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A B S T R A C T   

In this short communication, a data-driven deep reinforcement learning (deep RL) method is applied to minimize 
HVAC users’ energy consumption costs while maintaining users’ comfort. The applied deep RL method’s effi
ciency is enhanced by conducting multi-task learning that can achieve an economic control strategy for a multi- 
zone residential HVAC system in both cooling and heating scenarios. The applied multi-task deep RL method is 
compared with a rule-based benchmark case and a single-task deep deterministic policy gradient algorithm to 
verify its effective and generalized application in optimizing HVAC operation.   

1. Introduction 

The latest development in machine learning such as deep learning 
and reinforcement learning techniques are being widely discussed in 
many critical areas that were once dominated by human intelligence, 
such as robotic control and autonomous driving [1], as well as in the 
field of power and energy [2]. In particular, the deep reinforcement 
learning (deep RL) method has been implemented for controlling heat
ing, ventilation, and air conditioning (HVAC) systems to achieve both an 
economic benefit and improved customer comfort. In [3], a model-free 
deep Q network (DQN) is applied for joint data center and HVAC load 
control in mixed-use buildings to reduce energy consumption. In [4], the 
authors compare the value-based DQN method with the policy-based 
deep policy gradient (DPG) method in residential energy management, 
and demonstrate that the latter is more suitable to perform online 
scheduling of energy sources. Given that many control variables in 
HVAC thermal control are continuous, the deep deterministic policy 
gradient (DDPG) method is implemented in [5,6], to avoid the dis
cretization of the control variables and to obtain better learning per
formance. In [7], the authors utilize imitation learning to pre-train the 

HVAC control agent on historical data to make it behave similarly to the 
existing controller. Following this, the RL agent continues to improve its 
policy during the online training using a policy gradient method prox
imal policy optimization (PPO). In [8], the authors further extend the 
deep RL algorithm to optimize multi-zone HVAC system control, where a 
set of actor network and critic network is designed for each thermal 
zone, and feature extraction from selected neighbor zones is collected to 
better capture the mutual thermal effects between different zones for 
improving the control policy. 

While the effectiveness of the deep RL based HVAC control methods 
has been illustrated in the above existing researches, one deficiency is 
that the majority of the researches focus on learning a single HVAC 
control task by merely training the algorithm in either the cooling sce
nario or the heating scenario. Retraining of the algorithm is required 
when the scenario switches. It is widely known in the RL community that 
the training of the algorithm can be time-consuming and resource- 
consuming. Solving only one task at one time is less efficient and 
acceptable as more complex control problems emerge. Motivated by the 
above concern, in this short communication, we work on teaching the RL 
agent to master both the cooling and heating tasks simultaneously to 
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guarantee an optimal HVAC control regardless of the scenario. A multi- 
task DDPG algorithm is developed for this purpose and is further tested 
in a multi-zone residential HVAC system. Comparisons with a rule-based 
HVAC control strategy and a single-task DDPG algorithm demonstrate 
that the multi-task DDPG algorithm has higher generalization and en
ables lower energy consumption cost and less user comfort violation 
through intelligent scheduling. 

2. Multi-task DDPG for multi-zone residential HVAC control 

The changing of indoor temperature under the control of residential 
HVAC system can be formulated as a Markov Decision Process (MDP) 
[9], and the key parameters are defined as follows:  

1) State: the outdoor temperature Tout(t), the indoor temperature Tin,z(t) 
for each zone z, and the retail price λretail(t), where t is the index of 
time step; 2) Action: the setpoint Setptz(t) for each zone z; 3) Reward: 
the total energy consumption cost plus the temperature violation 
penalty, as shown below: 

r(t) = −
∑t

t′ =t−Δt

λretail (t
′

)EHVAC(t
′

) −
∑t

t′ =t−Δt

cpenalty(t
′

) (1)   

In Eq. (1), Δt is the control interval; the first term is the energy cost of 
the HVAC system, where λretail(t’) is the retail price, and EHAVC(t’) is the 
power consumption; the second term is the penalty for temperature 
violation, which is calculated as follows: 

cpenalty(t′

) =

{
1, for Tin(t′

) < Tlower(t′

) − Tth or Tin(t′

) > Tupper(t′

) + Tth
0, else wise

(2) 

In Eq. (2), Tlower and Tupper are the lower and upper bound of user 
comfort level, respectively; Tth is a threshold with a small value, which 
corresponds with the deadband setting of the HVAC system. 

