
technologies

Article

Adaptive Deep Learning for Soft Real-Time
Image Classification

Fangming Chai and Kyoung-Don Kang ∗

����������
�������

Citation: Chai, F.; Kang, K.-D.

Adaptive Deep Learning for Soft

Real-Time Image Classification.

Technologies 2021, 9, 20. http://

doi.org/10.3390/technologies9010020

Received: 1 February 2021

Accepted: 2 March 2021

Published: 10 March 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: c© 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Computer Science, State University of New York at Binghamton, Binghamton, NY 13902, USA;
fchai1@binghamton.edu
* Corresponding: kang@binghamton.edu

Abstract: CNNs (Convolutional Neural Networks) are becoming increasingly important for real-
time applications, such as image classification in traffic control, visual surveillance, and smart
manufacturing. It is challenging, however, to meet timing constraints of image processing tasks
using CNNs due to their complexity. Performing dynamic trade-offs between the inference accuracy
and time for image data analysis in CNNs is challenging too, since we observe that more complex
CNNs that take longer to run even lead to lower accuracy in many cases by evaluating hundreds
of CNN models in terms of time and accuracy using two popular data sets, MNIST and CIFAR-
10. To address these challenges, we propose a new approach that (1) generates CNN models and
analyzes their average inference time and accuracy for image classification, (2) stores a small subset
of the CNNs with monotonic time and accuracy relationships offline, and (3) efficiently selects an
effective CNN expected to support the highest possible accuracy among the stored CNNs subject
to the remaining time to the deadline at run time. In our extensive evaluation, we verify that the
CNNs derived by our approach are more flexible and cost-efficient than two baseline approaches.
We verify that our approach can effectively build a compact set of CNNs and efficiently support
systematic time vs. accuracy trade-offs, if necessary, to meet the user-specified timing and accuracy
requirements. Moreover, the overhead of our approach is little/acceptable in terms of latency and
memory consumption.

Keywords: deep learning; adaptive real-time image classification; imprecise computation

1. Introduction

Machine learning [1] has numerous applications, including image processing [2],
natural language processing [3], and recommendation systems [4]. In particular, deep
learning [5–7] is gaining popularity due to its superior accuracy enabled by the algorithmic
advancement as well as the availability of big data and abundant resources in the cloud in
recent years. Furthermore, deep learning supports automated feature selection [8] without
requiring manual feature engineering required in other machine learning paradigms.
Important soft real-time applications, such as object detection, recognition, tracking, and
visual inspection for traffic control, surveillance, and smart manufacturing [9–16], can
benefit from deep learning [2,5,11]. Especially, Convolutional Neural Networks (CNNs) [2]
are very effective for image processing and computer vision [2,14,17]. In 2012, CNNs made
a breakthrough in terms of the accuracy for image classification [2]. For computer vision
tasks, CNNs have become the go-to algorithm since then. Thus, real-time deep learning
via CNNs is an important issue.

Supporting real-time deep learning, however, is challenging. A deeper network with
more layers may increase the accuracy; however, it significantly increases computation and
memory requirements. Because training deep neural networks requires massive resources
and big data sets [13], it is usually performed offline in the cloud [18]. To support real-time
applications, such as traffic control, surveillance, and smart manufacturing, it is essential to
perform sensor data analytics near sensors, such as cameras, in a timely fashion using the

Technologies 2021, 9, 20. https://doi.org/10.3390/technologies9010020 https://www.mdpi.com/journal/technologies

https://www.mdpi.com/journal/technologies
https://www.mdpi.com
https://doi.org/10.3390/technologies9010020
https://doi.org/10.3390/technologies9010020
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/technologies9010020
https://www.mdpi.com/journal/technologies
https://www.mdpi.com/article/10.3390/technologies9010020?type=check_update&version=2

Technologies 2021, 9, 20 2 of 23

models trained in the cloud [12,14]. Supporting timely sensor data analysis using a trained
model, called predictions or inferences, is challenging though in resource-constrained
embedded systems. Transmitting all sensor data to the cloud for analytics via machine
learning incurs long, unpredictable latency, which may result in many deadlines misses.
Further, such a naive approach may saturate the backbone network with the limited
bandwidth as the number of sensors and Internet of Things (IoT) devices is increasing
fast [19].

A promising approach to tackling these challenges is imprecise computation [20]. If
the remaining time to the deadline is insufficient, the accuracy of soft real-time image
classification could be adapted to meet the timing constraint. In this paper, however, we
empirically observe that the relation between the inference execution time and accuracy
is not necessarily linear and even counterintuitive oftentimes. Especially, more complex
CNNs with longer execution times do not necessarily support higher accuracy, but they
even provide lower accuracy in many cases (Section 4). A potential reason is that CNNs
(and other neural networks) are designed to support non-linear and sophisticated data
manipulations for robust learning [2,6]. Generally speaking, understanding why and how
deep learning performs well is an open problem [21]. Therefore, an immediate application of
imprecise computation is infeasible. In-depth research is required to support systematic trade-offs
between the time and accuracy for deep learning via CNNs.

To shed light on the problem, in this paper, we derive Pareto optimal CNNs with
different architectures defined by their hyper-parameters. Especially, we consider that
a CNN with a longer execution time is Pareto optimal, if it provides higher accuracy
for image classification than the other CNN models with shorter execution times. By
supporting monotonically increasing accuracy for longer execution times, we eliminate all sub-
optimal CNNs that do not support higher accuracy despite longer execution times. Notably,
we do not propose to replace advanced hyper-parameter optimization techniques, such
as the Random Search, Bayesian Optimization, and Hyperband algorithms provided by
popular machine learning frameworks, such as [22,23], with our approach. Instead, our
approach includes a CNN optimized using the advanced hyper-parameter tuning methods
in the set of Pareto optimal CNNs, only if its accuracy is higher than any CNN that is
already in the set and has a shorter execution time. In this way, our approach derives Pareto
optimal CNNs for adaptive real-time image classification that supports higher accuracy for
a longer inference time. Thus, it is compatible to existing algorithms for hyper-parameter
tuning.

On top of that, we obtain a smaller set of CNNs, called δδδ-Pareto optimal CNNs in
this paper, only consisting of the Pareto optimal CNNs where a CNN enhances accuracy
by more than a specified threshold δ comparing to the preceding δ-Pareto optimal CNN
with the shorter execution time to further decrease the number of the CNNs stored in
memory (note that a Pareto or δ-Pareto optimal CNN in this paper is the CNN expected to
support the highest accuracy within the remaining time to the deadline among the CNNs
available in a soft real-time image classification system. We do not claim any of our models is
ultimately optimal among all possible CNN models, since an exhaustive search for optimal
models that consider every possible CNN model is subject to a combinatorial explosion).
At run-time, our approach efficiently selects the most cost-effective CNN model that is
expected to support the highest possible accuracy among the CNN models estimated to
complete the inference (image classification) within the remaining time to the deadline.

Our key contributions are summarized as follows.

• δδδ-Pareto optimal CNN Design and Run-Time Adaptation: We propose a new ap-
proach for efficient neural architecture search to derive Pareto and δ-Pareto optimal
CNNs offline. Especially, we first derive a lightweight model that can support the
user-specified minimum accuracy for image classification, such as 0.7. By extending
the model incrementally, we explore more complex CNN models with longer execu-
tion times and higher accuracy, while rejecting models that are not Pareto-optimal.
Moreover, we derive a compact set of δ-Pareto optimal CNNs to minimize the num-

Technologies 2021, 9, 20 3 of 23

ber of the CNNs kept in memory to support run-time adaptation without incurring
I/O latency, if necessary, to meet timing constraints cost-efficiently. At run-time, our
adaptive framework efficiently picks a CNN expected to support the highest accuracy
among the δ-Pareto optimal CNN models subject to the remaining time to the deadline
in O(1) time. Although CNNs have been explored extensively, relatively little work
has been done to support systematic trade-offs between the time and accuracy for
adaptive real-time image classification. A vanilla approach that always uses a single,
non-adaptive CNN model may miss many deadlines when the system is overloaded.
To address the issue, recent works, e.g., [24,25], have investigated how to dynamically
skip or add layers to meet timing constraints. Unlike the non-adaptive baseline, we
support methodical trade-offs between the inference time and accuracy. Moreover, our
approach provides more flexibility and opportunities for robust, timely adaptation by
considering not only the number of the layers but also the other key hyper-parameters.

