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Abstract: An autonomous adaptive MPC architecture is pre-

sented for control of heating, ventilation and air condition

(HVAC) systems to maintain indoor temperature while re-

ducing energy use. Although equipment use and occupant

changes with time, existing MPC methods are not capable

of automatically relearning models and computing control

decisions reliably for extended periods without intervention

from a human expert. We seek to address this weakness. Two

major features are embedded in the proposed architecture to

enable autonomy: (i) a system identification algorithm from

our prior work that periodically re-learns building dynam-

ics and unmeasured internal heat loads from data without

requiring re-tuning by experts. The estimated model is guar-

anteed to be stable and has desirable physical properties

irrespective of the data; (ii) an MPC planner with a con-

vex approximation of the original nonconvex problem. The

planner uses a descent and convergent method, with the un-

derlying optimization problem being feasible and convex. A

year long simulation with a realistic plant shows that both

of the features of the proposed architecture - periodic model

and disturbance update and convexification of the planning

problem - are essential to get performance improvement over

a commonly used baseline controller. Without these features,

long-term energy savings from MPC can be small while with

them, the savings from MPC become substantial.

1 Introduction

Heating, ventilation, and air conditioning (HVAC) sys-

tems are responsible for approximately 40% of the total en-

ergy consumption of buildings in the USA [1]. It has been

recognized by many researchers that instead of the traditional

rule-based control systems, an optimization based controller

- especially Model Predictive Control (MPC) - is a highly

promising approach to reduce energy use; see, for instance,

the review paper [2].

In spite of extensive studies and even successful demon-

stration projects, e.g., [3, 4, 5], MPC has not been widely
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adopted in practice. The bottlenecks - which have been dis-

cussed extensively as well - can be summarized into lack of

autonomy of existing control architectures that use MPC. By

autonomous MPC we mean an MPC scheme capable of re-

liably computing high-quality control decisions at all times

without the need for human intervention. A building’s and

its equipment’s behavior are quite complex and uncertain, so

the models needed by MPC need to be learned from data.

Since the building’s behavior also changes with time - albeit

slowly - the models need to be updated over time. The over-

all architecture thus needs to be adaptive.

Although there is an extensive literature on identifica-

tion of HVAC system models from data, the vast majority of

the existing methods cannot be used for autonomous adap-

tation. These algorithms fit model parameters by solving

a non-convex optimization problem, e.g., [6, 7, 8, 9]. De-

pending on the type and quality of data used, they require

re-tuning of hyper-parameters by a human expert. Clearly

such an approach cannot lead to an autonomous control sys-

tem. Another issue is that although the unmeasurable in-

ternal heat gains from occupants are substantial, most iden-

tification methods still ignore them which can lead to poor

model quality. Works on model identification in the pres-

ence of large unknown disturbance in a principled manner

are limited [8, 9, 10].

The planning problem that MPC solves at every deci-

sion instant to compute control commands should be feasi-

ble and convex. With a nonconvex problem the planner can

fail to converge to a local minimum within the allowed com-

putation time. Infeasibility has the same effect. In either

case, a rule-based controller must be used as back up when

the non-convex planner cannot provide a control command.

Switching between controllers can cause poor performance.

The MPC planning problem is usually non-convex due to bi-

linearities in models and cost functions [11, 12, 13, 14, 15].

Most works on HVAC MPC ignore the issue of reliability of

the decisions computed by a non-convex planner, especially

over long periods of operation.

In this paper we propose an adaptive MPC architecture

for HVAC systems, shown in Fig. 1, that is capable of op-

erating autonomously for long periods of time without inter-
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where Cpa is the specific heat of air at constant pressure, T ca

(◦C) is the conditioned air temperature, COP is the chiller

performance coefficient, and the mixed air temperature T ma
k

(◦C) is given by:

T ma
k = αT oa

k +(1−α)T z
k , (3)

where α (=
ṁoa

k
ṁk

) is the outdoor air ratio, T oa
k is the outdoor

air temperature (◦C), ṁoa
k is the outdoor airflow rate (kg/s),

and T z
k (◦C) is the indoor zone temperature. The power con-

sumed by reheat coil is modeled as the heat it adds to the

conditioned air:

Prh
k =Cpaṁk(T

sa
k −T ca), (4)

where T sa
k is the supply air temperature (◦C).

