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Abstract—Controller design for nonlinear systems with
Control Lyapunov Function (CLF) based quadratic pro-
grams has recently been successfully applied to a diverse
set of difficult control tasks. These existing formulations do
not address the gap between design with continuous time
models and the discrete time sampled implementation of
the resulting controllers, often leading to poor performance
on hardware platforms. We propose an approach to close
this gap by synthesizing sampled-data counterparts to
these CLF-based controllers, specified as quadratically
constrained quadratic programs (QCQPs). Assuming feed-
back linearizability and stable zero-dynamics of a system’s
continuous time model, we derive practical stability guar-
antees for the resulting sampled-data system. We demon-
strate improved performance of the proposed approach
over continuous time counterparts in simulation.

Index Terms—Sampled-data control, Lyapunov methods,
discrete event systems.

I. INTRODUCTION

NONLINEAR control methods offer promising solutions
to many modern engineering applications. However, the-

oretically sound controller designs often fail to achieve desired
behaviors when deployed on real systems. Thus, it is criti-
cal to understand the discrepancies between theoretical design
and practical implementation mathematically, and to design
controllers that close these gaps. Specifically, we address the
challenges in designing controllers with continuous time models
and realizing them with discrete time sampling implementations.

Manuscript received March 4, 2021; revised May 10, 2021; accepted
May 16, 2021. Date of publication June 2, 2021; date of current ver-
sion June 29, 2021. The work of Andrew J. Taylor and Aaron D.
Ames was supported by NSF under Award 1932091. The work of
Victor D. Dorobantu and Yisong Yue was supported in part by DARPA, in
part by Beyond Limits, and in part by a Kortschak Fellowship. The work
of Paulo Tabuada was supported in part by NSF under Award 1705135.
Recommended by Senior Editor L. Menini. (Andrew J. Taylor and Victor
D. Dorobantu contributed equally to this work.) (Corresponding author:
Andrew J. Taylor.)

Andrew J. Taylor, Victor D. Dorobantu, Yisong Yue, and
Aaron D. Ames are with the Department of Computing and
Mathematical Sciences, California Institute of Technology, Pasadena,
CA 91125 USA (e-mail: ajtaylor@caltech.edu; vdoroban@caltech.edu;
yyue@caltech.edu; ames@caltech.edu).

Paulo Tabuada is with the Department of Electrical Engineering,
University of California at Los Angeles, Los Angeles, CA 90095 USA
(e-mail: tabuada@ucla.edu).

Digital Object Identifier 10.1109/LCSYS.2021.3085172

Feedback linearization is a powerful tool in nonlinear con-
trol design, enabling the algorithmic synthesis of controllers
for a wide class of mechanical and electrical systems [1].
Moreover, feedback linearization provides a constructive
method to find Control Lyapunov Functions (CLFs) [2] for
continuous time systems. This fact has been used to for-
mulate stabilizing controllers through Quadratic Programs
(QPs) [3], [4], seeing use in several applications such as
robotics [5] and autonomous vehicles [6]. Despite these suc-
cesses, translating these controllers to hardware platforms
often requires additional effort to overcome the degradation
of performance and introduction of chatter caused by sample
frequency limitations.

We propose an extension of the preceding nonlinear con-
troller designs to the sampled-data setting [7], in which control
inputs are specified at discrete sample times and held constant
between sequential sample times (referred to as a zero-order
hold). The resulting evolution of such systems between sam-
ple times is described by discrete time models, for which
exact representations can rarely be derived, motivating the syn-
thesis of controllers with approximate discrete time models.
The foundational work in [8], [9] established a sampled-data
framework for translating stability guarantees for an approx-
imate discrete time model to the exact discrete time model.
Resulting sampled-data synthesis methods [10], [11], [12]
often demonstrate improved performance over continuous time
designs [13], many using a simple Euler approximate dis-
crete time model [10], [14] or CLFs [15], [16]. Notably,
optimization-based controllers synthesized using CLFs found
via feedback linearization have not yet been considered.

The relationship between feedback linearizability and sam-
pling has been investigated [17], [18], [19], [20]. Much of this
investigation has focused on whether feedback linearizability
of a system’s continuous time dynamics implies feedback lin-
earizability of the exact discrete time model of the system
(a fact that requires strict structure of the continuous time
dynamics). Even with Euler approximate discrete time mod-
els, a continuous time feedback linearizable system must be
first expressed in appropriate coordinates before sampling and
approximating to ensure the approximate model is feedback
linearizable in the discrete time sense [19]. This requirement
is also seen with higher-order approximate models obtained
via Taylor expansion [21]. The work [22], [23], [24] studies
the zero-dynamics that arise due to sampling and higher-order
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approximations, but not the impact of sampling on the stability
of existing continuous time zero-dynamics.

