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Piecewise Systems

Ugo Rosolia~ and Aaron D. Ames ™, Fellow, IEEE

Absiract—In this letter, we present an iterative Model
Predictive Control (MPC) design for piecewise nonlinear
systems. We consider finite time control tasks where the
goal of the controller is to steer the system from a starting
configuration to a goal state while minimizing a cost func-
tion. First, we present an algorithm that leverages a feasible
trajectory that completes the task to construct a control
policy which guarantees that state and input constraints
are recursively satisfied and that the closed-loop system
reaches the goal state in finite time. Utilizing this construc-
tion, we present a policy iteration scheme that iteratively
generates safe trajectories which have non-decreasing
performance. Finally, we test the proposed strategy on a
discretized Spring Loaded Inverted Pendulum (SLIP) model
with massless legs. We show that our methodology is
robust to changes in initial conditions and disturbances
acting on the system. Furthermore, we demonstrate the
effectiveness of our policy iteration algorithm in a minimum
time control task.

Index Terms—Ilterative learning control,
control for nonlinear systems, hybrid systems.

predictive

|. INTRODUCTION

OBOTS performing complex tasks can be described as
hybrid systems, which are characterized by continuous
dynamics and discrete events. Therefore, controllers designed
for such systems can take control actions based on continuous
and discrete decision variables. Yet the presence of discrete
variables make planning and control problems challenging, as
it is required to reason about all possible combinations of dis-
crete events. This challenge can be mitigated by designing
hierarchical strategies, where a high-level planner computes
the discrete variables and a low-level controller optimizes the
system trajectory described by continuous variables [1]-[4].
A popular methodology to synthesize policies, which can
jointly plan over discrete and continuous states is Model
Predictive Control (MPC) [5]-[8]. MPC is a control strat-
egy which systematically uses forecast to compute control
actions. At each time step, an MPC plans a trajectory over
a short time window, then the first control action is applied
to the system and the process is repeated at the next time
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step based on new measurements. When the system dynam-
ics are hybrid, the MPC planning problem is a Mixed Integer
Program (MIP) that is hard to solve online with limited compu-
tational resources. For this reason, significant work has focused
on explicit MPC strategies where the solution to the MIP is
solved offline as a parametric optimization problem [7]-[9].
For hybrid systems described by piecewise affine dynamics the
parametric optimization problem can be solved exactly. Once
the solution is computed offline, the MPC policy is given by a
look-up table of feedback gains that can be efficiently imple-
mented online in real-time [10], [11]. However, computing the
explicit solution to hybrid MPC problems is computationally
demanding.

Another strategy to speed-up the computation of the MPC
policy is to leverage warm-starting strategies, where the
optimization algorithm is initialized using a candidate solu-
tion. Several strategies have been proposed for warm-starting
hybrid MPC problems [12]-[15]. These approaches leverage
the trajectory computed at the previous time step to warm-start
both the continuous and discrete variables. As the complexity
of solving MIPs is given by the computation of the optimal
integer variables, recent works have investigated the possibility
of leveraging learning algorithms to predict the set of active
discrete variables used to warm-start the MPC [16], [17].

In this letter, we focus on control tasks where the goal is
to steer the system from a starting configuration to a goal
state in finite time, while satisfying state and input constraints.
We assume that a feasible trajectory that is able to perform
the task is available. Then, we synthesize a control policy,
which plans the system trajectory over a finite horizon that
is shorter than the control task duration and may cause the
controller to take unsafe shortsighted control actions. Thus,
building upon [18], [19], we present a methodology to con-
struct the MPC terminal components in order to guarantee
satisfaction of the safety constraints and convergence in finite
time of the closed-loop system to the goal set.

Compared to previous works [18], [19], we show how
to handle piecewise systems by warm-starting the integer
variables and we present a shrinking horizon strategy tai-
lored to finite time control tasks. We present an algorithm
which solves at most M smooth optimization problems and
is guaranteed to find a feasible solution to the original
MIP planning problem. Our approach is based on a sub-
optimal trajectory that can complete the task and affects
the closed-loop performance of the controller. Therefore,
we present a policy iteration algorithm, where simulations
are used to iteratively update the controller. We prove that
our algorithm returns safe policies that have non-decreasing
performance. Finally, we demonstrate the effectiveness of our
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approach on the discretized Spring Loaded Inverted Pendulum
(SLIP) [20].