Dynamics of zone temperature are modeled by the fol-

lowing second order linear system with one output (indoor

zone temperature T z), and four inputs (heat injected by the

HVAC system qhvac, outdoor temperature T oa(◦C), solar irra-

diance ηsol(kW/m2), transformed disturbance w̄):

xk+1 = Axk +Bqhvac
k +Fvk

T z
k =Cxk +Dqhvac

k +Gvk

(5)

where x ∈R2 is the state and A∈R2×2, B∈R2×1, C ∈R1×2,

D ∈ R, F ∈ R
2×3, G ∈ R

1×3 are appropriate system ma-

trices. The four inputs are separated into the single con-

trollable input qhvac
k and three uncontrollable inputs vk :=

[T oa
k ,ηsol

k , w̄k]
T ∈ R

3, where w̄ is the transformed version of

the internal heat load qint
k (kW); see [10] for details. It cap-

tures the effect of qint
k on the zone temperature T z

k . The quan-

tity qhvac
k is related to the two actuation commands (supply

airflow rate ṁk and the deviation of supply air temperature

T sa
k ) via the bilinear relation:

qhvac
k =Cpaṁk(T

sa
k −T z

k ). (6)

Remark 1. Although qhvac is considered the controllable in-

put in (5), it cannot be commanded directly. Only ṁ and

T sa can be commanded. Treating qhvac as the controllable

input helps in two ways. Firstly, it makes the model (5) lin-

ear, which aids model identification (discussed in Section 4).

Secondly, the linear model is a convex constraint in the op-

timization problem the planner has to solve. We emphasize

that a linear model structure with ṁ and T sa as inputs, even

though conceptually possible, is not useful for eventual use

in MPC. The reason is that the sign of the DC gain (from ṁ

to T z) depends on whether the control commands are hav-

ing a cooling or heating effect on the zone. If the supply air

temperature T sa is higher than the zone temperature T z, in-

creasing ṁ will increase the zone temperature. So the DC

gain is positive in such a scenario. The opposite happens

when T sa is lower than T z. Now the DC gain has to be neg-

ative. However a-priori knowledge of whether the control

inputs will lead to heating or cooling is not available since

that depends on both the state an control command.

3.1 Nominal non-convex planner

The goal of the MPC planner is to compute the control

commands over the planning horizon, supply airflow rate ṁ

and supply air temperature T sa, to maintain thermal com-

fort while reducing energy use over that horizon. A direct

translation of this goal into an optimization problem will be

a non-convex problem, partly due to the bilinearity in (6). We

first present this problem below, and then use it as a stepping

stone to formulate a convex approximation that is actually

used in the proposed MPC planner.

For notational simplicity, the current time index i is as-

sumed to be 0 in this section. Define the decision vari-

ables as zk := [ṁk,T
sa

k ,T ma
k ,T z

k ,q
hvac
k ,xT

k+1,ε
min
k ,εmax

k ]T ∈R
9,

in which x ∈ R
2 is the state of the thermal model (5), and

ṁ and T sa are the control commands, and N is the planning

horizon. Let x̂0 be the estimate of the current state obtained

from a state estimator, and let v̂k (:= [T̂ oa
k , η̂sol

k , ˆ̄wk]
T ) be the

prediction of the uncontrollable inputs, for k = 0, . . . ,N−1.

Specifically, T̂ oa and η̂sol are from weather forecast, and ˆ̄w

is provided by a disturbance predictor which will be discuss

later in Sec. 4.3.

