
Beran (1990) employed bootstrap in the calibration method,
avoiding the complicated analytical expressions. Escobar and
Meeker (1999) described similar methods for constructing pre-
diction intervals for failure times and the number of future
failures, based on censored life data.

This article does not specifically address Bayesian prediction
methods, but the classic idea of a Bayesian predictive distri-
bution can be extended to non-Bayesian methods and two
such methods are considered in Section 6. Several authors have
considered similar notions of a non-Bayesian predictive distri-
bution (e.g., Aitchison 1975; Davison 1986; Barndorff-Nielsen
and Cox 1996). Lawless and Fredette (2005) demonstrated a
relationship between predictive distributions and (approximate)
pivotal-based prediction intervals, including the calibration
method described in Beran (1990). Fonseca, Giummolè, and
Vidoni (2012) further elaborated on the relationship between
predictive distributions and the calibration method. Shen, Liu,
and Xie (2018) proposed a general framework to construct a
predictive distribution by replacing the posterior distribution
in the definition of a Bayesian predictive distribution with a
confidence distribution.

3. Single Cohort Within-Sample Prediction

3.1. Within-Sample Prediction and New Sample Prediction

The term “within-sample” prediction has been used to distin-
guish from the more widely known “new sample” prediction.
In new-sample prediction, past data are used, for example, to
compute a prediction interval for the lifetime of a single unit
from a new and completely independent sample. For within-
sample prediction, however, the sample has not changed; the
future random variable that researchers wish to predict (i.e.,
a count) relates to the same sample that provided the original
(censored) data.

3.2. Single-CohortWithin-Sample Prediction and Plug-in
Method

Let (T1, . . . ,Tn) be an unordered random sample from a para-
metric distribution F(t; θ) having support on the positive real
line and θ ∈ R

q. Under Type I censoring at tc > 0, the
available data may then be expressed by Di = (δi,Tobs

i ), i =
1, . . . , n, where δi = I(Ti ≤ tc) is a variable indicating whether
Ti is observed before the censoring time tc, so that the actual
observed variables are given as Tobs

i = Tiδi + tc(1 − δi). The
observed number of events (uncensored units) in the sample
will be denoted by rn = ∑n

i=1 I(Ti ≤ tc). For a future time tw >

tc, let Yn = ∑n
i=1 I(Ti ∈ (tc, tw]) denote the (future) number

of values from T1, . . . ,Tn, that occur in the interval (tc, tw]. The
conditional distribution of Yn is then binomial(n − rn, p) given
the observed dataDn = (D1, . . . ,Dn), where p is the conditional
probability that Ti ∈ (tc, tw] given that Ti > tc. As a function of
θ , we may define p by

p ≡ π(θ) = F(tw; θ) − F(tc; θ)

1 − F(tc; θ)
. (3)

The goal is to construct a prediction interval for Yn based on
the observed data Dn = (D1, . . . ,Dn) when θ is unknown.
This is referred to as single-cohort within-sample prediction
because all the units enter the system at the same time and are
homogeneous; and both the data Dn and the predictand Yn are
functions of the uncensored random sample (T1, . . . ,Tn).

Let θ̂n denote an estimator of θ based on Dn, then a plug-
in estimator p̂n = π(̂θn) of the conditional probability p follows
from (3). Analogous to the bounds in Section 2.1, a 100(1−α)%
plug-in lower prediction bound is defined as

˜Y
PL
n,1−α = sup{y ∈ {0} ∪ Z

+; pbinom(y − 1, n − rn, p̂n) ≤ α}

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
qbinom(α, n − rn, p̂n),

if pbinom(qbinom(α, n − rn, p̂n), n − rn, p̂n) > α,
qbinom(α, n − rn, p̂n) + 1,

if pbinom(qbinom(α, n − rn, p̂n), n − rn, p̂n) = α,

where pbinom and qbinom are, respectively, the binomial cdf
and quantile function. Similarly, the 100(1−α)% plug-in upper
prediction bound for Yn is defined as

ỸPL
n,1−α = inf{y ∈ {0} ∪ Z

+; pbinom(y, n − rn, p̂n) ≥ 1 − α}
= qbinom(1 − α, n − rn, p̂n).

Section 2.2 mentioned that asymptotically correct coverage
may not generally be possible for prediction intervals involving
a discrete predictand. However, for within-sample prediction
here, prediction interval methods can be sensibly examined
for properties of asymptotic correctness, which we consider
in the following section. This is because discreteness in the
(conditionally) binomial predictandYn essentially disappears in
large sample sizes n, due to normal approximations.

4. The Irregularity of theWithin-Sample Prediction

4.1. A Regular Prediction Problem

Under the general prediction framework described in Section 2,
the conditional cdf Gn(·|Dn; θ) of a predictand Yn given the
observed data Dn is often estimated by the plug-in method as
Gn(·|Dn; θ̂n) (also known as a predictive distribution), where θ̂n
is a consistent estimator of θ based onDn. To framemuch of the
literature related to the plug-in method (Section 2.3), we may
define the prediction problem most often commonly related
to the plug-in method as “regular” according to the following
definition.

Definition 1. In the notation of Section 2, a prediction problem
is called regular if

sup
y∈R

|Gn(y|Dn; θ) − Gn(y|Dn; θ̂n)| p−→ 0

holds as n → ∞ for any consistent estimator θ̂n of θ (i.e.,
θ̂n

p−→ θ).

Unlike coverage probability (where exactness may again
not be possible for discrete predictands), the above definition
reflects the underlying sense of how the plug-inmethod for pre-
diction intervals is often asymptotically valid for both discrete
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and continuous predictands. By the nature of many prediction
problems (e.g., new sample prediction), the conditional form of
cdf Gn may also not necessarily vary with n (e.g., Gn(·|Dn; θ) =
G(·; θ)). Hence, in a regular prediction problem, the plug-in
predictive distribution (estimated cdf) asymptotically captures
the true conditional cdf of the predictand, so that differences
are expected to vanish between quantiles of the true predic-
tand Yn and the associated plug-in prediction bounds. Further,
when the predictand has a continuous and asymptotically tight
conditional distribution (with probability 1), such as when the
conditional cdf Gn(·|Dn; θ) = G(·; θ) of the predictand does
not vary with n, then the plug-in method will be asymptotically
correct.

4.2. Failure of the Plug-inMethod

This section shows that the within-sample prediction problem
described in Section 3 is not regular and that the plug-inmethod
is not asymptotically valid for within-sample prediction. To
avoid redundancy, the presentation of results will focus on the
plug-in upper prediction bound; the lower bound is analogous
byRemark 1. In the context ofwithin-sample prediction (cf. Sec-
tion 3.2), recall that the 100(1 − α)% plug-in upper prediction
bound for the future count Yn ≡ ∑n

i=1 I(Ti ∈ (tc, tw]) is
defined as

ỸPL
n,1−α = inf{y ∈ Z; pbinom(y, n − rn, p̂n) ≥ 1 − α}.

The following theorem shows that the coverage probability of
ỸPI
n,1−α will not correctly converge to 1 − α as n increases.

Theorem 1. Let T1, . . . ,Tn denote a random sample from a
parametric distribution with cdf F(·; θ0) (at the true value of
θ = θ0 ∈ R

q), which is observed under Type I censoring at
tc > 0. Suppose also that F(tc; θ0) < 1, p0 = π(θ0) ∈ (0, 1)
in (3), F(tc; θ) is continuous at θ0, and that the conditional
probability (parametric function) p ≡ π(θ) is continuously
differentiable in a neighborhood of θ0 with nonzero gradient
∇0 ≡ ∂π(θ)/∂θ |θ=θ0 . Based on the censored sample, suppose
θ̂n is an estimator of θ satisfying

√
n(̂θn − θ0)

d−→ MVN(0,V0),
as n → ∞, for a multivariate normal distribution with mean
vector 0 and positive definite variance matrix V0. Then,

1. The within-sample prediction of Yn = ∑n
i=1 I(tc <

Ti ≤ tw) fails to be a regular prediction problem: denoting
Gn(y|Dn, θ0) = pbinom(y, n − rn, p0) as the conditional cdf
ofYn andGn(y|Dn, θ̂n) = pbinom(y, n−rn, p̂n) as its plug-in
estimator, then

sup
y∈R

∣∣Gn(y|Dn, θ0)−Gn(y|Dn, θ̂n)
∣∣ d−→ 1−2�nor(

√
v1|Z1|/2),

where Z1 is a standard normal variable with cdf �nor(z) =∫ z
−∞ 1/

√
2πe−u2/2du, z ∈ R, and

v1 ≡ [1 − F(tc; θ0)]
p0(1 − p0)

∇t
0V0∇0 ∈ (0,∞).

2. The plug-in upper prediction bound ỸPL
n,1−α generally fails to

have asymptotically correct coverage:

lim
n→∞Pr(Yn ≤ ỸPL

n,1−α) = �1−α(v1) ∈ (0, 1) such that

sgn [�1−α(v1) − (1 − α)] =

⎧⎪⎨⎪⎩
1 if α ∈ (1/2, 1),
0 if α = 1/2,
−1 if α ∈ (0, 1/2),

where sgn(·) is the sign function and �1−α(v1) ≡∫ ∞
−∞ �nor

[
�−1

nor(1 − α) + z√v1
]
d�nor(z). Furthermore,

�1−α(v1) ∈ [1/2, 1 − α) is a decreasing function of v1 > 0
for a given α ∈ (0, 1/2), while �1−α(v1) ∈ (1 − α, 1/2]
is increasing in v1 > 0 for α ∈ (1/2, 1), and
limv1→∞ �1−α(v1) = 1/2 holds for any α ∈ (0, 1).

Remark 1. The lower plug-in bound ˜Y
PL
n,1−α behaves similarly

with limn→∞ Pr(Yn ≥ ˜Y
PL
n,1−α) = limn→∞ Pr(Yn ≤ ỸPL

n,1−α) in
Theorem 1.

The proof of Theorem 1 is in the online supplementary
materials. This counter-intuitive result reveals that the plug-in
method should not be used to construct prediction intervals in
the within-sample prediction problem, even if the sample size is
large. The first part of Theorem 1 entails that plug-in estimation
fails to capture the distribution of the predictand Yn here, to the
extent that the supremumdifference between estimated and true
distributions has a random limit, rather than converging to zero
as in a regular prediction (see Definition 1). As a consequence,
the limiting coverage probability of the plug-in bound turns out
to be “off” by an amount determined by a magnitude of v1 > 0
in Theorem 1 (part 2). For increasing values of v1, the coverage
probability approaches 0.5, regardless of the nominal coverage
level intended. An intuitive explanation for the failure of plug-
in method is that, although p̂n converges consistently to p, the
growing number of Bernoulli trials n − rn in Yn offsets the
improvements that larger samples may offer in estimation by
p̂n. In other words, when standardizing the true 1− α quantile,
say Yn,1−α , of the (conditionally binomial) predictand Yn, one
obtains a standard normal quantile (Yn,1−α − p)/

√
n − rn ≈

�−1
nor(1−α) by normal approximation; however, the same stan-

dardization applied to the plug-in bound ỸPL
n,1−α gives (ỸPL

n,1−α −
p)/

√
n − rn ≈ �−1

nor(1 − α) + √
n − rn(̂pn − p), which differs

by a substantial and random amount
√
n − rn(̂pn − p) (having

a normal limit itself). Hence, validity of the plug-in method for
within-sample prediction would require an estimator p̂n such
that p̂n = p + op(n−1/2), which demands more than what is
available from standard

√
n-consistency.

5. Prediction Intervals Based on Calibration

5.1. Calibrating Plug-in Prediction Bounds

Cox (1975) suggested an approximation for improving the
plug-in method, which will be described next. Considering
the general prediction problem (see Section 2.1), suppose
a future random variable Y ≡ Yn has a conditional cdf
Gn(·|Dn; θ) ≡ G(·|Dn; θ) given random sample Dn and θ̂n is
a consistent estimator of θ from Dn. The coverage probability
of the 100(1 − α)% plug-in upper prediction bound is denoted
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by Pr
[
G(Y|Dn; θ̂n) ≤ 1 − α

] = 1 − α′, where α′ is generally
different from α due to the estimation uncertainty in θ̂n. The
basic idea of the calibration method is to find a level α† so that
the coverage probability Pr

[
G(Y|Dn; θ̂n) ≤ 1 − α†] is equal

to (or closer to) 1 − α. The resulting 100(1 − α†)% upper
plug-in prediction bound ỸPL

n,1−α† is called the 100(1 − α)%
upper calibrated prediction bound. However, determination
of α† relies on both the distribution of Y and the sampling
distribution of θ̂n, each of which depends on the unknown
parameter θ . So instead, α† is obtained by solving the equation
Pr∗

[
G(Y∗|Dn; θ̂

∗
n) ≤ 1 − α†

]
= 1 − α, where Pr∗ denotes

bootstrap probability induced by Y∗ ∼ G(·|Dn; θ̂n) and by θ̂
∗
n

as a bootstrap version of θ̂n; for example, θ̂∗
n may be based on

a bootstrap sample D∗
n found by a parametric bootstrap applied

using θ̂n in the role of the unknown parameter vector θ . Beran
(1990) showed, that under certain conditions, instead of having
a coverage error of O(n−1), the coverage probability of the
calibrated upper prediction bound improves upon the plug-in
methods, for example, Pr

[
Y ≤ G−1(1 − α†|Dn; θ̂n)

] = 1−α+
O(n−2). However, such results for the validity of the calibration
method cannot be applied directly to within-sample prediction
because conditions in Beran (1990) entail that the prediction
problem be regular (see Section 4.1), which is not true for the
within-sample prediction problem (Theorem 1). Consequently,
the issue of asymptotic correctness for the calibration method
needs to be determined for within-sample prediction, as next
considered.

5.2. The Calibration-BootstrapMethod for the
Within-Sample Prediction

The general method in Beran (1990) is modified to construct a
calibrated prediction interval for within-sample prediction and
it is called the calibration-bootstrap method in the rest of this
article. For a bootstrap sampleD∗

n with r∗n observed events (e.g.,
from a parametric bootstrap using θ̂n), we define a random
variable set

(
Y†
n , n − r∗n , p̂∗

n
)
where p̂∗

n = π(̂θ
∗
n) is the bootstrap

version of p̂n = π(̂θn) and Y†
n ∼ binomial(n − r∗n, p̂n),

conditional on r∗n .
For the 100(1 − α)% lower prediction bound, the calibrated

confidence level is
α†
L = sup{u ∈ [0, 1] : Pr∗

[
pbinom(Y†

n , n − r∗n , p̂∗
n) ≤ u

] ≤ α},
where Pr∗ is the bootstrap probability induced by D∗

n, and then
the calibrated 100(1 − α)% lower prediction bound is given by

˜Y
C
n,1−α = ˜Y

PL
n,1−α†

L
. For the 100(1−α)%upper prediction bound,

the calibrated confidence level is

1 − α†
U = inf{u ∈ [0, 1] : Pr∗

[
pbinom(Y†

n , n − r∗n , p̂∗
n) ≤ u

] ≥ 1 − α},
so that the calibrated 100(1 − α)% upper prediction bound is
ỸC
n,1−α = ỸPL

n,1−α†
U
. Here ˜Y

PL
n,1−α and ỸPL

n,1−α represent lower
and upper plug-in prediction bounds, respectively, as defined in
Section 3.2.

