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HIGHLIGHTS

o A deep reinforcement learning (RL) control strategy for residential HVAC is proposed.

e The control strategy is based on the deep deterministic policy gradient (DDPG) method.
e Simulation results prove the economy and time efficiency of the DDPG method.

e DDPG is compared with deep Q network (DQN) and baseline cases for verification.

e The generalization of the DDPG method is further verified in different scenarios.

ARTICLE INFO ABSTRACT
Keywords: Residential heating, ventilation, and air conditioning (HVAC) has been considered as an important demand
Actor-critic learning response resource. However, the optimization of residential HVAC control is no trivial task due to the complexity

Demand response

Deep deterministic policy gradient (DDPG)
Deep reinforcement learning (deep RL)
Multi-zone residential HVAC

of the thermal dynamic models of buildings and uncertainty associated with both occupant-driven heat loads and
weather forecasts. In this paper, we apply a novel model-free deep reinforcement learning (RL) method, known
as the deep deterministic policy gradient (DDPG), to generate an optimal control strategy for a multi-zone
residential HVAC system with the goal of minimizing energy consumption cost while maintaining the users’
comfort. The applied deep RL-based method learns through continuous interaction with a simulated building
environment and without referring to any prior model knowledge. Simulation results show that compared with
the state-of-art deep Q network (DQN), the DDPG-based HVAC control strategy can reduce the energy con-
sumption cost by 15% and reduce the comfort violation by 79%; and when compared with a rule-based HVAC
control strategy, the comfort violation can be reduced by 98%. In addition, experiments with different building
models and retail price models demonstrate that the well-trained DDPG-based HVAC control strategy has high
generalization and adaptability to unseen environments, which indicates its practicability for real-world
implementation.

it is important to study the effective energy management of building
demand to achieve economic and environmental benefits.

The heating, ventilation, and air conditioning (HVAC) system is
currently the most widely used device for maintaining building thermal
comfort. It also serves as an important demand response resource for
peak load reduction and stabilizing system-wide operation via proper

1. Introduction

In the worldwide scope, buildings account for 40% of total primary
energy consumption and 30% of all CO, emissions, among which a large
portion can be attributed to thermal comfort overhead [1,2]. Therefore,
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Nomenclature

Tout(t) Outdoor temperature at time step t

Tin, () Indoor temperature for room zone z at time step t

Tiower (£) Lower bound of the user comfort level at time step t

Al Retail price at time step ¢

Setpt,(t) Setpoint for room zone z at time step t

Envac(t) Power consumption of HVAC system at time step t

At Control interval of the HVAC system

cPenalty () Penalty for user comfort violation at time step t

0 0" Neural network parameters of the critic network and
the actor network in the DDPG algorithm

Q(s,a; 99 Action-value of the state-action pair (s,a) under the
current critic network 62

#(s; 0)  Control policy under the current actor network ¢*

q""*(t) Target action-value for updating the critic network

demand-side energy management strategies [3]. In the literature, there
are many studies focusing on optimizing HVAC control strategies for
improving energy efficiency. In [4], the energy management of HVAC
systems is modelled under load forecast errors, where a primal-dual
algorithm is applied to seek the optimal operating states of HVAC for the
consumer, and the pricing strategy for the energy provider. In another
work, a regression approach is applied for temperature forecast in day-
ahead scheduling of responsive residential HVAC demand [5]. The au-
thors in [6,7] discuss the potential of using the HVAC system to provide
primary frequency regulation to the bulk system via a hierarchical
control strategy. A Lyapunov optimization technique is introduced in
[8] for HVAC load control without needing to estimate the uncertain
system factors such as price and temperature. A distributed transactive
control market mechanism for commercial building HVAC systems is
presented in [9] to demonstrate the effectiveness of HVAC in peak
shaving and load shifting.

All the above methods can be categorized as model-based methods,
where the detailed thermal dynamics of the HVAC with consideration of
ambient environment effects need to be modelled, along with the
requirement of analytical solution toolboxes for practical runtime con-
trol. The model-based methods may suffer from measurement errors (e.
g., building model inaccuracy), as well as computational inefficiency,
since the building and equipment models must be tailored to a specific
building to achieve accurate results. This represents a serious challenge
for widespread deployment of model-based methods.

Meanwhile, there has been significant development in machine
learning technologies such as deep learning and reinforcement learning
evidenced by the achievement of AlphaGo [10]. In power systems
research community, general vision of new research directions related to
machine learning is discussed in [11] with a number of research appli-
cations [12,13]. In industrial applications, Al-based implementation
starts to be deployed in real control centers such as [14], which is the
first reported control-room application of Al-driven distributed feature
selection for a large, real power grid.