Il. PROBLEM FORMULATION

In this section, we describe the system model and the con-
trol synthesis objectives. We consider discrete time piecewise
nonlinear systems defined over R disjoint regions D; < R" for
ie{l,...,R}):

X1 =filx, ug), if x, € D;, (1)

where the state x; € R” and the input u; € R4. In the above
equation f; : R" x R? — R” represents the system dynamics,
which describe the evolution of the discrete time system when
the state x; belongs to the region D; € R”". Furthermore, the
system is subject to the following state and input constraints:

il Bl Be A ST, MEE DT B (D

where T € {0, 1, ...} is the duration of the control task. Notice
that several robotic systems can be described by piecewise
constrained nonlinear models defined over disjoint regions,
such as the SLIP model presented in Section V-A.

Objective: Our goal is to design a control policy 7 : R" —
R4 which maps states to actions, i.e.,

Uy = m(x). 3)

The above control policy should guarantee that the state and
input constraints from (2) are satisfied and that the closed-loop
system (1) and (3) converges in finite time to a goal set G C X'.
More formally, the control policy (3) should guarantee that
for an initial condition x; in a neighborhood of a starting state
xs € &, the trajectory of the closed-loop system (1) and (3)
is a feasible solution to the following Finite Time Optimal
Control Problem (FTOCP):
min
H) .o HT—]

T—-1
Z 1(xz, uy)
i0,..iT—1 =0

st X1 = fi, (5, ),
xeDiNAX, uscld, irefl,...,R},
Xo=x5,xr €G,
NEE0; o T 1) €))

where the stage cost [ : R” x RY — R. Notice that in the
above problem the system dynamics are a function of the
integer variables i; € {1,...,R}. Therefore, for a feasible
set of continuous inputs [up, ..., ur_1] and integer variables
[ip, ...,ir—1], we have that the resulting vector of states
[xo, ..., xr] must satisfy , e D;, N X, Vi {0,...,T —1}.
Throughout this letter we make the following assumptions.

Assumption 1: We are given the state-input trajectories
which are feasible for the FTOCP (4) with x; = xs:

x0 = [xo,...,x?r] and u® = [ug,...,u?r_]],

where for all t € {0,..., T — 1} the state xf' € A, the input
u) €U and x> € G.

Assumption 2: For any x € G, the stage cost [(x, u) = 0, for
all u € U. Moreover, the set G is control invariant, i.e., for all
x € G, there exists a control ¥ € U and index i € {1,...,R}
such that fi(x, u) € G and x € D;.

Remark 1: The proposed methodology requires only fea-
sibility of a trajectory x". However, the optimality of the

trajectory x° affects the performance of the proposed control
synthesis strategy. For this reason, in Section III-C we present
a policy iteration scheme that may be used to iteratively
improve the closed-loop performance of the policy.

Ill. CONTROL DESIGN

In this section, we first introduce an FTOCP which can
be recast as a non-linear program (NLP). Afterwards, we
present the proposed strategy which leverages this NLP and
the feasible trajectory from Assumption 1. Finally, we present
a policy iteration scheme which can be used to improve the
performance of the control policy.

A. Model Predictive Control

The FTOCP (4) is challenging to solve as at each time
t the system dynamics change as a function of the state x;,
ie., x 1 = fi(x;, uy) if x; € D;. However, the computational
complexity may be reduced when searching for a feasible
sub-optimal solution.! In particular, a feasible solution to the
FTOCP (4) may be computed fixing a priori a sequence of
regions {Djy, ..., Di_,}, where the system should be con-
strained at each time f. Clearly, a trajectory which steers the
system from the starting state x; to the goal set G, while vis-
iting the sequence of regions {D;,,...,D;_,} is a feasible
trajectory for the original FTOCP (4).