• Evaluation: We undertake extensive performance evaluation in terms of the prediction
time and accuracy. We analyze the impacts of the hyper-parameters used to configure
hundreds of CNN models on the inference time and accuracy, while comparing
the effectiveness of our approach and the two baselines discussed above. In the
evaluation presented in Section 4, our approach derives three different CNN models
for MNIST [26] and CIFAR10 [27], respectively. For MNIST, the accuracy and inference
time of the models range between 48.84 and 298.99 µs and 0.95–0.992. For CIFAR-10
that is more complex than MNIST, the accuracy and inference time range between
71.97–183.55 µs and 0.808–0.893, respectively, (for CIFAR-10, we have used a more
powerful machine due to the relative complexity of the data set. A detailed description
is given in Section 4). Different from the proposed approach, the non-adaptive vanilla
baseline is unable to support stringent timing constraints, if the remaining time to the
deadline is shorter than the inference time.
Notably, the layer-wise adaptation method in a single CNN [24,25] has less flexibility
for CNN design and run-time adaptation than our approach. When the depth is
increased from 8 to 19 in the layer-adaptive baseline, the execution time increases by
more than 1.8×, but the accuracy enhances by only 3.6% for CIFAR-10. In contrast,
comparing to the basic CNN with eight layers, two more powerful CNNs with 8 and 19
layers derived by our approach increase the accuracy by 4.9% and 8.5% for increasing
the inference time by 1.4× and 2.55×, respectively. Thus, our 8-layer model supports
higher accuracy than the 19-layer model of the baseline does, even though its execution
time is 40% shorter than that of the baseline. In addition, if the remaining time to
the deadline is sufficient, our approach can use our 19-layer model that enhances the
accuracy by 8.5%.
Finally, our approach has little/acceptable overhead. In our approach, the latency for
switching between two CNNs for adaptation is at most 20 ns; therefore, our timing
overhead is negligible. The total memory footprint of the models does not exceed the
user-specified bound. Comparing to the non-adaptive baseline that stores only one
CNN model, our approach increases the memory consumption by at most 11.211 MB
that is acceptable in modern edge servers or IoT gateways. Overall, our approach
for adaptive real-time image classification is more effective than the state-of-the-art
baselines.

The rest of the paper is organized as follows. In Section 2, we give CNN background
and formulate the problem investigated in this paper. In Section 3, we describe our
proposed approach. In Section 4, we evaluate performance via extensive experiments.
Related work is discussed in Section 5. A discussion of our limitations and future work
issues are discussed in Section 6. Finally, Section 7 concludes the paper.

Technologies 2021, 9, 20 4 of 23

2. Background and Problem Formulation

In this paper, we consider CNNs for image classification that is one of the most essen-
tial applications in image processing and computer vision [2,14]. Given an input image, the
CNN classifies it into one of the predefined classes, e.g., an alphanumeric symbol for plate
number detection [28,29] or a real-world object for object detection/recognition [9–15] as
illustrated in Figure 1.

Figure 1. An Example of Object Classification in Images (image source: [30]). When an input image
is given, the proposed approach is required to classify the image into a class, e.g., a car or airplane,
within the deadline via adaptive deep learning.

2.1. An Overview of the CNN Structure

Figure 2 illustrates the general CNN architecture [2]. When an input image is provided,
a CNN extracts features from the image using multiple pairs of convolutional and pooling
layers and classify the image into a class using fully connected layers.

Technologies 2021, 9, 20 5 of 23

. . .
. . . Input Layer Convolutional Layer Pooling Layer Convolutional Layer Pooling Layer

Fully connected Layers Output Layer

2

3

4

Figure 2. CNN Architecture for Image Classification. A CNN typically consists of convolutional and
pooling layers followed by one or more fully connected layer. The softmax function is applied in the
last fully connected layer to compute the probabilities of the object in the input image belongs to the
predefined classes. Finally, the input image is classified as the category with the highest probability.

In general, a CNN model consists of an input layer, convolutional layers, pooling
layers, fully connected layers, and an output layer. The input layer takes an input image and
the output layer produces the predicted class, e.g., a pedestrian, bicycle, car, or truck. The
number of convolutional and pooling layers vary depending on applications and accuracy
requirements. Generally (but not necessarily), the deeper the higher is the accuracy with
potentially diminishing returns.

In principle, deep learning is supervised learning. The architecture and complexity of
a CNN model is determined by its hyper-parameters, such as the number of the layers and
the sizes of the filter, stride, and pooling window (discussed shortly), which have different
impacts on the execution time and inference accuracy. If the architecture of a CNN model is
determined, the model is trained using a labeled data in the training set where each image
in the data set is associated with the ground-truth label (class). The parameters, i.e., the
weights of different features, should be determined in the training phase based on the back
propagation and gradient descent algorithm applied to minimize the loss—the distance
between the class predicted by the CNN and the true class [2,6].

A description of layers and key components in CNNs follows.

• Input layer [26,27,29]: In a CNN for computer vision, an image is represented by a
3D matrix defined by the image width, image height, and the depth of the channels,
e.g., RGB. A gray scale image is stored as a 2D matrix. Images are pre-processed, if
necessary, to conform to the width, height, and depth requirements and provided
to the input layer. In CNNs, key operations, such as convolution and pooling to be
discussed shortly, are independently applied to each channel. Therefore, for the sake
of clarity, we mainly discuss convolution and pooling for 2D data in this section.

• Convolutional layers [2,31–33]: In a CNN, a convolution filter, also called a kernel,
is applied to the input image. More specifically, element-wise multiplications be-
tween the filter and data in one segment are applied and the multiplication results
are summed to produce one data in the feature map. For example, in Figure 3, a
3 × 3 kernel is applied to the first 3 × 3 segment in the input data. By performing
the element-wise multiplications and sum, the first feature is produced in the feature
map in Figure 3c. A new feature map is generated each time by sliding the filter a
certain number of positions specified by the stride size (in Figure 3, stride = 1, that
will produce nine convolutional results in the feature map). A convolutional layer
usually uses multiple filters. As a result, it produces multiple feature maps and stacks
them together [8]. A CNN usually consists of multiple convolutional layers. The first
convolutional layers detect low level features, e.g., color, gradient orientation, and
edges. The next layers detect middle-level features such as shapes. In addition, the
following layers detect an object, e.g., a car. Kernel sizes and the number of convolutional
layers are key hyper-parameters that determine the architectural configuration of con-
volutional layers. In addition, each convolutional output is provided to an activation

Technologies 2021, 9, 20 6 of 23

function to expedite training. In this paper, we use ReRectified Linear Unit (LU) that
is one of the most popular activation functions. It is an element-wise function applied
to each data x produced by convolution; it simply returns max(0, x). ReLU is popular
since it is nonlinear and computationally efficient.

• Pooling layers [2,17]: The feature maps that is the output of one or more convolutional
layer are fed into a pooling layer that, via downsampling, reduces the dimensionality
and the risk of overfitting [1,34,35] where the CNN is memorizing the training data
rather than generalizing the model to predict/infer the classes of new, unseen images.
Max pooling and average pooling are the most common pooling techniques. For
example, max pooing of size 2 × 2 with depth 1 and stride 2 is depicted in Figure 4.
As shown in the figure, pooling keeps representative features, while halving the width
and height. The pooling window size, stride, and number of pooling layers are important
hyper-parameters that also affect the time and accuracy of image classification via
CNNs.

• Fully connected layers [2]: In a CNN, feature maps processed through the convolution
and pooling layers are flattened, i.e., converted to a single-dimension vector, and fed
to the fully connected layers. Each neuron in the first fully connected layer then
computes the weighted sum of the features provided to itself. The following fully
connected layer computes the weighted sum of the output signals provided as the
input to itself. This process is repeated through the fully connected layers.

• Output layer and training: By giving different features different weights, the convolu-
tional and fully connected layers find the most correlated features to a particular class.
In the prediction phase, the output layer gives the probabilities that the input image
belongs to different predefined classes based on the detected features. For image
classification with more than two classes, the softmax function[36] used in this paper
is a common technique to compute the probabilities [6]. Finally, the class with the
highest probability is selected and compared to the label, the ground truth. Based on
the comparison results, the weights are adjusted to enhance the classification accuracy
via back propagation [37] and gradient descent [38] techniques. By repeating the
whole procedure for a big training data set, the CNN learns the model for a specific
application, such as computer vision.

• CNN model evaluation: The accuracy of the trained CNN model Hi is:

α(Hi) = nc/nt (1)

where nc and nt represent the number of the images classified correctly and the total
number of classified images, respectively.
Specifically, accuracy is evaluated using the separate set of data, called the test set, the
model has not seen during the training (for more details of CNNs, please refer to [2,6]).
Following this approach, in Section 4, each data set is divided into the training set
and test set. We use the training set to train our CNN models and use the test set
to evaluate the generalizability of the models derived by our approach discussed in
Section 3 in terms of the prediction accuracy and time.

Technologies 2021, 9, 20 7 of 23

1 1 1 0 0
0 1 1 1 0
0 0 1 1 0
0 0 1 0 1
0 1 0 1 0

1 0 1
0 1 0
1 0 1

(a) Data

1 1 1 0 0
0 1 1 1 0
0 0 1 1 0
0 0 1 0 1
0 1 0 1 0

1 0 1
0 1 0
1 0 1

(b) Filter

1 1 1 0 0
0 1 1 1 0
0 0 1 1 0
0 0 1 0 1
0 1 0 1 0

1 0 1
0 1 0
1 0 1

4

(c) Feature Map

Figure 3. An Example of Convolution using a 3 × 3 Kernel in Deep Learning. In deep learning,
convolution consists of element-wise multiplications between the input data and filter as well as
the summation of the multiplication results. In this specific example, element-wise multiplications
between the data in (a) and the filter in (b) are performed and summed up to produce the output 4 in
(c). The filter slides through the data to produce the nine results in (c). In this example, the stride
is 1; that is, the filter slides by one position to the right or down after completing each convolution
operation describe above.