More specifically, in recent years, deep reinforcement learning
(RL), which is a combination of a deep neural network (DNN) and RL,
has attracted broad attention in solving high-dimensional control and
optimization problems with tremendous complexity. A double Q
learning method [15] and a continuous deep deterministic policy
gradient (DDPG) method [16] have been applied for optimizing the
energy management strategies of hybrid electric vehicles, respectively.
In [17], the asynchronous advantage actor-critic is employed to find
the economic operation schedules of multiple distributed energy re-
sources within an energy Internet. In [18], a deep Q learning method is
designed for supporting the maintenance decision-making of the bulk
power system. Given the potential operation constraints encountered
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during the implementation of deep RL-based control actions, a safe
deep RL method is explored in [19] to obtain the optimal control
scheme of the active distribution network with the consideration of
voltage level limits, which introduces a safe layer on top of the con-
ventional actor network to avoid any possible violations of the voltage
constraints.

With specific respect to the HVAC system control problem, there
have also been some pioneering works in the literature focusing on
utilizing the powerful deep RL approach to achieve higher energy effi-
ciency and economic efficiency. In [20], a deep Q network (DQN) is
constructed for coordinated control of joint datacenter and HVAC load,
in which the neural network is utilized to estimate the Q value of a state-
action pair. In [21], a convolutional neural network (CNN) is deployed
as the approximator of the state-action value function to better capture
the spatial and temporal correlations within the input state data with its
convolutional operation. A deep policy gradient (DPG) method is
investigated in [22] for controlling multiple responsive demands
including ACs, electric vehicles and dishwashers. In [23], an actor-critic
method is applied for optimizing the thermal comfort and energy con-
sumption of HVAC. In [24], a practical HVAC control framework based
on advantage actor critic is established for a whole building energy
model. In [25], the DQN is applied to achieve optimal control balancing
between different HVAC systems.

All the above research works have demonstrated the effectiveness of
the applied deep RL methods in optimizing the HVAC thermal control
strategy compared with the designed benchmarks. However, the ma-
jority of the existing researches treat the continuous control actions of
the HVAC system, such as HVAC setpoint or air flow rate, in a discretized
way to narrow down the search space. Discretization can achieve
satisfying performance when the granularity is low or without the
combination of action spaces. However, it encounters the issue of
exponential explosion when the action space is high-dimensional, for
example, multiple room zones in the case of HVAC control. As a result,
more simulations are needed for training the deep RL methods and the
algorithm performance decreases.

In [26], the authors adopt the DDPG method to realize the contin-
uous thermal control of HVAC without discretization. However, this
research work still focuses on single-zone HVAC control, which has been
previously addressed by the above-mentioned discretion methods. In
addition, the method applied is only compared with other RL methods,
and no benchmark cases are designed to verify the optimality and the
generalization of the obtained control strategy. In [27], a multi-agent
deep RL method with an attention mechanism is applied to minimize
the energy costs of an HVAC system in a multi-zone commercial build-
ing, where a set of actor and critic networks are designed for each zone,
and they are updated in parallel during the training. While this research
work provides some inspiring insights, one concern is that in the pro-
posed algorithm, the number of neural networks needing training will
grow with the number of zones, which could cause excessive computa-
tional burden. In [28], the long-short-term-memory (LSTM) recurrent
neural network is combined with the DDPG to better simulate the real-
world operation of multiple air handling units (AHUs), where a deep RL
agent is designed for each AHU to control a separate section of the
building. The same concern occurs regarding the number of RL agents
and the growing computational cost.

Motivated by the above concerns, in this paper, we also apply the
DDPG method for optimizing the continuous thermal control strategy of
residential HVAC. The main contributions of this work, as compared
with the existing research, are summarized as follows:

e We apply the DDPG RL method to optimize the continuous control of
multi-zone residential HVAC. The multi-zone residential HVAC
control involves more complex thermal dynamics and environment
uncertainties, and a high-dimensional action space, which requires
more delicate problem formulation including the definitions of state,
action, and reward during the learning process;
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e We conduct a comprehensive comparison between the applied DDPG
method and the widely-used DQN method to demonstrate the
effectiveness of the former in dealing with the continuous action
space, which is a more common case in many real-world situations;
we also design benchmark cases without RL to prove that the applied
DDPG can achieve higher economic benefits while maintaining user
comfort;

We verify that the well-trained deep RL method has obtained high
generalization and robustness, and can adapt to new environment
with different price signals and physical conditions to provide the
optimal HVAC control strategy.

The rest of the paper is organized as follows. The HVAC control
problem formulation is introduced in Section 2; in Section 3, the two
representative deep RL methods, the DQN and DPG methods are first
briefly reviewed, followed by a detailed explanation of the DDPG
method, which is an extension of the former two; the simulation results
of the DDPG method are presented in Section 4, plus comparison with
the DQN and benchmark cases; finally, Section 5 concludes the paper.

2. Multi-zone residential HVAC system control problem
formulation

2.1. A brief introduction of the multi-zone HVAC system control problem

In this study, we consider a residential building with multiple zones.
The indoor temperature of each zone can be controlled by adjusting the
setpoint of the HVAC system. The HVAC system can work in various
modes including “Cooling”, “Heating” and “Auto”. The “Auto” mode
means that the HVAC system can automatically switch between cooling
and heating according to the indoor temperature and the assigned set-
point. Whenever there is a difference between the indoor temperature
and the setpoint, the HVAC system will be automatically turned on to
push the indoor temperature near to the setpoint to maintain user
comfort. Without losing generality, in this work, we will focus on the
case when all zones need heating. The goal of controlling the HVAC
system is to minimize the energy cost while keeping the indoor tem-
perature within the user comfort band.