The calibration-bootstrap method involves approximating
the distribution of U = pbinom(Yn, n − rn, p̂n) with the boot-
strap distribution of U∗ = pbinom(Y†

n , n − r∗n, p̂∗
n). The boot-

strap distribution of U∗ is used to calibrate the plug-in method.

The procedure of using the calibration-bootstrap method to
construct a prediction interval is described below:

1. Compute the maximum likelihood (ML) estimate θ̂n using
data Dn and the ML estimate p̂n = π(̂θn).

2. Generate a bootstrap sample D∗
n and the number of events is

denoted by r∗n .
3. Compute θ̂

∗
n and p̂∗

n = π(̂θ
∗
n) using the bootstrap sampleD∗

n.
4. Generate y∗ from the distribution binomial(n − r∗n, p̂n) and

compute u∗ = pbinom(y∗, n − r∗n , p̂∗
n).

5. Repeat Steps 2–4 for B times and get B realizations of u∗ as
{u∗

1, . . . , u∗
B}.

6. Find the α and 1 − α quantiles of {u∗
1, . . . , u∗

B}, and denote
these by uα and u1−α , respectively. The 1 − α calibrated
lower and upper prediction bounds are ˜Y

C
n,1−α = ˜Y

PL
n,1−uα

and
ỸC
n,1−α = ỸPL

n,u1−α
.

The pseudo-code for this algorithm is in the online supplemen-
tary materials.

Next, the calibration-bootstrap method is shown to be
asymptotically correct. This requires a mild assumption on the
bootstrap involved, namely that the parameter estimators θ̂

∗
n

in the bootstrap world provide valid approximations for the
sampling distribution of the original data estimators

√
n(̂θn−θ),

in large samples. More formally, let L∗
n ≡ L∗

n(Dn) denote the
probability law of the bootstrap quantity

√
n(̂θ∗

n − θ̂n) (condi-
tional on the data Dn) and let Ln denote the probability law of√
n(̂θn − θ). Let ρ(Ln,L∗

n) denote the distance between these
distributions under any metric ρ(·, ·) that metricizes the topol-
ogy of weak convergence (e.g., the Prokhorov metric). Also, in
the bootstrap recreation, the probability Pr∗(T∗

1 ≤ tc) that a
bootstrap observation T∗

1 is observed before the censoring time
tc should be a consistent estimator of F(tc; θ) (e.g., Pr∗(T∗

1 ≤
tc) = F(tc; θ̂n) would hold as a natural estimator under a
parametric bootstrap).

Theorem 2. Under the conditions of Theorem 1, suppose that
ρ(L∗

n,Ln)
p→ 0 and Pr∗(T∗

1 ≤ tc)
p→ F(tc; θ0) as n → ∞.

Then, the 100(1 − α)% calibrated upper and lower prediction
bounds, respectively ỸC

n,1−α and ˜Y
C
n,1−α have asymptotically

correct coverage, that is

lim
n→∞Pr(Yn ≤ ỸC

n,1−α) = 1 − α = lim
n→∞Pr(Yn ≥ ˜Y

C
n,1−α).

The proof is in the online supplementary materials. Theo-
rem 2 and its extension in Section 7 guarantee, for example,
that the calibration predictionmethod employed in Escobar and
Meeker (1999), Hong, Meeker, and McCalley (2009), and Hong
and Meeker (2010, 2013) to construct the prediction intervals
for the cumulative number of events is asymptotically correct.

6. Prediction Intervals Based on Predictive
Distributions

6.1. Predictive Distributions

Under the general prediction setting in Section 2, recall that
the predictive distribution under the plug-in method, given
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by G(·|Dn, θ̂n), provides an estimator of the conditional cdf
G(·|Dn; θ), of the predictand Y . Quantiles of this predictive dis-
tribution can be associated with prediction bounds for Y . Gen-
erally speaking, any method that leads to a prediction bound
for Y can be translated to a predictive distribution by defining
the 100(1 − α)% upper prediction bound as the 1 − α quantile
of the predictive distribution (and vice versa). In this section,
the strategy is to construct predictive distributions that lead to
prediction bound (or interval) methods having asymptotically
correct coverage for within-sample prediction.

For this purpose, it is helpful to consider a Bayesian predic-
tive distribution, defined by

GB(y|Dn) =
∫

G(y|Dn; θ)γ (θ |Dn)dθ , (4)

where γ (θ |Dn) is a joint posterior distribution for θ . The 1− α

quantile of the Bayesian predictive distribution provides the
100(1−α)%upper Bayesian prediction bound.While this article
does not pursue the Bayesian method, the idea of the Bayesian
predictive distribution can nevertheless be used by replacing the
posterior γ (θ |Dn) in (4) with an alternative distribution over
parameters to similarly define non-Bayesian predictive distri-
butions. Harris (1989) replaced the posterior distribution in (4)
with the bootstrap distribution of the parameters to construct
a predictive distribution while Wang, Hannig, and Iyer (2012)
replaced the posterior distribution with a fiducial distribution.
Shen, Liu, and Xie (2018) proposed a framework for predictive
inference by replacing the posterior distribution in (4) with a
confidence distribution (CD) and provided theoretical results
for this CD-based predictive distribution for the case of a scalar
parameter. A CD is a probability distribution that can quantify
the uncertainty of an unknown parameter, where both the boot-
strap distribution in Harris (1989) and the fiducial distribution
inWang, Hannig, and Iyer (2012) can be viewed as CDs; see Xie
and Singh (2013) for a review of these ideas.

To summarize, a predictive distribution can be constructed
by using a data-based distribution on the parameter space to
replace the posterior distribution in (4). Following this idea, we
aim to use draws from a joint probability distribution for the
parameters such that the resulting predictive distribution can be
used to construct asymptotically correct prediction bounds and
intervals forwithin-sample prediction. In particular, we propose
two ways of constructing predictive distributions, extending the
framework proposed by Shen, Liu, and Xie (2018) to the within-
sample prediction case. In Section 6.2, we describe a predic-
tion method that is based on the bootstrap distribution of the
parameters and it is called the direct-bootstrap method in this
article. In Section 6.3, we describe another method that works
specifically with the (log)-location-scale family of distributions.
This method is inspired by generalized pivotal quantities (GPQ)
and involves generating bootstrap samples and it is called the
GPQ-bootstrap method.

6.2. The Direct-BootstrapMethod

For within-sample prediction, recall that number Yn of events
between the censoring time tc and a future time tw > tc,
given the Type I censored data Dn, is binomial(n − rn, p),
where rn is the number of events observed in Dn and p is the

conditional probability in (3). The direct-bootstrapmethod uses
the distribution of a bootstrap version p̂∗

n = π(̂θ
∗
n) of p̂n =

π(̂θn), which is induced by the distribution of estimates θ̂
∗
n from

a bootstrap sample D∗
n, to construct a predictive distribution.

Letting Pr∗ denote bootstrap probability (probability induced by
a bootstrap sample D∗

n), the predictive distribution constructed
using direct-bootstrap method is

GDB
Yn (y|Dn) =

∫
pbinom(y, n − rn, p̂∗

n)Pr∗
(
d̂p∗

n
)

≈ 1
B

B∑
b=1

pbinom(y, n − rn, p̂∗
b), (5)

where p̂∗
1, . . . , p̂∗

B are realized bootstrap versions of p̂n from
B independently generated bootstrap samples D∗(1)

n , . . . ,D∗(B)
n ,

and B is the number of bootstrap samples. The 100(1 − α)%
lower and upper prediction bounds using the direct-bootstrap
method are then

˜Y
DB
n,1−α = sup

{
y ∈ {0} ∪ Z

+ : GDB
Yn (y − 1|Dn) ≤ α

}
,

ỸDB
n,1−α = inf

{
y ∈ {0} ∪ Z

+ : GDB
Yn (y|Dn) ≥ 1 − α

}
.

(6)

6.3. The GPQ-BootstrapMethod

This section focuses on the log-location-scale distribution fam-
ily and develops another method to construct a predictive dis-
tribution through approximate GPQs. Suppose (T1, . . . ,Tn) is
an iid random sample from a log-location-scale distribution

F(t;μ, σ) = �

[
log(t) − μ

σ

]
, (7)

where �(·) is a known cdf that is free of parameters. For exam-
ple, if �(·) is the standard normal cdf �nor(·), then T1 has the
log-normal distribution.

Hannig, Iyer, and Patterson (2006) described methods for
constructingGPQs and outlined the relationship betweenGPQs
and fiducial inference. Applying these ideas, GPQs can be
defined for the parameters (μ, σ) in the log-location-scale
model as follows. If S is a complete or Type II censored inde-
pendent sample from a log-location-scale distribution, a set of
GPQs for (μ, σ) under S is given by

μ∗∗
n = μ̂n +

(
μ − μ̂S

∗
n

σ̂ S∗
n

)
σ̂n and σ ∗∗

n =
(

σ

σ̂ S∗
n

)
σ̂n, (8)

where S
∗ denotes an independent copy of the sample S, and

(μ̂n, σ̂n) and (μ̂S
∗

n , σ̂ S
∗

n ) denote the ML estimators of (μ, σ)

computed from S and S
∗, respectively. These GPQs induce

a distribution over the parameter space (μ, σ) based on data
estimates (μ̂n, σ̂n) and, due to the fact that [(μ − μ̂n)/σ , σ̂n/σ ]
are pivotal quantities based on a complete or Type II censored
sampleT1, . . . ,Tn from the log-location-family, the distribution
of [(μ− μ̂S∗

n )/σ̂ S∗
n , σ/σ̂ S∗

n )] in (8) can be directly approximated
by simulation.

GPQs can also, in some applications, be used to construct
confidence intervals when an exact pivot is unavailable. Notice
that, while the quantities in (8) are GPQs for log-location-
scale family based on complete or Type II censored data, these
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are no longer GPQs with Type I censored data, where exact
GPQs technically fail to exist. This is because the distribution
of [(μ − μ̂n)/σ̂n, σ/σ̂n] depends on the unknown event prob-
ability F(tc;μ, σ) before the censoring time tc under Type I
censoring, which applies also to

[
(μ − μ̂S

∗
n )/σ̂ S

∗
n , σ/σ̂ S

∗
n

]
.

However, the formula in (8) can be used to provide a joint
approximate GPQ distribution under Type I censoring. Letting
θ̂

∗
n = (

μ̂∗
n, σ̂ ∗

n
)
denote a bootstrap version of̂θn = (μ̂n, σ̂n), (8)

is extended to define a joint approximate GPQ distribution as
the bootstrap distribution of θ̂∗∗

n = (
μ̂∗∗
n , σ̂ ∗∗

n
)
, where

μ̂∗∗
n = μ̂n +

(
μ̂n − μ̂∗

n
σ̂ ∗
n

)
σ̂n and σ̂ ∗∗

n =
(

σ̂n
σ̂ ∗
n

)
σ̂n. (9)

The above definition of θ̂
∗∗
n also follows by using the bootstrap

distribution of
[
(μ̂n − μ̂∗

n)/σ̂
∗
n , σ̂n/σ̂ ∗

n
]
to approximate the sam-

pling distribution of [(μ − μ̂n)/σ̂n, σ/σ̂n] and linearly solving
for (μ, σ). Then using θ̂

∗∗
n = (μ̂∗∗

n , σ̂ ∗∗
n ) instead of θ̂

∗
n =

(μ̂∗
n, σ̂ ∗

n ), a predictive distribution can be defined by using the
same procedure that defined the predictive distribution in (5).
Namely, by defining a random variable p̂∗∗

n ≡ π(̂θ
∗∗
n ) from (3)

with a bootstrap distribution induced by θ̂
∗∗
n = (μ̂∗∗

n , σ̂ ∗∗
n ), the

predictive distribution for Yn using the GPQ-bootstrap method
is given by

GGPQ
Yn (y|Dn) =

∫
pbinom(y, n − rn, p̂∗∗

n )Pr∗
(
d̂p∗∗

n
)

≈ 1
B

B∑
b=1

pbinom(y, n − rn, p̂∗∗
b ),

where p̂∗∗
1 , . . . , p̂∗∗

B are computed from realized bootstrap sam-
ples. The 100(1 − α)% lower and upper prediction bounds
using GPQ-bootstrap method can be obtained by replacing the
predictive distribution GDB

Yn (·|·) with GGPQ
Yn (·|·) in (6).

6.4. Coverage Probability of the ProposedMethods

This section shows that both the direct-bootstrap method (Sec-
tion 6.2) and the GPQ-bootstrap method (Section 6.3) pro-
duce asymptotically correct prediction bounds/intervals for the
future count Yn. Hence, these twomethods yield asymptotically
valid inference for within-sample prediction of Yn, as does the
calibration-bootstrap method (Theorem 2, Section 5), but not
by the standard plug-in method (Theorem 1, Section 4).

Theorem 3. Under the same conditions as Theorem 2,

1. The 100(1 − α)% upper and lower prediction bounds using
the direct-bootstrapmethod, respectively, ỸDB

n,1−α and ˜Y
DB
n,1−α ,

have asymptotically correct coverage. That is,
lim
n→∞Pr(Yn ≤ ỸDB

n,1−α) = 1 − α = lim
n→∞Pr(Yn ≥ ˜Y

DB
n,1−α).

2. If the parametric distribution F(·;μ, σ) belongs to the log-
location-scale distribution family (7), with standard cdf �(·)
differentiable onR, the 100(1−α)%upper and lower predic-
tion bounds using the GPQ-bootstrap method, respectively,
ỸGPQ
n,1−α and ˜Y

GPQ
n,1−α , have asymptotically correct coverage.

That is,
lim
n→∞Pr(Yn ≤ ỸGPQ

n,1−α) = 1 − α = lim
n→∞Pr(Yn ≥ ˜Y

GPQ
n,1−α).

The proof of Theorem 3 is in the online supplementary
materials.

7. Multiple Cohort Within-Sample Prediction

7.1. Multiple Cohort Data

So far, the focus has been on the within-sample prediction for
single-cohort data. Multiple cohort data, however, are more
common in applications. In this section, the results from single-
cohort data are extended to multiple-cohort data.

In multiple-cohort data (e.g., the bearing cage data of Sec-
tion 1), units from different cohorts are placed into service at
different times. The multiple-cohort data D can be seen as a
collection of several single-cohort datasets as D = {Dns , s =
1, . . . , S}, where S is the number of cohorts and ns is the number
of units in the cohort s (sometimes, with no grouping, many
cohorts have size 1).Within each cohortDns = (Ds,1, . . . ,Ds,ns),
we may express an observation involved as Ds,i = (δsi ,T

obs,s
i ),

for Tobs,s
i = Ts

i δ
s
i + (1 − δsi )tsc, where T

s
i is a random variable

from a parametric distribution F(·; θ), tsc is the censoring time
for cohort s, and δsi = I(Ts

i ≤ tsc) is a random variable
indicating whether a unit’s value (e.g., failure time) is less than
the censoring time tsc. Given the multiple-cohort data D, the
number of observed events (e.g., failures) within cohort s is
defined as rns = ∑ns

i=1 I(T
s
i ≤ tsc), s = 1, . . . , S, where the

total number of units is n = ∑S
s=1 ns. The predictand in the

multiple-cohort data is the total number of events that will occur
in a future time window of length � and it is denoted by Yn =∑S

s=1
∑ns

i=1 I(tsc < Ts
i ≤ tsw), where tsw = tsc+� for s = 1, . . . , S.

