
Applied Energy 281 (2021) 116117

0306-2619/© 2020 Published by Elsevier Ltd.

Intelligent multi-zone residential HVAC control strategy based on deep 
reinforcement learning☆ 

Yan Du a, Helia Zandi b, Olivera Kotevska b, Kuldeep Kurte b, Jeffery Munk b, Kadir Amasyali b, 
Evan Mckee a, Fangxing Li a,* 

a Dept. of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, USA 
b Oak Ridge National Laboratory, Oak Ridge, TN, USA   

H I G H L I G H T S  

• A deep reinforcement learning (RL) control strategy for residential HVAC is proposed. 
• The control strategy is based on the deep deterministic policy gradient (DDPG) method. 
• Simulation results prove the economy and time efficiency of the DDPG method. 
• DDPG is compared with deep Q network (DQN) and baseline cases for verification. 
• The generalization of the DDPG method is further verified in different scenarios.  
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A B S T R A C T   

Residential heating, ventilation, and air conditioning (HVAC) has been considered as an important demand 
response resource. However, the optimization of residential HVAC control is no trivial task due to the complexity 
of the thermal dynamic models of buildings and uncertainty associated with both occupant-driven heat loads and 
weather forecasts. In this paper, we apply a novel model-free deep reinforcement learning (RL) method, known 
as the deep deterministic policy gradient (DDPG), to generate an optimal control strategy for a multi-zone 
residential HVAC system with the goal of minimizing energy consumption cost while maintaining the users’ 
comfort. The applied deep RL-based method learns through continuous interaction with a simulated building 
environment and without referring to any prior model knowledge. Simulation results show that compared with 
the state-of-art deep Q network (DQN), the DDPG-based HVAC control strategy can reduce the energy con
sumption cost by 15% and reduce the comfort violation by 79%; and when compared with a rule-based HVAC 
control strategy, the comfort violation can be reduced by 98%. In addition, experiments with different building 
models and retail price models demonstrate that the well-trained DDPG-based HVAC control strategy has high 
generalization and adaptability to unseen environments, which indicates its practicability for real-world 
implementation.   

1. Introduction 

In the worldwide scope, buildings account for 40% of total primary 
energy consumption and 30% of all CO2 emissions, among which a large 
portion can be attributed to thermal comfort overhead [1,2]. Therefore, 

it is important to study the effective energy management of building 
demand to achieve economic and environmental benefits. 

The heating, ventilation, and air conditioning (HVAC) system is 
currently the most widely used device for maintaining building thermal 
comfort. It also serves as an important demand response resource for 
peak load reduction and stabilizing system-wide operation via proper 
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demand-side energy management strategies [3]. In the literature, there 
are many studies focusing on optimizing HVAC control strategies for 
improving energy efficiency. In [4], the energy management of HVAC 
systems is modelled under load forecast errors, where a primal–dual 
algorithm is applied to seek the optimal operating states of HVAC for the 
consumer, and the pricing strategy for the energy provider. In another 
work, a regression approach is applied for temperature forecast in day- 
ahead scheduling of responsive residential HVAC demand [5]. The au
thors in [6,7] discuss the potential of using the HVAC system to provide 
primary frequency regulation to the bulk system via a hierarchical 
control strategy. A Lyapunov optimization technique is introduced in 
[8] for HVAC load control without needing to estimate the uncertain 
system factors such as price and temperature. A distributed transactive 
control market mechanism for commercial building HVAC systems is 
presented in [9] to demonstrate the effectiveness of HVAC in peak 
shaving and load shifting. 

All the above methods can be categorized as model-based methods, 
where the detailed thermal dynamics of the HVAC with consideration of 
ambient environment effects need to be modelled, along with the 
requirement of analytical solution toolboxes for practical runtime con
trol. The model-based methods may suffer from measurement errors (e. 
g., building model inaccuracy), as well as computational inefficiency, 
since the building and equipment models must be tailored to a specific 
building to achieve accurate results. This represents a serious challenge 
for widespread deployment of model-based methods. 

Meanwhile, there has been significant development in machine 
learning technologies such as deep learning and reinforcement learning 
evidenced by the achievement of AlphaGo [10]. In power systems 
research community, general vision of new research directions related to 
machine learning is discussed in [11] with a number of research appli
cations [12,13]. In industrial applications, AI-based implementation 
starts to be deployed in real control centers such as [14], which is the 
first reported control-room application of AI-driven distributed feature 
selection for a large, real power grid. 

More specifically, in recent years, deep reinforcement learning 
(RL), which is a combination of a deep neural network (DNN) and RL, 
has attracted broad attention in solving high-dimensional control and 
optimization problems with tremendous complexity. A double Q 
learning method [15] and a continuous deep deterministic policy 
gradient (DDPG) method [16] have been applied for optimizing the 
energy management strategies of hybrid electric vehicles, respectively. 
In [17], the asynchronous advantage actor-critic is employed to find 
the economic operation schedules of multiple distributed energy re
sources within an energy Internet. In [18], a deep Q learning method is 
designed for supporting the maintenance decision-making of the bulk 
power system. Given the potential operation constraints encountered 

during the implementation of deep RL-based control actions, a safe 
deep RL method is explored in [19] to obtain the optimal control 
scheme of the active distribution network with the consideration of 
voltage level limits, which introduces a safe layer on top of the con
ventional actor network to avoid any possible violations of the voltage 
constraints. 