2.2. Mapping HVAC control problem to Markov decision process (MDP)

In this subsection, we will formulate the above multi-zone residential
HVAC control problem as a Markov Decision Process (MDP), which will
later be solved by a model-free deep RL-based algorithm in Section 3.
According to the simplified thermal dynamics model of HVAC in [29],
the indoor temperature at the current time interval is only related to the
previous state parameters such as the indoor temperature at the previous
time interval, and is not affected by indoor temperature at any other
time intervals. Therefore, the HVAC control problem can be regarded as
a finite Markov process and be solved using the RL method.

An MDP is composed of four essential elements: state (s), action (a),
state transition probability (p), and reward (r). In the context of a multi-
zone residential HVAC control problem, the four elements are defined as
follows:

e State: 1) current outdoor temperature Tou(t); 2) current indoor
temperature Tjp ,(t) for the all the zones z; 3) the lower bound of the
user comfort level Tiower(t); 4) retail price A™@(s), where t is the
current time step.

Note that the state parameters include the lower bound of the user
comfort level, which changes along with the time. This is because we
assume that the HVAC users have a time-variant comfort preference.
This is reasonable since during the daily work hours when no one is at
home, the comfort range of the indoor temperature can be lowered to
save the energy cost. The comfort range can be brought back during the
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off-work hours when the house is occupied.

The state parameters also include the current retail price to realize
the pre-heating effect of HVAC. Pre-heating means setting the setpoint of
the HVAC at a relatively high value when the retail price of energy is low
to heat up the indoor temperature in advance, thus avoiding excessive
energy consumption when cold outdoor temperatures occurs, when the
retail price of energy is higher.

e Action: the setpoint Setpt,(t) for the zone z;

The HVAC setpoint in each zone is a continuous variable. Given the
setpoint, the on/off status of the HVAC unit with a thermostat at each
zone obeys the following control logic:

1, if T;(t) < setpoint — deadband
0, if Tin(t) > setpoint D
remain at the current status, elsewise

HVAC status =

The HVAC model considered in this paper is only utilized for heating.
In Eq. (1), the deadband is a small temperature span, in which the
thermostat will not change its on/off status to prevent short cycles. It can
be observed in Eq. (1) that if the indoor temperature is above the set-
point, the HVAC will remain off; otherwise, the HVAC will be started
automatically to heat the room to maintain the user comfort.

e Reward: the energy consumption cost plus the comfort violation cost
for the control interval, which is defined as follows:

r(t) = —w, Z j-remj](t,)EHVAC(t,) -, Z Cpemll[y(t’) (2)

{ =t—At { =1—At

In Eq. (2), the first term is the energy cost of the HVAC system, where
Aty s the retail price, Egayc(t’) is the power consumption, and At is
the control interval; the second term is the penalty for user comfort
violation, which is calculated as follows:

dzenz)/t)-(t’) _ l, fO}" T,',,(t/) < T]UW”(I,) — Ty 3)
0, elsewise

In Eq. (3), Ty is a threshold with a small value. The temperature
violation is not counted if the magnitude of the violation is smaller than
Ty, Given the existence of the deadband within the HVAC system, it is
not possible to always keep the indoor temperature at the exact setpoint.
The threshold allows for some deviations of the indoor temperature.

Because the reward encloses both the energy cost and the penalty,
which leads to a multi-objective function, weight factors are added to
the two objectives, which are represented by w. and w, in Eq. (2). The
final objective of HVAC thermal control is to minimize the total energy
consumption cost plus the penalty over the entire control cycle, which
can be written as the cumulative sum of r(t): Zf’jlr(t). Therefore, a far-
sighted control strategy is needed to prevent against uncertain future
circumstances, which leads to a multi-stage decision making problem.

Notice that the state transition probability p is not defined for the
above MDP. The state transition probability refers to the probability of
transferring to a certain next state after taking action Setpt,(t). With a
known state transition probability, the MDP is fully observed and the
cumulative reward can be analytically solved via model-based dynamic
programming or other iterative methods. However, in the HVAC control
problem, to obtain an accurate probability model of the state transitions
is not a trivial task, because it is difficult to formulate the exact thermal-
dynamic model of HVAC buildings. The heat transfer within the build-
ing is related to multiple resistances (R) and capacitors (C) from
different building components, like the exterior walls, the interior walls
and furnishings, and the attic, the values of which require estimation
and validation through experimenting. All these factors can have a
significant impact on the temperature response of the indoor air [30].
Furthermore, the indoor temperature is also affected by uncertain
external factors such as outdoor temperature, solar irradiance, and
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Fig. 1. DNN structure for function approximation in RL.

wind, which calls for additional modelling and computational efforts.
As a consequence, a model-based method is not a robust or adaptive
solution for HVAC system optimization.