Figure 4. An Example of Max Pooling (image source: [39]). In this example, max pooling is applied
for dimensionality reduction via downsampling.The 2 × 2 max pooling window with stride 2 is
applied through the data, producing the four results.

2.2. Problem Formulation

In this paper, we assume that a soft real-time framework for image classification
is deployed in an IoT gateway connected to one-hop (wired/wireless) cameras or in an
edge server directly connected to the gateway. We consider a sporadic task model, since a
camera can quickly determine whether there is any moving object using, for example, a
motion sensor and submits an image to the server. Thus, the minimum inter-arrival time
between two consecutive jobs of task τi for camera i is equal to the inverse of the frame
rate of the camera. Upon the arrival of the jth image from camera i, the CNN is required
to complete job τij to classify the image within the deadline = arrival time + Di, where Di
is the relative deadline of τi. Our approach is orthogonal to real-time scheduling [40]. A
popular scheduling algorithm, e.g., Earlier Deadline First (EDF), can be used to schedule
image classification tasks.

We assume that the system is dedicated to (soft) real-time image classification, since
image classification via deep learning within stringent timing constraints is computationally
demanding. We also assume that input images from (wired/wireless) cameras may arrive
late at the edge and image classification jobs can be preempted by higher priority jobs (if
any) too. Given that, at run time, we dynamically select one of the CNN models expected
to efficiently classify an input image with the best possible accuracy among the models in
the system within the remaining time to the inference job deadline.

The block diagram in Figure 5 illustrates the proposed research step by step. First,
our framework allows a user to specify the key requirements for adaptive real-time image
classification, e.g., the required minimum accuracy, deadline, memory budget to store

Technologies 2021, 9, 20 8 of 23

the adaptive CNN models, for an application of interest, e.g., traffic control or smart
manufacturing. Second, we propose an effective approach that derives a set of δ-Pareto
optimal CNN models to meet the user requirements. Third, we design a lightweight
algorithm that dynamically chooses the CNN expected to support the highest accuracy
subject to the remaining time to the deadline at runtime with minimal overheads. Fourth,
the proposed approach and the two baselines described before are evaluated via extensive
experiments. Furthermore, we discuss related work, advantages and limitations of the
proposed approach, and future work issues followed by the conclusions.

User
requirement
specification

Pareto
optimization

Runtime
model

selection
Evaluation

Related Work
and

Discussions
Conclusions

Figure 5. A Step-by-Step View of the Proposed Research.

3. Exploring CNN Models for Timely, Adaptive Image Classification

In this section, we discuss how to perform neural architectural search and find δ-Pareto
optimal CNN models. Furthermore, we describe how to choose an appropriate δ-Pareto
optimal model subject to the remaining time to the deadline at run time.

3.1. Overview

In our approach, a user (real-time application designer) aware of the semantics of a real-
time data analytics application of interest specifies four user requirements: {αmin, D, C, δααmin, D, C, δααmin, D, C, δα}
where αmin is the minimum acceptable accuracy (for image classification in this paper), D
is the inference deadline such as 1ms, C is the allowed amount of memory space to store
CNNs with different inference times and accuracy, and δα is the minimum accuracy gain.
To find Pareto optimal CNNs cost-efficiently, we take the following steps illustrated in
Figure 6:

1. We first derive a lightweight CNN, H1, whose accuracy is at least αmin by exploring
CNNs with different architectures (defined by their hyper-parameters).

2. If the current set of Pareto efficient CNN models is HP = {H1, . . . , Hi} where they
are sorted in ascending order of the accuracy and inference time, we search for Hi+1
whose accuracy, α(Hi+1), is higher than the accuracy of Hi, α(Hi), and its inference
time, exec_time(Hi+1), is not longer than D by incrementally modifying the hyper-
parameters of Hi in the neighborhood of the search space to efficiently find Hi+1.

3. We repeat this process until we cannot find a new CNN Hi+1 such that α(Hi+1)−
α(Hi) and exec_time(Hi+1) ≤ D after a predetermined number of trials.

In this way, we build HP that meets the user requirements offline. Based on HP, we
build the set of δ-Pareto optimal CNNs, HδP ⊂ HP. If Hi, Hi+1 ∈ HδP ∀i, α(Hi+1)− α(Hi) ≥
δα. We store HδP in memory using no more than C bytes to support effective trade-offs
between the inference time and accuracy at runtime, requiring no I/O to retrieve a CNN
model. To classify an input image at time t, our approach efficiently selects the CNN
model expected to provide the highest accuracy at t among the feasible CNN models in
H f ⊂ HδP where the estimated inference time of an arbitrary CNN model Hk ∈ H f is not
longer than the remaining time to the deadline to meet stringent timing constraints. A
more detailed description of deriving HδP and selecting an appropriate CNN in HδP at
runtime for adaptive real-time image classification follows.

Technologies 2021, 9, 20 9 of 23

specify user
requirements

user
requirements

met?

Yes

Yes

No

No

Figure 6. Flowchart of Pareto Optimization. Our approach first finds the CNN, H1, whose accuracy
α(Hi) ≥ αmin (the user- specified minimum accuracy) and its execution time is not longer than the
user-specified inference deadline D. It inserts H1 into HδP (the set of δ-Pareto optimal CNNs). It
appends Hi (i > 1) to HδP, if Hi’s inference time does not exceed D, α(Hi)− α(Hi−1) ≥ δa where
δα is the user-specified accuracy gain, and the total memory footprint of the δ-Pareto CNN models
does not exceed the memory budget C. In the flowchart, the purple units specify and enforce user
requirements for adaptive real-time image classification using our proposed approach, the blue boxes
initialize and control the overall process, and the brown ones derive adaptive CNN models and add
eligible CNNs that meet the user requirements into HδP.

3.2. Finding δ-Pareto Optimal CNNs Offline

The CNN models in HP, the input to Algorithm 1, are sorted in ascending order of
the accuracy and inference time. In line 1 of Algorithm 1, we initialize the set of δ-Pareto
optimal CNNs: HδP = {H1}. In lines 2–4, we initialize several variables: the number of
CNNs in HδP, the total memory footprint, and the highest accuracy provided by the CNNs
currently in HδP.

In lines 5–10, Hi ∈ HP is appended to HδP, if its accuracy is higher than the accuracy
of the CNN most recently appended to HδP by at least δα and the user-specified memory
budget, C, will not be exceed after adding Hi to HδP. Finally, in line 11, the algorithm
returns HδP and Nδ (the number of the CNNs in HδP) where Nδ ≤ N.

We only store HδP in the edge server for efficient time vs. accuracy trade-offs at
run-time. A user (i.e., an application designer) can specify δα and C in Algorithm 1 to
control Nδ based on application requirements and the available memory space to store
CNNs. Furthermore, the prediction time of every CNN in HP and HδP does not exceed the
user-specified deadline D by construction as discussed in the previous subsection.

Technologies 2021, 9, 20 10 of 23

Algorithm 1: Deriving δ-Pareto Optimal CNNs Offline.
input :Trained Pareto optimal CNN models sorted in ascending order of the

accuracy and inference time: HP = {H1, H2, . . . , HN}
δα: accuracy threshold
C: memory space budget to store HδP

output : HδP = {δ-Pareto optimal CNNs}, Nδ = |HδP|

1 HδP = {H1}
2 Nδ = 1
3 S = size(H1) /* memory footprint */
4 α = accuracy(H1) /* current max accuracy */
5 for i = 2; i ≤ N; i++ do
6 if accuracy(Hi)− α ≥ δα and S + size(Hi) ≤ C then
7 Append Hi to HδP
8 α = accuracy(Hi)
9 S = S + size(Hi)

10 Nδ++

11 return HδP, Nδ

Given N input CNNs that are Pareto optimal, the time complexity of Algorithm 1 is
O(N log N). The time complexity for sorting HP is O(N log N) and the time complexity
for building HδP is O(N) that is dominated by O(N log N).

3.3. Efficient Run-Time Selection of a CNN for Timely Image Classification

When an input image should be classified by a sporadic task instance τij, the real-time
image classification system picks Hopt ∈ HδP, one of the δ-Pareto CNN models stored in
the system, using Algorithm 2. The algorithm simply looks up the table of the δ-Pareto
optimal CNNs in HδP and picks the CNN, Hopt, expected to support the highest possible
accuracy subject to ρij, i.e., the remaining time to the (absolute) deadline of the inference
job τij:

Hopt = L
[

arg max
1≤k≤Nδ

{exec_time(Hk) ≤ ρij}
]

(2)

where L is the lookup table for the CNNs in HδP. Subsequently, the system classifies the
image using Hopt. (If the inference time of every CNN in HδP is longer than the remaining
time to the deadline, Algorithm 2 returns H1 that has the shortest execution time in HδP).

Algorithm 2: Run-Time Selection of a CNN Model.
input : δ-Pareto CNNs: HδP = {H1, . . . , HNδ

};
Dij: deadline of an inference job τij;
ρij: remaining time to Dij

output : Hopt: δ-Pareto optimal CNN subject to ρij

1 Hopt = H1
2 for i = 2; i ≤ Nδ; i++ do
3 if exec_time(Hi) ≤ ρij then
4 Hopt = H1

5 else
6 break

7 return Hopt

Technologies 2021, 9, 20 11 of 23

In this paper, we require Nδ be a small constant. We make this design choice, since the
algorithm needs to run frequently to support high accuracy image classification subject to
timing constraints. Thus, the time complexity of Algorithm 2 is O(1).