With specific respect to the HVAC system control problem, there 
have also been some pioneering works in the literature focusing on 
utilizing the powerful deep RL approach to achieve higher energy effi
ciency and economic efficiency. In [20], a deep Q network (DQN) is 
constructed for coordinated control of joint datacenter and HVAC load, 
in which the neural network is utilized to estimate the Q value of a state- 
action pair. In [21], a convolutional neural network (CNN) is deployed 
as the approximator of the state-action value function to better capture 
the spatial and temporal correlations within the input state data with its 
convolutional operation. A deep policy gradient (DPG) method is 
investigated in [22] for controlling multiple responsive demands 
including ACs, electric vehicles and dishwashers. In [23], an actor-critic 
method is applied for optimizing the thermal comfort and energy con
sumption of HVAC. In [24], a practical HVAC control framework based 
on advantage actor critic is established for a whole building energy 
model. In [25], the DQN is applied to achieve optimal control balancing 
between different HVAC systems. 

All the above research works have demonstrated the effectiveness of 
the applied deep RL methods in optimizing the HVAC thermal control 
strategy compared with the designed benchmarks. However, the ma
jority of the existing researches treat the continuous control actions of 
the HVAC system, such as HVAC setpoint or air flow rate, in a discretized 
way to narrow down the search space. Discretization can achieve 
satisfying performance when the granularity is low or without the 
combination of action spaces. However, it encounters the issue of 
exponential explosion when the action space is high-dimensional, for 
example, multiple room zones in the case of HVAC control. As a result, 
more simulations are needed for training the deep RL methods and the 
algorithm performance decreases. 

In [26], the authors adopt the DDPG method to realize the contin
uous thermal control of HVAC without discretization. However, this 
research work still focuses on single-zone HVAC control, which has been 
previously addressed by the above-mentioned discretion methods. In 
addition, the method applied is only compared with other RL methods, 
and no benchmark cases are designed to verify the optimality and the 
generalization of the obtained control strategy. In [27], a multi-agent 
deep RL method with an attention mechanism is applied to minimize 
the energy costs of an HVAC system in a multi-zone commercial build
ing, where a set of actor and critic networks are designed for each zone, 
and they are updated in parallel during the training. While this research 
work provides some inspiring insights, one concern is that in the pro
posed algorithm, the number of neural networks needing training will 
grow with the number of zones, which could cause excessive computa
tional burden. In [28], the long-short-term-memory (LSTM) recurrent 
neural network is combined with the DDPG to better simulate the real- 
world operation of multiple air handling units (AHUs), where a deep RL 
agent is designed for each AHU to control a separate section of the 
building. The same concern occurs regarding the number of RL agents 
and the growing computational cost. 

Motivated by the above concerns, in this paper, we also apply the 
DDPG method for optimizing the continuous thermal control strategy of 
residential HVAC. The main contributions of this work, as compared 
with the existing research, are summarized as follows:  

• We apply the DDPG RL method to optimize the continuous control of 
multi-zone residential HVAC. The multi-zone residential HVAC 
control involves more complex thermal dynamics and environment 
uncertainties, and a high-dimensional action space, which requires 
more delicate problem formulation including the definitions of state, 
action, and reward during the learning process; 

Nomenclature 

Tout(t) Outdoor temperature at time step t 
Tin,z (t) Indoor temperature for room zone z at time step t 
Tlower (t) Lower bound of the user comfort level at time step t 
λretail(t) Retail price at time step t 
Setptz(t) Setpoint for room zone z at time step t 
EHVAC(t) Power consumption of HVAC system at time step t 
Δt Control interval of the HVAC system 
cpenalty(t) Penalty for user comfort violation at time step t 
θQ, θπ Neural network parameters of the critic network and 

the actor network in the DDPG algorithm 
Q(s,a; θQ) Action-value of the state-action pair (s,a) under the 

current critic network θQ 

π(s; θπ) Control policy under the current actor network θπ 

qtarget(t) Target action-value for updating the critic network  
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• We conduct a comprehensive comparison between the applied DDPG 
method and the widely-used DQN method to demonstrate the 
effectiveness of the former in dealing with the continuous action 
space, which is a more common case in many real-world situations; 
we also design benchmark cases without RL to prove that the applied 
DDPG can achieve higher economic benefits while maintaining user 
comfort;  

• We verify that the well-trained deep RL method has obtained high 
generalization and robustness, and can adapt to new environment 
with different price signals and physical conditions to provide the 
optimal HVAC control strategy. 

The rest of the paper is organized as follows. The HVAC control 
problem formulation is introduced in Section 2; in Section 3, the two 
representative deep RL methods, the DQN and DPG methods are first 
briefly reviewed, followed by a detailed explanation of the DDPG 
method, which is an extension of the former two; the simulation results 
of the DDPG method are presented in Section 4, plus comparison with 
the DQN and benchmark cases; finally, Section 5 concludes the paper. 

2. Multi-zone residential HVAC system control problem 
formulation 

2.1. A brief introduction of the multi-zone HVAC system control problem 

In this study, we consider a residential building with multiple zones. 
The indoor temperature of each zone can be controlled by adjusting the 
setpoint of the HVAC system. The HVAC system can work in various 
modes including “Cooling”, “Heating” and “Auto”. The “Auto” mode 
means that the HVAC system can automatically switch between cooling 
and heating according to the indoor temperature and the assigned set
point. Whenever there is a difference between the indoor temperature 
and the setpoint, the HVAC system will be automatically turned on to 
push the indoor temperature near to the setpoint to maintain user 
comfort. Without losing generality, in this work, we will focus on the 
case when all zones need heating. The goal of controlling the HVAC 
system is to minimize the energy cost while keeping the indoor tem
perature within the user comfort band. 