Within each cohort s = 1, . . . , S, the number Ys =∑ns
i=1 I(tsc < Ts

i ≤ tsw) of future events has a binomial dis-
tribution. As in Section 3, the conditional distribution of Ys is
binomial(n − rns , ps), where ps is defined as

ps ≡ πs(θ) = F(tsw; θ) − F(tsc; θ)

1 − F(tsc; θ)
, s = 1, . . . , S.

Consequently, the predictand Yn = ∑S
s=1 Ys has a Poisson-

binomial distribution with probability vector p = (p1, . . . , pS)
and weight vector w = (n1 − rn1 , . . . , nS − rnS). We denote this
Poisson-binomial distribution by Poibin(p,w), where the cdf of
the Poisson-binomial distribution is denoted by ppoibin(·, p,w)

and the quantile function is denoted by qpoibin(·, p,w); these
functions are available in the poibin R package (described in
Hong (2013)).

If θ̂n is a consistent estimator of θ based on the multiple-
cohort data D, an estimator p̂ = (̂p1n, . . . , p̂Sn) of conditional
probabilities p follows by substitution p̂sn = πs(̂θn), s = 1, . . . , S,
similar to the single-cohort case. Then, the 100(1−α)%plug-in
lower and upper prediction bounds for Yn are

˜Y
PL
n,1−α = sup{y ∈ {0} ∪ Z

+ : ppoibin
(
y − 1, p̂,w

) ≤ α},

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
qpoibin(α, p̂,w),

if pbinom(qpoibin(α, p̂,w), p̂,w) > α,
qpoibin(α, p̂,w) + 1,

if pbinom(qpoibin(α, p̂,w), p̂,w) = α,

ỸPL
n,1−α = inf{y ∈ {0} ∪ Z

+ : ppoibin(y, p̂,w) ≥ 1 − α}
= qpoibin(1 − α, p̂,w).



8 Q. TIAN ET AL.

Similar to the single-cohort case (Theorem 1), the plug-in
method also fails to provide an asymptotically correct coverage
probability under multiple-cohort data; see the online supple-
mentary materials.

7.2. The Calibration-BootstrapMethod forMultiple
Cohort Data

Formulating prediction bounds using the calibration-bootstrap
method first requires simulation of bootstrap samples, where
each bootstrap sample D

∗ matches the original data in terms
of the number S of cohorts as well as their respective sizes ns
and censoring times tsc, s = 1, . . . , S. The bootstrap version of
the estimator p̂ = (̂p1n, . . . , p̂Sn) is p̂∗ = (̂p1,∗n , . . . , p̂S,∗n ) from
each bootstrap sample D∗. Additionally, the number of events
(e.g., failures) in the bootstrap sample, grouped by cohort, is
(r∗n1 , . . . , r

∗
nS), from which we denote a bootstrap future count

by Y†
n ∼ Poibin(̂p;w∗) based on a weight vector from the

bootstrap sample asw∗ = (n1−r∗n1 , . . . , nS−r∗nS). The bootstrap
variable set (Y†

n , p̂
∗,w∗) is then applied into a Poisson-binomial

cdf and then leads to a transformed random variable U∗ =
ppoibin(Y†

n , p̂
∗,w∗) ∈ [0, 1] for deriving calibrated confidence

levels α†
L and α†

U in the same way as in the single-cohort situa-
tion. Then, the 100(1− α)% calibrated lower prediction bound
is ˜Y

C
n,1−α = ˜Y

PL
n,1−α†

L
and the similar upper prediction bound

version is ỸC
n,1−α = ỸPL

n,1−α†
U
.

The calibration-bootstrap method remains asymptotically
correct for multiple-cohort within-sample prediction. The
multiple-cohort extensions of Theorem 2 and the algorithm are
in the online supplementary materials.

7.3. The Direct- and GPQ-BootstrapMethods forMultiple
Cohort Data

For multiple-cohort data, constructing prediction bounds for
Yn based on the predictive-distribution-based methods also
requires bootstrap data and, in particular, the distribution of
a bootstrap version p̂∗ of p̂ as in Section 7.2. The predictive
distribution from the direct-bootstrap method is

GDB
Yn (y|D) =

∫
ppoibin(y, p̂∗,w)Pr∗(d̂p∗) (10)

≈ 1
B

B∑
b=1

ppoibin(y, p̂∗
b ,w),

where p̂∗
1, . . . , p̂

∗
B are realized bootstrap versions of p̂ across

independently generated bootstrap versions of multiple-cohort
data (e.g., D∗). The 100(1 − α)% direct-bootstrap lower and
upper prediction bounds for Yn are defined as the modified
α quantile and 1 − α quantile of this predictive distribution,
respectively, and given by

˜Y
DB
n,1−α = sup

{
y ∈ {0} ∪ Z

+ : GDB
Yn

(
y − 1|D) ≤ α

}
,

ỸDB
n,1−α = inf

{
y ∈ {0} ∪ Z

+ : GDB
Yn

(
y|D) ≥ 1 − α

}
.

If F(·; θ) = F(·;μ, σ) belongs to the log-location-scale
family as in (7), we use θ̂

∗
n = (μ̂∗

n, σ̂ ∗
n ) to compute approxi-

mate GPQs θ̂
∗∗
n = (μ̂∗∗

n , σ̂ ∗∗
n ) using (9), and compute p̂∗∗ =

(̂p1,∗∗
n , . . . , p̂S,∗∗

n ) where p̂s,∗∗
n = πs(̂θ

∗∗
n ). Then the GPQ-

bootstrap method can be implemented to obtain prediction
bounds for Yn by replacing p̂∗ with p̂∗∗ in the definition of
the direct-bootstrap predictive distribution (10) and analo-
gously determining prediction bounds from the quantiles of this
predictive distribution. The direct- and GPQ-bootstrap meth-
ods produce asymptotically correct prediction bounds from
multiple-cohort data, and the extension of Theorem 3 is pro-
vided in the online supplementary materials.

8. A Simulation Study

The purpose of this simulation study is to illustrate agreement
for finite sample sizes with the theorems established in the
previous sections and to provide insights into the performance
of differentmethods in the case of finite samples. The details and
results in this section are for Type I censored single-cohort data.
Let the event of interest be the failure of a unit. We simulated
Type I censored data using the two-parameter Weibull distri-
bution and compared the coverage probabilities of the predic-
tion bounds based on the plug-in, calibration-bootstrap, direct-
bootstrap, and GPQ-bootstrap methods. The Weibull cdf is

F(t; η,β) = 1 − exp

[
−

(
t
η

)β
]
, t > 0,

with positive scale η and shape β parameters, and can also be
parameterized as

F(t;μ, σ) = �sev

[
log(t) − μ

σ

]
, t > 0,

where �sev(x) = 1 − exp
[− exp(x)

]
is the cdf of the standard

smallest extreme value distribution with μ = log(η) and
σ = 1/β . The conditions in Theorems 1–3 can be verified for
Type I censored Weibull data, so that the Weibull distribution
can be used to illustrate all of the aforementioned methods for
within-sample prediction (e.g., theML estimators of theWeibull
parameters θ̂n = (μ̂n, σ̂n) have sampling distributions with
normal limits and can be validly approximated by parametric
bootstrap as described in Scholz (2001)).

8.1. Simulation Setup

The factors for the simulation experiment are (i) pf 1 =
F(tc;β , η), the probability that a unit fails before the censoring
time tc; (ii) E(r) = npf 1, the expected number of failures at
the censoring time tc, where n is the total sample size (i.e.,
including both the censored and the uncensored observations);
(iii) d ≡ pf 2 − pf 1, the probability that a unit fails in a future
time interval (tc, tw] where pf 2 = F(tw;β , η); (iv) β = 1/σ ,
the Weibull shape parameter. Because η = exp(μ) is a scale
parameter, without loss of generality, η = 1 was used in the
simulation. A simulation with all combinations of the following
factors levels was conducted: (i) pf 1 = 0.05, 0.1, 0.2; (ii) E(r) =
5, 15, 25, 35, 45; (iii) d = 0.1, 0.2; (iv) β = 0.5, 0.8, 2, 4.

For each combination of the these four factors, 90% and 95%
upper prediction bounds and 90% and 95% lower prediction
bounds were constructed.
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The procedure for the simulation is as follows:

1. Simulate N = 5000 Type I censored samples for each of the
factors-level combinations of the four factors.

2. UseML to estimate parameters β , η in each censored sample.
3. Compute prediction bounds using the different methods for

each sample.
4. Compute the conditional (i.e., binomial) coverage probability

for each of the prediction bounds.
5. Determine the unconditional coverage probability for each

method by averaging the N = 5000 conditional coverage
probabilities.

Within each of the N = 5000 simulated Type I censored
samples, B = 5000 bootstrap samples were generated by
parametric bootstrap (i.e., as a random sample from the fitted
Weibull distribution with Type I censoring at tc) and these
samples were used for the calibration-bootstrapmethod and the
two predictive-distribution-based methods. In the simulation,
we excluded those samples having fewer than 2 failures to avoid
estimability problems, so that allN = 5000 original samples and
all theN × B = 25,000,000 bootstrap samples in the simulation
have at least 2 failures. The probability of a data sample with
fewer than 2 failures for each factor-level combination is given
in Table 1.

Table 1. Probability of an excluded sample (i.e., r = 0 or 1 failures) for different
factor-level combinations.

E(r) = 5 E(r) = 15 E(r) = 25 E(r) = 35 E(r) = 45

pf1 = 0.05 0.037 0.000 0.000 0.000 0.000
pf1 = 0.1 0.034 0.000 0.000 0.000 0.000
pf1 = 0.2 0.027 0.000 0.000 0.000 0.000

8.2. Simulation Results

A small subset of the plots displaying the complete simulation
results are given here, as the results are generally consistent
across the different factor-level combinations. Figure 1 shows
the coverage probabilities from plug-in, calibration-bootstrap,
direct-bootstrap, and GPQ-bootstrapmethods when β = 2 and
d = 0.2. The horizontal dashed line in each subplot represents
the nominal confidence level. Plots for the other factor-level
combinations are given in the online supplementary materials.

Some observations from the simulation results are:

1. The plug-in method fails to have asymptotically correct cov-
erage probability. As pf 1 decreases, which entails less infor-
mation or fewer events observed before the censoring time
tc, the coverage probability deviates more from the nominal
level.

2. The direct- and GPQ-bootstrap methods are close to
each other in terms of coverage probabilities except when
E(r) = 5. The calibration-bootstrap method differs consid-
erably from the direct- and GPQ-bootstrap methods. The
calibration-bootstrap method tends to be more conservative
than the other bootstrap-based methods for constructing
lower prediction bounds, and also is less conservative for
constructing upper prediction bounds.

3. For the lower bounds, the direct- and GPQ-bootstrap meth-
ods dominate the calibration-bootstrap method. For the
upper bounds, the coverage probabilities of the former two
bootstrap-based methods are slightly conservative but still
close to the nominal level. The calibration-bootstrap method
is better than the direct- and GPQ-bootstrap methods in just
a few of these upper bounds.

Lower 95% Lower 90% Upper 90% Upper 95%
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Figure 1. Coverage probabilities versus expected number of events for the direct-bootstrap (DB), GPQ-bootstrap (GPQ), calibration-bootstrap (CB), and plug-in (PL)
methods when d = pf2 − pf1 = 0.2 and β = 2.
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4. Compared with the calibration-bootstrap method, whose
performance is highly related to the level of pf 1, the coverage
probabilities of the direct- and GPQ-bootstrap methods are
insensitive to the level of pf 1. As pf 1 decreases, the lower pre-
diction bound using the calibration-bootstrap method has
over-coverage while the upper prediction bound has under-
coverage. This implies that under heavy censoring (small
pf 1), extremely large sample sizes n (or correspondingly large
expected number of failing E(r) = npf 1) are required to
attain coverage probabilities close to the nominal confidence
level.

From these observations, we can see that the direct- and
GPQ-bootstrap methods (i.e., predictive-distribution-based
methods) tend to dominate the calibration-bootstrapmethod in
terms of the performance of the prediction bounds, even though
all three methods are asymptotically valid. This is because the
predictive-distribution-based methods target the one source p
of parameter uncertainty in the conditional binomial(n− rn, p)
distribution of the predictand Yn (i.e., as addressed by applying
bootstrap versions p̂∗ or p̂∗∗ to “smooth” estimation uncertainty
for p), while the number n − rn of Bernoulli trials used in
these predictive distributions matches that of the predictand.
Due to its definition, however, the calibration-bootstrapmethod
involves bootstrap approximation steps (i.e., r∗n , p̂∗) for both the
number rn of failures as well as the binomial probability p. The
calibration-bootstrap method essentially imposes an approxi-
mation n − r∗n for the known number n − rn of trials pre-
scribing the predictand Yn. As a consequence, coverages from
the calibration-bootstrap method are generally less accurate
than those from the predictive-distribution-based methods for
within-sample prediction.

9. Application of theMethods

9.1. Examples

9.1.1. Product-A Data
The ML estimates of the Weibull shape and scale parameters
are β̂ = 1.518 and η̂ = 1152, respectively, based on 80
failure times among 10,000 units before 48 months. Then, for
the 9920 surviving units, the ML estimate of the probability
that a unit will fail between 48 and 60 months of age is p̂n =
[F(60; β̂ , η̂) − F(48; β̂ , η̂)]/[1 − F(48; β̂ , η̂)] = 0.00323. Using
the ML estimates of the Weibull parameters (β̂ , η̂), we simulate
10,000 bootstrap samples that are censored at 48 months and
obtain ML estimates of (β , η) from each bootstrap sample.
Based on applying thesewith each intervalmethod, Table 2 gives
prediction bounds for the number of failures in the next 12
months. As indicated by our results, even with a large number
of failures, the plug-in method intervals can be expected to be
off and are too narrow compared to the other bounds.

9.1.2. Heat Exchanger Data
In this example, there are no exact failure times in the data. That
is, the data here contain limited information as there were only
8 failures among 20,000 exchanger tubes that were inspected
(in censored data analysis, the informational content of data is
closely related to the number of failures) and these failure times

Table 2. Product A data: prediction bounds for the number of failures in the next
12 months using different methods.

Confidence level Bound type Plug-in Direct GPQ Calibration

95% Lower 23 20 20 20
90% Lower 25 23 23 23
90% Upper 39 43 43 43
95% Upper 42 47 47 46

are interval-censored (not exact). The likelihood function under
a Weibull model for the heat exchanger data is

L(β , η) = F(1;β , η)[F(2;β , η) − F(1;β , η)]
× [F(3;β , η) − F(2;β , η)]6[1 − F(3;β , η)]19992,

resulting in ML estimates β̂ = 2.531 and η̂ = 66.058. The
conditional probability of a tube failing between the third and
tenth year, given that tube has not failed at the end of the third
year, is then estimated as p̂n = [F(10; β̂ , η̂) − F(3; β̂ , η̂)]/[1 −
F(3; β̂ , η̂)] = 0.00797.

