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Abstract— With increase in the frequency of natural disasters
such as hurricanes that disrupt the supply from the grid, there
is a greater need for resiliency in electric supply. Rooftop
solar photovoltaic (PV) panels along with batteries can provide
resiliency to a house in a blackout due to a natural disaster.
Our previous work showed that intelligence can reduce the
size of a PV+battery system for the same level of post-blackout
service compared to a conventional system that does not employ
intelligent control. The intelligent controller proposed is based
on model predictive control (MPC), which has two main
challenges. One, it requires simple yet accurate models as it
involves real-time optimization. Two, the discrete actuation for
residential loads (on/off) makes the underlying optimization
problem a mixed-integer program (MIP) which is challenging
to solve. An attractive alternative to MPC is reinforcement
learning (RL) as the real-time control computation is both
model-free and simple. These points of interest accompany
certain trade-offs; RL requires computationally expensive off-
line learning, and its performance is sensitive to various design
choices.

In this work, we propose an RL-based controller. We com-
pare its performance with the MPC controller proposed in our
prior work and a non-intelligent baseline controller. The RL
controller is found to provide a resiliency performance—by
commanding critical loads and batteries—similar to MPC with
a significant reduction in computational effort.

I. INTRODUCTION

In the recent past the frequency of extreme weather

events like hurricanes, heat waves, and forest fires have

increased [1]. The powerful winds associated with hurricanes

have been responsible for damage to the transmission and

distribution system of the power grid leading to extended

power outages [2]. Some examples include Hurricane Irma

which led to the loss of electricity for 4.8 million utility

customers in Florida, with 1.5 million remaining without

electricity for five days or more [3], and Hurricane Maria

which led to months-long blackout in Puerto Rico [4], with

an estimated death toll in the thousands [5].

Distributed solar generation can provide a resilient energy

supply since the sky is often clear immediately after a

hurricane. However, as the average household load in the

U.S. is quite high 30.5 kWh/day [6], serving the entire

household load from an on-site PV+battery system will

require a large system, driving up cost substantially.

In our prior work [7] we show that an intelligent controller

can reduce the size—and thus, cost—of the PV+battery
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system to provide resiliency. It is able to do so by exploiting

the flexibility in demand and supply along with forecasts.

In order to maintain habitable conditions during an extended

outage, certain critical loads—like the refrigerator to keep

food and medicine safe, lights for illumination, and fans

to provide some thermal comfort—need to be serviced,

but noncritical loads need not. Among these critical loads,

refrigerators have a higher priority over lights and fans. The

lower priority loads can be shed in favor of servicing the

refrigerators; this offers flexibility in demand. Flexibility in

supply comes from the fact that the charging rate of a battery

is variable; a battery can be fast charged when low solar

irradiance is expected, however, at a cost to battery’s health.

The intelligent controller that we proposed in our prior

work is based on model predictive control (MPC). A chal-

lenge with MPC is that it requires simple yet accurate

models as it involves real-time optimization. Moreover, due

to the discrete nature of actuation for the residential loads

(on/off), the underlying optimization problem in the MPC

ends up being a mixed-integer program (MIP). Depending

on the planning horizon for MPC, the number of decision

variables can be large, and solving such a high dimensional

constrained mixed-integer program with limited computing

resources can be challenging. During power outages after a

hurricane, computing resources are limited. Accessing cloud-

based services might not be an option as communication

infrastructure might be damaged, and locally available con-

troller hardware might not be powerful.

In this work, we propose a reinforcement learning (RL)-

based controller for the same resiliency problem mentioned

above. RL is a set of tools used to approximate an optimal

policy based on data obtained from a physical system or

its simulation. It has two key advantages over MPC; the

real-time computation is both model-free and simple. This

simplicity makes RL an attractive alternative to MPC for

our problem.

As in [7], our focus is on designing a controller only

for post-disaster scenarios during which grid supply is un-

available. When grid supply is restored, it is assumed that

the software will switch to a “normal operating” mode. The

normal operating mode may also be a sophisticated controller

that seeks to, for instance, minimize the utility bill of the

consumer by controlling the PV+battery system. There is a

plethora of work in that direction; see [8], [9], [10], [11],

and [12], with some recent works using RL [13], [14],

and [15]. Therefore we do not consider that problem here.

The work [16] presents a rule-based controller for charging

the house battery to its maximum before an outage occurs;







where cf (> cn) is the higher cost for fast charging.