The nominal non-convex planning problem is:

min
zk|

N−1
k=0

J, J :=
N−1

∑
k=0

(

∆t(Prh
k +Pcc

k +Pfan
k )+ρ(εmin

k + εmax
k )

)

(7)

s. t. −qhvac
k +

1

2
zT

k Pczk = 0 (7a)

−xk+1 +Axk +Bqhvac
k +Fv̂k = 02×1, x0 = x̂0

(7b)

−T z
k +Cxk +Dqhvac

k +Gv̂k = 0 (7c)

−T ma
k +(1−α)T z

k +αT oa
k = 0 (7d)

−ṁk ≤−ṁmin
, ṁk ≤ ṁmax (7e)

−ṁk+1 + ṁk ≤ ṁrate∆t (7f)

ṁk+1− ṁk ≤ ṁrate∆t (7g)

−T sa
k ≤−T sa,min

, T sa
k ≤ T sa,max (7h)

−T sa
k+1 +T sa

k ≤ T sa,rate∆t (7i)

T sa
k+1−T sa

k ≤ T sa,rate∆t (7j)

−T z
k − εmin

k ≤−T z,min (7k)

T z
k − εmax

k ≤ T z,max (7l)

−εmin
k ≤ 0, −εmax

k ≤ 0 (7m)

k = 0, . . . ,N−1,
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where

Pc =













0 Cpa 0 −Cpa 01×5

Cpa

0 08×8

−Cpa

05×1













, (8)

and is obtained by rewriting (6).

Actuator constraints [ṁmin, ṁmax] and [T sa,min,T sa,max],
represent the lower and upper bounds of the airflow rate

and the supply air temperature, respectively. The minimum

supply airflow rate, ṁmin, is computed based on ventila-

tion requirements [25]. To ensure reheat coil can only add

heat, we require T sa,min = T ca. Thermal comfort bounds are

[T z,min,T z,max]. Slack variables εmin,εmax are used to relax

the thermal the thermal comfort bounds from a fixed range

[T z,min,T z,max] to a variable range [T z,min − εmin,T z,max +
εmax]. These slack variables help ensure that the problem is

feasible. A high penalty parameter ρ encourages the slacks

variables to be small so that temperature violation - when it

occurs - is small.

For later convenience, we note that J can be compactly

expressed as

J =
N−1

∑
k=0

(1

2
zT

k Pzk +qT zk

)

, (9)

where

P =









2α f Cpa
Cpa

COP
01×6

Cpa
Cpa

COP
08×8

06×1









∆t, (10)

q =
[

−CpaT ca 1+COP
COP

∆t 06×1 ρ ρ
]

, (11)

by rewriting (1)-(2) and (4).

Proposition 1. Problem (7) is feasible.

The proof of Proposition 1 is provided in the Appendix.

3.2 Proposed convex planner

The optimization problem (7) is non-convex since the

equality constraint (7a) is bilinear, and the quadratic term in

the cost (9) involves the indefinite matrix P. The goal now

is to approximate the problem (7) with a convex problem,

so that the approximation is easy to solve and the obtained

solution provides good approximation to that of problem (7).

The algorithm we propose to this end is described

in Algorithm 1. It uses the Convex-Concave Procedure

(CCP) [27]. In Algo. 1, the following terminology is used.

Let P = Q(Λ++Λ−)QT be the eigen-decomposition of the

real symmetric matrix P from Eq. (10), where Λ+ < 0 is the

positive semi definite part and Λ− ≺ 0 is the negative definite

part. Define P+ := QΛ+QT and P− := QΛ−QT .

Algorithm 1: Convex planner

Input: Initial guess ζ(0).
n← 0.

repeat
Convexify: Form:

Ĵ =
N−1

∑
k=0

(1

2
zT

k P+zk +(P−ζk(n)+q)T zk

−
1

2
ζk(n)

T P−ζk(n)
)

,

ĥ1,k :−qhvac +ζk(n)
T Pczk−

1

2
ζk(n)

T Pcζk(n) = 0.