The ML estimates from 10,000 bootstrap samples (para-
metric bootstrap with censoring at 3 years) are used in
the calibration-bootstrap and two predictive-distribution-based
methods. However, the calibration-bootstrap method exhibits
numerical instabilities with these data due to the small num-
ber of failures. To illustrate, Figure 2 shows the approximate
quantile function of U∗ = pbinom(Y†

n , n − r∗n , p̂∗
n) used in

the calibration-bootstrap method, involving the evaluation of a
binomial(n−r∗n , p̂∗

n) randomvariableY†
n in its cdf pbinom, given

the number r∗n of failures and the estimate p̂∗
n from a bootstrap

sample. This quantile function is also the calibration curve,
where the x-axis gives the desired confidence level 1 − α, while
the y-axis gives the corresponding calibrated confidence level
(α†

L or 1 − α†
U) to be used for determining plug-in prediction

bounds (or quantiles from a binomial(n − rn = 19992, p̂ =
0.00797) distribution). From Figure 2, we can see that the 0.05
and 0.1 quantiles nearly equal 0 while the 0.9 and 0.95 quantiles
nearly equal 1. This creates complications in computing the
prediction bounds, for example, as there is numerical instability
near the 100% quantile of the binomial(n − rn = 19992, p̂ =
0.00797) distribution. Consequently, 90% and 95%bounds from
the calibration-bootstrapmethod are computationally not avail-
able (NA). Table 3 instead provides prediction bounds from the
plug-in and direct- and GPQ-bootstrap methods. The plug-in
prediction bounds differ substantially from the two bootstrap-
based methods. Unlike the previous example (Product A data),
the direct- and GPQ-bootstrap methods also differ appreciably
based on the limited failure informationwith the heat exchanger
data; we return to explore such differences in Section 9.2. The
upper bounds involve a large amount of extrapolation and may
not be practically meaningful other than to warn that there is a
huge amount of uncertainty in the 10-year predictions.

9.1.3. Bearing Cage Data
In this example, staggered entry data containing multiple
cohorts are considered. Table 4 gives the prediction bounds for
the bearing cage dataset using 10,000 bootstrap samples. While
similar in spirit to the Product-A example, the predictand here
differs by having a Poisson-binomial distribution. The latter can
be computed with the R package poibin, which is applied
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Figure 2. The quantile function of pbinom(Y†n , n − r∗n , p̂∗
n) used for the calibration-bootstrap method with heat exchanger data.

Table 3. Heat exchanger data: prediction bounds for the number of failures in the
next 7 years using different methods.

Confidence level Bound type Plug-in Direct GPQ Calibration

95% Lower 138 28 23 NA
90% Lower 142 43 34 NA
90% Upper 176 1627 888 NA
95% Upper 180 4343 1890 NA

Table4. Bearing cagedata: predictionbounds for thenumber of failures in thenext
300 service hours using different methods.

Confidence level Bound type Plug-in Direct GPQ Calibration

95% Lower 2 1 1 1
90% Lower 2 2 2 2
90% Upper 8 10 13 10
95% Upper 9 12 20 12

to construct prediction bounds using methods described in
Section 7.2. Table 4 gives the resulting prediction bounds for the
bearing cage dataset.

9.2. Comparing the Direct- and GPQ-BootstrapMethods

In the heat exchanger example, the prediction bounds obtained
from the direct- and GPQ-bootstrap methods appear very dif-
ferent. This motivates us to investigate the cause of such dif-
ferences in similar prediction applications involving limited
information.

A general simulation setting is first described for mimick-
ing the heat exchanger data. The heat exchanger data has two

important features in that the number of events is small (i.e.,
8) and so is the proportion of observed events (i.e., 0.004).
Hence, in the simulation, the expected number of events E(r)
is set to 5 while the proportion failing pf 1 is 0.001, with a
Weibull shape parameter β = 2 and scale parameter η = 1.
Different levels of d = pf 2 − pf 1 are used for the probability of
events in the forecast window. The simulation results (available
in the online supplementary materials) reveal that, overall, the
GPQ-bootstrap method has better coverage probability than
the direct-bootstrap method in this simulation setting. For the
upper prediction bound, the direct-bootstrap method is gen-
erally more conservative than the GPQ-bootstrap method in
terms of coverage probability, indicating that upper prediction
bounds from the direct-bootstrap method are larger than the
GPQ counterparts. On the other hand, the lower bound based
on the direct-bootstrap method generally tends to have under-
coverage compared to the GPQ-bootstrap method, suggesting
also larger lower bounds from the direct-bootstrap method
relative to the GPQ-bootstrap method. These patterns in the
prediction bounds (i.e., with larger direct-bootstrap bounds
compared to those from the GPQ-bootstrap in a setting of
a limited number of events) are consistent with the predic-
tion bounds found from the heat exchanger example. To fur-
ther illustrate, Figure 3 shows the bootstrap distributions of
p̂∗ and p̂∗∗ from a single Monte Carlo sample that represents
the typical behavior found in this simulation setting: values
of p̂∗∗ used in the predictive distribution of GPQ-bootstrap
method tend to be smaller and more concentrated than the
p̂∗ values used in the direct-bootstrap predictive distribution.
Note that direct- and GPQ-bootstrap predictive distributions
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Figure 3. A representative distribution of p̂∗ and p̂∗∗ .

are approximated by GDB
Yn (y|Dn) ≈ 1/B

∑B
b=1 pbinom(y, n −

rn, p̂∗
b) and GGPQ

Yn (y|Dn) ≈ 1/B
∑B

b=1 pbinom(y, n − rn, p̂∗∗
b ),

respectively, and that direct- and GPQ-bootstrap prediction
bounds correspond to quantiles from these predictive distribu-
tions. Consequently, because p̂∗

b and p̂∗∗
b are small (e.g., <0.25)

while p̂∗
b is generally larger than p̂

∗∗
b in Figure 3, thenGDB

Yn (y|Dn)

is generally smaller than GGPQ
Yn (y|Dn), implying quantiles from

GDB
Yn (y|Dn) can be expected to exceed those from GGPQ

Yn (y|Dn)
in data cases with a limited number of events. However, asymp-
totically, both p̂∗

n and p̂∗∗
n are similarly normally distributed and

symmetric around p̂n (shown in online supplementary materi-
als), so that the direct- and GPQ-bootstrap prediction bounds
may be expected to behave alike in data situations with a larger
number of events and larger sample sizes, as seen in Figure 1
(and in the Product A application).

10. Choice of a Distribution

Extrapolation is usually requiredwhen predicting the number of
future events based on an on-going time-to-event process. For
example, it may be necessary to predict the number of returns
in a three-year warranty period based on field data for the first
year of operation of a product. An exception arises when life
can be modeled in terms of use (as opposed to time in service)
and there is much variability in use rates among units in the
population. The high-use units will fail early and provide good
information about the upper tail of the amount-of-use return-
time distribution (e.g., Hong and Meeker 2010).

When extrapolation is required, predictions can be strongly
dependent on the distribution choice. In most applications,
especially with heavy censoring, there is little or no useful
information in the data to help choose a distribution. Then,

for example, it is best to choose a failure-time distribution
based on knowledge of the failure mechanism and the related
physics/chemistry of failure. In important applications, this
would be typically be done by consulting with experts who have
such knowledge.

For example, the lognormal distribution could be justified for
failure times that arise from the product of a large number of
small, approximately independent positive random quantities.
Examples include failure from crack initiation and growth due
to cyclic stressing of metal components (e.g., in aircraft engines)
and chemical degradation like corrosion (e.g., inmicroelectron-
ics). These are two common applications where the lognormal
distribution is often used. Gnedenko, Belyayev, and Solovyev
(1969, pp. 36–37) provided mathematical justification for this
physical/chemical motivation.

Based on extreme value theory, the Weibull distribution can
be used to model the distribution of the minimum of a large
number of approximately iid positive random variables from
certain classes of distributions. For example, the Weibull distri-
bution may provide a suitable model for the time to first failure
of a large number of similar components in a system. Consider
a chain with many nominally identical links and suppose that
the chain is subjected cyclic stresses over time. As suggested
in the previous paragraph, the number of cycles to failure for
each link could be described adequately with a lognormal dis-
tribution. The chain, however, fails when the first link fails. The
limiting distribution of (properly standardized) minima of iid
lognormal random variables is a Type I smallest extreme value
(or Gumbel) distribution. For all practical purposes, however,
the Weibull distribution provides a better approximation. For
further information on this result from the penultimate theory
of extreme values, see Green (1976), Castillo (1988, sec. 3.11),
and Gomes and de Haan (1999). Similarly, if failures are driven
by themaximumof a large number of approximately iid positive
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Figure 4. Distributional comparisons for β = 2. The two vertical dotted lines on the left indicate the points in time where all three distributions have the same 0.01 and
pf1 quantiles. The three vertical lines on the right indicate the times at pf2 = pf1 + d for the three distributions.

random variables, a Fréchet distribution would be suggested.
The reciprocal of a Weibull random variable has a Fréchet
distribution.

Of course, choosing a distribution based on failure-
mechanism knowledge is not always possible. The alternative is
to do sensitivity analyses, using different distributions. Figure 4

provides a comparison of the Weibull, lognormal, and Fréchet
cdfs where the Weibull distribution was chosen with a shape
parameter β = 2 and the other factor level combinations of
pf 1 and d used in the Section 8 simulation. The scale param-
eter η is determined by letting the 0.01 Weibull quantile be 1.
The cdfs are plotted on lognormal probability scales where the
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lognormal cdf is a straight line. The particular parameters for
the lognormal and Fréchet distributions were chosen such that
the distributions cross at the 0.01 and pf 1 quantiles, simulating
the range of the data where the agreement among distributions
will be good. Similar plots for β = 1 and β = 4 are provided in
the online supplementary materials. TheWeibull distribution is
always more pessimistic (conservative) than the lognormal and
the Fréchet is always more optimistic than the lognormal. For
example, if the true distribution isWeibull but lognormal distri-
bution is used to fit the data, the prediction intervals, regardless
of the method, will underpredict the number of events. When
in doubt, the Weibull distribution is often used because it is the
conservative choice.

11. Concluding Remarks

This article studies the problem of predicting the future number
of events based on censored time-to-event data (e.g., failure
times). This type of prediction is known as within-sample
prediction. A regular prediction problem is defined for which
standard plug-in estimation commonly applies, and it is shown
that the within-sample prediction is not regular and that the
plug-in method fails to produce asymptotically valid predic-
tion bounds. The irregularity of within-sample prediction and
the failure of the plug-in method motivated the study of the
calibration method as an alternative approach for prediction
bounds, though the previously established theory for calibra-
tion bounds does not apply to within-sample prediction. The
calibration method is implemented via bootstrap and called
calibration-bootstrap method, which is proved to be asymptot-
ically correct (i.e., producing prediction bounds with asymptot-
ically correct coverage). Then, turning to formulations of a pre-
dictive distribution, we study and validate two other methods
to obtain prediction bounds, namely the direct-bootstrap and
GPQ-bootstrap methods. All prediction methods considered
can be applied to both single-cohort and multiple-cohort data.

While theoretical results show that the calibration-bootstrap
method and the two predictive-distribution-based methods are
all asymptotically correct, the simulation study shows that the
direct-bootstrap and GPQ-bootstrap methods outperform the
calibration-bootstrap method in terms of coverage probabil-
ity accuracy relative to a nominal coverage level. The two
predictive-distribution-based methods are also easier to imple-
ment compared to the calibration-bootstrap method, and can
also be computationally more stable (e.g., heat exchanger data
example). Thus, we recommend predictive distribution meth-
ods, especially the direct-bootstrap method for general applica-
tions involving within-sample prediction.

In this article, all of the units in the population were assumed
to have the same time-to-event distributions. In many appli-
cations, however, units are exposed to different operating or
environmental conditions, resulting in different time-to-event
distributions. For example, during 1996–2000, the Firestone
tires installed on Ford Explorer SUVs experienced unusually
high rates of failure, where problems first arose in Saudi Ara-
bia, Qatar, and Kuwait because of the high temperatures in
those countries (see National Highway Traffic Safety Admin-
istration 2001). Having prediction intervals that use covariate
information (like temperature and moisture) could be useful

for manufacturers and regulators in making decisions about
a possible product recall, for example. Similarly, there can be
seasonality effects in time-to-event processes andwithin-sample
predictions.

Themethods described in this article can be extended to han-
dle either constant covariates or time-varying covariates. Using
calibration-bootstrap methods, Hong, Meeker, and McCalley
(2009) used constant covariates to predict power-transformer
failures. Despite the complicated nature of their data (random
right censoring and truncation and combinations of categorical
covariates with small counts in some cells), Hong, Meeker, and
McCalley (2009) were able to use the fractional random-weight
method (e.g., Xu et al. 2020) to generate bootstrap estimates.
Shan, Hong, and Meeker (2020) used time-varying covariates
to account for seasonality in two different warranty prediction
applications. As mentioned by one of the referees, if there is
seasonality and data from only part of one year is available,
there is a difficulty. In such cases, it would be necessary to use
past data on a similar process to provide information about the
seasonality.

Covariate information in reliability field data has not been
common, but that is changing, due to a reduction in costs and
advances in sensor, communications, and storage technology. In
the future, much more covariate information on various system
operating/environmental variables will be available to make
better predictions, as described in Meeker and Hong (2014).

Supplementary Materials

The online supplementary material provides proofs, extra simulation
results, algorithms, and data.

Acknowledgments

We would like to thanks Luis A. Escobar for helpful comments on this
article. We are also grateful to the editorial staff, including two reviewers,
for helpful comments that improved the article.

Funding

Research was partially supported by NSF DMS-2015390.