We make two main contributions in this work. First, we
formally integrate feedback linearization and zero-dynamics
with Euler approximate discrete time models for sampled-data
systems via the results in [8]. In particular, we demonstrate that
systems with feedback linearizable continuous time dynam-
ics and locally exponentially stable zero-dynamics can be
rendered practically-stable via a continuous time feedback
linearizing controller when the inputs to the system are imple-
mented with a zero order hold. The often local nature of
stability of zero-dynamics requires modification of the global
results in [8]. Second, we extend the preceding result to
optimization-based controllers using CLFs [4] synthesized via
feedback linearization. In Section V we propose a controller,
specified via a convex, quadratically constrained quadratic pro-
gram (QCQP), that replaces the standard affine constraint on
the time derivative of the CLF with a quadratic constraint on
the decrease of the CLF over a sample period (as approxi-
mated by the Euler discrete time model). We demonstrate the
improved performance of this controller over continuous time
CLF formulations with sample frequency limitations.

II. PRELIMINARIES

Throughout this work, we will consider the nonlinear
control system governed by the differential equation:

ẋ = f(x) + g(x)u, (1)

for state signal x and control input signal u taking values in
R

n and R
m, respectively, drift dynamics f : R

n → R
n, and

actuation matrix function g : R
n → R

n×m. Consider an open
subset Z ⊆ R

n × R
m and its projection onto the state space

X � {x ∈ R
n | ∃ u ∈ R

m s.t. (x, u) ∈ Z} ⊆ R
n. Assume

there exists Tmax ∈ R++ (the strictly positive reals) such that
for every state-input pair (x0, u0) ∈ Z , there exists a unique
solution ϕ : [0, Tmax] → R

n satisfying:

ϕ̇(t) = f(ϕ(t)) + g(ϕ(t))u0 ∀t ∈ (0, Tmax), (2)

ϕ(0) = x0. (3)

This enables the following reachable set definition:

D �
{
x ∈ R

n | ∃(x0, u0) ∈ Z, t ∈ [0, Tmax] s.t. x = ϕ(t)
}
,

where X ⊆ D. Given an h ∈ (0, Tmax], we define a controller
k : X → R

m as h-admissible if for any state x0 ∈ X , the
state-input pair (x0, k(x0)) satisfies (x0, k(x0)) ∈ Z and the
corresponding solution ϕ satisfies ϕ(t) ∈ X for all t ∈ [0, h].

Remark 1: This requirement on h-admissible controllers
ensures that in the sampled-data context, the closed-loop
system is forward complete and its evolution may be
described by iterative solutions to (2)-(3). Though verifying
h-admissibility of a controller may be intractable, assuming
that a controller is h-admissible and renders the set X invari-
ant is relatively weak as X is defined to ensure the continued
existence of solutions rather than reflecting a task-specific set.

Feedback linearization offers a tool for the synthesis of
stabilizing controllers for nonlinear continuous time systems,
and will serve an important role in constructing optimization-
based controllers for sampled-data nonlinear systems. We
consider systems with zero-dynamics that are independent of

the input, such as systems described by the Euler-Lagrange
equations [25], but more details may be found in [1].

Definition 1 (Feedback Linearizability): The system (1) is
feedback linearizable if there exist an open set E ⊆ R

n such
that D ⊆ E , a diffeomorphism � : E → R

n between E and an
open subset of R

n, a controller kfbl : X × R
k → R

m, k ≤ m,
a controllable pair (A, B) ∈ R

γ×γ × R
γ×k, γ ≤ n, and a

function q : �(D) → R
n−γ satisfying:

D�(x)(f(x) + g(x)kfbl(x, v)) =
[

Aη + Bv
q(ξ)

]
, (4)

for all states x ∈ X and auxiliary control inputs v ∈ R
k, where

η ∈ R
γ , z ∈ R

n−γ , and ξ ∈ R
n satisfy (η, z) = ξ = �(x).

Here D� denotes the derivative of �. Note that if γ = n,
the system is full-state feedback linearizable, and q does not
appear in (4). The corresponding system in normal form is:

ξ̇ �
[
η̇
ż

]
=

[
fη(ξ)

q(ξ)

]
+

[
gη(ξ)

0n−γ

]
u = fξ (ξ) + gξ (ξ)u, (5)

for normal state signal ξ , output signal η, zero-coordinate sig-
nal z, and control input signal u, with fη : �(D) → R

γ and
gη : �(D) → R

γ×m defined such that fξ : �(D) → R
n and

gξ : �(D) → R
n×m satisfy:

D�(�−1(ξ))(f(�−1(ξ)) + g(�−1(ξ))u) = fξ (ξ) + gξ (ξ)u,

for all ξ ∈ �(D) and u ∈ R
m.