Driven by the above considerations, in this paper the model-free
deep RL method is leveraged to overcome the unobservability in the
multi-zone residential HVAC control problem. The model-free RL
method does not require any knowledge of the environment or the state
transitions in advance. It gradually improves its decision-making strat-
egy by continuously interacting with the environment and receiving
feedback. In this way, the forecast errors of uncertain factors, as well as
the measurement errors of building thermal mass, can be avoided. More
details of the deep RL method will be revealed in the next section.

3. DDPG-based control strategy for multi-zone HVAC system
3.1. A brief review of deep reinforcement learning methods

The RL method is a type of machine learning method that optimizes
the decision-making strategy in an MDP. In the RL algorithm, the reward
defined in the MDP is served as the guideline for algorithm evolution. A
large, positive reward will encourage the algorithm to search deep in the
current direction, and vice versa. The RL method is especially suitable
for handling decision-making problems with temporal constraints or
with hidden state space.

There are two main types of RL method: the value-based RL method
and the policy-based RL method. The difference between the two
methods lie in their action evaluation strategies. The value-based
method estimates the Q value of a state-action pair (s,a), which is the
cumulative discounted reward starting from taking action a at state s,
and selects the action with the highest Q value; the policy-based RL
method generates the probabilities of all the feasible actions at the
current state, and selects the action with the highest probability.

The combination of RL with a DNN is called the deep RL method. In
deep RL, the DNN is utilized as a regression tool to estimate either the Q
value, as in the value-based RL method; or the action probability, as in
the policy-based RL method. A general DNN structure for regression in
RL is shown in Fig. 1.

The main advantage of the deep RL method over the conventional
RL method is that the application of the DNN makes it possible to
achieve high level control for extremely complex problems, such as
with continuous state space or action space, without the tabular con-
straints. In deep RL a more generalized regression model is established
instead of maintaining a concrete Q table to store all the possible action
values, as in the case of traditional Q learning. This generalized
regression model offers more robust and flexible strategies against
unseen states in the case of continuous control. In the following sec-
tion, we will first introduce the DQN, as a representative of the valued-
based deep RL methods; and the DPG method, as a representative of the
policy-based deep RL methods. Then, a continuous control method, the
DPG method, which is a combination of the above two methods, will be

explained in detail for solving the optimal multi-zone residential HVAC
control problem.

3.2. Understanding the basic principles behind typical deep RL methods
1) Deep Q Network (DQN)

The DQN is a combination of Q-learning and a DNN. In the DQN, the
input is the current state, and the output is the Q value for each potential
action at the current state. The advantage of the DQN over the tabular Q-
learning method is that when the state and action are slightly changed,
the DQN can still estimate the associated Q value without re-training,
which is highly time-efficient.

Unlike the supervised learning algorithm, in deep RL there are no
labeled samples for the DNN to learn. To handle this issue, two DNNs are
designed for the DQN algorithm: one is called the target network, and
the other is called the behavior network. The function of the target
network is to serve as a reference, similar to the ground truth in the
supervised learning, to guide the evolution of the algorithm.

Both networks are initialized with the same parameters and the same
structure. As the training proceeds, the behavior network is updated at a
faster speed than the target network. The loss function in the DQN is
defined as the mean square error (MSE) between the target Q value and
the behavior Q value. Once the loss function is calculated, the param-
eters of the behavior network will be updated based on its gradient to the
loss function. The algorithm will continue updating until the output
from the target network and the behavior network are close to each
other, which indicates the convergence of the learning. More details of
the DQN method can be found in [31].

2) Deep Policy Gradient (DPG)

The DPG method utilizes a strategy different from the DQN for
control optimization. The output from the DNN is the probabilities of
each potential action at the current state, or the policy. The policy refers
to the probability of selecting action a(t) at state s(t), and can be written
as n(als,0) = Pr{a(t) = a|s(t) =S, 6(t) = 6}. 0 stands for the parameters of
the probability function. The loss function of the DPG method is also
different from that of the DQN, which intends to maximize the expected
total reward under the policy z(a|s,0), and can be expressed as follows:

Nt
Er(alsp) Z 1) = Zﬁ'g 7)R(7) 4

In Eq. (4), 7 is called an episode generated under the policy n(als,0):
7={s(1), a(1), s(2), a(2),..., s(Nt), a(N1)}. R(z) = > " r(t), which is the
total reward of the episode. The goal of the DPG method is to get the
parameters of the policy n that leads to the maximum value of the ex-
pected total reward. More details of DPG algorithm can be found in [22].

max J(6
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Fig. 2. Multi-zone HVAC control framework with DDPG.

3.3. Realizing continuous control of HVAC system with the DDPG
1) An introduction to the DDPG

The DDPG method is specially designed for solving problems with
continuous variables. Unlike the DQN or DPG, where the Q values or
action probabilities of all feasible actions are generated by the DNN for
the agent to select, the term “deterministic” in the DDPG refers to the
fact that there is only one output from the DNN, which is determined. In
this way, the action space can be continuous since there is only one
output unit.

Another advantage of the DDPG over the DQN and DPG is that it is a
combination of the two methods. In the DDPG, there are two types of
neural networks applied: the actor network, which assembles the DPG,
and the critic network, which assembles the DQN. Their functions are
explained as follows.