(12)

Solve for z∗:

z∗ =arg min
zk|

N−1
k=0

Ĵ

s. t. equality constraints (12), (7b)− (7d)

inequality constraints (7e)− (7m)

k = 0, . . . ,N−1

(13)

Update iteration: Set n← n+1, ζ(n)← z∗.

until ‖ζ(n)−ζ(n−1)‖ ≤ δ;

Output: z∗← ζ(n)

Proposition 2. [16] Problem (13) is feasible and convex,

and Algorithm 1 is a descent and convergent algorithm.

Remark 2. Proposition 2 guarantees reliable performance

of Algorithm 1. Since problem (13) is feasible and convex,

if the algorithm converges within the allowable time, it con-

verges to a local minimum of the original non-convex prob-

lem. If the algorithm must be stopped before convergence

due to inadequate time, the solution obtained has a lower

cost than solutions from previous iterates since it is a descent

algorithm.

3.2.1 Choice of convex approximation method

Apart from the convex-concave procedure we used,

there are many approximation methods for non-convex opti-

mization problems that involve bilinearities. The commonly

used methods are (i) Branch-and-Bound (BnB) [28] and (ii)

Alternate Convex Search (ACS) [29]. Next we show that

these methods are not applicable to our problem (7), leaving

CCP as the only candidate. The following two propositions

will be needed for that discussion.

Proposition 3. [16] The dual of problem of (7) is un-

bounded from below.

Proposition 4. Every solution of Problem (7) is a boundary

solution.
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The proof of Proposition 4 is provided in the Appendix.

Inapplicability of Branch-and-Bound (BnB) BnB re-

quires construction of a tight convex under-estimator of

the NLP within any given region of the space of the vari-

ables [28]. The most widely-used under-estimators are La-

grangian relaxation [30] or convex relaxation. However

Proposition 3 shows the dual of our problem (7) is un-

bounded from below. Therefore Lagrangian relaxation can-

not be applied. For convex relaxation, common options are

McCormick envelope [28] and Reformulation Linearization

Technique (RLT) [31]. Both of them reformulate a prob-

lem via the addition of certain nonlinear constraints that are

generated by using the products of the bounding constraints.

However, constructing such products require knowledge of

bounds on variables that are involved. In our problem, ther-

mal comfort limits do not have known bounds because of the

introduction of slack variables. Hence convex relaxation is

also not applicable for our case.

Inapplicability of Alternate Convex Search (ACS)

ACS [29] divides variable set into disjoint blocks and in ev-

ery step, only the variables of an active block are optimized

while those of the other blocks are fixed. Analyses and ex-

amples from [32, 33] show that this method will most likely

fail to find a local optimum for problem with boundary solu-

tions (our case). Only initial guesses that belong to a partic-

ular set will converge to a local optimum. Because there is

no guarantee on convergence to local minima, we do not use

ACS.

4 (Block I) ID and Prediction

4.1 Identification

The job of the identification block of Fig. 1 is to use

data to identify parameters of the zone temperature dynamics

model (5), along with the unmeasurable occupant-induced

disturbance. We rewrite the model in a different form to de-

scribe the identification problem precisely:

xk+1 = Axk +Biduid
k +F idw̄k

yk(= T z
k ) =Cxk +Diduid

k +Gidw̄k

(14)

Here the state xk ∈ R
2, the output yk ∈ R, and the matrices

A,C are the same as in (5). But while the four inputs in (14)

were divided into controllable and not controllable, here they

are divided into measurable and non-measurable. In partic-

ular, uid
k := [qhvac,T oa,ηsol]k ∈ R3 consists of the measurable

inputs to the thermal dynamics and the transformed distur-

bance w̄k ∈ R is the non-measurable input. Other than the

regrouping, the two models are identical. Among the three

components of uid
k , qhvac is computed from measurements of

ṁ and T sa using (6), and the remaining two inputs can be

obtained from a weather station. The output T z is measured

with a sensor.