Remark 2: As shown in [19], feedback linearizability of a
continuous time system does not guarantee feedback lineariz-
ability of the resulting sampled-data system, even when using
approximate discrete time models. In particular, this property
may be lost due to a change of coordinates. The preservation
of this property motivates studying the evolution of the normal
form system in the sampled-data context.

As we will consider the control design process for the
normal form system (5), it is useful to define the set:

Zξ = {(ξ , u) ∈ �(X ) × R
m | (�−1(ξ), u) ∈ Z}, (6)

noting that for every state-input pair (ξ0, u0) ∈ Zξ , there exists
a unique solution ψ : [0, Tmax] → R

n satisfying:

ψ̇(t) = fξ (ψ(t)) + gξ (ψ(t))u0 ∀t ∈ (0, Tmax), (7)

ψ(0) = ξ0. (8)

For h ∈ (0, Tmax], a controller k : �(X ) → R
m is an h-

admissible controller if the corresponding controller k′ : X →
R

m given by k′(x) = k(�(x)) for all x ∈ X is h-admissible.
A controller kaux : �(X ) → R

m is an h-admissible auxiliary
controller if k : �(X ) → R

m given by:

k(ξ) = kfbl(�
−1(ξ), kaux(ξ)), (9)

is an h-admissible controller.

III. SAMPLED-DATA CONTROL

This section provides a review of the sampled-data control
setting, in which inputs are applied to the system with a zero-
order hold. In this setting, the set of possible sample periods
is given by I = (0, Tmax]. Given a sample period h ∈ I and
an h-admissible controller k : �(X ) → R

m, the normal state
and control input signals in (5) satisfy:

u(t) = k(ξ(tk)) ∀t ∈ [tk, tk+1), (10)
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with sample times satisfying tk+1 − tk = h for all k ∈ Z+
(the non-negative integers). The evolution of the system over
a sample period is given by the exact state discrete map
Fe,x

h : Z → D and exact normal discrete map Fe,ξ
h : Zξ →

�(D):

Fe,x
h (x0, u0) = x0 +

∫ h

0
[f(ϕ(τ )) + g(ϕ(τ ))u0] dτ, (11)

Fe,ξ
h (ξ0, u0) = ξ0 +

∫ h

0
[fξ (ψ(τ )) + gξ (ψ(τ ))u0] dτ, (12)

for all state-input pairs (x0, u0) ∈ Z and all normal state-input
pairs (ξ0, u0) ∈ Zξ . The exact maps are related by:

Fe,ξ
h (ξ0, u0) = �(Fe,x

h (�−1(ξ0), u0)), (13)

for all normal state-input pairs (ξ0, u0) ∈ Zξ .
Remark 3: While an equivalence between the exact state

discrete map and exact normal discrete map is achieved via
the diffeomorphism �, it is useful to define both maps as the
notion of stability we consider for sampled-data systems is
defined for a particular exact map.

We call {kh : �(X ) → R
m | h ∈ I} a family of admissible

controllers if there is an h∗ ∈ I such that for each h ∈ (0, h∗),
kh is h-admissible. This enables the following definition.

Definition 2 (Exact Families): For a family of admissible
controllers {kh:�(X ) → R

m | h ∈ I}, we define the exact
state family {(kh ◦ �, Fe,x

h ) | h ∈ I} and exact normal family

{(kh, Fe,ξ
h ) | h ∈ I} of controller-map pairs.

For all h ∈ I such that kh is h-admissible, the recur-
sion ξ k+1 = Fe,ξ

h (ξ k, kh(ξ k)) ∈ �(X ) is well-defined for all
ξ0 ∈ �(X ) and k ∈ Z+. In practice, closed-form expressions
for these maps are rarely obtainable, suggesting the use of
approximations in the control synthesis process. While there
are many approaches to approximating this map, we will use
the following approximation of the exact normal discrete map.

Definition 3 (Euler Approximation Family): For every sam-
ple period h ∈ I, define the map Fa,ξ

h : Zξ → R
n as:

Fa,ξ
h (ξ0, u0) = ξ0 + h(fξ (ξ0) + gξ (ξ0)u0), (14)

for all (ξ0, u0) ∈ Zξ . For a family of admissible controllers
{kh:�(X ) → R

m | h ∈ I}, the corresponding Euler approxi-
mation family of controller-map pairs is {(kh, Fa,ξ

h ) | h ∈ I}.
The motivation behind this particular approximation is

preserving the strict feedback nature [26] of the normal form.
For h ∈ I, we can also define Fa,η

h : Zξ → R
γ and

Fa,z
h : �(X ) → R

n−γ such that for all (ξ , u) = ((η, z), u) ∈ Zξ :

Fa,ξ
h (ξ , u) =

[
Fa,η

h (ξ , u)

Fa,z
h (ξ)

]
=

[
η + h(fη(ξ) + gη(ξ)u)

z + hq(ξ)

]
.