2.2. Mapping HVAC control problem to Markov decision process (MDP) 

In this subsection, we will formulate the above multi-zone residential 
HVAC control problem as a Markov Decision Process (MDP), which will 
later be solved by a model-free deep RL-based algorithm in Section 3. 
According to the simplified thermal dynamics model of HVAC in [29], 
the indoor temperature at the current time interval is only related to the 
previous state parameters such as the indoor temperature at the previous 
time interval, and is not affected by indoor temperature at any other 
time intervals. Therefore, the HVAC control problem can be regarded as 
a finite Markov process and be solved using the RL method. 

An MDP is composed of four essential elements: state (s), action (a), 
state transition probability (p), and reward (r). In the context of a multi- 
zone residential HVAC control problem, the four elements are defined as 
follows:  

• State: 1) current outdoor temperature Tout(t); 2) current indoor 
temperature Tin,z(t) for the all the zones z; 3) the lower bound of the 
user comfort level Tlower(t); 4) retail price λretail(t), where t is the 
current time step. 

Note that the state parameters include the lower bound of the user 
comfort level, which changes along with the time. This is because we 
assume that the HVAC users have a time-variant comfort preference. 
This is reasonable since during the daily work hours when no one is at 
home, the comfort range of the indoor temperature can be lowered to 
save the energy cost. The comfort range can be brought back during the 

off-work hours when the house is occupied. 
The state parameters also include the current retail price to realize 

the pre-heating effect of HVAC. Pre-heating means setting the setpoint of 
the HVAC at a relatively high value when the retail price of energy is low 
to heat up the indoor temperature in advance, thus avoiding excessive 
energy consumption when cold outdoor temperatures occurs, when the 
retail price of energy is higher.  

• Action: the setpoint Setptz(t) for the zone z; 

The HVAC setpoint in each zone is a continuous variable. Given the 
setpoint, the on/off status of the HVAC unit with a thermostat at each 
zone obeys the following control logic: 

HVAC status =

⎧
⎨

⎩

1, if Tin(t) < setpoint − deadband
0, if Tin(t) > setpoint

remain at the current status, elsewise
(1) 

The HVAC model considered in this paper is only utilized for heating. 
In Eq. (1), the deadband is a small temperature span, in which the 
thermostat will not change its on/off status to prevent short cycles. It can 
be observed in Eq. (1) that if the indoor temperature is above the set
point, the HVAC will remain off; otherwise, the HVAC will be started 
automatically to heat the room to maintain the user comfort.  

• Reward: the energy consumption cost plus the comfort violation cost 
for the control interval, which is defined as follows: 

r(t) = −ωc

∑t

t′ =t−Δt

λretail(t
′

)EHVAC(t
′

) − ωp

∑t

t′ =t−Δt

cpenalty(t
′

) (2) 

In Eq. (2), the first term is the energy cost of the HVAC system, where 
λretail(t’) is the retail price, EHAVC(t’) is the power consumption, and Δt is 
the control interval; the second term is the penalty for user comfort 
violation, which is calculated as follows: 

cpenalty(t′

) =

{
1, for Tin(t′

) < Tlower(t′

) − Tth
0, elsewise

(3) 

In Eq. (3), Tth is a threshold with a small value. The temperature 
violation is not counted if the magnitude of the violation is smaller than 
Tth. Given the existence of the deadband within the HVAC system, it is 
not possible to always keep the indoor temperature at the exact setpoint. 
The threshold allows for some deviations of the indoor temperature. 

Because the reward encloses both the energy cost and the penalty, 
which leads to a multi-objective function, weight factors are added to 
the two objectives, which are represented by ωc and ωp in Eq. (2). The 
final objective of HVAC thermal control is to minimize the total energy 
consumption cost plus the penalty over the entire control cycle, which 
can be written as the cumulative sum of r(t): 

∑NT
t=1r(t). Therefore, a far- 

sighted control strategy is needed to prevent against uncertain future 
circumstances, which leads to a multi-stage decision making problem. 

Notice that the state transition probability p is not defined for the 
above MDP. The state transition probability refers to the probability of 
transferring to a certain next state after taking action Setptz(t). With a 
known state transition probability, the MDP is fully observed and the 
cumulative reward can be analytically solved via model-based dynamic 
programming or other iterative methods. However, in the HVAC control 
problem, to obtain an accurate probability model of the state transitions 
is not a trivial task, because it is difficult to formulate the exact thermal- 
dynamic model of HVAC buildings. The heat transfer within the build
ing is related to multiple resistances (R) and capacitors (C) from 
different building components, like the exterior walls, the interior walls 
and furnishings, and the attic, the values of which require estimation 
and validation through experimenting. All these factors can have a 
significant impact on the temperature response of the indoor air [30]. 
Furthermore, the indoor temperature is also affected by uncertain 
external factors such as outdoor temperature, solar irradiance, and 
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wind, which calls for additional modelling and computational efforts. 
As a consequence, a model-based method is not a robust or adaptive 
solution for HVAC system optimization. 