References

Abernethy, R., Breneman, J., Medlin, C., and Reinman, G. (1983), Weibull
Analysis Handbook, Dayton, OH: Wright-Patterson AFB. [1]

Aitchison, J. (1975), “Goodness of Prediction Fit,” Biometrika, 62, 547–554.
[3]

Atwood, C. L. (1984), “Approximate Tolerance Intervals, Based on Maxi-
mum Likelihood Estimates,” Journal of the American Statistical Associa-
tion, 79, 459–465. [3]

Barndorff-Nielsen, O. E., and Cox, D. R. (1996), “Prediction and Asymp-
totics,” Bernoulli, 2, 319–340. [3]

Beran, R. (1990), “Calibrating Prediction Regions,” Journal of the American
Statistical Association, 85, 715–723. [2,3,5]

Castillo, E. (1988), Extreme Value Theory in Engineering, Statistical Model-
ing and Decision Science, New York: Academic Press. [12]

Cox, D. R. (1975), “Prediction Intervals and Empirical Bayes Confidence
Intervals,” Journal of Applied Probability, 12, 47–55. [2,4]

Davison, A. C. (1986), “Approximate Predictive Likelihood,” Biometrika,
73, 323–332. [3]

Escobar, L. A., and Meeker, W. Q. (1999), “Statistical Prediction Based on
Censored Life Data,” Technometrics, 41, 113–124. [1,3,5]



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 15

Fonseca, G., Giummolè, F., and Vidoni, P. (2012), “Calibrating Predictive
Distributions,” Journal of Statistical Computation and Simulation, 84,
373–383. [3]

Gnedenko, B. V., Belyayev, Y. K., and Solovyev, A. D. (1969),Mathematical
Methods of Reliability Theory, New York: Academic Press. [12]

Gomes, M. I., and de Haan, L. (1999), “Approximation by Penultimate
Extreme Value Distributions,” Extremes, 2, 71–85. [12]

Green, R. F. (1976), “Partial Attraction of Maxima,” Journal of Applied
Probability, 13, 159–163. [12]

Hall, P., Peng, L., and Tajvidi, N. (1999), “On Prediction Intervals Based on
Predictive Likelihood or Bootstrap Methods,” Biometrika, 86, 871–880.
[2]

Hannig, J., Iyer, H., and Patterson, P. (2006), “Fiducial Generalized Con-
fidence Intervals,” Journal of the American Statistical Association, 101,
254–269. [6]

Harris, I. R. (1989), “Predictive Fit for Natural Exponential Families,”
Biometrika, 76, 675–684. [6]

Hong, Y. (2013), “OnComputing theDistribution Function for the Poisson-
Binomial Distribution,” Computational Statistics and Data Analysis, 59,
41–51. [7]

Hong, Y., andMeeker,W.Q. (2010), “Field-Failure andWarranty Prediction
Based on Auxiliary Use-Rate Information,” Technometrics, 52, 148–159.
[5,12]

(2013), “Field-Failure Predictions Based on Failure-Time Data
With Dynamic Covariate Information,” Technometrics, 55, 135–
149. [5]

Hong, Y., Meeker,W. Q., andMcCalley, J. D. (2009), “Prediction of Remain-
ing Life of Power Transformers Based on Left Truncated and Right

Censored Lifetime Data,” The Annals of Applied Statistics, 3, 857–879.
[5,14]

Lawless, J. F., and Fredette, M. (2005), “Frequentist Prediction Intervals and
Predictive Distributions,” Biometrika, 92, 529–542. [3]

Meeker, W. Q., and Hong, Y. (2014), “Reliability Meets Big Data: Opportu-
nities and Challenges,” Quality Engineering, 26, 102–116. [14]

National Highway Traffic Safety Administration (2001), Engineering Analy-
sis Report and Initial Decision Regarding EA00-023: Firestone Wilderness
AT Tires, Washington, DC: US Department of Transportation. [14]

Nelson, W. (2000), “Weibull Prediction of a Future Number of Failures,”
Quality and Reliability Engineering International, 16, 23–26. [1]

Scholz, F. (2001), “Maximum Likelihood Estimation for Type I Censored
Weibull Data Including Covariates,” in ISSTECH-96-022, Boeing Infor-
mation & Support Services. [8]

Shan, Q., Hong, Y., and Meeker, W. Q. (2020), “Seasonal Warranty Predic-
tion Based on Recurrent Event Data,”The Annals of Applied Statistics, 14,
929–955. [14]

Shen, J., Liu, R. Y., and Xie, M.-G. (2018), “Prediction With Confidence—
A General Framework for Predictive Inference,” Journal of Statistical
Planning and Inference, 195, 126–140. [3,6]

Wang, C., Hannig, J., and Iyer, H. K. (2012), “Fiducial Prediction Intervals,”
Journal of Statistical Planning and Inference, 142, 1980–1990. [6]

Xie, M.-G., and Singh, K. (2013), “Confidence Distribution, the Frequentist
Distribution Estimator of a Parameter: A Review,” International Statisti-
cal Review, 81, 3–39. [6]

Xu, L., Gotwalt, C., Hong, Y., King, C. B., and Meeker, W. Q. (2020),
“Applications of the Fractional-Random-Weight Bootstrap,” The Ameri-
can Statistician, 74, 345–358. [14]



Predicting the Number of Future Events:
Supplementary Material

Qinglong Tian, Fanqi Meng, Daniel J. Nordman, William Q. Meeker

Department of Statistics, Iowa State University
Ames, IA 50011

November 6, 2020

Section A outlines algorithms for computing prediction bounds with the calibration-

bootstrap method in the context of single-cohort and multiple-cohort within-sample

prediction. Section B provides additional simulation results for Section 9.2 of

the main paper, regarding a comparison of prediction bounds from direct/GPQ-

bootstrap methods with limited failure time/event information. Proofs of the main

results about the asymptotic coverage properties of prediction bound methods (The-

orems 1-3 from the paper) are given in Section C; these concern the single-cohort

case of within-sample prediction. Extensions of these proofs to handle the multiple-

cohort case are discussed in Section D. The rest of the simulation results and the

Bearing Cage Data are given in Section E. Section F provides some illustrative

comparisons to show how the probabilities of future events in prediction may vary

by distributional model.
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Section A Algorithms

Algorithm 1 describes the implementation of the calibration method with bootstrap Monte Carlo

simulation. The procedure described in the main paper requires an extra layer of simulation (i.e.,

simulating y∗ from binom(n − r∗n, p̂n)). The algorithm described below avoids this extra layer

of simulation thus reducing the Monte Carlo error. But as a trade-off, more memory space is

needed.
Algorithm 1: Using Bootstrap Samples to Obtain the Calibrated Upper Prediction
Bound

Input: The Type I censored single cohort data:Dn; The bootstrap sample size: B; The
nominal level:1− α.

Output: The 100(1− α)% upper calibrated prediction bound:Ỹ C
n,1−α.

1 compute estimators θ̂n = θ̂n(Dn) and p̂n = π(θ̂n) (e.g., by maximum likelihood);
2 b← 1;
3 values vector← NULL; prob vector← NULL;

4 while b ≤ B do
5 simulate the bth bootstrap sampleD∗(b)n ; the number of failures inD∗(b)n is r∗b ;
6 compute θ̂

∗
b , as the estimate of θ from the bootstrap sampleD∗(b)n ;

7 p̂∗b = π(θ̂
∗
b), where π(·) is defined in (3);

8 values vector← c(values vector,pbinom(0 : (n− r∗b ), n− r∗b , p̂∗b));
9 prob vector← c(prob vector,dbinom(0 : (n− r∗b ), n− r∗b , p̂n));

10 b← b+ 1;
11 end

12 prob vector← prob vector/B;
13 prob vector← prob vector[order(values vector)];
14 empirical cdf y← cumsum(prob vector);
15 empirical cdf x← sort(values vector);
16 p calibrated← empirical cdf x[which(empirical cdf y ≥ 1− α)[1]];

17 Ỹ C
n,1−α ← qbinom(p calibrated, n− r, p̂n);

For multiple-cohort data, the only difference is that the binomial distribution is replaced

a the Poisson-binomial distribution. Algorithm 2 provides an extension of Algorithm 1 for

multiple-cohort data. The functions in bold correspond to the functions available in R. Again

only results for the upper prediction bounds are given because results for the lower prediction
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bounds are similar.
Algorithm 2: Extending Algorithm 1 to multiple-cohort Data

Input: The Type I censoring multiple-cohort data:D; The bootstrap sample size: B;
The nominal level:1− α.

Output: The 100(1− α)% upper calibrated prediction bound:Ỹ C
n,1−α.

1 compute the ML estimates θ̂n = θ̂n(D) and p̂n = (π1(θ̂n), ..., πS(θ̂n)).
2 the numbers of remaining units are w = (n1 − rn1 , . . . , nS − rnS

);
3 b← 1;
4 values vector← NULL; prob vector← NULL;

5 while b ≤ B do
6 simulate the bth bootstrap sample D∗b ;
7 the number of remaining units for each cohort in D∗b is

w∗b = (n1 − r∗,bn1
, ..., nS − r∗,bnS

);
8 The total number of units at risk in the bootstrap sample D∗b is

Rb =
∑S

s=1(ns − r∗,bns
);

9 compute θ̂
∗
b = θ̂

∗
b(D∗b), the ML estimates of θ from the bootstrap sample D∗b ;

10 compute p̂∗b = (π1(θ̂
∗
b), ..., πS(θ̂

∗
b));

11 values vector← c(values vector,ppoibin(0 :Rb, p̂
∗
b ,w

∗
b));

12 prob vector← c(prob vector,dpoibin(0 :Rb, p̂n,w
∗
b));

13 b← b+ 1;
14 end

15 prob vector← prob vector/B;
16 prob vector← prob vector[order(values vector)];
17 empirical cdf y← cumsum(prob vector);
18 empirical cdf x← sort(values vector);
19 p calibrated← empirical cdf x[which(empirical cdf y ≥ 1− α)[1]];

20 Ỹ C
n,1−α ← qpoibin(p calibrated, p̂n,w);

Section B Comparing the Direct-Bootstrap and the GPQ-Bootstrap
Methods

The numerical results presented here provide additional supporting details for the simulation

study described in Section 9.2, intended to compare direct-bootstrap and GPQ-bootstrap meth-

ods for data with limited event information (e.g., few failures). Table 5 gives the prediction
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bounds from 10 Monte Carlo samples using d = 0.005, where d again denotes the (uncondi-

tional) probability of an event in a future window (tc, tw] under the Weibull model. Figure 5

Sample
Lower 95% Lower 90% Upper 90% Upper 95%

Direct GPQ Direct GPQ Direct GPQ Direct GPQ
1 5 4 9 6 360 164 975 392
2 4 3 7 5 222 115 574 254
3 0 0 0 0 13 12 17 18
4 17 11 29 18 3851 1390 4993 3188
5 6 5 10 7 374 164 1052 417
6 9 7 15 10 991 396 3367 986
7 5 3 8 6 315 152 970 308
8 14 9 22 14 2498 770 4934 1905
9 57 80 108 120 4956 4986 4997 4997

10 4 2 6 4 264 116 825 243

Table 5: Prediction Bounds of A Few Monte Carlo Samples.
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Figure 5: The Coverage Probabilities of the Direct-Bootstrap and GPQ-Bootstrap Methods.

shows the coverage probabilities of the direct-bootstrap and GPQ-bootstrap methods using dif-

ferent values of d. These results are referred to in the discussion of Section 9.2. Asymptotically,
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both p̂∗n and p̂∗∗n are normally distributed and symmetric around p̂n, as shown in Lemma 2 below.

Section C Proof of the Theorems

Here we focus on the single-cohort version of the within-sample prediction problem and the

corresponding Theorems 1-3 for the prediction bound methods. Extensions of these theorems

to multiple-cohort data are then discussed in Section D. The proofs of the main results require

three technical lemmas (Lemmas 1-3) given next; after establishing these lemmas, proofs of

Theorems 1-3 are then provided.

Recall that, under the conditions for Theorem 1, the parameter estimators θ̂n ∈ Rq (e.g.,

ML estimators) have a normal limit, i.e.,
√
n(θ̂n − θ0) converges in distribution to a multi-

variate normal MVN(0,V 0). For later reference, Lemma 1 states that the bootstrap version of

parameter estimators, given by
√
n(θ̂

∗
n− θ̂n) (e.g., as generated by a parametric bootstrap), has

the same normal limit under the mild consistency assumptions of Theorem 2.

Lemma 1. Suppose conditions from Theorem 2. Letting L∗n denote the bootstrap probability

distribution of
√
n(θ̂

∗
n− θ̂n) and letting L denote the MVN(0,V 0) probability distribution, the

distance ρ(L∗n,L) between these distributions satisfies

ρ(L∗n,L)
p−→ 0, as n→∞,

under any distance ρ(·, ·) (e.g., Prokhorov distance) which metricizes weak convergence on Rq.

Proof. IfLn denotes the sampling distribution of
√
n(θ̂n−θ0), then the Theorem 1-2 conditions

give ρ(Ln,L) → 0 and ρ(L∗n,Ln)
p→ 0 (by assumption). By the triangle inequality (ρ is a

metric), ρ(L∗n,L) ≤ ρ(L∗n,Ln) + ρ(Ln,L)
p→ 0.

Lemma 2 next establishes certain normal limits for estimators of the conditional probability

p = π(θ) from (3), at both the original data and bootstrap levels. Lemma 2 implies that the
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bootstrap counterparts of
√
n(p̂n−p0) converge in distribution to the same normal limitN(0, v0)

as the estimator p̂n does.

Lemma 2. Let v0 ≡ ∇t
0V 0∇0 > 0 with V 0 and non-zero ∇0 = ∂π(θ)/∂θ|θ=θ0 from Theo-

rem 1, where θ0 contains the true parameters and π(·) is from (3). Let Φnor(z/
√
v0), z ∈ R,

denote the cdf of a normal N(0, v0) (v0 is the variance). Then under Theorem 2 conditions, as

n→∞,

(1)
√
n(p̂n − p0)

d−→ N(0, v0) holds for the estimator p̂n = π(θ̂n) of p0 = π(θ0).

(2) In the direct-bootstrap method, for the bootstrap version
√
n(p̂∗n − p̂n) of

√
n(p̂n − p0), it

holds that

sup
z∈R

∣∣Pr∗(
√
n(p̂∗n − p̂n) ≤ z)− Φnor(z/

√
v0)
∣∣ p−→ 0.

(3) In the GPQ-bootstrap method where F (·;µ0, σ0) belongs to the log-location-scale family,

for the approximate GPQ-based bootstrap version of
√
n(p̂n − p0), it holds that

sup
z∈R

∣∣Pr∗(
√
n(p̂∗∗n − p̂n) ≤ z)− Φnor(z/

√
v0)
∣∣ p−→ 0.

Proof. Part 1 of Lemma 2 follows from the normal limit for
√
n(θ̂n−θ) assumed in Theorem 1

along with the delta method as the parametric function p = π(θ) is differentiable at θ0. The

positivity of v0 follows because the matrix V 0 is positive definite and the vector∇0 is non-zero.

To show the convergence in probability stated in Part 2 of Lemma 2, we use the charac-

terization of convergence in probability through almost sure convergence along subsequences.

Let {nj} ⊂ {n} be an arbitrary subsequence of indices. Since θ̂n
p−→ θ0 under Theorem 1 and

ρ(L∗n,L)
p−→ 0 by Lemma 1, there exists a further subsequence {nk} ⊂ {nj} and both θ̂nk

→ θ0

and ρ(L∗nk
,Lnk

)→ 0 converge almost surely. That is, associating the original random variables

with a probability space (Ω,F , P ) involving a sample space Ω and the associated σ-algebra

F of events, there exists an event A ∈ F with P (A) = 1 such that, for any sample point
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ω ∈ A, it holds that θ̂nk
≡ θ̂nk

(ω)→ θ0 and ρ(L∗nk
,L) ≡ ρ(L∗nk

,L)(ω)→ 0 as nk →∞ (i.e.,

pointwise convergence at each ω ∈ A along the subsequence {nk}). Note that, given ω ∈ A,

estimates θ̂nk
(ω) correspond to a single real sequence and there is a single sequence of boot-

strap distributions L∗nk
, nk ≥ 1, for the bootstrap estimators

√
nk(θ̂

∗
nk
− θ̂nk

(ω)) induced by the

bootstrap probability Pr∗. To simplify the notation, we shall fix ω ∈ A and consider pointwise

convergence at ω ∈ A as nk → ∞, suppressing the appearance of ω in the notation. Standard

convergence in probability or distribution, though, with respect to the bootstrap probability Pr∗

along the subsequence {nk}, will be denoted as d∗−→ and
p∗−→, respectively, for clarity. Hence

along the subsequence {nk}, it holds that θ̂nk
→ θ0 and

√
nk(θ̂

∗
nk
− θ̂nk

(ω))
d∗−→ Z2 for the

multivariate normal random vector Z2 ∼ N(0,V 0) from Lemma 1.