The system identification algorithm used here is the

SPDIR method proposed in our earlier work [10]. Fix i as the

current time when system identification is to be carried out.

Define τi := {i−N, i−N + 1, . . . , i− 1} and (uid ,y) j, j ∈ τi

be the measured input-output data for the model (14) over

that time interval. The algorithm SPDIR takes this data

and produces an estimate of the model parameters M :=
(A,Bid ,F id ,C,Did ,Gid) and an estimate of the transformed

disturbance w̄ j, j ∈ τi. We denote these estimates M̂i and
ˆ̄w j, j ∈ τi since they depend on i. The SPDIR algorithm is ex-

ecuted at time instants i, i+Nad , i+2Nad , . . . , with Nad large

so that enough time has after the previous identification to

warrant updating the estimates of the model and disturbance.

The SPDIR algorithm comes with the following guaran-

tees [10]:

1. The computation involved in obtaining the estimates

(model and disturbance signal) is a feasible and convex

optimization problem with a strictly convex cost.

2. The model M̂i is BIBO stable and has a positive DC

gain from each of the three measurable inputs (outdoor

temperature, solar irradiance, and HVAC heat injection)

to indoor temperature.

3. There is exactly one parameter that requires tuning by a

human expert. This tuning can be done once (one data

set). The two properties mentioned above hold irrespec-

tive of the value of this parameter.

Remark 3. The first property ensures that the the system

identification algorithm can be executed periodically with-

out any human intervention, i.e., autonomously. Autonomy

is also helped by the third feature. The second feature helps

in two ways. One, it ensures that the model identified is con-

sistent with the physics of HVAC systems. Two, it helps in

state estimation. At every decision instant i, a Kalman fil-

ter is used to estimate the state of the thermal model (5),

which is then used as the initial state by the MPC planner :

x̂0 in (7b). The stability guarantee of the model mentioned

above ensures that the the Kalman filter is stable [34].

4.2 Forecasts of uncontrollable inputs

Two types of uncontrollable inputs appear in the thermal

model (5), and thus their forecasts over the planning hori-

zon is needed by the MPC planner: weather variables and

transformed disturbance w̄. These forecasts are obtained as

follows.

1. Weather variables: Obtain forecast of [T oa,ηsol]Tk over

the next planning horizon from an online weather ser-

vice.

2. Transformed disturbance w̄: If the prediction horizon

does not contain a holiday, assign the disturbance for the

same time interval from the previous week estimated by

the system identifier, as the forecast. If the prediction

horizon contains a holiday, use the disturbance estimate

from the same time interval of the previous Saturday

as the forecast. This method is similar to the one used

in [5], except for the holiday corrections.







9

Table 1. Parameters for baseline and MPC controllers.

Unoccupied Occupied T sa,min 12.8 ◦C T ca 12.8 ◦C

T z,min 21.1 21.9 ◦C T sa,max 37.8 ◦C COP 3.5 N/A

T z,max 24.4 23.6 ◦C T sa,rate 0.56 ◦C/min α 0.3 N/A

ṁmin 0.95 1.47, 1.90 * kg/s ṁmax 4.72 kg/s a f 417.5 W/(kg/s)2

ṁrate 0.2 kg/s/min

* ṁmin,occ = 1.47 is used for the MPC controllers, and ṁmin,occ = 1.90 is used for the baseline controller.
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Fig. 5. Comparison of the simulation results for the proposed MPC scheme vs baseline controller, during Aug/26/2013 - Sept/1/2013.
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Fig. 6. Comparison of the simulation results for the proposed MPC scheme vs baseline controller.