The input to the actor network is the current state, and the output is a
deterministic action; the input to the critic network is the current state
plus the action generated by the actor network, and the output is the Q
value of the state-action pair. This Q value will be further used to update
the parameters of the actor network. The loss function of the actor
network is defined to maximize the Q value with the current policy,
which follows the logic of the DPG method; and the loss function of the
critic network is the MSE of the Q value, which follows the logic of the
DON method. In summary, the function of the actor network is to select
actions, and the function of the critic network is to evaluate the selected
action.

In addition, similar to the DQN algorithm, for both actor network and
critic network in the DDPG, two neural networks are designed, a
behavior network and a target network. Hence there are four neural
networks in total. The reason for applying the target network is to sta-
bilize the algorithm convergence. More details of the DDPG algorithm
are presented in the next subsection.

2) DDPG algorithm for developing optimal HVAC control strategy

The details of the proposed DDPG algorithm are shown in Algorithm
1, which is customized from a general-purpose DDPG algorithm in [32].
The DDPG algorithm follows a process similar to that of the DQN, except
that an actor network is built to select a deterministic action. The
applied DDPG algorithm is further explained as follows:

To begin with, two neural networks, i.e., the actor network and the
critic network are randomly initialized, and their associated target
networks are initialized with the same set of parameters, as shown in
lines 1-2. Starting from line 3, for each iteration, the system state is first
initialized, then an HVAC control action, i.e. the setpoint, is chosen
based on the current actor network z(s;¢"), as shown by line 7. A noise is
added to the selected action to boost the exploration of the algorithm.

Next, in lines 8-9, the selected action is executed in the environment
for the entire control interval At, and the received reward and the next
state are observed. The transition (s(t), Setpt,(t), r(t), s(t + At)) is stored
in a replay buffer to be further used for algorithm training. When a
sufficient number of transitions is collected, a mini-batch of transitions
is randomly selected to update the parameters of the actor network and
the behavior network, as shown by line 11. The random selection can cut
off the temporal correlations among the transitions, which will maintain
the independent, identically distributed assumption in the learning
model. Also, the transitions can be sampled multiple times, which in-
creases their utilization efficiency.

The neural network parameters 62 and ¢”" are updated according to
the loss functions. The loss function of the critic network is defined as the
MSE between the target Q value and the current Q value from the
behavior critic network, as shown by line 12. The temporal-difference
error is used to update the Q value, where the target Q value is the
sum of the current reward plus a discounted Q value from the target
critic network 62 for the next control interval t+ At. y is called the
discount factor. Once the loss function is calculated, the parameters of
the behavior critic network 62 are updated based on the gradient, as
shown by line 13. 5 is called the learning rate.

The loss function of the actor network is defined to maximize the Q
value:

M

max o 300005010 (1) = a(s"(1):07) 5)

In Eq. (5), a®® is generated from the actor network z(s;0™). Hence,
the chain rule is applied in line 14 to calculate the gradient of the Q
value to the 6. In line 16, the parameters of the target critic network and
the target actor network, 62 and ¢, are updated at a slower rate than
the behavior network, where 7 is a number between 0 and 1 and close to
1. The function of this slower update is to increase the stability of the
learning. The complete deep RL-based control framework of a multi-
zone HVAC system is shown in Fig. 2.
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Algorithm 1. (DDPG method for multi-zone HVAC control)

1: Initialize the parameters of the critic network Q(s,a;69 and the actor network
7(s;0")

2: Initialize the target networks QGs,a;609) and 7(s;6™) with 62 and 6"

3 for episode =1 to arbitrary number do

4 Initialize system state s(Tou/(0), Tinz(0), Tiower(0), Jretailgyy

5: for t=1 to Nrdo

6: if t == kAt, where k is an integer, do

7 Select the multi-zone HVAC control action Setpt,(t) with z(s;¢") plus

noise

8: Execute Setpt,(t), receives the immediate reward r(t) and the next
state s(t + At)

9: Store the transition (s(t), Setpt,(t), r(t), s(t + At)) in the replay buffer

10: end if

11: Collect a mini-batch of transitions (s(5), SelpL(li) ©®, r2, sOt+ AD)
with the size M from the replay buffer

12: Calculate the MSE of the Q value:

gD (6 =rO(e) + yQG V(e + A0, sVt + AD;67);0%)
LEY =1/MYY"; (@O0 - QGP(0),2sD(0;67;69

13: Update the parameters of the critic network:
0?2=062- VG L(EY

14: Calculate the gradient of the Q value to the actor network parameter ¢":
Valx1/MY Y, V6P 0,260 ):07:69 VsV 0);07)

15: Update the parameters of the actor network:
=0 -,V J

16: Update the parameters of the target network with a smaller step:

0 = -06%+76?
F=0-06+16"
17: end for
18:  end for

4. Case study

In this section, the effectiveness of the applied DDPG-based contin-
uous control method for multi-zone residential HVAC is demonstrated
through simulations with real-world data, as well as by comparison with
the DQN-based discrete control method and the benchmark cases, to
fully verify the advantages of the DDPG method. Further, the general-
ization of the deep RL method is demonstrated by experimenting with
unseen physical environments.