Driven by the above considerations, in this paper the model-free 
deep RL method is leveraged to overcome the unobservability in the 
multi-zone residential HVAC control problem. The model-free RL 
method does not require any knowledge of the environment or the state 
transitions in advance. It gradually improves its decision-making strat
egy by continuously interacting with the environment and receiving 
feedback. In this way, the forecast errors of uncertain factors, as well as 
the measurement errors of building thermal mass, can be avoided. More 
details of the deep RL method will be revealed in the next section. 

3. DDPG-based control strategy for multi-zone HVAC system 

3.1. A brief review of deep reinforcement learning methods 

The RL method is a type of machine learning method that optimizes 
the decision-making strategy in an MDP. In the RL algorithm, the reward 
defined in the MDP is served as the guideline for algorithm evolution. A 
large, positive reward will encourage the algorithm to search deep in the 
current direction, and vice versa. The RL method is especially suitable 
for handling decision-making problems with temporal constraints or 
with hidden state space. 

There are two main types of RL method: the value-based RL method 
and the policy-based RL method. The difference between the two 
methods lie in their action evaluation strategies. The value-based 
method estimates the Q value of a state-action pair (s,a), which is the 
cumulative discounted reward starting from taking action a at state s, 
and selects the action with the highest Q value; the policy-based RL 
method generates the probabilities of all the feasible actions at the 
current state, and selects the action with the highest probability. 

The combination of RL with a DNN is called the deep RL method. In 
deep RL, the DNN is utilized as a regression tool to estimate either the Q 
value, as in the value-based RL method; or the action probability, as in 
the policy-based RL method. A general DNN structure for regression in 
RL is shown in Fig. 1. 

The main advantage of the deep RL method over the conventional 
RL method is that the application of the DNN makes it possible to 
achieve high level control for extremely complex problems, such as 
with continuous state space or action space, without the tabular con
straints. In deep RL a more generalized regression model is established 
instead of maintaining a concrete Q table to store all the possible action 
values, as in the case of traditional Q learning. This generalized 
regression model offers more robust and flexible strategies against 
unseen states in the case of continuous control. In the following sec
tion, we will first introduce the DQN, as a representative of the valued- 
based deep RL methods; and the DPG method, as a representative of the 
policy-based deep RL methods. Then, a continuous control method, the 
DPG method, which is a combination of the above two methods, will be 

explained in detail for solving the optimal multi-zone residential HVAC 
control problem. 

3.2. Understanding the basic principles behind typical deep RL methods  

1) Deep Q Network (DQN) 

The DQN is a combination of Q-learning and a DNN. In the DQN, the 
input is the current state, and the output is the Q value for each potential 
action at the current state. The advantage of the DQN over the tabular Q- 
learning method is that when the state and action are slightly changed, 
the DQN can still estimate the associated Q value without re-training, 
which is highly time-efficient. 

Unlike the supervised learning algorithm, in deep RL there are no 
labeled samples for the DNN to learn. To handle this issue, two DNNs are 
designed for the DQN algorithm: one is called the target network, and 
the other is called the behavior network. The function of the target 
network is to serve as a reference, similar to the ground truth in the 
supervised learning, to guide the evolution of the algorithm. 

Both networks are initialized with the same parameters and the same 
structure. As the training proceeds, the behavior network is updated at a 
faster speed than the target network. The loss function in the DQN is 
defined as the mean square error (MSE) between the target Q value and 
the behavior Q value. Once the loss function is calculated, the param
eters of the behavior network will be updated based on its gradient to the 
loss function. The algorithm will continue updating until the output 
from the target network and the behavior network are close to each 
other, which indicates the convergence of the learning. More details of 
the DQN method can be found in [31].  

2) Deep Policy Gradient (DPG) 

The DPG method utilizes a strategy different from the DQN for 
control optimization. The output from the DNN is the probabilities of 
each potential action at the current state, or the policy. The policy refers 
to the probability of selecting action a(t) at state s(t), and can be written 
as π(a|s,θ) = Pr{a(t) = a|s(t) = s, θ(t) = θ}. θ stands for the parameters of 
the probability function. The loss function of the DPG method is also 
different from that of the DQN, which intends to maximize the expected 
total reward under the policy π(a|s,θ), and can be expressed as follows: 

max J(θ) = Eπ(a|s,θ)(
∑NT

t=1
r(t)) =

∑

τ
πθ(τ)R(τ) (4) 

In Eq. (4), τ is called an episode generated under the policy π(a|s,θ): 
τ={s(1), a(1), s(2), a(2),…, s(NT), a(NT)}. R(τ) =

∑NT
t=1r(t), which is the 

total reward of the episode. The goal of the DPG method is to get the 
parameters of the policy π that leads to the maximum value of the ex
pected total reward. More details of DPG algorithm can be found in [22]. 
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Fig. 1. DNN structure for function approximation in RL.  
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3.3. Realizing continuous control of HVAC system with the DDPG  

1) An introduction to the DDPG 

The DDPG method is specially designed for solving problems with 
continuous variables. Unlike the DQN or DPG, where the Q values or 
action probabilities of all feasible actions are generated by the DNN for 
the agent to select, the term “deterministic” in the DDPG refers to the 
fact that there is only one output from the DNN, which is determined. In 
this way, the action space can be continuous since there is only one 
output unit. 

Another advantage of the DDPG over the DQN and DPG is that it is a 
combination of the two methods. In the DDPG, there are two types of 
neural networks applied: the actor network, which assembles the DPG, 
and the critic network, which assembles the DQN. Their functions are 
explained as follows. 