In order to reduce the computational complexity, we intro-
duce an FTOCP defined over a horizon N shorter than T and
for a set of indices Z; = {if,...,irsn—1} associated with a
sequence of N regions {D;,, ..., D;_ . ,}. In particular, given
a set of indices 7;, the terminal state xg and an associated
terminal cost gr € R we define the FTOCP:

t+N-1
Ity X, g, Ty N) = min > Lxkyr, ki) + G
T
k=t
s.t. Ik+]|; :ﬁk (xﬂh uklf)':
xke € Dy NX, e € U,

Xt|t = Xt, Xty N|t = XF,
Vkelt,....,t +N—1}, (5)

where u; = [ugs, ..., uyn—1¢]] The optimal state-input
sequences to the above FTOCP

(6)

steer the system from the starting state x; to the terminal state
xr while satisfying state and input constraints.

In the FTOCP (5), at each predicted time k the system state
Xy € Dy N X, and therefore problem (5) can be recast as
an NLP, which is easier to solve than problem (4) where the
optimization is carried out over continuous and integer vari-
ables. Next, we present the proposed algorithm which chooses
the set Z; = {i¢, ..., irtn—1} associated with the sequence of
regions {D;,, ..., Di,y_,}, the terminal state xr, and terminal
cost g that are used in the FTOCP (5).

* * * *
[x,|,, Ve ,x,+N|,] and [“rlr*---1”r+N—1|r]7

B. Policy Synthesis

This section describes the %roposed strategy. For each state
x? of the feasible trajectory x~ from Assumption 1, we define

INotice that the computational cost may be reduced also using heuristics
as discussed in [17], [18].
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Algorithm 1 Control Policy &

Algorithm 2 Tterative Policy Update

1: Init Parameters: q°, x°, i>, M, ko =N, No=N, T

2: Input: x;

3: iy = getRegion(x;)

4: for m=1[0,...,M — 1] do > Solve M FTOCPs
5: set tp = mm(k, +m,T)

6: set xp = fﬁ-

7: set gr = qy,.

8: set 7, = {is, ?F_N‘Jrl, o I'?F_]}

9: solve the FTOCP J(x:, xF, gF, Zt, Ny) from (5)

10: store ¢,, = J(x,, Xp, qF, L, Ny)

11: store u,, = “:|r

12: store Xp ,, = xf+Nf|

13: if m > 0 and ¢,_1 < ¢, then

14: CF Zitme-i > Pick best cost
15: mf=m—1 > Pick best cost index
16: break

17: end if

18: end for

19: if Xp jpr = %) then > Horizon and Parameter Update
20: store Nyy1 = max(1, Ny — 1)
21: store kjy =T
22: else

23: store Nyy1 = Ny

24: store kiy1 =k +mf + 1

25: end if

26: Up = Uy

27: Outputs cf, u,

the vector
0 0 -0
i = [i, ..., 7],

where ¥ € {1,.
system’s state at tlme i

state x? we introduce the cost-to-go q? given by the recursion:

, R} identifies the region containing the
iy E Dyp. Moreover, for each

g = 15, u) + 4,1 (7)

for ¢% = 0 and the stage cost [ : R" x R? — R from (4).

Finally, we define the cost vector

qﬂz [qg7'7q(]')']

The cost vector q°, the feasible trajectory x? and the vector
of indices i’ , together with the parameters M € {0,1,2,...}
and N € {0, l ..}, are used to initialize the proposed control
policy, which is described by Algorithm 1. At each time ¢,
Algorithm 1 takes as input the state of the system x; and it
returns the best cost and the control action u,, which is applied
to system (1). First, given the state x; we identify the region’s
index i such that x; € D;, (line 1). Afterwards, we solve M
times the FTOCP (5) with a different terminal state xp = x?F,
terminal cost gr = qu and set of indices Z; (lines 4-18). Note
that the set of indices 7, (line 8) is computed appending to the
current region’s index i; a sequence of N; — 1 indices selected
backward from time fr, which is chosen independently of N;
for t > 0. As a result, at each time f the controller solves the
FTOCP (4) using a sequence of indices which is dlfferent from
the one associated with the first feasible trajectory As we will