4.1. Simulation environment

A two-zone residential HVAC model [33] is implemented for training
and testing the applied deep RL method, with real-world weather data
from 2019 to 2020 obtained from [34]. For price signals, a simulated
retail price sequence is generated, which includes a high price value and
alow price value. The price is regularly switched between the two values
every three hours. The reason for applying such a frequently changing
price sequence is to find if the deep RL agent can identify the effect of
price signals on the reward function and properly adjust its control
strategies. It is further assumed that the lower bound of the user comfort
level changes four times during the daily cycle, as shown in Table 1:

The control interval of the RL agent is set to 60 min, i.e., At=60.
Since we only focus on the heating effect of the HVAC system, the
November weather data is used as the training data. During the training,
one episode is defined as 24 h. In this way, 24 (s(i)(t), Setptéi) o, r(i)(t),
s(i)(t + At)) transitions will be generated from each episode. In total 300
episodes are simulated for the RL agent to learn. After the training, the
RL agent will be applied to new test days with different weather con-
ditions to examine its generalization and adaptability.

Table 1

Daily user comfort level.
Time period 0:00 - 6:00 6:00 - 12:00 12:00 - 18:00 18:00 - 24:00
Tiower (°C) 18 17 18 19
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Table 2
DNN structure applied in DDPG and DQN algorithms.
Algorithm DDPG DON
critic actor
network network
Size of input [1,71 [1,5] [1,5]
No. of hidden layers 2 2 2
Size of each hidden layer [7,20], [5,20], [5,20],
[20,10] [20,10] [20,10]
Size of output [1] [2] [25]
Activation function for the ReLU ReLU ReLU
hidden layer
Optimizer Adam Adam Adam
Learning rate () 0.001 0.01 0.01
Discount factor (y) 0.99 - 0.99

Batch size 48

Weights of the reward o 10, wy: 1

4.2. Design of the DNN structure in deep RL

The detailed design of the actor and critic network in the DDPG is
shown in Table 2. The design of the DQN is also listed for comparison.
The designs of both the DDPG and the DQN are obtained via a trial-and-
error process, and the current configurations provide the best possible
results among all the trials.

For the DDPG method, the input to the critic network is a vector
containing both state variables and action variables, and the output is
the estimated Q value, which is a scalar; the input to the actor network is
a vector containing only state variables, and the output is a vector
containing the setpoint for each zone. Although the setpoint is a
continuous variable, in reality there is always a range of the setpoint for
maintaining user comfort. Therefore, the output layer from the actor
network utilizes tanh as the activation function, which confines the
output with a range of [—1, 1]. The actual setpoint is calculated as
Setpt; = Tiower + AT-(Yout + 1), where y, is the output from the actor
network, and AT is the upper range of the setpoint. In the simulation, AT
is set to 2 °C. Therefore, the setpoint selected by the DDPG lies within the
range of [Tiower, Tlower + 21

For the DQN method, the inputs are also the state variables. Since the
DQN requires a discrete action space, we discretize the range of setpoints
with a step size of 0.5 °C. As a result, there are 5 actions for each zone
and 25 combinations of actions for the 2-zone HVAC. The output from
DQN is a vector containing 25 Q values, with each corresponding to one
combination of actions.

4.3. Performance of the continuous HVAC control method
1) Convergence of the DDPG

In Fig. 3, the average returns gained after each episode during the
training process in the DDPG and the DQN are presented. Notice that

S
S

Average return($)

-50

60 I I I |
0 50 100 150 200 250 300

Episodes

Fig. 3. Convergence of different deep RL methods.
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Table 3

Test results of different HVAC control methods.
Control method DDPG  DQN Rule- Fixed

based setpoint
Total cost ($) 55.21 65.03 39.08 71.48
Temperature violation (min) 48 230 2617 0
Average temperature violation 0.13 0.93 1.85 0
(9]

the average returns in the first few episodes appear to be higher than
that of the last few episodes. This is because for each episode, one
training day is randomly chosen. Some training days may have mod-
erate outdoor temperatures, which can lead to low energy cost and low
penalty, and vice versa. However, as the training proceeds, the number
of episodes grows, and the average return is neutralized. It can be
observed that both curves gradually become steady as the training
evolves. However, the average return gained by the DDPG method is
higher than that of the DQN method. This is because the size of the
output from the DQN is larger than that of the DDPG, and the combi-
nation of actions have not been fully explored after 300 episodes,
leading to a lower average return.
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2) Computational efficiency

After the training process, the DDPG RL agent is applied to 10 test
days in January 2020 from the real-world data in [34] to generate the
optimal HVAC control strategy. The time cost is around 19 s for testing,
which is highly time-efficient. The code is written in Python 3.6 with the
open-source deep learning platform TensorFlow [35]. The hardware
environment is a laptop with Intel®CoreTM i7-7600U 2.8 GHz CPU, and
16.00 GM RAM.