Remark 4: There may be an h ∈ I such that the controller
kh is h-admissible but the recursion ξ k+1 = Fa,ξ

h (ξ k, kh(ξ k))

is not well-defined for all ξ0 ∈ �(X ) and k ∈ Z+. This is
due this map enabling ξ k /∈ �(X ) for some k > 0. While our
results do not need the recursion of the Euler approximation
family to be well-defined, this can be achieved by extending
the domains of fξ , gξ , and kh to R

n.
Defining class K (K∞) and KL (KL∞) comparison func-

tions as in [2], [8], the following definition characterizes how
accurately an approximate map captures the exact map.

Definition 4 (One-Step Consistency): A family
{(kh, Fh):h ∈ I} is one-step consistent with {(kh, Fe,ξ

h ) | h ∈ I}

if, for each compact set K ⊆ �(X ), there exist a function
ρ ∈ K∞ and h∗ ∈ I such that for all ξ ∈ K and h ∈ (0, h∗),
we have:

‖Fe,ξ
h (ξ , kh(ξ)) − Fh(ξ , kh(ξ))‖ ≤ hρ(h). (15)

The next lemma (modifying [8, Lemma 1], see the
Appendix) relates Euler approximation families to one-step
consistency.

Lemma 1: Suppose fξ and gξ are locally Lipschitz contin-
uous on �(X ). Consider a family of admissible controllers
{kh:�(X ) → R

m | h ∈ I} and suppose that for any compact
set K ⊂ �(X ) there exist h∗ ∈ I and a bound M ∈ R++ such
that for every sample time h ∈ (0, h∗), the controller kh is
bounded by M on K. Then the family {(kh, Fa,ξ

h ) | h ∈ I} is

one-step consistent with the family {(kh, Fe,ξ
h ) | h ∈ I}.

We note that if f, g, and D� are locally Lipschitz continuous
on X , the first condition of Lemma 1 is met. We consider the
following stability property, defined for both the exact state
discrete map and the exact normal discrete map.

Definition 5 (Practical Stability): Let β ∈ KL∞ and N ⊆
R

n be an open set containing the origin. A family {(kh, Fh):h ∈
I} is (β, N)-practically stable if for each R ∈ R++, there exists
an h∗ ∈ I such that for each sample period h ∈ (0, h∗), initial
state ζ 0 ∈ N, and number of steps k ∈ Z+, the recursion
ζ k+1 = Fh(ζ k, kh(ζ k)) is well-defined and:

‖ζ k‖ ≤ β(‖ζ 0‖, kh) + R. (16)

The following lemma relates the practical stability of the
exact normal family and the exact state family. Importantly,
it justifies considering the sampled normal form dynamics,
which can be feedback linearized, rather than the sampled state
dynamics that may not be feedback linearizable.

Lemma 2: Suppose that 0n ∈ X and �(0n) = 0n, and that
for any compact sets K, K′ ⊂ R

n, � and �−1 are globally
Lipschitz continuous on K′ ∩ X and K ∩ �(X ), respectively.
If the exact normal family {(kh, Fe,ξ

h ) | h ∈ I} is (β, N)-
practically stable, then there exist β ′ ∈ KL∞ and a bounded
open set N′ ⊆ R

n with 0n ∈ N′ such that the exact state family
{(kh ◦ �, Fe,x

h ) | h ∈ I} is (β ′, N′)-practically stable.
A proof is provided in the Appendix. The following class of

Lyapunov functions is useful in certifying practical stability.
Definition 6 (Asymptotic Stability by Equi-Lipschitz

Lyapunov Functions): Consider a family of admissible con-
trollers {kh : �(X ) → R

m | h ∈ I}. A family {(kh, Fh) | h ∈ I}
is asymptotically stable by equi-Lipschitz Lyapunov func-
tions if for some open set N ⊆ �(X ) containing the
origin and any compact set K ⊆ N, there exist h∗ ∈ I,
comparison functions α1, α2 ∈ K∞ and α3 ∈ K, a family
{Vh:Rn → R+ | h ∈ (0, h∗)}, and a Lipschitz constant
M ∈ R++ such that:

α1(‖ξ1‖) ≤ Vh(ξ1) ≤ α2(‖ξ1‖), (17)

Vh(Fh(ξ2, kh(ξ2))) − Vh(ξ2) ≤ −hα3(‖ξ2‖), (18)

|Vh(ξ3) − Vh(ξ4)| ≤ M‖ξ3 − ξ4‖, (19)

for all ξ1 ∈ R
n, normal states ξ2 ∈ N and ξ3, ξ4 ∈ K, and

sample times h ∈ (0, h∗). Here R+ denotes non-negative reals.
These functions link one-step consistency to practical sta-

bility in the next lemma (modifying [8, Th. 2], see the
Appendix).
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Lemma 3: Consider a family of admissible controllers
{kh : �(X ) → R

m | h ∈ I}. If the corresponding Euler approx-
imation family {(kh, Fa,ξ

h ) | h ∈ I} is asymptotically stable by
equi-Lipschitz Lyapunov functions, then there exist β ∈ KL∞
and a bounded open set U ⊆ �(X ) with 0n ∈ U such that the
family {(kh, Fe,ξ

h ) | h ∈ I} is (β, N)-practically stable for any
open set N ⊆ U with 0n ∈ N.