The input to the actor network is the current state, and the output is a 
deterministic action; the input to the critic network is the current state 
plus the action generated by the actor network, and the output is the Q 
value of the state-action pair. This Q value will be further used to update 
the parameters of the actor network. The loss function of the actor 
network is defined to maximize the Q value with the current policy, 
which follows the logic of the DPG method; and the loss function of the 
critic network is the MSE of the Q value, which follows the logic of the 
DQN method. In summary, the function of the actor network is to select 
actions, and the function of the critic network is to evaluate the selected 
action. 

In addition, similar to the DQN algorithm, for both actor network and 
critic network in the DDPG, two neural networks are designed, a 
behavior network and a target network. Hence there are four neural 
networks in total. The reason for applying the target network is to sta
bilize the algorithm convergence. More details of the DDPG algorithm 
are presented in the next subsection.  

2) DDPG algorithm for developing optimal HVAC control strategy 

The details of the proposed DDPG algorithm are shown in Algorithm 
1, which is customized from a general-purpose DDPG algorithm in [32]. 
The DDPG algorithm follows a process similar to that of the DQN, except 
that an actor network is built to select a deterministic action. The 
applied DDPG algorithm is further explained as follows: 

To begin with, two neural networks, i.e., the actor network and the 
critic network are randomly initialized, and their associated target 
networks are initialized with the same set of parameters, as shown in 
lines 1–2. Starting from line 3, for each iteration, the system state is first 
initialized, then an HVAC control action, i.e. the setpoint, is chosen 
based on the current actor network π(s;θπ), as shown by line 7. A noise is 
added to the selected action to boost the exploration of the algorithm. 

Next, in lines 8–9, the selected action is executed in the environment 
for the entire control interval Δt, and the received reward and the next 
state are observed. The transition (s(t), Setptz(t), r(t), s(t + Δt)) is stored 
in a replay buffer to be further used for algorithm training. When a 
sufficient number of transitions is collected, a mini-batch of transitions 
is randomly selected to update the parameters of the actor network and 
the behavior network, as shown by line 11. The random selection can cut 
off the temporal correlations among the transitions, which will maintain 
the independent, identically distributed assumption in the learning 
model. Also, the transitions can be sampled multiple times, which in
creases their utilization efficiency. 

The neural network parameters θQ and θπ are updated according to 
the loss functions. The loss function of the critic network is defined as the 
MSE between the target Q value and the current Q value from the 
behavior critic network, as shown by line 12. The temporal-difference 
error is used to update the Q value, where the target Q value is the 
sum of the current reward plus a discounted Q value from the target 
critic network θQ’ for the next control interval t + Δt. γ is called the 
discount factor. Once the loss function is calculated, the parameters of 
the behavior critic network θQ are updated based on the gradient, as 
shown by line 13. ηQ is called the learning rate. 

The loss function of the actor network is defined to maximize the Q 
value: 

max
1
M

∑M

i=1
Q(s(i)(t), a(i)(t); θQ)|a(i)(t) = π(s(i)(t); θπ) (5) 

In Eq. (5), a(i)(t) is generated from the actor network π(s;θπ). Hence, 
the chain rule is applied in line 14 to calculate the gradient of the Q 
value to the θπ. In line 16, the parameters of the target critic network and 
the target actor network, θQ’ and θπ’, are updated at a slower rate than 
the behavior network, where τ is a number between 0 and 1 and close to 
1. The function of this slower update is to increase the stability of the 
learning. The complete deep RL-based control framework of a multi- 
zone HVAC system is shown in Fig. 2. 

Fig. 2. Multi-zone HVAC control framework with DDPG.  
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Algorithm 1. (DDPG method for multi-zone HVAC control)  

1: Initialize the parameters of the critic network Q(s,a;θQ) and the actor network 
π(s;θπ) 

2: Initialize the target networks Q(s,a;θQ’) and π(s;θπ’) with θQ and θπ 

3: for episode = 1 to arbitrary number do 
4: Initialize system state s(Tout(0), Tin,z(0), Tlower(0), λretail(0)) 
5: for t = 1 to NT do 
6: if t == kΔt, where k is an integer, do 
7: Select the multi-zone HVAC control action Setptz(t) with π(s;θπ) plus 

noise 
8: Execute Setptz(t), receives the immediate reward r(t) and the next 

state s(t + Δt) 
9: Store the transition (s(t), Setptz(t), r(t), s(t + Δt)) in the replay buffer 
10: end if 
11: Collect a mini-batch of transitions (s(i)(t), Setpt(i)z (t), r(i)(t), s(i)(t + Δt)) 

with the size M from the replay buffer  
12: Calculate the MSE of the Q value:  

qtarget(i) (t) = r(i)(t) + γQ(s(i)(t + Δt), π(s(i)(t + Δt);θπ’);θQ’)  
L(θQ) = 1/M

∑M
i=1 (q

target(i)(t) - Q(s(i)(t),π(s(i)(t);θπ);θQ)  
13: Update the parameters of the critic network:  

θQ = θQ - ηQ▽θ
Q L(θQ) 

14: Calculate the gradient of the Q value to the actor network parameter θπ:  
▽θ

πJ≈1/M
∑M

i=1▽πQ(s(i)(t),π(s(i)(t);θπ);θQ)▽θ
ππ(s(i)(t);θπ)  

15: Update the parameters of the actor network:  
θπ = θπ - ηπ▽J 

16: Update the parameters of the target network with a smaller step:  
θQ’ ¼ (1 – τ)θQ + τ θQ’  

θπ’ ¼ (1 – τ) θπ + τ θπ’ 

17: end for 
18: end for   

4. Case study 

In this section, the effectiveness of the applied DDPG-based contin
uous control method for multi-zone residential HVAC is demonstrated 
through simulations with real-world data, as well as by comparison with 
the DQN-based discrete control method and the benchmark cases, to 
fully verify the advantages of the DDPG method. Further, the general
ization of the deep RL method is demonstrated by experimenting with 
unseen physical environments. 