4. Evaluation Results

In this section, we first evaluate the impacts of hyper-parameters on the accuracy
and latency for predictions using two popular data sets to verify our assertion that hyper-
parameters affect the inference time and accuracy and analyze which hyper-parameters
have more impacts. After that, we evaluate the feasibility and effectiveness of our approach
in comparison to layer-wise adaptation, e.g., [24,25]. Since the source code of [24,25] was
not available, we have used the depth of a CNN as another hyper-parameter in our model
search and evaluation. In this paper, we have used TensorFlow [22] to implement our CNN
models.

4.1. Data Sets and Hyper-Parameters
4.1.1. MNIST Data Set

The MNIST data set of handwritten digits [26] consists of 60,000 samples in training
set and 10,000 samples in the test set. As summarized in Table 1, all the CNN models we
trained for MNIST data set consist of two convolutional and ReLU layers, two pooling
layers, and two fully connected layers where the number of neurons in the second fully
connected layer is a half of that in the first fully connected layer. We have fixed the basic
CNN architecture using these hyper-parameters, since we have achieved relatively high
accuracy that ranges between 0.9 and 0.99 with different execution times for different
values of the other hyper-parameters—different kernel sizes, pool sizes, stride sizes, and
numbers of neurons in the fully connected layers.

Table 1. Fixed Hyper-Parameters Defining the Topology of the CNNs for MNIST.

Hyper-Parameter Value

#convolutional layers 2
#channels in the 1st conv. layer 16
#channels in the 2nd conv. layer 36
#ReLU layers 2
#pooling layers 2
#fully connected layers 2

For training, we have performed 40,000 iterations. The batch size is 64; therefore, the
model is updated after processing 64 random samples via the gradient descent algorithm [6].
The number of channels in the first and second convolutional layer are 16 and 36, respec-
tively. The learning rate controls how quickly a model adjusts the weights. It is typically
a small positive number less than 1. For the MNIST data set, we use the learning rate of
10−4. For training and inferences using the MNIST data set, we have used a machine with
4 cores and 8GB memory to mimic an IoT gateway or a low-end edge server such as [41].

4.1.2. CIFAR-10 Data Set

The CIFAR-10 data set [27] consists of 50,000 images in the training set and 10,000
images in the test set. Every image is color and labeled: it belongs to one of the 10 different
classes of objects. As CIFAR-10 data are more complex and harder to train and perform
predictions, we consider a more diverse set of hyper-parameters to support systematic
trade-offs between the inference time and accuracy. Table 2 shows the hyper-parameters of
the bare-bone CNN architecture. Based on these hyper-parameters, we train many models
that use different kernel, pool, and stride sizes to empirically evaluate their impacts on
inference time and accuracy. Furthermore, we consider different numbers of convolutional,
ReLU, and pooling layers.

Technologies 2021, 9, 20 12 of 23

Table 2. Basic Hyper-Parameters of the Bare-bone CNN for CIFAR-10.

#channels in the 1st conv. layer 64
#channels in the 2nd conv. layer 64
#convolutional layers 2
#ReLU layers 2
#pooling layers 2
#fully connected layers 2

To train a model, we use 150 epochs where each epoch processes all the images in the
training set instead of using small batches different from what we have done for the MNIST
data set. The initial learning rate is 10−3 but it is reduced to 3× 10−4 after 100 epochs to
make the weight adjustments less aggressive in the later part of training. As training and
inference is more challenging for the CIFAR-10 data set, we use a more powerful machine
with the 16 core Intel Xeon E5-2667 processor and 32GB memory to mimic a real-time edge
server for classifying images from embedded cameras.

For each measurement of the inference time, we have used 1000 randomly selected
images in the test set of the MNIST or CIFAR-10. We report the results of 20 such measure-
ments using box plots, since the execution time varies even for the same CNN model with
the same hyper-parameters and parameters (weights). To measure the inference accuracy,
however, we have used the entire data in the test set following a common practice in ma-
chine learning literature [2]; therefore, there is only one accuracy measurement with respect
to a specific set of hyper-parameters (and parameters). For brevity, Table 3 introduces a
few notations that represent the hyper-parameters varied for experiments. In the following
subsection, we evaluate the impacts of k, p, f , s, and d on the prediction accuracy and time.

Table 3. Notations in the paper.

Notation Meaning

k kernel size in the convolutional layers
p pool size in the pooling layers
s stride size for convolution or pooling
f number of neurons in the first fully connected layer
d depth (total number of the layers in a CNN)

4.2. Impacts of Hyper-Parameters on the Inference Time and Accuracy
4.2.1. Impacts of the Convolutional Kernel and Stride Sizes

First, we evaluate the impact of the convolutional kernel size k on the prediction time
and accuracy. We measure the time and accuracy using four different kernel sizes in the
convolutional layers, k = 3× 3, 5× 5, 7× 7, and 9 × 9, for each combination of p, s, and f
(defined in Table 3). More specifically, we have used 72 different combinations of p, s, and
f for each k. For the clarity of the presentation, we only plot the most representative results
in Figures 7 and 8 where f = 384.

From Figures 7 and 8, we observe that the accuracy and execution time for s = 2 is
generally higher than those for s = 6, since a small stride performs relatively fine-grained
data analysis via more convolutions. As shown in Figure 7, the execution time generally
increases as the kernel size increases too due to the higher computational loads. In Figure 8,
however, the accuracy does not show an obvious trend for different kernel sizes. For
s = 2, the accuracy actually decreases as k increases, because there could be too much
overlapped data between adjacent kernel executions as k increases. For s = 6, the accuracy
initially increases but eventually plateaus or even drops as depicted in Figure 8. When k is
relatively small (e.g., k = 3 × 3), the big stride skips certain data, resulting in low accuracy.
As k increases, each kernel execution processes a bigger data block so that important
features are skipped less; therefore, the accuracy increases. However, it becomes to process

Technologies 2021, 9, 20 13 of 23

overlapped data repeatedly when k > s, increasing the likelihood of a drop in accuracy.
Our experiments using the MNIST data set have shown similar results.

3x3 5x5 7x7 9x9

0.10

0.12

0.15

s=
2

Ti
m

e(
m

s)

3x3 5x5 7x7 9x9

0.15

0.20

3x3 5x5 7x7 9x9

0.15

0.20

0.25

3x3 5x5 7x7 9x9

0.20

0.25

3x3 5x5 7x7 9x9
Kernel Size

 p=3x3

0.05

0.06

0.07

s=
6

Ti
m

e(
m

s)

3x3 5x5 7x7 9x9
Kernel Size

 p=5x5

0.07

0.08

3x3 5x5 7x7 9x9
Kernel Size

 p=7x7

0.08

0.09

0.10

3x3 5x5 7x7 9x9
Kernel Size

 p=9x9

0.10

0.11

0.12

Figure 7. Kernel Size vs. Execution Time (CIFAR-10). The execution time increases for the increasing kernel size across
different s and p values. These results are expected, since a bigger kernel usually requires more computation. However, the
accuracy does not necessarily increase as the kernel size increases as shown in Figure 8.

3x3 5x5 7x7 9x9

0.80

0.82

0.84

s=
2

Ac
cu

ra
cy

3x3 5x5 7x7 9x9

0.83

0.85

3x3 5x5 7x7 9x9

0.82

0.84

0.86

3x3 5x5 7x7 9x9

0.82

0.84

3x3 5x5 7x7 9x9
Kernel Size

 p=3x3

0.73

0.75

0.78

s=
6

Ac
cu

ra
cy

3x3 5x5 7x7 9x9
Kernel Size

 p=5x5

0.76

0.78

0.80

3x3 5x5 7x7 9x9
Kernel Size

 p=7x7

0.78

0.79

3x3 5x5 7x7 9x9
Kernel Size

 p=9x9

0.78

0.79

Figure 8. Kernel Size vs. Accuracy (CIFAR-10). A bigger kernel does not necessarily lead to higher accuracy, even though it
has a longer execution time as plotted in Figure 7. Thus, finding an appropriate kernel size for certain s and p values is
important to strike a balance between the inference time and accuracy.

For the CIFAR-10 data set, the accuracy differences between the tested CNNs with
different kernel and stride sizes range between 1.50 and 9.25%. The biggest execution time
gap between the CNN models with different kernel sizes is 21.02%. For the MNIST data
set, the impacts on the accuracy and execution time are between 0.1 and 3.65% and at most
19.86%, respectively. The difference of the results between the different kernel and stride

Technologies 2021, 9, 20 14 of 23

sizes is less noticeable for MNIST, because the data set is less complex and, therefore, it is
easier to achieve high accuracy using a relatively simple CNN architecture.

