Electric Power Systems Research 192 (2021) 106959

ELSEVIER

Contents lists available at ScienceDirect
Electric Power Systems Research

journal homepage: www.elsevier.com/locate/epsr

ELECTRIC
POWER

\ SYSTEMS
RESEARCH

Check for

Multi-task deep reinforcement learning for intelligent multi-zone e

residential HVAC control

Yan Du“, Fangxing Li® Y Jeffrey Munk b Kuldeep Kurte b Olivera Kotevska ", Kadir Amasyali b

Helia Zandi”

2 Dept. of Electrical Engineering & Computer Science, The University of Tennessee, Knoxville, TN 37996, USA

b Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA

ARTICLE INFO ABSTRACT

Keywords:

Data-driven

Deep deterministic policy gradient (DDPG)
Multi-zone HVAC

Multi-task deep reinforcement learning

In this short communication, a data-driven deep reinforcement learning (deep RL) method is applied to minimize
HVAC users’ energy consumption costs while maintaining users’ comfort. The applied deep RL method’s effi-
ciency is enhanced by conducting multi-task learning that can achieve an economic control strategy for a multi-
zone residential HVAC system in both cooling and heating scenarios. The applied multi-task deep RL method is
compared with a rule-based benchmark case and a single-task deep deterministic policy gradient algorithm to

verify its effective and generalized application in optimizing HVAC operation.

1. Introduction

The latest development in machine learning such as deep learning
and reinforcement learning techniques are being widely discussed in
many critical areas that were once dominated by human intelligence,
such as robotic control and autonomous driving [1], as well as in the
field of power and energy [2]. In particular, the deep reinforcement
learning (deep RL) method has been implemented for controlling heat-
ing, ventilation, and air conditioning (HVAC) systems to achieve both an
economic benefit and improved customer comfort. In [3], a model-free
deep Q network (DQN) is applied for joint data center and HVAC load
control in mixed-use buildings to reduce energy consumption. In [4], the
authors compare the value-based DQN method with the policy-based
deep policy gradient (DPG) method in residential energy management,
and demonstrate that the latter is more suitable to perform online
scheduling of energy sources. Given that many control variables in
HVAC thermal control are continuous, the deep deterministic policy
gradient (DDPG) method is implemented in [5,6], to avoid the dis-
cretization of the control variables and to obtain better learning per-
formance. In [7], the authors utilize imitation learning to pre-train the

HVAC control agent on historical data to make it behave similarly to the
existing controller. Following this, the RL agent continues to improve its
policy during the online training using a policy gradient method prox-
imal policy optimization (PPO). In [8], the authors further extend the
deep RL algorithm to optimize multi-zone HVAC system control, where a
set of actor network and critic network is designed for each thermal
zone, and feature extraction from selected neighbor zones is collected to
better capture the mutual thermal effects between different zones for
improving the control policy.

While the effectiveness of the deep RL based HVAC control methods
has been illustrated in the above existing researches, one deficiency is
that the majority of the researches focus on learning a single HVAC
control task by merely training the algorithm in either the cooling sce-
nario or the heating scenario. Retraining of the algorithm is required
when the scenario switches. It is widely known in the RL community that
the training of the algorithm can be time-consuming and resource-
consuming. Solving only one task at one time is less efficient and
acceptable as more complex control problems emerge. Motivated by the
above concern, in this short communication, we work on teaching the RL
agent to master both the cooling and heating tasks simultaneously to

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-000R22725 with the US Department of Energy. The United States Government
retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable,
worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of
Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe

-public-access-plan).
* Corresponding author.
E-mail address: fli6@utk.edu (F. Li).

https://doi.org/10.1016/j.epsr.2020.106959

Received 24 July 2020; Received in revised form 14 October 2020; Accepted 6 November 2020

Available online 19 November 2020
0378-7796/© 2020 Elsevier B.V. All rights reserved.