3) Comparison of the DDPG with the DQN and the benchmark cases

In this study, the well-trained deep RL agents from both the DDPG
and the DQN are run on new test days to verify their learning perfor-
mance. We also design two benchmark cases without the RL agent as
comparisons. The benchmark cases are described as follows: a) Rule-
based case: the setpoint is set at the lowest value at the peak price
hours, and the highest value at the off-peak price hours, to realize the
pre-heating effect to save energy cost; b) Fixed setpoint case: the set-
point is always at the highest value of the setpoint range to avoid any
temperature violation.

The final optimized results of the RL methods and the benchmark
cases are shown in Table 3:
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Fig. 4. Setpoint control strategy based on DDPG for 10 test days (top: zone 1; bottom: zone2).



Y. Du et al

o
wn

(3]
—
=

wn

ey
==
T

0

Temperature(°C)
N

in,1 I out

-10 SC‘P‘, ~—Price
AC status
-15
0 2000 4000 6000
25

Temperature(°C)
i

in2

Setpt,

Price

AC status

0 2000 4000 6000

Applied Energy 281 (2021) 116117

el eV e G N

8000
Time(min)

10000 12000 14000

8000 10000 12000 14000

Time(min)

Fig. 5. Setpoint control strategy based on DQN for 10 test days (top: zone 1; bottom: zone2).

In Table 3, the well-trained deep RL agents are applied to generate
the HVAC control strategies for the first 10 days in January 2020. The
weather conditions of the test days are different from those of the
training days, since the outdoor temperature is much lower in January
than in November. The total cost in the table refers to the total energy
cost over the 10 days, and the temperature violation in the table refers to
the total number of minutes that the indoor temperature falls below
Tiower - Tth, @s shown by Eq. (3). Ty, is set to 0.3 °C. The average tem-
perature violation indicates on average by how many degrees the indoor
temperature is lower than the setpoint. As shown in the table, the control
strategy derived from the DDPG method has both lower energy cost and
fewer temperature violations than that of the DQN. With regard to the
benchmark cases, in the rule-based case, because the pre-heating logic is
applied based on the price structure, it obtained the lowest cost among
all four cases. However, by always setting the setpoint to the lowest
value at peak price hours, this control strategy results in severe tem-
perature violation. In the fixed setpoint case, since the setpoint is always
set at the highest value, there is no temperature violation. However, the
energy cost is also the highest among the four cases. The control strategy
and the associated indoor temperature in the four cases are further
illustrated in Figs. 4-6.

In all the figures, the yellow rectangular area represents the feasible
region of the setpoint [Tiower, Tiower + 2 °Cl. As can be observed, the
setpoint range changes at a daily cycle. In addition, the indoor

temperature in zone 1 is lower than that of zone 2, this is because in the
building model, zone 1 is at the 1st floor and zone 2 is at the 2nd floor,
and the warmer air goes to upper floors.

In Fig. 4, the DDPG RL agent develops a setpoint control strategy
such that when the outdoor temperature is relatively high, i.e. in the first
4000 min, the setpoint will be set at the lowest value at the peak price
hour, and at the highest value at the off-peak hour, to realize the pre-
heating effect and to reduce energy cost, which is similar to the con-
trol logic of the rule-based case. When the outdoor temperature is low, i.
e., in the last 2000 min, the setpoint is always set at the highest value to
avoid the indoor temperature violation. On the contrary, in the rule-
based case, the control strategy still follows the price structure even
when the outdoor temperature is extremely low, which results in severe
indoor temperature violation, as shown in Fig. 6. Such comparisons
indicate that after the training, the DDPG RL agent has acquired the
knowledge that the price signal and the outdoor temperature have a
significant impact on the reward, and it learns to intelligently set the
setpoint based on this state information to reach a higher reward value.

The control strategy of the DQN RL agent is shown in Fig. 5. It can be
observed that when the outdoor temperature is relatively high, i.e. in the
first 4000 min, the setpoint is set at a relatively high value, and it does
not follow the change of retail price. When the outdoor temperature is
extremely low, i.e., around 12,000 min, the setpoint is set at the lower
bound, which results in temperature violation. The DQN RL agent does
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Fig. 6. Setpoint control strategy from the rule-based case for 10 test days (top: zone 1; bottom: zone2).

not successfully capture the impacts of the state variables on the reward
function. This can be attributed to the large number of action combi-
nations encountered by the Q network. In such cases, the DQN RL agent
has not fully explored all the possible action combinations to maximize
the reward, and thus obtains a control strategy with a higher energy cost
and more temperature violations.

Finally, in Fig. 7, the fixed setpoint case, since the setpoint is always
set at the highest value, the indoor temperature for both zones also re-
mains at the highest level among the four test cases. However, this fixed
setpoint case results in the highest energy cost.