4.2.2. Impacts of the Pooling Window and Stride Sizes

In CNNs, pooling is used for downsampling to reduce redundant features, keeping
representative ones. In this set of experiments, we vary the pooling window and stride
sizes in the pooling layers that affect downsampling together. We evaluate their impacts
on the inference time and accuracy. Specifically, we consider p = 3 × 3, 5 × 5, 7 × 7, and
9 × 9, and s = 2, 4, 6, 8, 10, and 12. For each p (pooling window size), we have used 72
combinations of k, s, and f . In addition, to evaluate possible impacts on time and accuracy
of each s (stride size), we have considered 48 combinations of k, p, and f . Especially, we
present the results for p = 3× 3; the results for the other pooling window sizes were
similar.

In Figures 9 and 10, both the time and accuracy drop as s increases. In Figure 9, the
time initially decreases as s increases and then the trend slows down. This is because less
computation is needed as s increases initially. When s > 6 in Figure 9, however, data
skipping cannot make the models run much faster, because the basic computations in the
convolutional and pooling layers do not decrease significantly. On the other hand, skipping
results in loss of features, incurring accuracy drops. As a result, in Figure 10, the accuracy
drops almost linearly as the stride size increases.

2 4 6 8 10 12
Stride Size

 k=3x3

0.06

0.08

0.10

p
=

3x
3

Ti
m

e(
m

s)

2 4 6 8 10 12
Stride Size

 k=5x5

0.08

0.10

0.12

2 4 6 8 10 12
Stride Size

 k=7x7

0.10

0.15

2 4 6 8 10 12
Stride Size

 k=9x9

0.10

0.15

Figure 9. Stride Size vs. Execution Time (CIFAR-10). A bigger stride generally decreases the execution time, since data are
processed in a more gross-grained manner.

2 4 6 8 10 12
Stride Size

 k=3x3

0.60

0.70

0.80

p
=

3x
3

Ac
cu

ra
cy

2 4 6 8 10 12
Stride Size

 k=5x5

0.60

0.70

0.80

2 4 6 8 10 12
Stride Size

 k=7x7

0.70

0.80

2 4 6 8 10 12
Stride Size

 k=9x9

0.70

0.80

Figure 10. Stide Size vs. Accuracy (CIFAR-10). A bigger stride often results in lower accuracy.

Interestingly, the inference time varies more widely for the different pooling window
and stride combinations than it did for the different combinations of the kernel and stride
sizes (discussed in Section 4.2.1). For the CIFAR-10 data set, the accuracy changes between
1.4 and 11.02% across all the CNNs tested in this section (1.25–9.25% in Section 4.2.1). The
biggest difference in the inference time between any two different CNNs is 38.77% (21.02%

Technologies 2021, 9, 20 15 of 23

in Section 4.2.1). We think this is because the goal of pooling is downsampling [6]. Thus,
combinations of pooling window and stride sizes give the real-time image classification system more
adaptability and control in terms of time vs. accuracy trade-offs. We observe similar patterns for
MNIST: the impact on the accuracy and latency are between 0.1 and 3.99% (0.1–3.65% in
Section 4.2.1) and at most 21.9% (19.86% in Section 4.2.1), respectively.

4.2.3. Impacts of the Fully Connected Layers

In this subsection, we evaluate the accuracy and time for different sizes of the first
fully connected layers that range between114 and 144 and 320–448 neurons for MNIST
and CIFAR-10, respectively (the second fully connected layer uses a half of the neurons
as discussed in Section 4.1.1). However, we have not observed any clear pattern: using
more neurons in the fully connected layers does not necessarily increase the accuracy or time to a
noticeable degree. We think this is because main computations occur in the convolutional
and pooling layers in a CNN. Furthermore, certain connections between the neurons in the
fully connected layers may have little impact on accuracy due to the small weights. The
number of neurons in the fully connected layers may have more impact on the time and
accuracy in different deep learning models than CNNs. However, it is beyond the scope of
the paper as we focus on adaptive real-time image classification using CNNs in this paper.

4.2.4. Impacts of the Total Depth

In this set of experiments, we evaluate impacts of the total depth of a CNN on the
inference time and accuracy. We use several different depths, i.e., the total number of layers
in the tested CNNs, summarized in Table 4 for the CIFAR-10 data set (we have achieved up
to 0.99 accuracy using a CNN of depth 8 outlined in Table 1 for the MNIST data set. Thus,
we do not consider increasing its depth any further). We set k = 3 × 3, p = 2 × 2, s = 2, and
f = 512 to compare the CNNs with different depths on the common basis. We have trained
each model and tuned their parameters independently.

In Figure 11, as the depth increases from 8 to 19, the accuracy and median time for
an inference increases by approximately 0.036 and 0.08 ms, respectively. Although the
accuracy is increased by 3.6%, the median execution time for one inference increases by
more than 80%. From this, we observe that increasing the total depth of a CNN is a relatively
expensive and less cost-effective option. Essentially, real-time image classification by only adapting
the number of the layers (e.g., [24,25]) to execute at runtime is substantially more restricted and
provides a much narrower scope of adaptation than our approach does. Thus, our approach is more
cost-effective.

8 12 17 19
Number of Layers

0.860

0.865

0.870

0.875

0.880

0.885

0.890

0.895

Ac
cu

ra
cy

(a) Depth vs. Accuracy

8 12 17 19
Number of Layers

0.10

0.12

0.14

0.16

0.18

Ti
m

e(
m

s)

(b) Depth vs. Time

Figure 11. CNN Depth vs. Accuracy and Execution Time (CIFAR-10). When the depth is increased
from 8 to 19, the execution time increases by more than 1.8×, but the accuracy enhances by only
3.6%. From these results, we observe that considering only the depth of a CNN for adaptation is less
effective than our approach for robust real-time image classification via systematic time vs. accuracy
trade-offs. The hyper-parameter values used to design the CNNs with different depths are specified
in this figure.

Technologies 2021, 9, 20 16 of 23

Table 4. CNNs with Different Depths (CIFAR-10).

#Total #Conv. #Pooling #ReLU #Fully conn.
Layers Layers Layers Layers Layers

8 2 2 2 2
12 4 4 2 2
17 6 6 3 2
19 8 6 3 2

4.2.5. Summary of Time vs. Accuracy Relationships

Figures 12 and 13 plot the relationships between the inference time and accuracy
for all the combinations of different hyper-parameters tested in this section. Each data
point in the 2D figures shows the time and accuracy of each CNN fully configured by its
hyper-parameters (and weights). In the figures, the relationship between the CNN execution
time and accuracy is nonlinear and considerably irregular in that there are many zigzags and wide
swings of accuracy for similar execution times. Hence, it is naive and often erroneous to assume that
a longer execution time definitely leads to higher accuracy. To address the issue, in this paper, we
explore organized trade-offs between time and accuracy for real-time image classification
to support monotonically increasing accuracy with respect to the execution time.

0.05 0.10 0.15 0.20 0.25 0.30 0.35
Time(ms)

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Figure 12. Time vs. Accuracy for the MNIST Data Set. As plotted in this figure, there are many CNN
models that are Pareto suboptimal; that is, their accuracy is lower than that supported by one or more
CNNs with shorter execution times. Our approach eliminates them to support adaptive real-time
image classification cost-efficiently.

0.05 0.10 0.15 0.20 0.25 0.30
Time(ms)

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

Figure 13. Time vs. Accuracy for the CIFAR-10 Data Set. There are many Pareto suboptimal CNNs
for this data set too. Our approach only considers Pareto optimal CNNs as candidates to be included
in the set of CNNs for adaptive real-time image classification, HδP.

Technologies 2021, 9, 20 17 of 23

4.3. Effectiveness of Our Model Selections and Adaptation

Given the hundreds of CNN models whose inference times and accuracy are plotted
in Figures 12 and 13, our approach picks only a few δ-Pareto optimal CNN models for
cost-efficient real-time image classification as discussed next.

4.3.1. Evaluation Using MNIST

To evaluate the effectiveness of our approach, let us consider an example user re-
quirement specification for MNIST: αmin = 0.95, δα = 0.02, D = 1 ms, and C = 10 MB.
To meet the specified user requirements, we first derive H1 that supports αmin, D, and C.
By incrementally modifying the hyper-parameters of Hi(i ≥ 1) in the neighborhood of
Hi, we derive the set of 11 Pareto optimal CNN models, H = {H1, . . . , H11}, in ascending
order of accuracy and inference times as illustrated in Figure 14 and summarized in Table 5,
while discarding Pareto-inefficient CNNs that fail to support monotonically increasing
accuracy for longer inference times. Furthermore, using Algorithm 1, we extract the set
of δ-Pareto optimal CNNs, HδP = {H1, H6, H11}, boldfaced in Table 5. Our first baseline,
which is a common approach for image classification via deep learning, only uses H11 that
supports the highest accuracy without any runtime adaptation via imprecise computation
considering the remaining time to the deadline. The accuracy of H1 and H6 in HδP is lower
than that of H11 by 0.042 and 0.007, but their inference times are only 16.8% and 25% of the
baseline, respectively. Therefore, our real-time image classification system can pick Hopt
among HδP using Equation (2) based on the remaining time to the deadline, if necessary,
to meet stringent timing constraints of real-time image classification tasks for a relatively
small accuracy loss when H1 or H6 is chosen. In Table 5, every inference time T < D (1 ms).
Moreover, the total memory consumption to store HδP is 6.625 MB < C. Therefore, our
approach meets the user required αmin, δα, D, and C by constructing HδP.