http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
mailto:fli6@utk.edu
www.sciencedirect.com/science/journal/03787796
https://www.elsevier.com/locate/epsr
https://doi.org/10.1016/j.epsr.2020.106959
https://doi.org/10.1016/j.epsr.2020.106959
https://doi.org/10.1016/j.epsr.2020.106959
http://crossmark.crossref.org/dialog/?doi=10.1016/j.epsr.2020.106959&domain=pdf

Y. Du et al

guarantee an optimal HVAC control regardless of the scenario. A multi-
task DDPG algorithm is developed for this purpose and is further tested
in a multi-zone residential HVAC system. Comparisons with a rule-based
HVAC control strategy and a single-task DDPG algorithm demonstrate
that the multi-task DDPG algorithm has higher generalization and en-
ables lower energy consumption cost and less user comfort violation
through intelligent scheduling.

2. Multi-task DDPG for multi-zone residential HVAC control

The changing of indoor temperature under the control of residential
HVAC system can be formulated as a Markov Decision Process (MDP)
[9], and the key parameters are defined as follows:

1) State: the outdoor temperature T, (t), the indoor temperature T 5(t)
for each zone z, and the retail price Areqi(t), where t is the index of
time step; 2) Action: the setpoint Setpt,(t) for each zone z; 3) Reward:
the total energy consumption cost plus the temperature violation
penalty, as shown below:

() == dwar () Emvac(t) = Y Cpena (1) )

{=1-Ar {=1-Ar

In Eq. (1), Atis the control interval; the first term is the energy cost of
the HVAC system, where Arqi(t’) is the retail price, and Egayc(t’) is the
power consumption; the second term is the penalty for temperature
violation, which is calculated as follows:
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In Eq. (2), Tiower and Typper are the lower and upper bound of user
comfort level, respectively; Ty, is a threshold with a small value, which
corresponds with the deadband setting of the HVAC system.

The state transition probability is not defined in the above MDP
because the thermal dynamic process of the HVAC system is affected by
various uncertain factors such as resistance/capacitor values of the
building mass and the weather conditions. This hidden information fails
the model-based analytical methods. We consider leveraging the DDPG
to overcome the above model unobservability. The DDPG algorithm is
well-known for handling complex control problems with continuous
state space or action space [10]. In the HVAC control problem, both the
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temperature and the setpoint are continuous variables, which makes the
DDPG a natural fit for the problem. The architecture of the applied
multi-task DDPG is shown in Fig. 1, and the algorithm details are shown
in Algorithm 1:

Fig. 1 is explained as follows: the algorithm first receives the state
information for the external environment, such as the temperature and
the retail price value. Apart from the state information, the algorithm
also receives a task ID from the external environment, which is a 0-1
binary variable indicating whether it is cooling scenario or heating
scenario. The task ID is an important indicator of the task that the actor
is currently solving. The next step is to normalize the state parameters.
Normalization is an essential step because the state parameters from the
two tasks can be widely different. For example, the outdoor temperature
in the cooling scenario is much higher than that in the heating scenario.
Unnormalized data can result in algorithm divergence. The normalized
state parameters are then concatenated with the task ID and sent to the
deep neural networks. There are two types of the neural networks in the
DDPG algorithm, the actor network and the critic network. The actor
network is used to generate HVAC control action, and the critic network
is used to calculate the Q value as an evaluation of the selected action.
Also, for both actor network and the critic network, there is a behavior
network and a target network. The behavior network produces the
control action, and the target network produces a target value for the
behavior network to learn, which resembles the labeled data in the su-
pervised learning. The target network helps stabilize the training pro-
cess. In total, there are four neural networks in the DDPG algorithm. The
structure of each neural network is also revealed in Fig. 1. As can be

Algorithm 1
Multi-task DDPG method for multi-zone HVAC control.