4) Generalization of the DDPG Algorithm
a) Extending the DDPG RL agent to different residential buildings

The well-trained DDPG RL agent is further tested in new residential
building models with HVAC systems to fully validate its generalization
and robustness. Ten building models are generated with different ther-
mal mass parameters, the variation of which follows a normal distri-
bution. The same 10 test days in January 2020 are applied in this case.
The energy cost and the temperature violation for the 10 building
models under the DDPG control strategy and under the two benchmark
cases are compared in Table 4 and Fig. 8. As can be read from the table,
similar to the results in Table 3, the rule-based control strategy provides
the lowest energy cost, while the fixed setpoint control strategy provides
the lowest violation. The well-trained DDPG RL agent can obtain an

HVAC control strategy that properly weighs the two objectives, resulting
in a relatively lower energy cost and fewer temperature violations for
different test building models. Therefore, it can be safely concluded that
the DDPG RL agent can flexibly adapt to unseen physical environments
and provides an economic HVAC control strategy after its offline
training with the fixed environment.

b) DDPG performance under different retail price signals

In the above simulations, a simulated retail price sequence is
generated for training and testing the deep RL agent, which is composed
of only two price signals. To demonstrate that the well-trained DDPG RL
agent has developed high generalization to an unseen environment
without additional training, the DDPG RL agent is further tested with a
retail price sequence that is generated from the PJM wholesale hourly
locational marginal price (LMP) data [36]. The retail price is set as triple
of the wholesale market price. The PJM price is very irregular, changing
hourly and fluctuating within a large range. The final optimized results
of the two deep RL methods and the benchmark case are shown in
Table 5:

In Table 5, the fixed setpoint case applies a control strategy where
the setpoint is always set at the middle of the setpoint range. This is
because the PJM price sequence contains more than just two values, and
it cannot be simply divided into two groups as high price and low price.
As a result, the setpoint is set at the middle point to avoid possible
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Table 4
Comparison of optimization results for different building models.

Building index DDPG Rule-based Fixed setpoint
Cost ($) Temperature violation (min) Cost ($) Temperature violation (min) Cost ($) Temperature violation (min)

1 42.22 31 27.78 1296 57.98 0
2 44.13 41 29.22 1586 60.13 0
3 52.14 45 36.51 2347 68.52 0
4 59.66 101 43.94 3364 75.61 0
5 45.84 41 31.30 1879 62.91 0
6 42.49 39 27.68 1398 59.06 0
7 37.47 24 23.51 1012 53.42 0
8 61.21 81 45.42 3520 76.44 0
9 35.34 25 21.98 818 49.90 0
10 43.19 59 28.41 1323 58.46 0

temperature violations while minimizing the energy cost.

The control strategy and the associated indoor temperature in the
three cases are further illustrated by Figs. 9-11. As can be observed in
the figure, the PJM price demonstrates a very different pattern from the
simulated price sequence. For most of the time the price remains at a
relatively low level, with some occasional spikes and fluctuations.
However, the well-trained DDPG RL agent still attempts to follow the
price tendency, and intelligently sets the setpoint to realize the pre-
heating effect. For example, a price spike appears around 12,500 min.
The DDPG RL agent catches this sudden change, and lowers the setpoint.
At around 13,500 min the retail price sequence demonstrates some

10

fluctuations, and the DDPG RL agent also adjusts the setpoint accord-
ingly. Note that under the price signals that are more time-variants like
the PJM market price, it is difficult to develop a simple rule-based
control strategy, because the price range is uncertain. However, the
well-trained DDPG RL agent can still work intelligently under such an
uncertain environment, and it obtains satisfying economic benefits.
Therefore, it can be safely concluded that the DDPG algorithm has
gained adaptability after training and has potential for real-world online
applications.

In Fig. 10, the HVAC control strategy developed by the DQN RL agent
also intends to follow the retail price tendency. However, at the price
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Table 5
Test results of different control methods (under PJM price).

Control method DDPG DQN Fixed setpoint
Total cost ($) 32.90 31.80 32.71
Temperature violation (min) 0 222 31
Average temperature violation (°C) 0 1.00 0.27
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spike period (12,500 min) and the price variation period (13,500 min),
the DQN RL agent chooses the lowest setpoint values, which results in a
temperature violation in zone 1, as shown in the bottom figure.

Finally, in Fig. 11, the fixed setpoint case also leads to some tem-
perature violations in zone 1 when the outdoor temperature is extremely
low (after 10,000 min).

5. Conclusion

In this paper, the DDPG RL method is applied for controlling a multi-
zone residential HVAC system to minimize the energy consumption cost
while maintaining the user comfort. The DDPG can realize continuous
control of the HVAC setpoint due to its application of DNNs. Simulation
results demonstrate that the well-trained DDPG RL agent can act intel-
ligently to balance the different optimization objectives, and that it also
gains generalization and adaptability to unseen environment, which
signifies its potential for future online applications in solving MDP
problems with hidden information or with continuous search space.

For future works, we will mainly look into two directions for further
improving the robustness of the RL-based control strategy: 1) consid-
ering different seasoning scenarios, the deep RL agent should learn to
automatically switch between different operation modes, i.e. cooling
and heating, in order to be applied to a longer control period, i.e. one
year, to provide economic control strategies for HVAC users; 2)

12

considering different user preferences, the deep RL agent should be able
to learn a more variant setpoint schedule customized by users, and
provide more flexible HVAC control strategies. By investigating these
two directions, the deep RL agent will become more generalized and
robust against uncertainties in real-world operation scenarios.
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