0.05 0.10 0.15 0.20 0.25 0.30
Time(ms)

0.95

0.96

0.97

0.98

0.99

Ac
cu

ra
cy

Figure 14. Pareto Optimal CNNs for MNIST. As illustrated in this figure, the set HP that consists of
Pareto optimal CNNs may include several models with similar execution times and accuracy. Thus,
it is necessary to select δ-Pareto CNNs only and include them in HδP to meet user requirements in a
cost-efficient manner.

Technologies 2021, 9, 20 18 of 23

Table 5. Pareto and δδδ-Pareto optimal CNNs for MNIST where the example user requirements are:
αmin = 0.95, D = 1 ms, C = 10 MB, δα = 0.02. Our approach meets the user-requirements by deriving
HP = {H1, H2, . . . , H11} and HδP = {H1, H6, H11}.

ID T(µs) α d k p s f Size (KB)

H1 48.84 0.950 8 3 × 3 3 × 3 4 114 276
H2 49.38 0.961 8 3 × 3 3 × 3 4 128 302
H3 56.15 0.963 8 3 × 3 5 × 5 4 114 276
H4 71.45 0.966 8 5 × 5 7 × 7 6 140 257
H5 71.49 0.967 8 5 × 5 7 × 7 8 128 250
H6 72.51 0.985 8 3 × 3 3 × 3 2 128 2791
H7 85.36 0.986 8 3 × 3 5 × 5 2 128 2791
H8 90.95 0.987 8 3 × 3 5 × 5 2 114 2492
H9 130.33 0.989 8 5 × 5 3 × 3 2 128 2904
H10 170.60 0.991 8 5 × 5 7 × 7 2 114 2606
H11 298.99 0.992 8 9 × 9 3 × 3 2 140 3558

4.3.2. Evaluation Using CIFAR-10

For the evaluation using CIFAR-10, let us consider an example user-specification:
αmin = 0.8, δα = 0.03, D = 1 ms, and C ≤ 50 MB. By incrementally modifying the hyper-
parameters of Hi, we derive the set of 11 Pareto optimal CNN models, H = {H1, . . . , H11},
with the increasing accuracy and inference time as shown in Figure 15 and summarized
in Table 6, while discarding the Pareto-inefficient CNNs that fail to support increasing
accuracy for longer inference times. In addition, using Algorithm 1, we extract the set
of δ-Pareto optimal CNNs, HδP = {H1, H6, H11}, boldfaced in Table 6. Comparing to the
baseline that only uses H11, the accuracy of H1 and H6 is lower by 0.085 and 0.036, but
their inference times are only 39.2% and 55.1% of the baseline, respectively. Thus, our real-
time image classification system can efficiently pick Hopt among HδP using Equation (2), if
necessary, to meet tight timing constraints. In Table 5, every inference time T < D (1 ms).
Furthermore, the total memory consumption to store HδP is 48.857 MB < C. Hence, our
approach meets the user-specified αmin, D, C, and δα requirements by building HδP.

0.06 0.08 0.10 0.12 0.14 0.16 0.18
Time(ms)

0.78

0.80

0.82

0.84

0.86

0.88

Ac
cu

ra
cy

Figure 15. Pareto Optimal CNNs for CIFAR-10. This figure also shows that several Pareto opti-
mal CNNs have similar inference times and accuracy, further emphasizing the need to build HδP

consisting of δ-Pareto CNNs only.

Technologies 2021, 9, 20 19 of 23

Table 6. Pareto and δδδ-Pareto optimal CNNs for CIFAR-10 where the example user requirements are:
αmin = 0.8, D = 1 ms, C = 50 MB, δα = 0.03. Our approach meets the user-requirements by deriving
HP = {H1, H2, . . . , H11} and HδP = {H1, H6, H11}.

ID T(µs) α d k p s f KB

H1 71.97 0.808 8 3 × 3 5 × 5 4 320 1902
H2 72.85 0.812 8 3 × 3 5 × 5 4 448 1960
H3 79.05 0.818 8 5 × 5 3 × 3 4 384 1927
H4 79.72 0.819 8 5 × 5 3 × 3 4 448 1927
H5 89.11 0.821 8 5 × 5 5 × 5 4 448 2254
H6 101.15 0.857 8 3 × 3 3 × 3 2 320 7997
H7 126.31 0.86 8 5 × 5 3 × 3 2 448 7251
H8 133.14 0.863 8 5 × 5 3 × 3 2 320 7241
H9 170.04 0.865 12 3 × 3 3 × 3 2 512 10,593
H10 178.87 0.882 17 3 × 3 3 × 3 2 512 20,049
H11 183.55 0.893 19 3 × 3 3 × 3 2 512 38,958

4.3.3. Summary of the Effectiveness and Overhead of Our Approach

Unlike another baseline that considers the depth of the CNN for adaptation [24,25],
we can consider and leverage several CNNs with the same number of layers too, such as
the CNNs in Tables 5 and 6, if they meet the user requirements. Thus, our approach is
more flexible and cost-effective as discussed before. Comparing to the first baseline that
only uses H11, our approach consumes additional 3.067 MB and 9.899 MB to keep H1 and
H6 for MNIST and CIFAR-10 in memory, respectively, (Tables 5 and 6). By comparing
Figures 12 and 13 to Tables 5 and 6, we observe that Algorithm 1 reduces the total number
of candidate models for runtime adaptation by two orders of magnitude. Furthermore,
Algorithm 2 for dynamic adaptation is O(1) as discussed in Section 3. It selects a CNN in
HδP expected to meet D only in 7–8 ns and 17–20 ns for MNIST and CIFAR-10, respectively.
The additional memory consumption and latency of our adaptive approach is acceptable
in modern edge gateways or servers. Overall, our approach has significant advantages
over the common baseline approaches for the relatively small overhead.

5. Related Work

In early studies, accuracy is the standard metric to evaluate performance in machine
learning applications [9,13]. Most object detection papers [9–15] focus on how to detect
objects with high accuracy. In recent works, e.g., R-FCN [11], SSD [42], and YOLO [9],
however, not only accuracy but also the frame rate is evaluated. In [13], trade-offs between
the accuracy and frame rate are evaluated for three different neural networks, R-FCN[11],
R-CNN [12], and SSD [42]. In this paper, we derive a set of δ-Pareto CNNs that satisfy
the user-specified accuracy and memory requirements to efficiently meet stringent timing
constraints of real-time image classification based on imprecise computation, since the
average frame rate over an extended time interval may fail to measure and control transient
fluctuations of latency (and timeliness) of individual inferences. Thus, our approach is
complementary to these approaches.

Recently, real-time image classification and object detection are drawing increasing
attention [24,25,43,44]. The key difference between our proposed approach and such works
is that we systematically study impacts of hyper-parameters on the accuracy and execution
time of CNNs to support a monotonic increase in accuracy for a longer execution time
with little overhead at runtime. There are existing works on evaluation of CNN hyper-
parameters [13,45]; however, they do not consider timing constraints. In [13], different
types of activation functions and classifiers are evaluated; however, we do not consider
them since they do not affect execution times significantly.

Partial execution of some neurons or layers in CNNs based on the input or deadline
has been considered. Input-dependent execution has been widely used in computer vision,
such as cascaded detectors [46,47]. In dynamic Deep Neural Networks(D2NN) [48], in

Technologies 2021, 9, 20 20 of 23

addition to normal neurons, there are control nodes that dynamically decides to skip
neurons so that the execution time can be adjusted accordingly at run-time based on input.
However, D2NN does not deal with time vs. accuracy trade-offs to meet stringent timing
constraints for real-time image classification.

Deadline-based dynamic frameworks make the neural network model dynamically/
selectively execute a subset of layers. AnytimeNet [24] is a framework that enables gradual
insertion of additional layers in an attempt to enhance accuracy if time permits. In multi-
path neural networks [25], a model is trained with multiple paths which contain different
numbers of layers. At run-time, it is possible to change paths based on deadlines. In
[49], a ResNet [50], is divided into a mandatory part and an optional part where the
former is always executed, but the latter is run when enough time is available. In fact,
Refs. [24,25,49] are most closely related to our work. Our work is, however, significantly
more comprehensive than them in that the number of layers in a or the number of resblocks
in a ResNet (CNN) is only one hyper-parameter whose applicability is relatively limited as
thoroughly analyzed in Section 4. Depending on applications, a shallow neural network
may provide high accuracy. In this paper, for example, a CNN with only eight layers in
total supports over 0.99 accuracy for the MNIST data set. In [51], a CNN with only two
hidden layers supports wireless channel state information classification with up to 0.98
accuracy. Adding more layers in such applications will increase the inference time with
largely diminishing returns. Thus, we consider not only the number of layers but also the
other important hyper-parameters, such as the kernel size, pooling window size, stride,
and number of neurons in the fully connected layers, to support more robust, cost-efficient
trade-offs between the inference time and accuracy. Thus, our work is complementary to
them.