2For example, at time t = 0, form = 2, ky = N =4 and T = 100, we
have that tp = kg + m = 6; therefore Tp = {Eg,ig,ig,ig} and xp =x2,

. Init Parameters: q°, x°, i, M, N, x5, T

2: Input: j

3: define 7! via Algorithm 1 initialized with q x0, i,
M, kp=N,No=N,T

4: forief{l,...,j} do & Policy iteration loop

52 simulate the closed-loop system (8) from x; = xs

6: set x{ = [xt, ..., T]

T: compute the region indices 1‘ from o

8: compute q' from (7) with g =

o: define 7**! via Algorithm 1 1n1tlallzed with ¢, x/, i,

M, ky=N,No=N
10: end for

11: Outputs (7%, x°, ¢°), - - , @/*!, ¥+, ¢H1)

discuss in Section IV at time f and for m = 0, the FTOCP (5)
is feasible when the terminal components are defined as in
lines 5-7. Therefore if for m > 0 we have that ¢,,_1 < ¢, We
stop solving the set of M NLPs and we save the best cost and
the associated index m}. Then, we update the parameter k; that
is used to define the terminal MPC components and we shrink
the prediction horizon, if the terminal predicted state X
equals the terminal state x?r Finally, we return the optimal
control action uy = it.

C. Policy Iteration

The control policy from Algorithm 1 leverages the feasible
trajectory x° to compute the terminal components used in the
MPC problem (5) and, as a result, the performance of the
proposed methodology is affected by the optimality of x’. In
this section, we discuss a policy iteration strategy to improve
the performance of the policy from Algorithm 1.

At iteration j > 1, we define the control policy 7/:R"” — R4
which is glven by Algorithm 1 1mt1allzed using the feasible
trajectory ¥~!, the vector of indices ¥, and the cost vector
q’ !, For an 1111t1al condition x(’) = Xs, the policy ! may be
used to simulate the trajectory of the closed-loop system:

=[x, @), ifxeD;, ®
which is then used to update the policy 7/+1 at the next

iteration j 4 1, as shown in Algorithm 2.

t+l i

IV. PROPERTIES
A. Recursive Feasibility and Finite-Time Convergence

We show that at each time ¢ Algorithm 1 in closed-loop
with system (1) guarantees constraint satisfaction and that the
closed-loop system converges in finite time? to the set G.

Theorem 1: Consider the closed-loop system (1) and (3),
where the policy m is given by Algorithm 1. Let
Assumptions 1-2 hold. If at time f = 0 the initial condition
Xp = Xg, then the closed-loop system (1) and (3) satisfies state
and input constraints from (2) and it reaches the terminal set G
attime T,ie.,x; € X,u; cU, ¥t €{0,...,T—1} and x7 € G.

Proof: We show that the time-varying terminal set from
Algorithm 1 is a control invariant, thus feasibility follows

3Note that finite-time convergence was shown also for the strategy presented
in [21]. However, compared to our approach a stronger assumption on the cost
function is required to guarantee finite-time convergence.
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from standard MPC arguments [8], [22]. Assume that at time
t Algorithm 1 returns a feasible control action #; and let
[x}‘],, . -,If+N,|: = xr] and [”?]v sy “:+N,—l|r]’ )
be the optimal solution associated with the m}th FTOCP (5)
solved at time f. Next, we consider three cases to show that
the time-varying components defining the FTOCPs solved at
line 9 of Algorithm 1 guarantee that Algorithm 1 returns a
feasible control action u;;1 at the next time step ¢ + 1:

Case 1: If i’F,m,* = x?r and the horizon N; = 1, then k;y | =
T,Nygy=1and x; = xgl, therefore by the invariance of G
for m = 0 the FTOCP J(x11, XF, gF, Zt+1, Nip1) with xp =
Xyy = xg is feasible.

Case 2: If Xp,y = xJ and the horizon N; > 1, then
kep1 =T and for m = 0 the following state-input sequences
[t HETIREE r+N It] and [“H—llf’ -"1”;'(+N;—1|r] are feasible for
the FI‘OCP J(xey1, XF, GF, Tey1, Nep1) with xp = X, = 25
as x*+N = xD and Nyyp = N; — 1.