ing the non-convex MPC planning problem (7) is usually not

an issue. On average it takes 2.7 seconds for Ipopt to find a

local minimum of the non-convex problem, failing to do so

with the available 15 minutes only 0.1% of the time. When

this happens, decision from the baseline controller is used as

control commands. The resulting switching control action

can lead to large violation in the indoor temperature. See

Fig. 7 for an example of this phenomenon. The zone tem-

perature exceeds the upper bound by 3.2 ◦C for an extended

period of time. Thus, though a non-convex planner rarely

fails, when it does it leads a catastrophic loss of performance

that will render the control system unacceptable to the user.
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Table 2. Performance comparison among various controllers.

controller site EUI (kBtu/(ft2·yr)) planner failure (%) RMSE of T z violation (◦C) Max T z violation (◦C)

Baseline 72.9 N/A 0.45 2.3

NAdapt-NCVX 63.4 0.4 0.46 4.0

NAdapt-CVX 63.9 0 0.41 1.7

Adapt-NCVX 53.7 0.1 0.22 3.2

Adapt-CVX (Proposed) 53.5 0 0.23 1.1

Mon Tue Wed Thur Fri Sat Sun
20

22

24

26

28

T
z
 (

o
C

)

Adapt-NCVX proposed constraint

Fig. 7. Comparison of the simulation results of the zone tempera-

ture for the proposed MPC scheme vs Adapt-NCVX controller, during

Sept/30/2013 - Oct/6/2013.

In contrast to MPC with a non-convex planner, the pro-

posed MPC scheme with a convexified planner always finds

a minimum within the available 15 minutes, taking 1.7 sec-

onds on average to compute the control decisions. Partially

as a result of that, it is able to provide the best performance

in maintaining zone temperature among all five controllers

tested.

Therefore, even though solving the nominal non-convex

problem is rarely an issue, in those rare occasions the con-

troller can cause serious disruption to occupant’s thermal

comfort. It is unlikely such a control system will be accept-

able to building owners and occupants. In short, the convex

approximation of the MPC planner is necessary.

It should be noted that the NAdapt-NCVX controller is

the MPC scheme generally used in the literature, e.g. [20,22].

Without the benefits from both of the designed features, this

controller has a maximum zone temperature violation of 4.0◦

C, even though it occurs rarely, and does not perform as well

as the proposed controller in terms of energy use.

Remark 4. We remark here the performance delivered by

the proposed MPC scheme is obtained under strong plant-

model mismatch in the following aspects: (i) The plant is

time-varying and nonlinear, while the MPC planner uses a

linear model. (ii) The proposed MPC scheme assumes both

the plant and the disturbance are the same as that from the

previous week, but the plant and the disturbance do not sat-

isfy those properties.

7 Conclusion

This paper takes a first stab at designing an MPC-

based control system for HVAC systems that can operate au-

tonomously for long periods, without requiring intervention

of human experts. Autonomy is made possible by two fea-

tures: (i) automated periodic update of thermal model and

internal disturbance signals, and (ii) a convex approxima-

tion of the MPC planner’s optimization problem. The year

long simulations shows that both of the features are essential

to get the performance improvement over the simple base-

line controller over a long period. The need for periodic

re-learning the model and disturbance is easy to see in the

context of buildings. The need for convexity in the planning

problem is less obvious at the design stage, but was discov-

ered from the simulation results. Even though the nominal

non-convex planning problem can be used effectively nearly

100% of times, the rare instances it fails to converge causes

dramatic fluctuations in the indoor temperature rendering the

control system an unlikely contender for real-life applica-

tion. Without these features, though MPC can outperform

the baseline controller in certain scenarios, the benefits may

not be substantial enough to defray the additional cost of im-

plementing MPC.

At the current stage the proposed MPC architecture uses

arguably one of the simplest schemes for forecasting of the

internal disturbance. It is envisioned that a more accurate

prediction scheme, possibly with the aid of technologies such

as occupancy recognition or CO2 level sensing, should fur-

ther improve performance of the MPC controller.

Many extensions of this work are possible. The most im-

mediate next step is extending the proposed control scheme

to include humidity dynamics and ventilation requirements,

which will require including as part of the control commands

the outdoor airflow and conditioned air temperature (down-

stream of the cooling/dehumidification coil; see Fig. 2).