6. Discussion

Generally speaking, research on real-time machine learning explored in this paper
is in an early stage with many open issues [52]. Supporting real-time machine learning
is a challenging problem, since machine learning methodologies, e.g., deep learning, are
computationally expensive. Further, new deep learning models are becoming increasingly
more complicated to enhance the prediction performance. In this regard, the advantage
of the proposed approach is providing systematic, robust trade-offs between the accuracy
and timeliness of real-time image classification based on deep learning. Our design goal
was to minimize the complexity and resulting uncertainties detrimental in safety-critical
real-time systems, e.g., traffic control and smart manufacturing.

A drawback of our approach is the increased memory consumption to store multiple
CNN models, even though the memory overhead is acceptable as analyzed in Section 4. To
further reduce the memory consumption, several techniques, such as model pruning [53]
and compression [54], can be applied to prune less important weights and compress them.
Another limitation of the proposed approach is that the trained models are fixed. As a result,
the prediction performance may drop, if the real-world environment, e.g., traffic status or
lighting conditions, change dramatically. To address this issue, incremental learning [55]
can be applied to continually update the model as necessary. A related challenge is how
to support incremental learning without impairing the timeliness and current prediction
accuracy. A thorough investigation is reserved for future work.

In addition, our approach could be integrated with other advanced works, such
as [56–58], to create synergy. For example, our approach can be combined with [56] to
diagnose faulty machine components in real-time in a smart factory. Furthermore, it can be
synthesized with [57,58] to support efficient real-time video compression and nighttime
image classification, respectively. These issues are reserved for future work.

7. Conclusions and Future Work

Although deep learning can significantly improve real-time applications, e.g., traffic
control or smart manufacturing, it is computationally demanding. As a result, deadlines

Technologies 2021, 9, 20 21 of 23

could be missed, raising potential safety issues. To shed light on the problem, we design a
new adaptive approach for soft real-time image classification based on imprecise computa-
tion. In this paper, we analyze the relationship between the prediction time and accuracy of
many CNN models offline. We then construct a set of δ-Pareto optimal CNNs that support
higher accuracy for a longer execution time. At run-time, our approach efficiently selects
the CNN model expected to support the highest accuracy for image classification subject
to the inference deadline among the stored δ-Pareto optimal CNNs. In our evaluation
undertaken using two popular data sets, we verify that our approach can find a set of
δ-Pareto CNN models for cost-efficient time vs. accuracy trade-offs. For the MNIST data
set, the accuracy and inference time of the models range between 48.84 and 298.99 µs and
0.95–0.992. For the CIFAR-10 data set, the accuracy and inference time range between 71.97
and 183.55 µs and 0.808–0.893. In contrast, the vanilla baseline that uses one non-adaptive
model cannot support dynamic runtime adaptation to meet timing constraints. Design-
ing the second baseline that only adapts the number of layers in a single CNN model, if
necessary, to meet timing constraints is considerably less effective and flexible than our
approach. By increasing the number of layers from 8 to 19, its inference time is increased by
more than 1.8×, while the accuracy is improved by 3.6% only. In our approach, however,
we enhance the accuracy by 4.9% and 8.5%, while increasing the inference time by 1.4×
and 2.55× using 8 and 19 layers, respectively. Thus, using the same number of layers,
we can support higher accuracy than the layer-wise adaptation method, while further
enhancing the accuracy when sufficient time is remaining till the deadline. Furthermore,
our approach is lightweight with little overhead. In general, real-time sensor data analytics
via machine learning is an emerging topic. In this paper, we have performed an early work
on systematic trade-offs between the time and accuracy for image classification. In the
future, we will continue to investigate related research issues including the ones discussed
in Section 6.

Author Contributions: F.C. has designed the framework and CNNs. He has also done performance
evaluation. K.-D.K. has advised them to formulate the research problem investigated in this paper.
He has also helped them to design and analyze the proposed approach and to write the paper. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Science Foundation: CNS-2007854.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are openly available in MNIST
dataset [27] and CIFAR-10 dataset [28].

Acknowledgments: This work was supported, in part, by the National Science Foundation under
Grant No. CNS-2007854.

Conflicts of Interest: The authors declare no conflict of interest. The funding sponsor had no role
in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript, and in the decision to publish the results.

References
1. Bishop, C.M. Pattern Recognition and Machine Learning; Springer: Berlin/Heisenberg, Germany, 2006.
2. Zhang, Z.; Cui, P.; Zhu, W. Deep Learning on Graphs: A Survey. IEEE Trans. Knowl. Data Eng. 2020. [CrossRef]
3. Belinkov, Y.; Glass, J. Analysis Methods in Neural Language Processing: A Survey. Trans. Assoc. Comput. Linguist. 2019, 7, 49–72.

[CrossRef]
4. Bhandare, A.; Bhide, M.; Gokhale, P.; Chandavarkar, R. Applications of Convolutional Neural Networks. Int. J. Comput. Sci. Inf.

Technol. 2016, 7, 2206–2215.
5. Zhang, Q.; Yang, L.T.; Chen, Z.; Li, P. A survey on deep learning for big data. Inf. Fusion 2018, 42, 146–157. [CrossRef]
6. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning;MIT Press: Cambridge, MA, USA, 2016.
7. Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Yu, P.S. A Comprehensive Survey on Graph Neural Networks. IEEE Trans. Neural

Networks Learn. Syst. 2021, 32, 4–24. [CrossRef]

http://doi.org/10.1109/TKDE.2020.2981333
http://dx.doi.org/10.1162/tacl_a_00254
http://dx.doi.org/10.1016/j.inffus.2017.10.006
http://dx.doi.org/10.1109/TNNLS.2020.2978386

Technologies 2021, 9, 20 22 of 23

8. Xue, B.; Zhang, M.; Browne, W.N.; Yao, X. A Survey on Evolutionary Computation Approaches to Feature Selection. IEEE Trans.
Evol. Comput. 2016, 20, 606–626. [CrossRef]

9. Huang, R.; Pedoeem, J.; Chen, C. YOLO-LITE: A Real-Time Object Detection Algorithm Optimized for Non-GPU Computers.
In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; pp.
2503–2510.

10. Jiao, L.; Zhang, F.; Liu, F.; Yang, S.; Li, L.; Feng, Z.; Qu, R. A Survey of Deep Learning-Based Object Detection. IEEE Access 2019,
7, 128837–128868. [CrossRef]

11. Han, J.; Zhang, D.; Cheng, G.; Liu, N.; Xu, D. Advanced Deep-Learning Techniques for Salient and Category-Specific Object
Detection: A Survey. IEEE Signal Process. Mag. 2018, 35, 84–100. [CrossRef]

12. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE
Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef]

13. Huang, J.; Rathod, V.; Sun, C.; Zhu, M.; Korattikara, A.; Fathi, A.; Fischer, I.; Wojna, Z.; Song, Y.; Guadarrama, S.; Murphy, K.
Speed/accuracy trade-offs for modern convolutional object detectors. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017.

14. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; Berg, A.C.;
Fei-Fei, L. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]

15. Dai, J.; He, K.; Sun, J. Instance-Aware Semantic Segmentation via Multi-task Network Cascades. In Proceedings of the the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016.

16. Landing AI. Available online: https://landing.ai/ (accessed on 20 February 2021).
17. Zeiler, M.D.; Fergus, R. Visualizing and understanding convolutional networks. In Lecture Notes in Computer Science (Including

Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); 8689 LNCS; Springer: Berlin/Heisenberg,
Germany, 2014; pp. 818–833.

18. Abbas, N.; Zhang, Y.; Taherkordi, A.; Skeie, T. Mobile Edge Computing: A Survey. IEEE Internet Things J. 2018, 5, 450–465.
[CrossRef]

19. Al-Garadi, M.A.; Mohamed, A.; Al-Ali, A.K.; Du, X.; Ali, I.; Guizani, M. A Survey of Machine and Deep Learning Methods for
Internet of Things (IoT) Security. IEEE Commun. Surv. Tutorials 2020, 22, 1646–1685. [CrossRef]

20. Liu, J.W.; Lin, K.J.; Shih, W.K.; shi Yu, A.C. Algorithms for scheduling imprecise computations. Computer 1991, 24, 58–68.
[CrossRef]

21. Adadi, A.; Berrada, M. Peeking inside the black-box: A survey on Explainable Artificial Intelligence (XAI). IEEE Access 2018,
6, 52138–52160. [CrossRef]

22. TensorFlow. Available online: http://tensorflow.org (accessed on 20 February 2021).
23. PyTorch. Available online: http://pytorch.org (accessed on 20 February 2021).
24. Kim, J.E.; Bradford, R. AnytimeNet: Controlling Time-Quality Tradeoffs in Deep Neural Network Architectures. In Proceedings

of the Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 9–13 March 2020.
25. Heo, S.; Cho, S.; Kim, Y.; Kim, H. Real-Time Object Detection System with Multi-Path Neural Networks. In Proceedings of the

IEEE Real-Time and Embedded Technology and Applications Symposium, Sydney, Australia, 21–24 April 2020.
26. LeCun, Y. Bottou, Y.B.; Haffner., P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324.

[CrossRef]
27. Krizhevsky, A. Learning Multiple Layers of Features from Tiny Images; Technical Report; MIT Press: London, UK, 2009; Volume 1,

p. 7.
28. Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B.; Ng, A.Y. Reading Digits in Natural Images with Unsupervised Feature

Learning. In Proceedings of the NIPS Workshop on Deep Learning and Unsupervised Feature Learning, Granada, Spain, 12–17
December 2011.