Case 3: If Xpmr # 20, then ki = ke + mf + 1 and

for m = 0 the state- -input sequences L f+1|-'""’xf+N,|r =
x2+m?,x0+m 4+1] and ["r+l|r’-"’ N1 ”k+m] are fea-

sible for the FTOCP J(xty1, XF, gF, Ze+1, Nit1) ‘with xF =
Xkesr = Xhytmf+1-

From Cases 1-3, we have that if at time ¢ Algorithm 1
returns a feasible action u;, then at time ¢ + 1 Algorithm 1
returns a feasible control action u;, 1. Now, we notice that at
time = 0 the sequence of actions [u, ..., u%_,] is feasible
for the FTOCP J(xo, xF, gr, Zo, No) with xp = xg,o, which in
turns implies that Algorithm 1 returns a feasible action u; at
all times and that state and input constraints are satisfied.

Finally, we show finite-time convergence. From
Algorithm 1, we have that k; increases at each time
step until K, = T after at most T — N time steps and,
afterwards, that the horizon shrinks. Therefore, at time T — 1
we have that Ny_y = 1, tr = kr_1 = T and xgp = x?r, thus
the predicted state at time T — 1 of the optimal trajectory
from (9) satisfies x}lr 1 = x?r, which in turns implies that
Xr =Xpyr_ = =x0 eG. [ ]

Corollary 1: C0n51der the closed-loop system (1) and (3),
where the policy m is given by Algorithm 1. Let
Assumptions 1-2 hold. If at time ¢ Algorithm 1 returns a fea-
sible control action u; € U, then the closed-loop system (1)
and (3) satisfies constraints (2) and it converges to the goal
set G.

The above corollary highlights the advantage of computing
a policy that maps states to actions and it can be used to
deal with perturbed initial conditions and uncertainties. In the
result section we perform an empirical study where we test the
robustness of the proposed methodology by changing initial
conditions and simulating disturbances acting on the system.

B. lterative Improvement

This section discusses the properties of the iterative
Algorithm 2. In particular, we show that at each policy update
the cumulative cost associated with the closed-loop trajectories
from (8) is non-increasing. Notice that our strategy guarantees
non-increasing cost at each update, but no guarantees are given
about the optimality of the trajectory at convergence.

Theorem 2: For i € {0, ..., j} consider the closed-loop tra-
jectories x' from Algorithm 2. If Assumptions 1-2 hold, then
we have that at each policy update the cost associated with the

closed-loop trajectories is non-increasing, i.e., qf)_] > qf], Vie
{1,...,j}, where g = YTV 1(x, ui).

Proof: From Theorem 1 it follows that at each jth update
the policy 7/ from Algorithm 1 returns a feasible action u}
and the feasible state-input trajectories ¥ and Ww. At time

t, let r:,"r be the optimal cost of the mjth FTOCP and

let [xr|r=--"xr+N,|r] and [“rlr*"””xN, 1|r] be the optimal
solution. Then we write the optimal cost as
4N —1
Z i(ka I‘!:Hr) * q;c;+m
k=t
N1
= f(xm, rlf) + ) ‘E(xkk’ uklf) +q}c+m (10)
k=t+1

Next, we consider three cases to analyze the time evolution of
the optimal cost cf associated with the m}th FTOCP solved
at line 9 of Algorithm 1

Case 1: If Xp px = xr and the horizon N; = 1, then k;y | =
TNy = 1 xepr= I’T and the FTOCP for m = 0 is feasible
(Case 1 of Theorem 1) which together with Assumption 2
imply that c 1 = 0. Thus, we have that