IV. STABILIZATION

In this section we present our main results establishing
feedback linearization as a method for practically stabilizing
sampled-data nonlinear systems. The first result builds on [27]
to make a claim on the stabilizability of the output dynamics.

Lemma 4: Given a feedback linearizable system satisfy-
ing (4), consider K ∈ R

k×γ such that Acl � A − BK is
Hurwitz. Let Pη ∈ S

γ
++ (positive-definite γ × γ matrices)

solve the continuous time Lyapunov Equation:

A�
clPη + PηAcl = −Qη, (20)

for some Qη ∈ S
γ
++. Define the function Vη : R

γ → R+ as
Vη(η) = η�Pηη for all η ∈ R

γ . For any c ∈ (0, 1), there
exists h∗

η ∈ I such that for any η0 ∈ R
γ , ξ = (η, z) ∈ �(X ),

and h ∈ (0, h∗
η), there exists an input u ∈ R

m such that:

λmin(Pη)‖η0‖2
2 ≤ Vη(η0) ≤ λmax(Pη)‖η0‖2

2, (21)

Vη(F
a,η
h (ξ , u)) − Vη(η) ≤ −hcλmin(Qη)‖η‖2

2. (22)

Here, λmin, λmax denote minimum and maximum eigenvalues.
Proof: The bounds in (21) follow from the definition of

Vη. Define the auxiliary controller kaux((η, z)) = −Kη for all
(η, z) ∈ �(X ). For the controller k defined in (9), we have:

Vη(F
a,η
h (ξ , k(ξ))) − Vη(η) = Vη((Iγ + hAcl)η) − Vη(η)

= hη�(A�
clPη + PηAcl + hA�

clPηAcl)η

≤ −h(λmin(Qη) − hλmax(A�
clPηAcl))‖η‖2

2,

for all ξ = (η, z) ∈ �(X ) and h ∈ I. Picking h∗
η ∈ I with:

h∗
η ≤ (1 − c)λmin(Qη)/λmax(A�

clPηAcl), (23)

implies that for all h ∈ (0, h∗
η] and ξ ∈ �(X ), the input k(ξ)

satisfies (22).
We call the function Vη a discrete time (CLF) for any Euler

approximate model of the output dynamics with h ∈ (0, h∗
η].

For each h ∈ (0, h∗
η), define Uh : �(X ) → P(Rm) as:

Uh(ξ) = {
u ∈ R

m | (ξ , u) ∈ Zξ ; u satisfies (22) for h, ξ
}
,

for all ξ ∈ �(X ), where P denotes the powerset. The next
result connects these functions to continuous time stability of
the zero-dynamics, implying the conditions of Lemma 3 are
met for controllers other than feedback linearizing controllers.

Theorem 1: Let Vη and h∗
η be defined as in Lemma 4,

and assume that q is continuously differentiable and the
zero-dynamics system governed by the differential equation:

ż = q(0γ , z), (24)

for zero-coordinate signal z is locally exponentially stable to
the origin. Let {kh : �(X ) → R

m | h ∈ I} be a family of
admissible controllers satisfying kh(ξ) ∈ Uh(ξ) for all h ∈
(0, h∗

η] and ξ ∈ �(X ). Then the family {(kh, Fa,ξ
h ) | h ∈ I} is

asymptotically stable by equi-Lipschitz Lyapunov functions.

Proof: The local exponential stability of (24) implies that
for any Qz ∈ S

n++ and d ∈ (0, 1), there exist an open neigh-
borhood of the origin N ⊆ R

n−γ , an h∗
z ∈ I, a Pz ∈ S

n++, and
a quadratic Lyapunov function Vz : R

n−γ → R+ defined as
Vz(z) = z�Pzz for all z ∈ R

n−γ and satisfying:

λmin(Pz)‖z0‖2
2 ≤ Vz(z0) ≤ λmax(Pz)‖z0‖2

2, (25)

Vz(F
a,z
h ((0γ , z))) − Vz(z) ≤ −hdλmin(Qz)‖z‖2

2, (26)

for all z0 ∈ R
n−γ , z ∈ N, and h ∈ (0, h∗

z). Construction of Vz
follows the steps of Lemma 4 with the linearization of q at
the origin. Let σ ∈ R++ be a coefficient to be specified later.
Let Vη, c, and h∗