We next define∇(θ) = ∂π(θ)/∂θ, which is assumed to exist in a neighborhood of θ0. Note

that θ̂
∗
nk

p∗→ θ0 follows by θ̂
∗
nk
− θ̂nk

p∗→ 0 and θ̂nk
→ θ0. Consequently, for p̂∗nk

= π(θ̂
∗
nk

)

and p̂nk
= π(θ̂nk

) based on the (continuously differentiable near θ0) parametric function π(·)

in (3), we use a Taylor expansion of π(θ̂
∗
nk

) around θ̂nk
to obtain

√
nk(p̂

∗
nk
− p̂nk

) =
[
∇(c∗nk

)
]t√

nk(θ̂
∗
nk
− θ̂nk

),

where ∇(c∗nk
) is the gradient ∇(θ) evaluated at c∗nk

= α∗nk
θ̂nk

+ (1− α∗nk
)θ̂
∗
nk

for some α∗nk
∈

[0, 1]. Because θ̂nk
→ θ0 and θ̂

∗
nk

p∗−→ θ̂nk
, we have

‖c∗nk
− θ0‖ = ‖α∗nk

(θ̂nk
− θ0) + (1− α∗nk

)(θ̂
∗
nk
− θ0)‖

≤ ‖α∗nk
(θ̂nk

− θ0)‖+ ‖(1− α∗nk
)(θ̂
∗
nk
− θ̂nk

)‖+ ‖((1− α∗nk
)(θ̂nk

− θ0)‖

≤ 2‖θ̂nk
− θ0‖+ ‖θ̂

∗
nk
− θ̂nk

‖ p∗−→ 0

as nk →∞. Because∇(θ) is continuous at θ0, the continuous mapping theorem then gives

∇(c∗nk
)
p∗−→ ∇(θ0) ≡ ∇0
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and then Slutsky’s theorem yields
√
nk(p̂

∗
nk
− p̂nk

)
d∗−→ ∇t

0Z2. Because the random variable

∇t
0Z2 is continuous with cdf Φnor(z/

√
v0), z ∈ R, Polya’s theorem then implies uniform con-

vergence of cdfs as

sup
z∈R

∣∣Pr∗(
√
nk(p̂

∗
nk
− p̂nk

) ≤ z)− Φnor(z/
√
v0)
∣∣→ 0

as nk → ∞. Because the above distance between distributions converges almost surely to

zero along the subsequence {nk} ⊂ {nj} and because the subsequence {nj} was arbitrary,

we have shown that every subsequence contains a further subsequence where this distributional

distance converges to zero almost surely; the probabilistic convergence in Part 2 of Lemma 2

then follows.

For the GPQ-bootstrap method in Part 3 of Lemma 2, we define h(z, x, y) = Φ [z(1 + y/σ̂nk
) + x/σ̂nk

],

ẑw = [log(tw)− µ̂nk
]/σ̂nk

and ẑc = [log(tc)− µ̂nk
]/σ̂nk

. Here Φ(·) = F (·; 0, 1) is the standard

cdf of the log-location-scale distribution with derivative Φ′(·) ≡ φ(·) on R, and µ̂nk
, σ̂nk

are the

consistent estimators of µ and σ. Then we define gn(x, y) = [h(ẑw, x, y)− h(ẑc, x, y)] /[1 −

h(ẑc, x, y)], so that p̂∗∗nk
− p̂nk

= gn(µ̂∗nk
− µ̂nk

, σ̂∗nk
− σ̂nk

)−gn(0, 0). We use a Taylor expansion

of gn(µ̂∗nk
− µ̂nk

, σ̂∗nk
− σ̂nk

) at (0, 0) to obtain

√
nk(p̂

∗∗
nk
− p̂nk

) = [(∂gn/∂x, ∂gn/∂y)|x=0,y=0 +R∗n]
√
nk
(
µ̂∗nk
− µ̂nk

, σ̂∗nk
− σ̂nk

)t
,

where Rn
p∗→ 0 by the differentiability of gn(x, y) at (0, 0) combined with

√
n(µ̂∗nk

− µ̂nk
, σ̂∗nk

−

σ̂nk
)
p∗→ 0 and (µ̂nk

, σ̂nk
)→ (µ0, σ0).

Because (µ̂nk
, σ̂nk

)→ (µ0, σ0) and Rn
p−→ 0 as nk →∞, we have(

∂gn
∂x

,
∂gn
∂y

)t ∣∣∣∣
x=0,y=0

p∗−→

(
1

σ[1−φ(zc)]2
{
φ(zc)[1− Φ(zw)]− φ(zw)[1− Φ(zc)]

}
1

σ[1−φ(zc)]2
{
zcφ(zc)[1− Φ(zw)]− zwφ(zw)[1− Φ(zc)]

})

=

(
∂π(µ, σ)

∂µ
,
∂π(µ, σ)

∂σ

)t ∣∣∣∣
µ=µ0,σ=σ0

= ∇0,
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where we define zc = [log(tc) − µ0]/σ0, zw = [log(tw) − µ0]/σ0 and φ(·) is the pdf/derivative

of Φ(·). The rest of the proof follows by Slutsky’s theorem in the same manner as the proof for

the direct-bootstrap method.

Lemma 3. Let Z0 and Z1 denote independent standard normal random variables. Under the

conditions for Theorem 1 conditions with true parameters θ0, the following (1)-(3) hold as

n→∞

(1)
Yn − (n− rn)p̂n√
(n− rn)p̂n(1− p̂n)

d−→ Z0 +
√
v1Z1,

where v1 = v0[1− F (tc;θ0)]/[p0(1− p0)] for p0 = π(θ0) and v0 is from Lemma 2.

(2) Based on the bootstrap version p̂∗n = π(θ̂
∗
n) of p̂n = π(θ̂n), let the random variable Y ∗n be

defined as Y ∗n |p̂∗n ∼ Binomial(n−rn, p̂∗n), where rn is the number of events in the given sample.

Then it holds that

sup
z∈R

∣∣∣∣∣Pr∗

[
Y ∗n − (n− rn)p̂n√
(n− rn)p̂n(1− p̂n)

≤ z

]
− Pr(Z0 +

√
v1Z1 ≤ z)

∣∣∣∣∣ p−→ 0.

(3) Based on the approximate GPQ-based bootstrap version p̂∗∗n = π(µ̂∗∗n , σ̂
∗∗
n ) of p̂n = π(µ̂n, σ̂n)

and a random variable Y ∗∗n defined as Y ∗∗n |p̂∗∗n ∼ Binomial(n− rn, p̂∗∗n ), it holds that

sup
z∈R

∣∣∣∣∣Pr∗

[
Y ∗∗n − (n− rn)p̂n√
(n− rn)p̂n(1− p̂n)

≤ z

]
− Pr(Z0 +

√
v1Z1 ≤ z)

∣∣∣∣∣ p−→ 0.

Proof. Fix z ∈ R, based on the censored sample Dn, define an event Mn = M1n ∩ M2n,

where M1n = {rn < n} and M2n = {0 < p̂n < 1}. As n → ∞, note that Pr(M c
2n) → 0

by Lemma 2 Part 1 with p0 ∈ (0, 1) (cf. Theorem 1), while Pr(M c
1n) = Pr(rn = n) =

[F (tc;θ0)]
n → 0 (i.e., F (tc;θ0) ∈ (0, 1) under Theorem 1 conditions). Hence, it follows

that Pr(Mn)→ 1 as n→∞ and the predictive root [Yn − (n− rn)p̂n] /
√

(n− rn)p̂n(1− p̂n)

is well defined when the event Mn holds. Hence, for fixed z ∈ R, we may write∣∣∣∣∣Pr

[
Yn − (n− rn)p̂n√
(n− rn)p̂n(1− p̂n)

≤ z

]
− τn

∣∣∣∣∣ ≤ Pr(M c
n)→ 0 (C.1)
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for

τn ≡ Pr

[
Mn,

Yn − (n− rn)p̂n√
(n− rn)p̂n(1− p̂n)

≤ z

]

= Pr

[
Mn,

Yn − (n− rn)p0√
(n− rn)p0(1− p0)

≤ z

√
p̂n(1− p̂n)√
p0(1− p0)

+

√
n− rn(p̂n − p0)√
p0(1− p0)

]
.

Conditioning on the censored data Dn, we further write a conditional probability version of τn

as

Pr

[
Mn,

Yn − (n− rn)p̂n√
(n− rn)p̂n(1− p̂n)

≤ z

∣∣∣∣Dn

]

=I(Mn) Pr

[
Yn − (n− rn)p0√
(n− rn)p0(1− p0)

≤ z

√
p̂n(1− p̂n)√
p0(1− p0)

+

√
n− rn(p̂n − p0)√
p0(1− p0)

∣∣∣∣Dn

]

=I(Mn)Φnor

[
z

√
p̂n(1− p̂n)√
p0(1− p0)

+

√
n− rn(p̂n − p0)√
p0(1− p0)

]
+ I(Mn)Rn

where Φnor(·) denotes a standard normal cdf, I(·) denotes the indicator function, and Rn is a

remainder that satisfies

|Rn| ≤
1√

(n− rn)p0(1− p0)

by the Berry-Esseen theorem applied to (n − rn) independent Bernoulli(p0) random variables.

As n → ∞, note that (n − rn)/n
p−→ 1 − F (tc;θ0) by the weak law of large numbers, so that

Rn
p−→ 0 follows as well as

√
n− rn(p̂n − p0)√
p0(1− p0)

=
[(n− rn)/n]1/2√

p0(1− p0)
√
n(p̂n − p0)

d−→ [1− F (tc;θ0)]
1/2√

p0(1− p0)
√
v0Z1 =

√
v1Z1

by Slutsky’s theorem with Lemma 2 Part 1. Along with I(Mn)
p−→ 1, p̂n

p−→ p0 and the continuity

of Φnor(·), the continuous mapping theorem then yields

Pr

[
Mn,

Yn − (n− rn)p̂n√
(n− rn)p̂n(1− p̂n)

≤ z

∣∣∣∣Dn

]
d−→ Φnor(z +

√
v1Z1).
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Because this conditional probability is bounded by 1 and hence uniformly integrable, its con-

vergence in distribution also implies convergence of its expectation: as n→∞,

τn = Pr

[
Mn,

Yn − (n− rn)p̂n√
(n− rn)p̂n(1− p̂n)

≤ z

]
= E

{
Pr

[
Mn,

Yn − (n− rn)p̂n√
(n− rn)p̂n(1− p̂n)

≤ z

∣∣∣∣Dn

]}
→ E[Φnor(z +

√
v1Z1)].

Consequently, by the above with (C.1), we have that

Pr

[
Yn − (n− rn)p̂n√
(n− rn)p̂n(1− p̂n)

≤ z

]
→ E[Φnor(z +

√
v1Z1)] = Pr(Z0 +

√
v1Z1 ≤ z),

where E[Φnor(z +
√
v1Z1)] = Pr(Z0 +

√
vZ1 ≤ z) follows for iid standard normal variables

Z0, Z1. Because z ∈ R is arbitrary, we have that the cdf of the predictive root [Yn − (n −

rn)p̂n]/
√

(n− rn)p̂n(1− p̂n) converges to the cdf of Z0 +
√
v1Z1 for any z and hence Yn −

(n− rn)p̂n/
√

(n− rn)p̂n(1− p̂n)
d−→ Z0 +

√
v1Z1.

The proof of Lemma 3 Part 2 closely follows the argument for Lemma 2 Part 2. Let {nj} ⊂

{n} be an arbitrary subsequence of indices. Because p̂n
p−→ p0 > 0 holds by Lemma 2 along with

the facts that (n−rn)/n
p−→ 1−F (tc;θ0) by the weak law of large numbers, while the bootstrap

distribution of
√
nk(p̂

∗
nk
− p̂nk

) converges in probability under Lemma 2, we may extract a

further subsequence {nk} ⊂ {nj} along which p̂nk
→ p0, (nk − rnk

)/nk → 1− F (tc;θ0) > 0

and
√
nk(p̂

∗
nk
− p̂nk

)
d∗−→ √v0Z1 converge almost surely. As in the proof of Lemma 2, we again

consider the subsequence {nk} as nk →∞ for a fixed point ω ∈ A defined by an event A with

Pr(A) = 1 where the above-mentioned almost sure convergence holds. Fix z ∈ R. Then for

large nk, where nk > rnk
is then guaranteed, the conditional bootstrap distribution Y ∗nk

|p̂∗nk
is

Binomial(nk − rnk
, p̂∗nk

) so that, by the Berry-Esseen theorem applied to the sum of nk − rnk
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iid Bernoulli(p̂∗nk
) variables, we have

Pr∗

[
Y ∗nk
− (nk − rnk

)p̂nk√
(nk − rnk

)p̂nk
(1− p̂nk

)
≤ z
∣∣∣p̂∗nk

]

= Pr∗

 Y ∗nk
− (nk − rnk

)p̂∗nk√
(nk − rnk

)p̂∗nk
(1− p̂∗nk

)
≤ z

√
p̂nk

(1− p̂nk
)√

p̂∗nk
(1− p̂∗nk

)
+

√
nk − rnk

(p̂nk
− p̂∗nk

)√
p̂∗nk

(1− p̂∗nk
)

∣∣∣p̂∗nk


= Φnor

z√p̂nk
(1− p̂nk

)√
p̂∗nk

(1− p̂∗nk
)

+

√
nk − rnk

(p̂nk
− p̂∗nk

)√
p̂∗nk

(1− p̂∗nk
)

+R∗nk

where Φnor(·) denotes the standard normal cdf and R∗nk
is a remainder bounded by

|R∗nk
| ≤ 1
√
nk − rnk

1√
p̂∗nk

(1− p̂∗nk
)
.

Note that we are technically assuming that 0 < p̂∗nk
< 1 in the conditioning of the bootstrap

conditional probability above to simplify the argument, which is asymptotically valid though

as Pr∗(0 < p̂∗nk
< 1) → 1 (cf. the next line). Because (nk − rnr)/nk → 1 − F0(tc), p̂nk

→

p0 ∈ (0, 1) and −√nk(p̂∗nk
− p̂nk

)
d∗→ √v0Z1 (with the latter two properties also implying that

p̂∗nk

p∗→ p0) as nk →∞, it follows by Slutsky’s theorem that R∗nk

p∗→ 0 and

z

√
p̂nk

(1− p̂nk
)√

p̂∗nk
(1− p̂∗nk

)
+

√
nk − rnk

(p̂nk
− p̂∗nk

)√
p̂∗nk

(1− p̂∗nk
)

d∗→ z +
[1− F0(tc)]

1/2√
p0(1− p0)

√
v0Z1 = z +

√
v1Z1,

so that the continuous mapping theorem gives

Pr∗

[
Y ∗nk
− (nk − rnk

)p̂nk√
(nk − rnk

)p̂nk
(1− p̂nk

)
≤ z
∣∣∣p̂∗nk

]
d∗→ Φnor(z +

√
v1Z1)

by the continuity of Φnor(·). Because the above bootstrap conditional probability Pr∗(·|p̂∗nk
) is

bounded by 1 and converges in distribution (under bootstrap probability Pr∗ as nk → ∞), its

bootstrap expectation E∗ (i.e., under Pr∗) also converges

Pr∗

[
Y ∗nk
− (nk − rnk

)p̂nk√
(nk − rnk

)p̂nk
(1− p̂nk

)
≤ z

]
= E∗

{
Pr∗

[
Y ∗nk
− (nk − rnk

)p̂nk√
(nk − rnk

)p̂nk
(1− p̂nk

)
≤ z
∣∣∣p̂∗nk

]}
→ EΦnor(z +

√
v1Z1) = Pr(Z0 +

√
v1Z1 ≤ z)

12



as nk →∞. Because z ∈ R was arbitrary and the cdf of Z0 +
√
v1Z1 is continuous, we have

sup
z∈R

∣∣∣∣∣Pr∗

[
Y ∗nk
− (nk − rk)p̂nk√

(nk − rk)p̂nk
(1− p̂nk

)
≤ z

]
− Pr (Z0 +

√
v1Z1 ≤ z)

∣∣∣∣∣→ 0

(pointwise/almost surely) as nk → ∞. As this last convergence to zero holds almost surely

along the subsequence {nk} ⊂ {nj} and, as the subsequence {nj} was arbitrary, we have

shown that this convergence to zero must hold in probability (along n) and Lemma 3 Part 2

follows. Finally, the proof of Lemma 3 Part 3 follows by substituting (Y ∗∗n , p̂∗∗n ) for (Y ∗n , p̂
∗
n) in

the proof of Lemma 3 Part 2.