= l(xﬂr ; “rﬁ;) + q,m_‘ = ‘E(xm , l"‘:ﬁ;) + Cr+l , (D

as the terminal eostq’,. _O_c for Xp _x’_

t+1
Case 2: If Xp pr = xr and the horizon N; > 1, then we

have that the last two terms in (10) represent the cost C; 11
*.f

:+1|r’ pat r-l—N:Ir]
and [“r+1|v"-* r+N;—l|r]’ which are feasible at time ¢t + 1
(Case 2 of Theorem 1) and therefore we have that

associated with the state-input sequences [x

= z(x,l, ; u,l;’) e c; i = ;(xrl, : uﬂ;’) + c‘ e (A3

Case 3: If Xp m # g , then by definition (7) we have that
the optimal cost can be written as

tHN—1

- f(xﬂr ’ r|:) = Z ‘E(xkh’ l"‘k|r}' e qfk;+m
k=t+1
HNi—1

- l(xﬂr ’ r|r) % Z ‘E(xkh’ l"‘k|r
k=t+1
j—1 j—1 j—1
+ 1%y W ymz) T ‘ﬁc,+m;*+1-
Notice that the last three terms in the above equa-
tion represent the open- loop cost c, Tl assoc1ated with
the state-input sequenees1 [xt SSTERED xfk; e k; +m. +1|:] and
[”r+l|r""’ H—N: llf’“;c+m‘|r] which are feasible at time 7+ 1
(Case 3 of Theorem 1) and therefore we have that

L IR TR N N |
C —f(xr|w“:|:)+ =

(13)
Finally, we notice that ¢4* = 0 as from Theorem 1 Xy € G
and therefore from equations (11)—(13) we have that
T_l . - . -
=Y U, @)+ =g,
=0

as x:i;’ — xi and u:f = ui for all ¢t € {0, ..., T}. Furthermore,
at time f = 0 and for m = 0 the sequence of open-loop actions

[(xm ) r|r )+ Cr+1

g > 1, w) + ¢ >
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; Clased-loop step Offline trajectory step
0.6 =
0.5 (LE
%il. | St Stas ::‘nlg!I:tSI:gppon Double Support Goal State E”. l
03]
0.2 Single Support 02
on right leg
0l
0.0+ 0.0
e [m] e [m]
Fig. 1. Trajectory of the CoM and foot step locations associated Fig 2. Closed-loop trajectories of the CoM and foot steps for different

with the feasible trajectory x9 used to initialize the control policy from
Algorithm 1.

[, ..., ul_,]is feasible for J(x), e, g To, No) with xp =
xy and the associated cost is q{} , which in turns implies

q" &S m

V. APPLICATION TO SLIP WALKING
A. Spring Loaded Inverted Pendulum Model

This section describes the Spring Loaded Inverted Pendulum
(SLIP) model with massless legs [20]. The system state is
X = [Py, Py, Vi, Vy, zi,zx, zﬁ, z,y] where (py, py) is the position
of the Center of Mass (CoM), (v, vy) the velocity of the CoM,
and (zfc, z,i) the posmon of the kth foot for k < {l,r}. The

input vector u = [§, v, v , Vi1, where § represents the change
of leg stiffness, v, the veloc1ty along the x-axis of the foot
not in contact with the ground, and (v v}) the velocities of
the two feet on the y- a}us Given the state of the system, we
can compute the angle 88 = tg=!((px — Zk),z‘py) Vk e {l.r}

and the length /* (px — 792 +p2,Vk € {1, r}, where

lo = 0.55 is the rest leg length, for more details please refer
to [20]. These quantities are used to define the dynamics:

fx,u) =x

Vx

Vy
(8 + 80)[y' ' sin(6") + y"I" cos(6")]
(8 + 80)[y'I! cos(8") + y "I cos(8")] — mg
(1 —yhr,
(1= }"r)vz
vy

1
L vy -

dt

where the integer variable y equals one if the kth foot is in
contact with the ground In particular, we have that (y P =
(1,1) if x € Dy, (¥, ¥") = (1,0) if x € Dy, and (!, y") =
(0, 1) if x € D,, where the regions are defined as follows:

Dys = (x € R < Imax, I' < Imax, 2, = 0 and 27 = 0},
= (x € R"|I" < Imax, 2, = 0 and Z, > 0},
= {x € R"|I < Imax, 2, > 0 and Z, = 0}.
Finally, we notice that when a sequence of regions is fixed,

the vertical motion of the feet can be computed independently
from the other states.

initial conditions.