η be defined as in Lemma 4, and define the
composite Lyapunov function V : R

n → R+ as:

V(ξ) = σVη(η) + Vz(z), (27)

for all ξ = (η, z) ∈ R
n. First, note that (21) and (25) imply:

min {σλmin(Pη), λmin(Pz)}‖ξ‖2
2 ≤ V(ξ)

≤ max {σλmax(Pη), λmax(Pz)}︸ ︷︷ ︸
�μ

‖ξ‖2
2, (28)

for all ξ ∈ R
n, implying (17) is met. Second, note that:

‖∇V(ξ)‖2 ≤ 2
(
σλmax(Pη)‖η‖2 + λmax(Pz)‖z‖2

)
≤ 2(μ‖ξ‖2 + μ‖ξ‖2) = 4μ‖ξ‖2,

for all ξ = (η, z) ∈ �(X ), implying that for any compact set
K ⊂ �(X ), (19) is met as we have:

|V(ξ1) − V(ξ2)| ≤ 4μ

(
max
ξ∈K

‖ξ‖2

)
‖ξ1 − ξ2‖2, (29)

for all ξ1, ξ2 ∈ K. Third, define a bounded open set Nξ ⊂ R
n

with closure cl(Nξ ) ⊂ �(X ) ∩ (Rγ × N), let Lq ∈ R++
be a global Lipschitz constant of q on Nξ , and let h∗

1 =
min {h∗

η, h∗
z}. For all ξ = (η, z) ∈ Nξ and h ∈ (0, h∗

1), note:

V(Fa,ξ
h (ξ , kh(ξ))) − V(ξ)

= σ(Vη(F
a,η
h (ξ , kh(ξ))) − Vη(η)) + Vz(F

a,z
h (ξ)) − Vz(z)

≤ −σhcλmin(Qη)‖η‖2
2 + Vz(F

a,z
h ((0γ , z))) − Vz(z)

+ Vz(F
a,z
h ((η, z))) − Vz(F

a,z
h ((0γ , z)))

≤ −σhcλmin(Qη)‖η‖2
2 − hdλmin(Qz)‖z‖2

2

+ 2hz�Pz(q((η, z)) − q((0γ , z)))

+ h2(q((η, z))�Pzq((η, z)) − q((0γ , z))�Pzq((0γ , z)))

≤ −σhcλmin(Qη)‖η‖2
2 − hdλmin(Qz)‖z‖2

2

+ 2hλmax(Pz)Lq‖η‖2‖z‖2 + h2λmax(Pz)Lq‖ξ‖2
2

= −h

[‖η‖2
‖z‖2

]� [
ωη(σ, h) −ω×

−ω× ωz(h)

]
︸ ︷︷ ︸

��σ (h)

[‖η‖2
‖z‖2

]
, (30)

where ωη(σ, h) = σcλmin(Qη) − hλmax(Pz)Lq, ω× =
λmax(Pz)Lq, and ωz(h) = dλmin(Qz) − hλmax(Pz)Lq. Pick
h∗

2 ∈ (0, h∗
1] such that h∗

2 < dλmin(Qz)/ω× and fix σ with:

σ > (ω2×/ωz(h
∗
2) + h∗

2λmax(Pz)Lq)/(cλmin(Qη)),

to ensure that �σ (h) ∈ S
n++ for all h ∈ [0, h∗

2]. The composi-
tion λmin◦�σ is continuous and R++-valued for all h ∈ [0, h∗

2]
as �σ is an affine function. Therefore:

V(Fa,ξ
h (ξ , kh(ξ))) − V(ξ) ≤ −hλmin(�σ (h))‖ξ‖2

2
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≤ −h

(
min

h′∈[0,h∗
2]

λmin(�σ (h′))
)

‖ξ‖2
2, (31)

for all ξ ∈ Nξ and h ∈ (0, h∗
2].

This result implies that if there exists an h0 ∈ I such that
the controller k used in Lemma 4 is h0-admissible, the exact
family {(k, Fe,ξ

h ) | h ∈ I} is (β, N)-practically stable for some
β ∈ KL∞ and open set N ⊆ �(X ) with 0n ∈ N.