4.1. Simulation environment 

A two-zone residential HVAC model [33] is implemented for training 
and testing the applied deep RL method, with real-world weather data 
from 2019 to 2020 obtained from [34]. For price signals, a simulated 
retail price sequence is generated, which includes a high price value and 
a low price value. The price is regularly switched between the two values 
every three hours. The reason for applying such a frequently changing 
price sequence is to find if the deep RL agent can identify the effect of 
price signals on the reward function and properly adjust its control 
strategies. It is further assumed that the lower bound of the user comfort 
level changes four times during the daily cycle, as shown in Table 1: 

The control interval of the RL agent is set to 60 min, i.e., Δt = 60. 
Since we only focus on the heating effect of the HVAC system, the 
November weather data is used as the training data. During the training, 
one episode is defined as 24 h. In this way, 24 (s(i)(t), Setpt(i)z (t), r(i)(t), 
s(i)(t + Δt)) transitions will be generated from each episode. In total 300 
episodes are simulated for the RL agent to learn. After the training, the 
RL agent will be applied to new test days with different weather con
ditions to examine its generalization and adaptability. 

4.2. Design of the DNN structure in deep RL 

The detailed design of the actor and critic network in the DDPG is 
shown in Table 2. The design of the DQN is also listed for comparison. 
The designs of both the DDPG and the DQN are obtained via a trial-and- 
error process, and the current configurations provide the best possible 
results among all the trials. 

For the DDPG method, the input to the critic network is a vector 
containing both state variables and action variables, and the output is 
the estimated Q value, which is a scalar; the input to the actor network is 
a vector containing only state variables, and the output is a vector 
containing the setpoint for each zone. Although the setpoint is a 
continuous variable, in reality there is always a range of the setpoint for 
maintaining user comfort. Therefore, the output layer from the actor 
network utilizes tanh as the activation function, which confines the 
output with a range of [−1, 1]. The actual setpoint is calculated as 
Setptz = Tlower + ΔT⋅(yout + 1), where yout is the output from the actor 
network, and ΔT is the upper range of the setpoint. In the simulation, ΔT 
is set to 2 ◦C. Therefore, the setpoint selected by the DDPG lies within the 
range of [Tlower, Tlower + 2]. 

For the DQN method, the inputs are also the state variables. Since the 
DQN requires a discrete action space, we discretize the range of setpoints 
with a step size of 0.5 ◦C. As a result, there are 5 actions for each zone 
and 25 combinations of actions for the 2-zone HVAC. The output from 
DQN is a vector containing 25 Q values, with each corresponding to one 
combination of actions. 

4.3. Performance of the continuous HVAC control method  

1) Convergence of the DDPG 

In Fig. 3, the average returns gained after each episode during the 
training process in the DDPG and the DQN are presented. Notice that 

Table 2 
DNN structure applied in DDPG and DQN algorithms.  

Algorithm DDPG DQN 

critic 
network 

actor 
network 

Size of input [1,7] [1,5] [1,5] 
No. of hidden layers 2 2 2 
Size of each hidden layer [7,20], 

[20,10] 
[5,20], 
[20,10] 

[5,20], 
[20,10] 

Size of output [1] [2] [25] 
Activation function for the 

hidden layer 
ReLU ReLU ReLU 

Optimizer Adam Adam Adam 
Learning rate (η) 0.001 0.01 0.01 
Discount factor (γ) 0.99 – 0.99 
Batch size 48 
Weights of the reward ωc: 10, ωp: 1  

Fig. 3. Convergence of different deep RL methods.  

Table 1 
Daily user comfort level.  

Time period 0:00 – 6:00 6:00 – 12:00 12:00 – 18:00 18:00 – 24:00 

Tlower (◦C) 18 17 18 19  
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the average returns in the first few episodes appear to be higher than 
that of the last few episodes. This is because for each episode, one 
training day is randomly chosen. Some training days may have mod
erate outdoor temperatures, which can lead to low energy cost and low 
penalty, and vice versa. However, as the training proceeds, the number 
of episodes grows, and the average return is neutralized. It can be 
observed that both curves gradually become steady as the training 
evolves. However, the average return gained by the DDPG method is 
higher than that of the DQN method. This is because the size of the 
output from the DQN is larger than that of the DDPG, and the combi
nation of actions have not been fully explored after 300 episodes, 
leading to a lower average return.  

2) Computational efficiency 

After the training process, the DDPG RL agent is applied to 10 test 
days in January 2020 from the real-world data in [34] to generate the 
optimal HVAC control strategy. The time cost is around 19 s for testing, 
which is highly time-efficient. The code is written in Python 3.6 with the 
open-source deep learning platform TensorFlow [35]. The hardware 
environment is a laptop with Intel®CoreTM i7-7600U 2.8 GHz CPU, and 
16.00 GM RAM.  