B. Simulations

First, we compute a feasible trajectory that steers the system
from standing still at (py, py) = (0, 0.85) to a goal state x8 =
(10, 0.85,0,0,9.9,10.2, 0, 0). In order to compute a feasible
trajectory xo we fixed a sequence of regions {Df}:—o where
the system should be at each time ¢ and we solved the resulting
NLP with IPOPT [23] using CASADI [24]. Furthermore, we
added a slack variable to the terminal constraint, we used

I(x, u) = [[px — PEII3 + 101lpy — PEII3 + Ivell3 + lIvy 113
+ 11815 + 0.11vlI3, (14)
and the input constraints § € {85 < 10}
and v, € {vzllvell =< 10}. Code available

at https://github.com/urosolia/SLIP.

Figure 1 shows the feasible trajectory which steers the
system from the starting configuration to the goal position
while transitioning through phases of double support (black)
and single support with the left (red) and right (blue) legs. The
figure also shows the locations where the feet are in contact
with the ground. This feasible trajectory is used to initialize
the control policy from Algorithm 1. We tested the proposed
strategy with N = 30 on 10 different initial conditions in the
neighborhood of the starting state xs. We set M = 1 to test
the robustness to disturbances and changes in initial condi-
tions of Algorithm 1, when only one FTOCP is solve at each
time f. Figure 2 shows that for all initial conditions the con-
troller is able to steer the system to the goal state. Notice that
in order to stabilize the system the proposed strategy is able
to plan a sequence of foot steps, which are different from the
one associated with the feasible trajectory. Finally, it takes on
average less than 0.05s to run Algorithm 1 with a maximum
computation time of 0.114s across all simulations.

Furthermore, we compared the proposed strategy with a
tracking controller which is defined removing the terminal
constraint from (4) and using a tracking cost instead of (14).
Both our method and the tracking controller are able complete
the task. However, as shown in Figure 3, the tracking controller
fails to reach the goal when a disturbance hits the system. In
Figure 3, it is interesting to notice that the proposed approach
initially deviates more from the offline trajectory compared
to the tracking controller. This deviation allows the controller
to compensate for the disturbance and to stabilize the system
back to a periodic gait.

Finally, we tested Algorithm 2 to iteratively update the con-
trol policy. We set j = 40 and we changed the stage cost to
encode the objective of steering the system from the start-
ing state to the goal state in minimum time. In particular, we
defined the stage cost I(x, u) = 1g(x) + 0.0001/(x, u), where
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Fig. 3. Comparison between an MPC tracking controller and the
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Fig. 4 Closed-loop trajectory computed from Algorithm 2 after 40
updates of the control policy.

the function Ig(x) = 0 if x € xg and Ig(x) = 1 other-
wise. Moreover, we set M = 40 to allow Algorithm 1 to solve
multiple instances of the FTOCP (4). Note that as M gets
larger the controller can better explore the state space, but
as a trade off the computational cost increases. In this exam-
ple it takes on average less than 0.4s and at most 0.9s to run
Algorithm 1. We initialized the pr%posed policy iteration strat-
egy with the feasible trajectory x~ from Figure 1 that steers
the system from the starting point to the goal state in 396 time
steps, and our algorithm returned a policy which completes the
task in 193 time steps. The closed-loop trajectory is shown in
Figure 4. First the controller accelerates and as a result the
CoM oscillates more compared to the first feasible trajectory
from Figure 1. Finally, the controller slows down and reduces
the oscillation to reach the goal position with zero speed and
two feet on the ground.

V1. CONCLUSION

We presented an algorithm to synthesize control policies
for hybrid systems by leveraging a feasible trajectory for the
control task. We showed that the proposed methodology guar-
antees constraints satisfaction and convergence in finite time.
Building upon the proposed synthesis strategy, we presented a
policy iteration algorithm which guarantees that at each policy
update the closed-loop performance is non-decreasing. Finally,
we tested the proposed strategy on a discretize SLIP model.
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