V. OPTIMIZATION-BASED SAMPLED-DATA CONTROL

As motivated in [2, p. 6], the performance of a feedback
linearizing controller can be improved upon by optimizing
control inputs subject to stability constraints imposed via the
CLF Vη found in Lemma 4. The existence of the feedback
linearizing controller ensures the function Vη is also a CLF
for the continuous time output dynamics in (5). For sam-
ple period h ∈ I, continuous time design yields a controller
kqp

h : �(X ) → R
m specified by the following QP:

kqp
h (ξ) = argmin

u∈Rm
‖u‖2

2 (CLF-QP)

s.t. ∇Vη(η)�(fη(ξ) + gη(ξ)u) ≤ −λmin(Qη)‖η‖2
2,

for all ξ = (η, z) ∈ �(X ). This controller often displays
degradation in performance with sample frequency limitations,
motivating the specification of a sampled-data controller. For
h ∈ (0, h∗

η], using the Euler approximate model Fa,η
h , consider

a controller kqcqp
h : �(X ) → R

m specified by the following
quadratically constrained quadratic program (QCQP):

kqcqp
h (ξ) = argmin

u∈Rm
‖u‖2

2 (CLF-QCQP)

s.t. Vη(F
a,η
h (ξ , u)) − Vη(η) ≤ −hcλmin(Qη)‖η‖2

2

= argmin
u∈Rm

‖u‖2
2

s.t. u�	h(ξ)u + 2λh(ξ)�u + lh(ξ) ≤ 0,

for all ξ = (η, z) ∈ �(X ) where 	h : �(X ) → S
m+ (pos-

itive semi-definite m × m matrices), λh : �(X ) → R
m, and

lh : �(X ) → R are defined with Pη, Qη, and c from Lemma 4:

	h(ξ) = hgη(ξ)�Pηgη(ξ), (32)

λh(ξ) = gη(ξ)�Pη(η + hfη(ξ)), (33)

lh(ξ) = fη(ξ)�Pη(2η + hfη(ξ)) + cλmin(Qη)‖η‖2
2, (34)

for all ξ = (η, z) ∈ �(X ). For any ξ ∈ �(X ), the input k(ξ) is
in the feasible set of the corresponding optimization problem,
and as the feasible set is closed and the ‖k(ξ)‖2

2-sublevel set
of the continuous objective function is compact, there exists a
minimizer in this sublevel set. Since the objective function is
strictly convex and the feasible set is convex, this minimizer
is unique and can be found in polynomial time [28].

For each h ∈ (h∗
η, Tmax], define kqcqp

h : �(X ) → R
m

arbitrarily. If {kqcqp
h | h ∈ I} is a family of admissible con-

trollers, then the exact family {(kqcqp
h , Fe,ξ

h ) | h ∈ I} is
(β, N)-practically stable for some β ∈ KL∞ and open set
N ⊆ �(X ) by Theorem 1. This follows as the feasibility
of the feedback linearizing control input implies the family
{(kqcqp

h , Fa,ξ
h ) | h ∈ I} is asymptotically stable by the same

Lyapunov functions as the family {(k, Fa,ξ
h ) | h ∈ I}.

Fig. 1. With inputs applied via a zero-order hold, the (CLF-QP) does not
stabilize the system (35) (Top), while the (CLF-QCQP) does (Bottom).
Simulation code listed at https://bit.ly/CLF-QCQP.

To illustrate the advantage of sampled-data design, consider
the following system with exponentially stable zero-dynamics:

η̇1 = η2, η̇2 = 10 sin(η1) + u, ż = η2
1 − z, (35)

where (η1, η2), z, and u denote the output, zero-coordinate, and
control signal, respectively. For K = [

1/2
√

3/2
]
, Qη = I2,

c = 0.5, h = 0.2, and initial condition (1, 0, 1), the (CLF-QP)
fails to stabilize the system, while the (CLF-QCQP) stabilizes
the system (see Figure 1).

VI. CONCLUSION

We presented an approach for sampled-data control synthe-
sis using the feedback linearizability of a system’s continuous
time model to yield a discrete time CLF for the Euler approx-
imate discrete time model. We specify a controller with
this CLF via a convex optimization problem that improves
performance over a continuous time counterpart. Future work
will extend this work to safety and Control Barrier Functions.

APPENDIX

PROOFS OF LEMMAS

Proof of Lemma 1: Consider a compact set K ⊂ �(X ) and
corresponding h∗ ∈ I and M ∈ R++, and fix a sample period
h ∈ (0, h∗). By assumption, kh is bounded on K, and since
fξ and gξ are continuous, fξ and gξ are also bounded on K,
implying there exists a bound M′ ∈ R++ with:

‖fξ (ξ2) + gξ (ξ2)kh(ξ1)‖ ≤ M′,

for all normal states ξ1, ξ2 ∈ K. As fξ and gξ are locally
Lipschitz continuous over the compact set K, it follows that
fξ and gξ are globally Lipschitz continuous over K. Therefore:

‖fξ (ξ2) + gξ (ξ2)kh(ξ1) − (fξ (ξ1) + g(ξ1)kh(ξ1))‖
≤ ‖fξ (ξ2) − fξ (ξ1)‖ + ‖gξ (ξ2) − gξ (ξ1)‖‖kh(ξ1)‖
≤ (Lfξ + Lgξ

M)‖ξ2 − ξ1‖ = ρ(‖ξ2 − ξ1‖),
for all states ξ1, ξ2 ∈ K, where Lfξ , Lgξ

∈ R++ are Lipschitz
constants for fξ and gξ , respectively, and ρ ∈ K∞ satisfies
ρ(r) = (Lfξ +Lgξ

M)r for all r ∈ R+. The proof proceeds as the
proof of [8, Lemma 1] by substituting X = N(K, ε) ⊂ �(X ),
with proper containment implied for some ε ∈ R++ as �(X )

is open, and substituting T∗
1 = min{h∗, ε/M′}.