29. Cires, D.C.; Meier, U.; Gambardella, L.M. Deep Big Simple Neural Nets for Hand-written Digit Recognition. Neural Comput. 2010,
22, 3207–3220. [CrossRef]

30. CIFAR-10-Object Recognition in Images. Available online: https://www.kaggle.com/c/cifar-10 (accessed on 20 February 2021).
31. Huang, G.; Maaten, L.V.D.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017.
32. Glorot, X.; Bordes, A.; Bengio, Y. Deep Sparse Rectifier Neural Networks. In Proceedings of the Fourteenth International

Conference on Artificial Intelligence and Statistics, Ft. Lauderdale, FL, USA, 11–13 April 2011; 2011; Volume 15, pp. 315–323.
33. Xie, Q.; Luong, M.T.; Hovy, E.; Le, Q.V. Self-Training With Noisy Student Improves ImageNet Classification. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020.
34. Hawkins, D.M. The Problem of Overfitting. J. Chem. Inf. Comput. Sci. 2004, 44, 1–12. [CrossRef] [PubMed]
35. Mikhail, B.; Daniel, H.; Partha, M.P. Overfitting or perfect fitting? Risk bounds for classification and regression rules that

interpolate. In Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montréal, QC,
Canada, 4 December 2018; pp. 2306–2317.

36. Apicella, A.; Donnarumma, F.; Isgrò, F.; Prevete, R. A survey on modern trainable activation functions. Neural Netw. 2021,
138, 14–32. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/TEVC.2015.2504420
http://dx.doi.org/10.1109/ACCESS.2019.2939201
http://dx.doi.org/10.1109/MSP.2017.2749125
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://dx.doi.org/10.1007/s11263-015-0816-y
https://landing.ai/
http://dx.doi.org/10.1109/JIOT.2017.2750180
http://dx.doi.org/10.1109/COMST.2020.2988293
http://dx.doi.org/10.1109/2.76287
http://dx.doi.org/10.1109/ACCESS.2018.2870052
http://tensorflow.org
http://pytorch.org
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1162/NECO_a_00052
https://www.kaggle.com/c/cifar-10
http://dx.doi.org/10.1021/ci0342472
http://www.ncbi.nlm.nih.gov/pubmed/14741005
http://dx.doi.org/10.1016/j.neunet.2021.01.026
http://www.ncbi.nlm.nih.gov/pubmed/33611065

Technologies 2021, 9, 20 23 of 23

37. Hecht-Nielsen, R. Theory of the Backpropagation Neural Network. In Proceedings of the International Joint Conference on
Neural Networks, Chicago, IL, USA, 15 November 1989; Volume 1, pp. 593–605.

38. Bottou, L. Large-Scale Machine Learning with Stochastic Gradient Descent. In Proceedings of the International Symposium on
Computational Statistics, Paris, France, 22–27 August 2010; pp. 177–186.

39. Wikimedia Commons, Max Pooling. Available online: https://commons.wikimedia.org/wiki/File:Max_pooling.png (accessed
on 20 February 2021).

40. Buttazzo, G. Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and Applications, 3rd ed.; Springer:
Berlin/Heisenberg, Germany, 2011.

41. Rausch, T.; Avasalcai, C.; Dustdar, S. Portable Energy-Aware Cluster-Based Edge Computers. In Proceedings of the IEEE/ACM
Symposium on Edge Computing, Bellevue, WA, USA, 25–27 October 2018.

42. Womg, A.; Shafiee, M.J.; Li, F.; Chwyl, B. Tiny SSD: A Tiny Single-Shot Detection Deep Convolutional Neural Network for
Real-Time Embedded Object Detection. In Proceedings of the 2018 15th Conference on Computer and Robot Vision (CRV),
Toronto, ON, Canada, 9–11 May 2018; pp. 95–101.

43. Yang, M.; Wang, S.; Bakita, J.; Vu, T.; Smith1, F.D.; Anderson1, J.H.; Frahm, J.M. Re-thinking CNN Frameworks for Time-Sensitive
Autonomous-Driving Applications: Addressing an Industrial Challenge. In Proceedings of the Real-time and Embedded
Technology and Applications Symposium, Montreal, QC, Canada, 16–18 April 2019.

44. Bateni, S.; Liu, C. Apnet: Approximation-aware real-time neural network. In Proceedings of theIEEE Real-Time Systems
Symposium (RTSS), Nashville, TN, USA, 11–14 December 2018.

45. Karlik, B. Performance Analysis of Various Activation Functions in Generalized MLP Architectures of Neural Networks. Int.
J. Artif. Intell. Expert Syst. 2011, Available online: https://www.cscjournals.org/manuscript/Journals/IJAE/Volume1/Issue4
/IJAE-26.pdf (accessed on 20 February 2021).

46. Cai, Z.; Vasconcelos, N. Cascade R-CNN: High Quality Object Detection and Instance Segmentation. IEEE Trans. Pattern Anal.
Mach. Intell. 2019. [CrossRef]

47. Zhang, S.; Zhu, X.; Lei, Z.; Shi, H.; Wang, X.; Li, S.Z. FaceBoxes: A CPU real-time face detector with high accuracy. In Proceedings
of the 2017 IEEE International Joint Conference on Biometrics (IJCB), Denver, CO, USA, 1–4 October 2017; pp. 1–9.

48. Liu, L.; Deng, J. Dynamic deep neural networks: Optimizing accuracy-efficiency trade-offs by selective execution. In Proceedings
of the 32nd AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; pp. 3675–3682.

49. Yao, S.; Hao, Y.; Zhao, Y.; Shao, H.; Liu, D.; Liu, S.; Wang, T.; Li, J.; Abdelzaher, T.F. Scheduling Real-time Deep Learning Services
as Imprecise Computations. In Proceedings of the IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications, Gangnueng, Korea, 19–21 August 2020.

50. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016.

51. Vora, A.; Thomas, P.; Chen, R.; Kang, K. CSI Classification for 5G via Deep Learning. In Proceedings of the IEEE Vehicular
Technology Conference, Honolulu, HI, USA, 22–25 September 2019.

52. Nishihara, R.; Moritz, P.; Wang, S.; Tumanov, A.; Paul, W.; Schleier-Smith, J.; Liaw, R.; Niknami, M.; Jordan, M.I.; Stoica, I.
Real-Time Machine Learning: The Missing Pieces. In Proceedings of the Workshop on Hot Topics in Operating Systems, Whistler
BC Canada, 20–23 May 2017.

53. Blalock, D.W.; Ortiz, J.J.G.; Frankle, J.; Guttag, J.V. What is the State of Neural Network Pruning? Machine Learning and Systems
(MLSys). arXiv 2020, arXiv:2003.03033.

54. Kim, H.; Khan, M.U.K.; Kyung, C.M. Efficient Neural Network Compression. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019.

55. Castro, F.M.; Marin-Jimenez, M.J.; Guil, N.; Schmid, C.; Alahari, K. End-to-End Incremental Learning. In Proceedings of the
European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018.

56. Glowacz, A. Fault diagnosis of electric impact drills using thermal imaging. Measurement 2021, 171, 108815. [CrossRef]
57. Kuanar, S.; Rao, K.R.; Bilas, M.; Bredow, J. Adaptive CU Mode Selection in HEVC Intra Prediction: A Deep Learning Approach.

Circuits, Syst. Signal Process. 2019, 38, 5081–5102. [CrossRef]
58. Kuanar, S.; Mahapatra, D.; Bilas, M.; Rao, K.R. Multi-path dilated convolution network for haze and glow removal in nighttime

images. Vis. Comput. 2021, 1–14. [CrossRef]

https://commons.wikimedia.org/wiki/File:Max_pooling.png
https://www.cscjournals.org/manuscript/Journals/IJAE/Volume1/Issue4/IJAE-26.pdf
https://www.cscjournals.org/manuscript/Journals/IJAE/Volume1/Issue4/IJAE-26.pdf
http://dx.doi.org/10.1109/TPAMI.2019.2956516
http://dx.doi.org/10.1016/j.measurement.2020.108815
http://dx.doi.org/10.1007/s00034-019-01110-4
http://dx.doi.org/10.1007/s00371-021-02071-z

	Introduction
	Background and Problem Formulation
	An Overview of the CNN Structure
	Problem Formulation

	Exploring CNN Models for Timely, Adaptive Image Classification
	Overview
	Finding -Pareto Optimal CNNs Offline
	Efficient Run-Time Selection of a CNN for Timely Image Classification

	Evaluation Results
	Data Sets and Hyper-Parameters
	MNIST Data Set
	CIFAR-10 Data Set

	Impacts of Hyper-Parameters on the Inference Time and Accuracy
	Impacts of the Convolutional Kernel and Stride Sizes
	Impacts of the Pooling Window and Stride Sizes
	Impacts of the Fully Connected Layers
	Impacts of the Total Depth
	Summary of Time vs. Accuracy Relationships

	Effectiveness of Our Model Selections and Adaptation
	Evaluation Using MNIST
	Evaluation Using CIFAR-10
	Summary of the Effectiveness and Overhead of Our Approach

	Related Work
	Discussion
	Conclusions and Future Work
	References