The state transition probability is not defined in the above MDP 
because the thermal dynamic process of the HVAC system is affected by 
various uncertain factors such as resistance/capacitor values of the 
building mass and the weather conditions. This hidden information fails 
the model-based analytical methods. We consider leveraging the DDPG 
to overcome the above model unobservability. The DDPG algorithm is 
well-known for handling complex control problems with continuous 
state space or action space [10]. In the HVAC control problem, both the 

temperature and the setpoint are continuous variables, which makes the 
DDPG a natural fit for the problem. The architecture of the applied 
multi-task DDPG is shown in Fig. 1, and the algorithm details are shown 
in Algorithm 1: 

Fig. 1 is explained as follows: the algorithm first receives the state 
information for the external environment, such as the temperature and 
the retail price value. Apart from the state information, the algorithm 
also receives a task ID from the external environment, which is a 0–1 
binary variable indicating whether it is cooling scenario or heating 
scenario. The task ID is an important indicator of the task that the actor 
is currently solving. The next step is to normalize the state parameters. 
Normalization is an essential step because the state parameters from the 
two tasks can be widely different. For example, the outdoor temperature 
in the cooling scenario is much higher than that in the heating scenario. 
Unnormalized data can result in algorithm divergence. The normalized 
state parameters are then concatenated with the task ID and sent to the 
deep neural networks. There are two types of the neural networks in the 
DDPG algorithm, the actor network and the critic network. The actor 
network is used to generate HVAC control action, and the critic network 
is used to calculate the Q value as an evaluation of the selected action. 
Also, for both actor network and the critic network, there is a behavior 
network and a target network. The behavior network produces the 
control action, and the target network produces a target value for the 
behavior network to learn, which resembles the labeled data in the su
pervised learning. The target network helps stabilize the training pro
cess. In total, there are four neural networks in the DDPG algorithm. The 
structure of each neural network is also revealed in Fig. 1. As can be 

Fig. 1. Multi-task DDPG for multi-zone HVAC control.  

Algorithm 1 
Multi-task DDPG method for multi-zone HVAC control.  

1: Initialization: neural network parameters θQ, θπ, θQ’ and θπ’ 

3: for episode = 1 to arbitrary number do 
4: Randomly select an HVAC control task (cooling or heating) 
5: Initialize the building environment based on the selected task 
6: fort = 1 to NT do 
7: Select the control action Setptz(t) based on state s(t) and the task ID τ 
8: Execute Setptz(t), get the reward r(t) and the next state s(t+Δt) 
9: Store the transition (s(t), Setptz(t), r(t), s(t + Δt), τ) in the replay buffer 
10: Collect a mini-batch of transitions (s(i)(t), Setpt(i) z (t), r(i)(t), s(i)(t + Δt), 

τ(i)) from the replay buffer 
12: Update θπ and θQ 

13: Soft update θπ’ and θQ’ 

17: end for 
18: end for  
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observed, each neural network has two hidden layers and one output 
layer. The numbers below each hidden layer indicate the number of 
neurons in that layer. For all hidden layers, ReLU is used as the activa
tion function due to its quasi-linear feature. For the output layer, the two 
actor networks utilize Tanh as the activation function to confine the 
control action within a certain range; the two critic networks do not 
have an activation function for the output layer, since it is difficult to 
estimate the range of the Q value. 

The above DDPG algorithm is trained in a mingled environment, 
where the algorithm needs to intelligently identify whether heating or 
cooling action is needed based on the state information and the task ID. 
Nevertheless, the two tasks share some similar properties such as the 
same reward function and the same state definition. It is believed that 
the joint learning of multiple tasks with common structures can boost 
feature extraction and action exploitation, and results in better learning 
performance. This deduction will be verified by the simulation results in 
the next section. 

3. Simulation results 

The above multi-task DDPG algorithm is tested in a two-zone resi
dential HVAC building model [11]. The weather data and Georgia 
Power price data from [12-13] are used for algorithm training and 
testing. The Georgia Power price contains only two price values, a peak 
price value at 0.2$/kWh, and an off-peak price at 0.05$/kWh. For the 
cooling scenario, the algorithm is trained with data from Jul. 1st, 2019 
to Jul. 31st, 2019 and tested with data from Aug. 1st, 2019 to Aug. 10th, 
2019, and the user comfort level is set to 21 ◦C-24 ◦C; for the heating 
scenario, the algorithm is trained with data from Dec. 1st, 2019 to Dec. 
31st, 2019, and tested with data from Jan. 1st, 2020 to Jan. 10th, 2020, 
and the user comfort level is set to 19 ◦C-22 ◦C. The structures of the 
designed neural networks have been shown in Fig. 1. Note that the ac
tion from the actor network is a normalized variable between −1 and 1 
as a result of the Tanh activation function. The actual setpoint is 
calculated as Tlower+(Tupper–Tlower) × (action+1)/2.  