Proof of Theorem 1

Proof. We define ∆n(y) = pbinom(y, n − rn, p̂n) − pbinom(y, n − rn, p0). To prove Theo-

rem 1 Part 1, without loss of generality, we often assume that 0 < p̂n < 1 and rn < n, as

p̂n
p→ p0 ∈ (0, 1) by Lemma 2 and Pr (rn = n) = [F (tc;θ0)]

n → 0 by F (tc;θ0) ∈ (0, 1).

Using the Berry-Esseen theorem we have,

sup
y∈R
|∆n(y)| = sup

y∈R

∣∣∣∣∣Φnor

[
y − (n− rn)p0√

(n− rn)p0(1− p0)

]
− Φnor

[
y − (n− rn)p̂n√

(n− rn)p̂n(1− p̂n)

]∣∣∣∣∣+Rn

= sup
z∈R
|Φnor(z)− Φnor(zAn +Bn)|+Rn,

where An ≡
√
p0(1− p0)/

√
p̂n(1− p̂n), Bn ≡ −(n− rn)(p̂n− p0)/

√
p̂n(1− p̂n) and |Rn| ≤

2I (p̂n ∈ {0, 1}) + 2I (rn = n) + [p0(1−p0)]−1/2(n− rn)−1/2I(rn < n) + [p̂n(1− p̂n))]−1/2(n−

rn)−1/2I(0 < p̂n < 1, rn < n) for I(·) denoting an indicator function and Φnor(·) denoting the

standard normal cdf. Because p̂n
p−→ p0 ∈ (0, 1) by Lemma 2 and (n−rn)/n

p→ 1−F (tc;θ0) ∈

(0, 1) by the weak law of large numbers, we have |Rn|
p−→ 0.

Note m(a, b) ≡ supz∈R |Φnor(z) − Φnor(az + b)| is continuous as a function of (a, b) ∈

(0,∞) × R. By Lemma 1, (An, Bn)
d−→ (1,

√
v1Z1) for Z1 ∼ N(0, 1). By the continuous

mapping theorem and Slutsky’s theorem, we then have

sup
y∈R
|∆n(y)| d−→ m(1,

√
v1Z1) = sup

z∈R
|Φnor(z)− Φnor(z +

√
v1Z1)| = 1− 2Φnor

(
−
√
v1
2
|Z1|

)
;

13



the latter supremum is determined at an argument value of z = sign(−Z1)
√
v1|Z1|/2.

For Theorem 1 Part 2, we first show that the plug-in method produces an upper prediction

bound Ỹ PL
n,1−α such that

Ỹ PL
n,1−α − (n− r)p̂n√
(n− r)p̂n(1− p̂n)

p→ Φ−1nor(1− α), (C.2)

where Φ−1nor(1 − α) denotes the 100(1 − α)% quantile of a standard normal variable Z0 with

cdf Φnor(·), and we write r ≡ rn. This follows because the plug-in method uses the 1 − α

quantile of a Binomial(n−r, p̂n) random variable Y0,n for calibration so that Ỹ PL
n,1−α ≈ Φ−1nor(1−

α)
√

(n− r)p̂n(1− p̂n) + (n− r)p̂n. More formally, by the Central Limit Theorem (or, by the

Berry-Esseen theorem) applied to the sum of (n− r) iid Bernoulli(p̂n) variables, we find

sup
z∈R

∣∣∣Pr∗ (Y0,n ≤ z)− Φnor

[
z
√

(n− r)p̂n(1− p̂n) + (n− r)p̂n
]∣∣∣ ≤

2I(p̂n ∈ {0, 1}) + 2I(r = n) +
1√

p̂n(1− p̂n)

1√
n− r

I(0 < p̂n < 1, r < n)
p→ 0

by (n− r)/n p→ 1− F (tc;θ0) > 0 and p̂n
p→ p0 again. This implies (C.2) as Ỹ PL

n,1−α = inf{z ∈

R : Pr∗(Y0,n ≤ z) ≥ 1− α}.

By (C.2) and Lemma 3, we then have

Yn − (n− rn)p̂n√
(n− rn)p̂n(1− p̂n)

−
Ỹ PL
n,1−α − (n− rn)p̂n√
(n− rn)p̂n(1− p̂n)

d−→ Z0 +
√
v1Z1 − Φ−1nor(1− α)

by Slutsky’s theorem. By the last line, it follows immediately that

Pr(Yn ≤ Ỹ PL
n,1−α) = Pr

[
Yn − (n− rn)p̂n√
(n− rn)p̂n(1− p̂n)

≤
Ỹ PL
n,1−α − (n− rn)p̂n√
(n− rn)p̂n(1− p̂n)

]
= Pr

[
Z0 +

√
v1Z1 ≤ Φ−1nor(1− α)

]
as n→∞.

Note that v1 here is based on its occurrence in Lemma 3 and that, as Z0 and Z1 are i.i.d. standard

normal, we may write

Pr
[
Z0 +

√
v1Z1 ≤ Φ−1nor(1− α)

]
= EΦnor[Φ

−1
nor(1− α)−

√
v1Z1]

=

∫ ∞
−∞

Φnor[Φ
−1
nor(1− α) +

√
v1z]

1√
2π
e−z

2/2dz ≡ Λ1−α(v1).
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Note that the probability above is 0.5 when α = 0.5.

As a function of v1 > 0 (with fixed α ∈ (0, 1) \ {0.5}), Λ1−α(v1) is differentiable with

derivative

Λ′1−α(v1) = 0.5v
−3/2
1

∫ ∞
−∞

φnor[Φ
−1
nor(1− α) +

√
v1z]z

1√
2π
e−z

2/2dz

≡ 0.5v
−3/2
1

∫ ∞
0

[tα(z; v1)− tα(−z; v1)]z
1√
2π
e−z

2/2dz,

for

tα(z; v1) ≡ φnor[Φ
−1
nor(1− α) +

√
v1z], z ∈ R.

For fixed z > 0 and v1 > 0, it holds that tα(z; v1)/tα(−z; v1) < 1 if α ∈ (0, 0.5) (which may be

checked with simple algebra), and that tα(z; v1)/tα(−z; v1) > 1 if α ∈ (0.5, 1). Consequently,

it follows that the derivative Λ′1−α(v1) < 0 for all v1 > 0 if α ∈ (0, 0.5), while Λ′1−α(v1) > 0

for all v1 > 0 if α ∈ (0.5, 1); that is, Λ1−α(v1) is decreasing on v1 ∈ (0,∞) if α ∈ (0, 0.5), and

increasing on v1 ∈ (0,∞) if α ∈ (0.5, 1). Further, as Φnor(Φ
−1
nor(1− α) +

√
v1z) is bounded by

1 and converges, for each fixed real z 6= 0, to the indicator function I(z > 0) as v → ∞, the

dominated convergence theorem gives

lim
v1→∞

Λ1−α(v1) =

∫ ∞
0

1√
2π
e−z

2/2dz = 0.5.

Note as well that when α ∈ (0, 0.5), we have for any v1 > 0 that

Λ1−α(v1) < lim
v1↓0

Λ1−α(v1) = Λ1−α(0) = 1− α,

as Λ1−α(v1) is decreasing; when α ∈ (0, 0.5), we have instead that Λ1−α(v1) > 1 − α when

α ∈ (0.5, 1).

Proof of Theorem 2

Proof. For Ψ∗n ≡ [Y ∗n − (n− r∗n)p̂∗n]/
√

(n− r∗n)p̂∗n(1− p̂∗n), we first want to show that

sup
y∈R
|Pr∗(Ψ

∗
n ≤ y)− Pr(Z0 +

√
v1Z1 ≤ y)| p−→ 0, as n→∞,
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where Y ∗n ∼ Binomial(n − r∗n, p̂n) conditional on (n − r∗n), where r∗n is the number of events

in the bootstrap sample and p̂∗n is the bootstrap version of p̂n. In the bootstrap world, we have

(n− r∗n)/n = 1−
∑n

i=1 I(T ∗i ≤ tc)/n, where under bootstrap expectation

E∗

(
n− r∗n
n

)
= 1− Pr∗(T

∗
1 ≤ tc)

p−→ 1− F (tc,θ0) > 0,

by the assumption that Pr∗(T
∗
1 ≤ tc) is consistent for F (tc;θ0) (e.g., Pr∗(T

∗
1 ≤ tc) = F (tc; θ̂n)),

and likewise

Var∗

(
n− r∗n
n

)
= Var∗

[
1

n

n∑
i=1

I(T ∗i ≤ tc)

]
=

1

n
Pr∗ (T ∗1 ≤ tc) Pr∗ (T ∗1 > tc) ≤

1

n

p−→ 0, as n→∞.

Hence, the convergence of these two bootstrap moments implies that (n − r∗n)/n converges in

bootstrap probability or (n− r∗n)/
p∗→ 1−F (tc;θ0) (in probability); that is, for any subsequence

{nj} ⊂ {n}, there exists a further subsequence {nk} ⊂ {nj} where with probability 1,

Pr∗

[∣∣∣∣nk − r∗nk

nk
− 1 + F (tc;θ0)

∣∣∣∣ > ε

]
→ 0

holds as nk → ∞ for each given ε > 0. Choose a subsequence {nk} where together (nk −

r∗nk
)/nk

p∗−→ 1−F (tc;θ0) ∈ (0, 1) (by the above) and
√
nk − rnk

(p̂∗nk
−p̂nk

)/
√
p̂nk

(1− p̂nk
)
d∗−→

√
v1Z1 (by Lemma 3) and p̂nk

→ p0 ∈ (0, 1) and (nk − rnk
)/nk → 1 − F (tc;θ0) hold as

nk → ∞ with probability 1. Now conditional on (nk − r∗nk
), p̂∗nk

(here, without a loss of

generality, assuming n− r∗nk
> 0, 0 < p̂∗nk

< 1) and for fixed y ∈ R, we can write

Pr∗(Ψ
∗
nk
≤ y|nk − r∗nk

, p̂∗nk
)

= Pr∗

 Y ∗nk
− (nk − r∗nk

)p̂nk√
(nk − r∗nk

)p̂nk
(1− p̂nk

)
≤ y

√
(nk − r∗nk

)p̂∗nk
(1− p̂∗nk

)√
(nk − r∗nk

)p̂nk
(1− p̂nk

)
−
√
nk − r∗nk

(p̂∗nk
− p̂nk

)√
p̂nk

(1− p̂nk
)

∣∣∣∣nk − r∗nk
, p̂∗nk


=Φnor

y
√

(nk − r∗nk
)p̂∗nk

(1− p̂∗nk
)√

(nk − r∗nk
)p̂nk

(1− p̂nk
)
−
√
nk − r∗nk

(p̂∗nk
− p̂nk

)√
p̂nk

(1− p̂nk
)

+R∗nk
,
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by the Berry-Esseen theorem, where the remainder R∗nk
is bounded by

∣∣R∗nk

∣∣ ≤ 2I(p̂∗nk
∈ {0, 1})+2I(r∗nk

= nk)+
1√

p̂∗nk
(1− p̂∗nk

)

1
√
nk − rnk

I(0 < p̂∗nk
< 1, rnk

< nk),

for some constant if nk − r∗nk
> 0. Then

∣∣R∗nk

∣∣ p∗−→ 0 follows because 1/
√
nk − r∗nk

p∗−→ 0 and

p̂∗nk

p∗→ p0 ∈ (0, 1) as nk →∞. It also holds that√
nk − r∗nk√
nk − rnk

√
nk − rnk

(p̂∗nk
− p̂nk

)√
p̂nk

(1− p̂nk
)

d∗−→
√
v1Z1,

as nk →∞ by Slutsky’s theorem so that, by the continuous mapping theorem, we have

Pr∗
(
Ψ∗nk
≤ y|nk − r∗nk

, p̂∗nk

) d∗−→ Φnor (y +
√
v1Z1) .

Because the conditional probability is bounded by 1, we have that expectations converge in the

bootstrap world as

Pr∗(Ψ
∗
nk
≤ y) = E∗

[
Pr∗
(
Ψ∗nk
≤ y|nk − r∗nk

, p̂∗nk

)]
→ EΦnor(y+

√
v1Z1) = Pr(Z0+

√
v1Z1 ≤ y)

as nk → ∞. Because the real y ∈ R was arbitrary, we have Ψ∗nk

d∗−→ Z0 +
√
v1Z1 as nk → ∞

(holding with probability 1 along nk) or

sup
y∈R

∣∣Pr∗(Ψ
∗
nk
≤ y)− Pr(Z0 +

√
v1Z1 ≤ y)

∣∣→ 0, (C.3)

as nk →∞ (with probability 1).

Next we prove that U∗n = pbinom (Y ∗n , n− r∗n, p̂∗n)
d∗−→ Φnor

(
Z0 +

√
v1Z1

)
(in probability).

For U∗n and u ∈ (0, 1), we write

Pr∗ (U∗n ≤ u) = Pr∗ [Y ∗n ≤ qbinom(u, n− r∗n, p̂∗n)]

= Pr∗

[
Ψ∗n ≤ Φ−1nor(u) +

L∗n√
(n− r∗n)p̂∗n(1− p̂∗n)

]
,
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where L∗n = qbinom(u, n−r∗n, p̂∗n)−Φ−1nor(u)
√

(n− r∗n)p̂∗n(1− p̂∗n)−(n−r∗n)p̂∗n. By the Berry-

Esseen theorem and n − r∗nk

p∗−→ ∞, p̂∗nk

p∗−→ p along the subsequence nk (with probability 1),

we have

L∗nk√
(nk − r∗nk

)p̂∗nk
(1− p̂∗nk

)
=

qbinom(u, nk − r∗nk
, p̂∗n)− (nk − r∗nk

)p̂nk√
(nk − r∗nk

)p̂∗nk
(1− p̂∗nk

)
− Φ−1nor(u)

p∗−→ Φ−1nor(u)− Φ−1nor(u) = 0.

By this and (C.3), it follows that

Pr∗
(
U∗nk
≤ u

)
→ Pr

[
Z0 +

√
v1Z1 ≤ Φ−1nor(u)

]
= Pr [Φnor(Z0 +

√
v1Z1) ≤ u]

as nk → ∞ for each u ∈ (0, 1) (with probability 1). Because the subsequence {nj} was

arbitrary, we have U∗n
d∗−→ Φnor(Z0 +

√
v1Z1) in probability as n→∞ or

sup
u∈(0,1)

|Pr∗(U
∗
n ≤ u)− Pr[Φnor(Z0 +

√
v1Z1) ≤ u]| p−→ 0, (C.4)

as n→∞.