1: Initialization: neural network parameters 62 ¢, 62 and 6"

3 for episode = 1 to arbitrary number do

4 Randomly select an HVAC control task (cooling or heating)

5 Initialize the building environment based on the selected task

6: fort = 1 to Ny do

7 Select the control action Setpt,(t) based on state s(t) and the task ID ©
8 Execute Setpt,(t), get the reward r(t) and the next state s(t+At)

9 Store the transition (s(t), Setpt,(t), r(t), s(t + At), 7) in the replay buffer
1

0: Collect a mini-batch of transitions (s(t), Setpt(i) z (1), r(), sO(t + AD),
D) from the replay buffer
12: Update ¢" and 62
13: Soft update ¢* and 62
17: end for
18:  end for

Actor network

Behavior (8") Target (6™)
lizati Soft
state normalization fCe = = update [gc+ . =
ReLU -t | — |RelU|— -
?, - — — @ — RelU Tanh RelU Tanh
HVAC / 5x20 20x10 10x2 5x20 20x10 10x2
Environ- D action(6") l I Update l action(6%)
ment on
Task ID
Soft
FC+ update |Fc+
FC+ FC+
reward vy RelU| = Rely] = Relu|™ e~
—
Update
6x20 20x10 10x1 689 gx20 20x10 10x1
Behavior (69) Target (69)

Critic network

Fig. 1. Multi-task DDPG for multi-zone HVAC control.
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observed, each neural network has two hidden layers and one output
layer. The numbers below each hidden layer indicate the number of
neurons in that layer. For all hidden layers, ReLU is used as the activa-
tion function due to its quasi-linear feature. For the output layer, the two
actor networks utilize Tanh as the activation function to confine the
control action within a certain range; the two critic networks do not
have an activation function for the output layer, since it is difficult to
estimate the range of the Q value.

The above DDPG algorithm is trained in a mingled environment,
where the algorithm needs to intelligently identify whether heating or
cooling action is needed based on the state information and the task ID.
Nevertheless, the two tasks share some similar properties such as the
same reward function and the same state definition. It is believed that
the joint learning of multiple tasks with common structures can boost
feature extraction and action exploitation, and results in better learning
performance. This deduction will be verified by the simulation results in
the next section.

3. Simulation results

The above multi-task DDPG algorithm is tested in a two-zone resi-
dential HVAC building model [11]. The weather data and Georgia
Power price data from [12-13] are used for algorithm training and
testing. The Georgia Power price contains only two price values, a peak
price value at 0.2$/kWh, and an off-peak price at 0.05$/kWh. For the
cooling scenario, the algorithm is trained with data from Jul. 1st, 2019
to Jul. 31st, 2019 and tested with data from Aug. 1st, 2019 to Aug. 10th,
2019, and the user comfort level is set to 21 °C-24 °C; for the heating
scenario, the algorithm is trained with data from Dec. 1st, 2019 to Dec.
31st, 2019, and tested with data from Jan. 1st, 2020 to Jan. 10th, 2020,
and the user comfort level is set to 19 °C-22 °C. The structures of the
designed neural networks have been shown in Fig. 1. Note that the ac-
tion from the actor network is a normalized variable between —1 and 1
as a result of the Tanh activation function. The actual setpoint is
calculated as Tiower+(Tupper—Tlower) X (action+1)/2.

1) Learning efficiency of multi-task DDPG: Fig. 2 and Fig. 3 compare the
learning efficiency of the multi-task DDPG and single-task DDPG. In
the single-task DDPG case, a training process is conducted for the
cooling scenario and heating scenario separately. Both algorithms
are trained for 100 episodes, with each episode lasting for one day.
Note that the x axis in Fig. 2 only shows 50 episodes. This is because
in the multi-task DDPG algorithm, one episode learns either the
cooling task or the heating task. On average each task accounts for 50
episodes. The average reward in the y axis is normalized so it is a
unitless value. The shaded regions in the figures are one standard
deviation over 5 runs. As observed in the figures, the multi-task
DDPG can achieve a higher average reward with shorter training
episodes than the single task learning method. This is because by
jointly learning different tasks, a more generalized and robust feature
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Fig. 2. Average reward per episode based on multi-task DDPG.
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Fig. 3. Average reward per episode based on single-task DDPG.

representation that is common to each task can be captured by the
hidden layers of the neural network, which in turn will lead to more
adaptive action strategies than learning each task separately.