3) Comparison of the DDPG with the DQN and the benchmark cases 

In this study, the well-trained deep RL agents from both the DDPG 
and the DQN are run on new test days to verify their learning perfor
mance. We also design two benchmark cases without the RL agent as 
comparisons. The benchmark cases are described as follows: a) Rule- 
based case: the setpoint is set at the lowest value at the peak price 
hours, and the highest value at the off-peak price hours, to realize the 
pre-heating effect to save energy cost; b) Fixed setpoint case: the set
point is always at the highest value of the setpoint range to avoid any 
temperature violation. 

The final optimized results of the RL methods and the benchmark 
cases are shown in Table 3: 

Fig. 4. Setpoint control strategy based on DDPG for 10 test days (top: zone 1; bottom: zone2).  

Table 3 
Test results of different HVAC control methods.  

Control method DDPG DQN Rule- 
based 

Fixed 
setpoint 

Total cost ($) 55.21 65.03 39.08 71.48 
Temperature violation (min) 48 230 2617 0 
Average temperature violation 

(◦C) 
0.13 0.93 1.85 0  
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In Table 3, the well-trained deep RL agents are applied to generate 
the HVAC control strategies for the first 10 days in January 2020. The 
weather conditions of the test days are different from those of the 
training days, since the outdoor temperature is much lower in January 
than in November. The total cost in the table refers to the total energy 
cost over the 10 days, and the temperature violation in the table refers to 
the total number of minutes that the indoor temperature falls below 
Tlower - Tth, as shown by Eq. (3). Tth is set to 0.3 ◦C. The average tem
perature violation indicates on average by how many degrees the indoor 
temperature is lower than the setpoint. As shown in the table, the control 
strategy derived from the DDPG method has both lower energy cost and 
fewer temperature violations than that of the DQN. With regard to the 
benchmark cases, in the rule-based case, because the pre-heating logic is 
applied based on the price structure, it obtained the lowest cost among 
all four cases. However, by always setting the setpoint to the lowest 
value at peak price hours, this control strategy results in severe tem
perature violation. In the fixed setpoint case, since the setpoint is always 
set at the highest value, there is no temperature violation. However, the 
energy cost is also the highest among the four cases. The control strategy 
and the associated indoor temperature in the four cases are further 
illustrated in Figs. 4–6. 

In all the figures, the yellow rectangular area represents the feasible 
region of the setpoint [Tlower, Tlower + 2 ◦C]. As can be observed, the 
setpoint range changes at a daily cycle. In addition, the indoor 

temperature in zone 1 is lower than that of zone 2, this is because in the 
building model, zone 1 is at the 1st floor and zone 2 is at the 2nd floor, 
and the warmer air goes to upper floors. 

In Fig. 4, the DDPG RL agent develops a setpoint control strategy 
such that when the outdoor temperature is relatively high, i.e. in the first 
4000 min, the setpoint will be set at the lowest value at the peak price 
hour, and at the highest value at the off-peak hour, to realize the pre- 
heating effect and to reduce energy cost, which is similar to the con
trol logic of the rule-based case. When the outdoor temperature is low, i. 
e., in the last 2000 min, the setpoint is always set at the highest value to 
avoid the indoor temperature violation. On the contrary, in the rule- 
based case, the control strategy still follows the price structure even 
when the outdoor temperature is extremely low, which results in severe 
indoor temperature violation, as shown in Fig. 6. Such comparisons 
indicate that after the training, the DDPG RL agent has acquired the 
knowledge that the price signal and the outdoor temperature have a 
significant impact on the reward, and it learns to intelligently set the 
setpoint based on this state information to reach a higher reward value. 

The control strategy of the DQN RL agent is shown in Fig. 5. It can be 
observed that when the outdoor temperature is relatively high, i.e. in the 
first 4000 min, the setpoint is set at a relatively high value, and it does 
not follow the change of retail price. When the outdoor temperature is 
extremely low, i.e., around 12,000 min, the setpoint is set at the lower 
bound, which results in temperature violation. The DQN RL agent does 

Fig. 5. Setpoint control strategy based on DQN for 10 test days (top: zone 1; bottom: zone2).  
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not successfully capture the impacts of the state variables on the reward 
function. This can be attributed to the large number of action combi
nations encountered by the Q network. In such cases, the DQN RL agent 
has not fully explored all the possible action combinations to maximize 
the reward, and thus obtains a control strategy with a higher energy cost 
and more temperature violations. 

Finally, in Fig. 7, the fixed setpoint case, since the setpoint is always 
set at the highest value, the indoor temperature for both zones also re
mains at the highest level among the four test cases. However, this fixed 
setpoint case results in the highest energy cost.  