These two have been assumed fixed in this paper but in fact

can be commanded through the building automation sys-

tem. It should reduce energy use even more and provide

better thermal comfort by including outdoor airflow and con-

ditioned air temperature into the list of control commands.

The challenge is to incorporate the nonlinear humidity dy-

namics in zone thermal models and the nonlinear process

models of the cooling/dehumidification coil [22]. The au-

tonomy achieved by the control system proposed here is due

to the use of linear dynamic models. Other useful directions

include extension to multi-zone buildings, improvements in

the forecasting methodology for the internal disturbance, etc.
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Appendix

Proof of Proposition 1. It suffices to find one feasible solu-

tion to Problem (7). Let ṁ∗k = ṁmin and T sa
k
∗ = T sa,min,

∀k = 0, . . . ,N−1, which satisfy the actuator constraints (7e)-

(7j). Values of T ma
k
∗
,T z

k
∗
,qhvac

k

∗
,xT

k+1

∗
are dependent on

(ṁ∗k ,T
sa

k
∗), and are solved from the set of linear indepen-

dent equations (7a)-(7d), ∀k = 0, . . . ,N − 1. Based on the

resulting T z
k
∗, where k = 0, . . . ,N − 1, it is straightforward

to show that εmin
k

∗
= max{0,T z,min − T z

k
∗} and εmax

k
∗ =

max{0,T z
k
∗ − T z,max} are the corresponding minimizers to

Problem (7), which also satisfy constraints (7k)-(7m). There-

fore, we found z∗ = [z∗0
T
, . . . ,z∗k

T
, . . . ,z∗N−1

T ]T , where z∗k =

[ṁ∗k ,T
sa

k
∗
,T ma

k
∗
,T z

k
∗
,qhvac

k

∗
,xT

k+1

∗
,εmin

k

∗
,εmax

k
∗]T ∈R9, as one

feasible solution to Problem (7).

Proof of Proposition 4. We show this by contradiction.

Assume z∗= [z∗0, . . . ,z
∗
k , . . . ,z

∗
N−1]

T is an interior optimal

solution to Problem (7), we show z∗ does not satisfy the KKT

conditions.

The Lagrangian of (7) is:

L(z,λ,υ) =
N−1

∑
k=0

(1

2
zT

k Pzk +qT zk+

5

∑
p=1

λp,khp,k +
12

∑
q=1

υq,k fq,k

)

,

(16)

where h1,k− h5,k denotes the equality constraints (7a)-(7d),

and f1,k− f12,k denotes the inequality constraints (7e)-(7m),

∀k = 0, . . . ,N−1, respectively.

For an interior point z∗, inequality constraints are in-

active at z∗, which implies υq,k = 0, ∀q = 1, . . . ,12,k =
0, . . . ,N − 1. Since z∗ is optimal, we have for La-

grangian (16),

0 =
∂L

∂zk

|zk=z∗
k
,∀k = 0, . . . ,N−1

=⇒ 0 = Pz∗k +q+∑
p

λp,k

∂hp,k

∂zk

|zk=z∗
k

= (P+λ1,kPc)z
∗
k +q+











0

0

−λ5,k

...











.

(17)

It suffices to find one contradiction that the set of equa-

tions (17) is not possible. Expand the second entry of Equa-

tion (17), one writes

Cpa(1+λ1,k)ṁ
∗
k = 0 =⇒ λ1,k =−1, (18)

because ṁ ≥ ṁmin > 0. Substitute λ1,k = −1 into the first

entry from (17) we have

2α f ṁ∗k +
Cpa

COP
T ma

k
∗+CpaT z

k
∗ =−CpaT ca 1+COP

COP
,

which cannot hold since LHS>0 whereas RHS<0. There-

fore we show any interior point does not satisfy the KKT

condition, meaning Problem (7) only has boundary solu-

tions.
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