1) Learning efficiency of multi-task DDPG: Fig. 2 and Fig. 3 compare the 
learning efficiency of the multi-task DDPG and single-task DDPG. In 
the single-task DDPG case, a training process is conducted for the 
cooling scenario and heating scenario separately. Both algorithms 
are trained for 100 episodes, with each episode lasting for one day. 
Note that the x axis in Fig. 2 only shows 50 episodes. This is because 
in the multi-task DDPG algorithm, one episode learns either the 
cooling task or the heating task. On average each task accounts for 50 
episodes. The average reward in the y axis is normalized so it is a 
unitless value. The shaded regions in the figures are one standard 
deviation over 5 runs. As observed in the figures, the multi-task 
DDPG can achieve a higher average reward with shorter training 
episodes than the single task learning method. This is because by 
jointly learning different tasks, a more generalized and robust feature 

representation that is common to each task can be captured by the 
hidden layers of the neural network, which in turn will lead to more 
adaptive action strategies than learning each task separately.  

2) Comparison with benchmark cases: A rule-based control strategy is 
applied as the benchmark case to verify the effectiveness of the 
multi-task deep RL-based HVAC control strategy. The rule-based 
control strategy follows the simple logic that in the heating sce
nario, the setpoint is set at the highest value at the off-peak price 
hours, and the lowest value at the peak price hours, to realize the pre- 
heating effect to reduce energy cost, and vice versa for the cooling 
scenario. Fig. 4 shows the test results from both the rule-based 
control strategy and from the DDPG RL agent based on a 10-test- 
day simulation run, and the total energy consumption cost and 
temperature violation are summarized in Table I. The numbers in the 
brackets in the column of DDPG algorithm are the percentage of cost 
savings compared with the rule-based control strategy. As shown in 
the table, the RL-based setpoint control strategy has a lower energy 
consumption cost than the rule-based control strategy. The reason is 
that during the long off-peak price hours, the rule-based control 
strategy keeps the setpoints at the lowest/highest value, which 
leaves the HVAC system in “on” status for an unnecessarily long time 
and brings excessive energy consumption. By comparison, the RL 
agent coordinates its control strategy with both the price signal and 
the temperature factor and therefore obtains a more economic con
trol strategy. For example, in the upper figure of Fig. 4(b), between 
the first price peak and the second price peak, there is a long period 
of price valley. Instead of always setting the setpoint at the lowest 
value as in the rule-based case, the RL agent adjusts its setpoint 
continuously based on the indoor and outdoor temperature, which 
results in a shorter “on” time for the HVAC system and consequently 
a lower energy consumption cost. 

To verify the generalization of the well-trained multi-task DDPG al
gorithm, it is further tested with the PJM market price with no addi
tional training. The PJM market price is far different from the above 
peak/off-peak price and is highly time-variant. For example, the high
est PJM market price during the 10 test days in the cooling scenario is 
0.31$/kWh, and the lowest price is 0.040$/kWh. The comparison of the 
DDPG RL agent with the rule-based case is shown in Fig. 5, and the 
optimization results are also shown in Table I. For the PJM market price, 
because it contains more than two price values, the average price is used 
as a threshold to identify the peak/off-peak price. From the figure, it can 
be observed that the RL agent is still able to follow the price signal to set 
the HVAC control action even with the dramatic change in the price 
pattern. For example, in the upper figure of Fig. 5(b), which is the 
cooling scenario, there is an obvious price peak within the time interval 
4000–6000 min, and the RL agent sets the setpoint to the highest value 
accordingly to save energy consumption cost. In contrast, as shown in 
Fig. 5(a), in the rule-based case, the control agent sets the setpoint 
merely depending on whether the current price is lower or higher than 

Fig. 2. Average reward per episode based on multi-task DDPG.  

Fig. 3. Average reward per episode based on single-task DDPG.  
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the average price and without considering the other state information, 
which results in a higher energy consumption cost. The generalization 
and robustness of the applied multi-task DDPG algorithm is thus proven. 
Note that in Table I, the temperature violation time of the RL agent is 
occasionally longer than that of the rule-based case. However, the 
average temperature violation magnitude is around 0.6◦, which is 
acceptable considering the resulting cost savings. 

4. Conclusions 

In this short communication, a multi-task DDPG method is applied to 
learn the setpoint control strategies of multi-zone residential HVAC 
systems in both cooling and heating scenarios. The multi-task learning 
process can lead to a more generalized feature extraction among 
different tasks that share some similarities and improves learning effi
ciency compared to single-task learning. Comparisons with rule-based 
control strategies demonstrate the economy and adaptability of the 
RL-based HVAC control strategy, which uncovers the potential of the 
multi-task RL algorithm in efficient parallel learning of diverse tasks. 
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Fig. 4. Comparison of control strategies under peak/off-peak price.  

Table I 
Comparison of HVAC control results.  

Controlmethod Peak/Off-peak price PJM market price 
DDPG Rule-based DDPG Rule-based 
Cooling Heating Cooling Heating Cooling Heating Cooling Heating 

Total cost ($) 8.85 
(¡8.9%) 

38.70 (¡10.3%) 9.71 43.15 8.69 
(¡8.2%) 

45.16 
(¡6.1%) 

9.47 48.11 

cpenalty(minutes) 4 232 0 95 0 41 0 2  

Fig. 5. Comparison of control strategies under PJM market price.  
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