2) Comparison with benchmark cases: A rule-based control strategy is
applied as the benchmark case to verify the effectiveness of the
multi-task deep RL-based HVAC control strategy. The rule-based
control strategy follows the simple logic that in the heating sce-
nario, the setpoint is set at the highest value at the off-peak price
hours, and the lowest value at the peak price hours, to realize the pre-
heating effect to reduce energy cost, and vice versa for the cooling
scenario. Fig. 4 shows the test results from both the rule-based
control strategy and from the DDPG RL agent based on a 10-test-
day simulation run, and the total energy consumption cost and
temperature violation are summarized in Table . The numbers in the
brackets in the column of DDPG algorithm are the percentage of cost
savings compared with the rule-based control strategy. As shown in
the table, the RL-based setpoint control strategy has a lower energy
consumption cost than the rule-based control strategy. The reason is
that during the long off-peak price hours, the rule-based control
strategy keeps the setpoints at the lowest/highest value, which
leaves the HVAC system in “on” status for an unnecessarily long time
and brings excessive energy consumption. By comparison, the RL
agent coordinates its control strategy with both the price signal and
the temperature factor and therefore obtains a more economic con-
trol strategy. For example, in the upper figure of Fig. 4(b), between
the first price peak and the second price peak, there is a long period
of price valley. Instead of always setting the setpoint at the lowest
value as in the rule-based case, the RL agent adjusts its setpoint
continuously based on the indoor and outdoor temperature, which
results in a shorter “on” time for the HVAC system and consequently
a lower energy consumption cost.

To verify the generalization of the well-trained multi-task DDPG al-
gorithm, it is further tested with the PJM market price with no addi-
tional training. The PJM market price is far different from the above
peak/off-peak price and is highly time-variant. For example, the high-
est PJM market price during the 10 test days in the cooling scenario is
0.31$/kWh, and the lowest price is 0.040$/kWh. The comparison of the
DDPG RL agent with the rule-based case is shown in Fig. 5, and the
optimization results are also shown in Table I. For the PJM market price,
because it contains more than two price values, the average price is used
as a threshold to identify the peak/off-peak price. From the figure, it can
be observed that the RL agent is still able to follow the price signal to set
the HVAC control action even with the dramatic change in the price
pattern. For example, in the upper figure of Fig. 5(b), which is the
cooling scenario, there is an obvious price peak within the time interval
4000-6000 min, and the RL agent sets the setpoint to the highest value
accordingly to save energy consumption cost. In contrast, as shown in
Fig. 5(a), in the rule-based case, the control agent sets the setpoint
merely depending on whether the current price is lower or higher than
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Fig. 4. Comparison of control strategies under peak/off-peak price.

Table I
Comparison of HVAC control results.

Controlmethod Peak/Off-peak price PJM market price
DDPG Rule-based DDPG Rule-based
Cooling Heating Cooling Heating Cooling Heating Cooling Heating
Total cost ($) 8.85 38.70 (—10.3%) 9.71 43.15 8.69 45.16 9.47 48.11
(—8.9%) (—8.2%) (—6.1%)
Cpenalry(minutes) 4 232 0 95 0 41 0 2
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Fig. 5. Comparison of control

the average price and without considering the other state information,
which results in a higher energy consumption cost. The generalization
and robustness of the applied multi-task DDPG algorithm is thus proven.
Note that in Table I, the temperature violation time of the RL agent is
occasionally longer than that of the rule-based case. However, the
average temperature violation magnitude is around 0.6°, which is
acceptable considering the resulting cost savings.

4. Conclusions

In this short communication, a multi-task DDPG method is applied to
learn the setpoint control strategies of multi-zone residential HVAC
systems in both cooling and heating scenarios. The multi-task learning
process can lead to a more generalized feature extraction among
different tasks that share some similarities and improves learning effi-
ciency compared to single-task learning. Comparisons with rule-based
control strategies demonstrate the economy and adaptability of the
RL-based HVAC control strategy, which uncovers the potential of the
multi-task RL algorithm in efficient parallel learning of diverse tasks.
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