Proof of Lemma 2: Let N′ ⊆ �−1(N) be a bounded open
set satisfying cl(N′) ⊆ X . As cl(N′) is compact and � is a
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homeomorphism between X and �(X ), we have �(cl(N′)) ⊆
�(X ) is compact and satisfies �(cl(N′)) = cl(�(N′)). Fix
R ∈ R++ and define the corresponding radii r, r′ ∈ R++ as:

r = max
ξ0∈cl(�(N′))

β(‖ξ0‖, 0) + R, r′ = max
x0∈cl(N′)

‖x0‖,
and let Br, Br′ ⊂ R

n be closed norm-balls centered at
the origin of radius r and r′, respectively. By assumption,
we have that �−1 and � are globally Lipschitz continu-
ous over, �(X ) ∩ Br and X ∩ Br′ with Lipschitz constants
L�−1, L� ∈ R++, respectively. Given an arbitrary R′ ∈ R++,
pick R < min{R, R′/L�−1}. Let x0 ∈ N′ and let ξ0 =
�(x0) ∈ �(N′) ⊆ N. By the (β, N)-practical stability of
the exact normal family, corresponding to R, there exists
an h∗ ∈ I such that for any sample period h ∈ (0, h∗),
the recursion ξ k+1 = Fe,ξ

h (ξ k, kh(ξ k)) ∈ �(X ) satisfies
‖ξ k‖ ≤ β(‖ξ0‖, kh) + R, and implies ξ k ∈ �(X ) ∩ Br for all
k ∈ Z+. Letting xk+1 = Fe,x

h (xk, kh(�(xk))) for all k ∈ Z+,
note that xk = �−1(ξ k). It follows that for all k ∈ Z+:

‖xk‖ = ‖�−1(ξ k) − �−1(0n)‖ ≤ L�−1‖ξ k − 0n‖
≤ L�−1(β(‖ξ0‖, kh) + R)

= L�−1(β(‖�(x0) − �(0n)‖, kh) + R)

≤ L�−1(β(L�‖x0 − 0n‖, kh) + R) < β ′(‖x0‖, kh) + R′,
where β ′(r, s) = L�−1β(L�r, s) for all r, s ∈ R+. Therefore,
the exact state family is (β ′, N′)-practically stable.

Proof of Lemma 3: Consider the open set N ⊆ �(X )

and the functions α1, α2 ∈ K∞ and α3 ∈ K as speci-
fied by Definition 6. Let K ⊂ N be a compact set with
0n ∈ int(K). By one-step consistency and asymptotic stability
by equi-Lipschitz Lyapunov functions, there exist a ρ ∈ K∞,
a Lipschitz constant M ∈ R+, and an h∗

0 ∈ I such that
for all h ∈ (0, h∗

0), (15), (17), (18), and (19) hold for all
ξ , ξ1, . . . , ξ4 ∈ K. There exists a radius R ∈ R++ such that
the closed norm-ball around the origin of radius R is contained
in K. We modify the claim of [8, eq. (37)] for the local setting
in this work as follows:

Claim 1: For any d, D ∈ R++ with D ≤ α−1
2 (α1(

R
2 ))

and d ≤ 2α2(R), there exists an h∗ ∈ (0, h∗
0) such that

for every ξ ∈ �(X ) and h ∈ (0, h∗), if ‖ξ‖ ≤ D and
max {Vh(F

e,ξ
h (ξ , kh(ξ))), Vh(ξ)} ≥ d, then:

Vh(F
e,ξ
h (ξ , kh(ξ))) − Vh(ξ) ≤ −h

2
α3(‖ξ‖). (36)

In the language of [8], the restrictions on d and D imply
� ≤ R, and the proof follows by replacing the sets X and X 1
with K, the constant M with the Lipschitz constant M given
above, and the constants T∗

1 and T∗
2 with h∗

0. Letting U ⊂ K
be the open ball of radius α−1

2 (α1(α
−1
2 (α1(

R
2 )))), the modified

claim may be used to prove the existence of a β ∈ KL∞ such
that the family {(kh, Fe,ξ

h ) | h ∈ I} is (β, N′)-practically stable
for any open set N′ ⊆ U containing the origin by following
the proof of [8, Th. 2].
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