4) Generalization of the DDPG Algorithm  
a) Extending the DDPG RL agent to different residential buildings 

The well-trained DDPG RL agent is further tested in new residential 
building models with HVAC systems to fully validate its generalization 
and robustness. Ten building models are generated with different ther
mal mass parameters, the variation of which follows a normal distri
bution. The same 10 test days in January 2020 are applied in this case. 
The energy cost and the temperature violation for the 10 building 
models under the DDPG control strategy and under the two benchmark 
cases are compared in Table 4 and Fig. 8. As can be read from the table, 
similar to the results in Table 3, the rule-based control strategy provides 
the lowest energy cost, while the fixed setpoint control strategy provides 
the lowest violation. The well-trained DDPG RL agent can obtain an 

HVAC control strategy that properly weighs the two objectives, resulting 
in a relatively lower energy cost and fewer temperature violations for 
different test building models. Therefore, it can be safely concluded that 
the DDPG RL agent can flexibly adapt to unseen physical environments 
and provides an economic HVAC control strategy after its offline 
training with the fixed environment.  

b) DDPG performance under different retail price signals 

In the above simulations, a simulated retail price sequence is 
generated for training and testing the deep RL agent, which is composed 
of only two price signals. To demonstrate that the well-trained DDPG RL 
agent has developed high generalization to an unseen environment 
without additional training, the DDPG RL agent is further tested with a 
retail price sequence that is generated from the PJM wholesale hourly 
locational marginal price (LMP) data [36]. The retail price is set as triple 
of the wholesale market price. The PJM price is very irregular, changing 
hourly and fluctuating within a large range. The final optimized results 
of the two deep RL methods and the benchmark case are shown in 
Table 5: 

In Table 5, the fixed setpoint case applies a control strategy where 
the setpoint is always set at the middle of the setpoint range. This is 
because the PJM price sequence contains more than just two values, and 
it cannot be simply divided into two groups as high price and low price. 
As a result, the setpoint is set at the middle point to avoid possible 

Fig. 6. Setpoint control strategy from the rule-based case for 10 test days (top: zone 1; bottom: zone2).  
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temperature violations while minimizing the energy cost. 
The control strategy and the associated indoor temperature in the 

three cases are further illustrated by Figs. 9–11. As can be observed in 
the figure, the PJM price demonstrates a very different pattern from the 
simulated price sequence. For most of the time the price remains at a 
relatively low level, with some occasional spikes and fluctuations. 
However, the well-trained DDPG RL agent still attempts to follow the 
price tendency, and intelligently sets the setpoint to realize the pre- 
heating effect. For example, a price spike appears around 12,500 min. 
The DDPG RL agent catches this sudden change, and lowers the setpoint. 
At around 13,500 min the retail price sequence demonstrates some 

fluctuations, and the DDPG RL agent also adjusts the setpoint accord
ingly. Note that under the price signals that are more time-variants like 
the PJM market price, it is difficult to develop a simple rule-based 
control strategy, because the price range is uncertain. However, the 
well-trained DDPG RL agent can still work intelligently under such an 
uncertain environment, and it obtains satisfying economic benefits. 
Therefore, it can be safely concluded that the DDPG algorithm has 
gained adaptability after training and has potential for real-world online 
applications. 

In Fig. 10, the HVAC control strategy developed by the DQN RL agent 
also intends to follow the retail price tendency. However, at the price 

Fig. 7. Setpoint control strategy from the fixed setpoint case for 10 test days (top: zone 1; bottom: zone2).  

Table 4 
Comparison of optimization results for different building models.  

Building index DDPG Rule-based Fixed setpoint 

Cost ($) Temperature violation (min) Cost ($) Temperature violation (min) Cost ($) Temperature violation (min) 

1  42.22 31  27.78 1296  57.98 0 
2  44.13 41  29.22 1586  60.13 0 
3  52.14 45  36.51 2347  68.52 0 
4  59.66 101  43.94 3364  75.61 0 
5  45.84 41  31.30 1879  62.91 0 
6  42.49 39  27.68 1398  59.06 0 
7  37.47 24  23.51 1012  53.42 0 
8  61.21 81  45.42 3520  76.44 0 
9  35.34 25  21.98 818  49.90 0 
10  43.19 59  28.41 1323  58.46 0  
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Fig. 9. Setpoint control strategy based on DDPG under PJM price for 10 test days (top: zone 1; bottom: zone2).  

Fig. 8. Comparisons of cost and penalty from three control methods.  

Table 5 
Test results of different control methods (under PJM price).  

Control method DDPG DQN Fixed setpoint 

Total cost ($) 32.90 31.80 32.71 
Temperature violation (min) 0 222 31 
Average temperature violation (◦C) 0 1.00 0.27  
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spike period (12,500 min) and the price variation period (13,500 min), 
the DQN RL agent chooses the lowest setpoint values, which results in a 
temperature violation in zone 1, as shown in the bottom figure. 

Finally, in Fig. 11, the fixed setpoint case also leads to some tem
perature violations in zone 1 when the outdoor temperature is extremely 
low (after 10,000 min). 

5. Conclusion 

In this paper, the DDPG RL method is applied for controlling a multi- 
zone residential HVAC system to minimize the energy consumption cost 
while maintaining the user comfort. The DDPG can realize continuous 
control of the HVAC setpoint due to its application of DNNs. Simulation 
results demonstrate that the well-trained DDPG RL agent can act intel
ligently to balance the different optimization objectives, and that it also 
gains generalization and adaptability to unseen environment, which 
signifies its potential for future online applications in solving MDP 
problems with hidden information or with continuous search space. 

For future works, we will mainly look into two directions for further 
improving the robustness of the RL-based control strategy: 1) consid
ering different seasoning scenarios, the deep RL agent should learn to 
automatically switch between different operation modes, i.e. cooling 
and heating, in order to be applied to a longer control period, i.e. one 
year, to provide economic control strategies for HVAC users; 2) 

considering different user preferences, the deep RL agent should be able 
to learn a more variant setpoint schedule customized by users, and 
provide more flexible HVAC control strategies. By investigating these 
two directions, the deep RL agent will become more generalized and 
robust against uncertainties in real-world operation scenarios. 
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