The 100(1− α)% upper calibration prediction bound is Ỹ C
n,1−α such that

Ỹ C
n,1−α − (n− rn)p̂n√
(n− rn)p̂n(1− p̂n)

− Φ−1nor(U
∗
1−α)

p−→ 0, (C.5)

where U∗n,1−α is the 1 − α quantile of U∗n, which follows by the Berry-Esseen theorem applied

to the Binomial(n− rn, p̂n) distribution. Let κ1−α be the 1− α quantile of Φnor(Z0 +
√
v1Z1).

Then κ1−α − U∗n,1−α
p−→ 0 holds by (C.4). Thus from this and (C.5) along with the continuity of

Φnor and Φ−1nor, it follows that

Φnor

[
Ỹ C
n,1−α − (n− rn)p̂n√
(n− rn)p̂n(1− p̂n)

]
p−→ Φnor

[
Φ−1nor(κ1−α)

]
= κ1−α. (C.6)
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Hence, by Lemma 2, (C.6) and Slutsky’s theorem, we have

Pr(Yn ≤ Ỹ C
n,1−α)

= Pr

{
Φnor

[
Yn − (n− rn)p̂n√
(n− rn)p̂n(1− p̂n)

]
− κ1−α ≤ Φnor

[
Ỹ C
n,1−α − (n− rn)p̂n√
(n− rn)p̂n(1− p̂n)

]
− κ1−α

}
→Pr [Φnor(Z0 +

√
v1Z1)− κ1−α ≤ κ1−α − κ1−α] = 1− α.

The 1 − α lower prediction bound
˜
Y C
n,1−α is equal to Ỹ C

n,α or off by 1, so immediately we have

Pr(Yn ≥
˜
Y C
n,1−α) = 1− α.

Proof of Theorem 3

Proof. To prove Theorem 3 Part 1, let q1−α ≡ inf{z ∈ R : Pr(Z0 +
√
v1Z1 ≤ z) ≥ 1 − α}

denote the 1 − α quantile of the distribution of Z0 +
√
v1Z1, where Z1, Z0 are iid standard

normal variables with v1 > 0 as in Lemma 3. Let Y ∗n ∼ Binomial(n − r∗n, p̂n) and Q̂n,1−α ≡

inf{z ∈ R : G∗n(z) ≥ 1− α} denote 1− α quantile of the bootstrap distribution of [Y ∗n − (n−

r)p̂n]/
√

(n− r)p̂n(1− p̂n) with cdfG∗n(z) ≡ Pr∗{[Y ∗n−(n−r)p̂n]/
√

(n− r)p̂n(1− p̂n) ≤ z},

z ∈ R. Then, it follows from Lemma 3 Part 2 that Q̂n,1−α
p→ q1−α as n → ∞. To see this,

for any given ε > 0, we have G∗n(q1−α − ε)
p→ Pr(Z0 +

√
v1Z1 ≤ q1−α − ε) < 1 − α

and G∗n(q1−α + ε)
p→ Pr

(
Z0 +

√
v1Z1 ≤ q1−α + ε

)
> 1 − α by Lemma 3 Part 2. Hence,

Pr [G∗n(q1−α − ε) < 1− α < G∗n(q1−α + ε)]→ 1 as n→∞, and this event implies that q1−α−

ε ≤ Q̂n,1−α ≤ q1−α + ε holds so that Pr(|Q̂n,1−α − q1−α| ≤ ε) → 1. By definition, the upper

prediction bound for Yn is given by

Ỹ DB
n,1−α = Q̂n,1−α

√
(n− r)p̂n(1− p̂n) + (n− r)p̂n.

Then using that [Yn − (n − r)p̂n]/[
√

(n− r)p̂n(1− p̂n)] − Q̂n,1−α
d→ Z0 +

√
v1Z1 − q1−α

(a normal random variable with mean −q1−α and variance 1 + v1) by Slutsky’s theorem from
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Q̂n,1−α
p→ q1−α along with Lemma 3 Part 1, we have that

Pr(Yn ≤ Ỹ DB
n,1−α) = Pr

[
Yn − (n− r)p̂n√
(n− r)p̂n(1− p̂n)

≤ Q̂n,1−α

]

= Pr

[
Yn − (n− r)p̂n√
(n− r)p̂n(1− p̂n)

− Q̂n,1−α ≤ 0

]
→ Pr (Z0 +

√
v1Z1 − q1−α ≤ 0)

= Pr (Z0 +
√
v1Z1 ≤ q1−α) = 1− α.

This establishes Theorem 3 Part 1. Again, the lower prediction bound
˜
Y DB
n,1−α is equal to Ỹ DB

n,α or

Ỹ DB
n,α -1, which implies that limn→∞ Pr(Yn ≥

˜
Y DB
n,1−α) = 1− limn→∞ Pr(Yn ≤ Ỹ DB

n,α ) = 1− α.

The proof of Theorem 3 Part 2 follows analogously by replacing (Y ∗n , p̂
∗
n) with (Y ∗∗n , p̂∗∗n )

and applying Lemma 3 Part 3.

Section D Extending the Theorems to Multiple-Cohort Data

For multiple-cohort data, we assume that limn→∞ ns/n → cs ∈ [0, 1] exists for s = 1, ..., S,

where
∑S

s=1 cs = 1, and then describe some minor modifications needed to the assump-

tions of Theorem 1 and 2. As in Theorem 1, based on the censored sample, an estimator

of θ ∈ Rq is assumed to satisfy
√
n(θ̂n − θ0)

d−→ MVN(0,V 0) as n → ∞ , and its boot-

strap counterpart approximation is assumed to be distributionally consistent as in Theorem 2.

For the multiple-cohort case, the small change to Theorem 1 conditions is that, for each co-

hort s, we assume that (with respect to the censoring time tsc of the cohort) F (tsc;θ) is con-

tinuous at θ0 with F (tsc;θ0) ∈ (0, 1), and that the conditional probability ps = πs(θ) =

[F (tsc + ∆;θ)− F (tsc;θ)] / [1− F (tsc;θ)] is continuously differentiable in a neighborhood of

θ0 with gradient ∇s
0 = ∂πs(θ)/∂θ|θ=θ0 , where p0,s = πs(θ0) ∈ (0, 1); assume also that ∇s

0 is

non-zero for some cohort s with cs > 0. Then, the same statement of Theorem 1 continues to
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hold for the multiple-cohort setting upon redefining the term v1 > 0 to be

1∑S
s=1 cs[1− F (tsc;θ0)]p0,s(1− p0,s)

 c1[1− F (t1c ;θ0)]
...

cS[1− F (tSc ;θ0)]


t

Γt0V0Γ0

 c1[1− F (t1c ;θ0)]
...

cS[1− F (tSc ;θ0)]


where Γ0 is now a q × S matrix given by

Γ0 ≡
[
∇1

0 · · · ∇S
0

]
.

With this change, statements of Lemmas 1-2 also remain valid.

Statements of Theorem 2 and Theorem 3 (and Lemma 3) also continue to hold, if we nat-

urally extend the bootstrap consistency assumption of Theorem 2 so that Pr∗(T
∗
1 ≤ tsc)

p→

F (tsc;θ0) is assumed for any cohort with cs > 0.

We next describe some (mostly minor) modifications for the proofs to hold under multiple-

cohort data.

Extending Lemma 1

Lemma 1 does not change for multiple-cohort data.

Extending Lemma 2

In multiple-cohort data, the ML estimator of conditional probabilities p̂n is a vector of

length S, where S is the number of cohorts. To extend Lemma 2 Part 1,
√
n(p̂n − p0)

d−→ X0

now holds, where X0 ∼ MVN(0,Γt0V0Γ0), with Γ0 as above, using the delta method and

p0 = (p0,1, . . . , p0,S) ≡ [π1(θ0), . . . , πS(θ0)]. For Lemma 2 Part 2, it holds that

sup
x∈R,‖a‖=1

∣∣Pr∗(a
T
√
n(p̂∗n − p0) ≤ z)− Pr(aTX0 ≤ z)

∣∣ p−→ 0.

The same changes are made to Lemma 2 Part 3.

Extending Lemma 3

The predictand can be written as Yn =
∑S

s=1 Ys, where Yns is the number of events during

future time interval in cohort s. Here ns is the size of the cohort s. Thus for re-formulating
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Lemma 3 Part 1, we write

An ≡
Yn −

∑S
s=1(ns − rns)p̂

s
n√∑S

s=1(ns − rns)p̂
s
n(1− p̂sn)

=
Yn −

∑S
s=1(ns − rns)p0,s√∑S

s=1(ns − rns)p0,s(1− p0,s)

√∑S
s=1(ns − rns)p0,s(1− p0,s)√∑S
s=1(ns − rns)p̂

s
n(1− p̂sn)

+

∑S
s=1(ns − rns)(p0,s − p̂sn)√∑S
s=1(ns − rns)p̂

s
n(1− p̂sn)

≡A1ncn + A2n

as the sum of two terms, where the second term can be re-written as

A2n ≡
∑S

s=1(ns − rns)(p0,s − p̂sn)√∑S
s=1(ns − rns)p̂

s
n(1− p̂sn)

=
S∑
s=1

ns−rns

n√∑S
j=1

nj−rnj

n
p̂jn(1− p̂jn)

√
n(p0,s − p̂sn).

For each s = 1, . . . , S, note that (ns−rns)/n→ cs[1−F (tsc;θ0)] by the weak law of large num-

bers and that the normal limit of
√
n(p0,s−p̂sn) is determined by the normal limit of

√
n(p̂n−p0)

through
√
n(θ̂n − θ0). Additionally, by the consistency of θ̂n and the smoothness of πs(θ) we

have that p̂sn = πs(θ̂n)
p→ πs(θ0) = p0,s ∈ (0, 1) for each s = 1, . . . , S. Hence, it holds

that A2n
d−→ √v1Z1 in distribution (for v1 given above and standard normal variable Z1), which

follows from Slutsky’s theorem and the normal limit of
√
n(p̂n − p0). The previous arguments

also show that

cn ≡

√∑S
s=1(ns − rns)p0,s(1− p0,s)√∑S
s=1(ns − rns)p̂

s
n(1− p̂sn)

p−→ 1.

Finally, as in the original proof of Lemma 3, we may apply the Berry-Esseen theorem to deter-

mine a normal limit for the sum A1n appearing in An, as a sum of non-identical but independent

Bernoulli random variables, conditional on the censored multiple-cohort data. Namely, for

fixed real z ∈ R, it analogously holds that |Pr(An ≤ z)− E[Φnor(z − A2n/cn)]| → 0 from the

Berry-Esseen theorem, where EΦnor(z − A2n/cn) → E[Φnor(z −
√
v1Z1)] = Pr(Z0 +

√
v1Z1)

holds for independent standard normal variables Z0, Z1 (as Φnor(z − A2n/cn) converges to

Φnor(z−
√
v1Z1) in both distribution and expectation by the continuous mapping theorem com-

bined with A2n/cn
d−→ √v1Z1).
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Lemma 3 Part 2 and Lemma 3 Part 3 remain as re-casts of Lemma 3 Part 1 in the bootstrap

world.

Extension of Theorems

In the multiple-cohort case, the predictand has a Poisson-binomial distribution. Then the

proof follows the same method as in Binomial case. We only need to replace the standardized

form of predictand with the Poisson-binomial counterpart.

Section E Simulation Results of Section 8 & the Bearing Cage
Data

Section 8 provides a summary of the results from our simulation study. This section provides a

graphical summary of the results at the other factor-level combinations used in the study.
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Figure 6: Coverage probabilities versus expected number of events for the direct-bootstrap,
GPQ-bootstrap, calibration-bootstrap, and plug-in methods when d = pf2 − pf1 = 0.1 and
β = 0.5.
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Figure 7: Coverage probabilities versus expected number of events for the direct-bootstrap,
GPQ-bootstrap, calibration-bootstrap, and plug-in methods when d = pf2 − pf1 = 0.2 and
β = 0.5.
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Figure 8: Coverage probabilities versus expected number of events for the direct-bootstrap,
GPQ-bootstrap, calibration-bootstrap, and plug-in methods when d = pf2 − pf1 = 0.1 and
β = 0.8.
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Figure 9: Coverage probabilities versus expected number of events for the direct-bootstrap,
GPQ-bootstrap, calibration-bootstrap, and plug-in methods when d = pf2 − pf1 = 0.2 and
β = 0.8.
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Figure 10: Coverage probabilities versus expected number of events for the direct-bootstrap,
GPQ-bootstrap, calibration-bootstrap, and plug-in methods when d = pf2 − pf1 = 0.1 and
β = 2.
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Figure 11: Coverage probabilities versus expected number of events for the direct-bootstrap,
GPQ-bootstrap, calibration-bootstrap, and plug-in methods when d = pf2 − pf1 = 0.1 and
β = 4.
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Figure 12: Coverage probabilities versus expected number of events for the direct-bootstrap,
GPQ-bootstrap, calibration-bootstrap, and plug-in methods when d = pf2 − pf1 = 0.2 and
β = 4.
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Table 6 gives the data for the bearing cage example.

Group Hours in Group Size Failed At Risk
i Service ni ri ni − ri p̂i (ni − ri)× p̂i
1 50 288 0 288 0.000763 0.2196
2 150 148 0 148 0.001158 0.1714
3 250 125 1 124 0.001558 0.1932
4 350 112 1 111 0.001962 0.2178
5 450 107 1 106 0.002369 0.2511
6 550 99 0 99 0.002778 0.2750
7 650 110 0 110 0.003189 0.3508
8 750 114 0 114 0.003602 0.4106
9 850 119 0 119 0.004016 0.4779

10 950 128 0 128 0.004432 0.5673
11 1050 124 2 122 0.004848 0.5915
12 1150 93 0 93 0.005266 0.4898
13 1250 47 0 47 0.005685 0.2672
14 1350 41 0 41 0.006105 0.2503
15 1450 27 0 27 0.006525 0.1762
16 1550 12 1 11 0.006946 0.0764
17 1650 6 0 6 0.007368 0.0442
18 1750 0 0 0 0.007791 0
19 1850 1 0 1 0.008214 0.0082
20 1950 0 0 0 0.008638 0
21 2050 2 0 2 0.009062 0.0181

Total 1703 6 5.062

Table 6: Bearing cage data: future-failure risk analysis for the next year (300 hours of service
per unit).

Section F Additional Distributional Comparisons

Section 10 of the main manuscript compares the Weibull, lognormal, and Fréchet distributions

(as examples of event or failure time models) and presents the plots for β = 2. Additional plots

for β = 1, 4 are given here. The intent of these plots is to show how different models may vary

in their probabilities of future failure events, while having similar percentiles in an initial range

where data are observed (e.g., prior to a censoring time tc for single-cohort data).
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Figure 13: Distributional comparisons for β = 1. The two vertical dotted lines on the left

indicate the points in time where all three distributions have the same 0.01 and pf1 quantiles.

The three vertical lines on the right indicate the times at pf2 = pf1 + d for three distributions.
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Figure 14: Distributional comparisons for β = 4. The two vertical dotted lines on the left

indicate the points in time where all three distributions have the same 0.01 and pf1 quantiles.

The three vertical lines on the right indicate the times at pf2 = pf1 + d for three distributions.
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