When there is no PV production potential (for example,

during nighttime), charging the battery is not possible. More-

over, if a load is trying to be serviced when there is no

PV potential, then the battery cannot be idle and needs to

discharge. To discourage such undesired behaviors, we define

the following cost function:

Cpv(Xk, Uk, Xk+1) =

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ppv , if Epv(k) = 0 & Γ(k) ∈ {1, 2}

ppv , if Epv(k) = 0 &
(

ufr(k) = 1 orus(k) = 1
)

& Γ(k) ∈ {0}

0 , otherwise

The constants ppv , cn, cf , cbat, pbat, cs, ps, cfr, and pfr are

design choices.

B. Value Function Approximation and Zap Q-Learning

The goal is to obtain a state-feedback policy φ∗ : X → U
that minimizes the sum of expected discounted cost:

φ∗ := argmin
φ:X→U

{

∞
∑

k=0

βk
E
[

c(Xk, Uk, Xk+1)
]

}

(8)

with Uk = φ(Xk) for k ≥ 0.

Under the assumption that the underlying problem is an

MDP, it is known that the optimal policy satisfies:

φ∗(x) = argmin
u∈U(x)

Q∗(x, u) , x ∈ X (9)

where Q∗ : X × U → R denotes the associated optimal Q

function:

Q∗(x, u):= min
{Uk}

∞
∑

k=0

βk
E
[

c(Xk, Uk, Xk+1)|X0=x, U0=u
]

where the minimization is over all feasible inputs.

Reinforcement learning algorithms such as Q-learning can

be used to estimate an approximation for the Q-function. In

this work, we use Zap Q-Learning to approximate Q∗ using

a parameterized family of functions {Qθ : θ ∈ R
d} [19]. We

employ a linear parameterization, so that,

Qθ(x, u) = θTψ(x, u), x ∈ X , u ∈ U , (10)

where ψ : X × U → R
d denotes the “basis functions”. For

our problem, we choose the basis functions as follows:

ψ(x, u) := [f(x)I[0,1,−1]T (u); f(x)I[1,0,−1]T (u);

f(x)I[1,1,−1]T (u); f(x)I[0,0,0]T (u); f(x)I[0,1,0]T (u);

f(x)I[1,0,0]T (u); f(x)I[1,1,0]T (u); f(x)I[0,0,1]T (u);

f(x)I[0,1,1]T (u); f(x)I[1,0,1]T (u); f(x)I[1,1,1]T (u);

f(x)I[0,0,2]T (u); f(x)I[0,1,2]T (u); f(x)I[1,0,2]T (u);

f(x)I[1,1,2]T (u)], (11)

where IA : U → {0, 1} is the indicator function of the set

A. For f(x), we choose a quadratic function of the states:

f(x) := [E2
bat, T

2
fr, T

2
house, E

2
pv, EbatTfr, EbatThouse,

EbatEpv, EbatEs, TfrThouse, TfrEpv, TfrEs,

ThouseEpv, ThouseEs, EpvEs, Ebat, Tfr, Thouse,

Epv, Epv,1, Epv,2, Epv,3, Epv,4, Epv,5, Epv,6,

Es, Es,1, Es,2, Es,3, 1]
T ∈ R

29.

Therefore, there are 29×15 = 435 parameters to be learned,

i.e., θ ∈ R
435. Once the basis functions are fixed, the

Zap Q-learning algorithm can be used to estimate Q∗ using

the approximation Qθ∗

. We refer the interested reader to

Algorithm 1 in [20] for details. The algorithm is implemented

using the simulation models presented in Section II of our

prior work [7]; given a current state Xk and a control input

Uk, the state Xk+1 at the next time step is obtained using

these simulation models, and the tuple (Xk, Uk, Xk+1) is

used to update the parameters θ.

C. Real-Time Control

The online state-feedback control is computed as follows:

Uk = φθT (Xk) = argmin
u∈U(Xk)

QθT (Xk, u)

= argmin
u∈U(Xk)

θTTψ(Xk, u) , Xk ∈ X , (12)

where θT is the estimate of θ∗ obtained from the algorithm.

The minimum is over only 15 values, so the optimization

problem above is trivial to solve.

IV. CONTROL ALGORITHMS USED FOR COMPARISON

The performance of the RL controller is compared with

two others: an MPC controller which was proposed in our

prior work [7], and a rule-based baseline controller. These

are briefly discussed in the following subsections. See [7]

for further details.

A. Model Predictive Control (MPC)

The goal of the MPC controller is the same as that of

the proposed RL controller. The controller solves a Mixed-

Integer Linear Program (MILP) over a finite planning horizon

N to compute the control commands in discrete time steps

∆Ts. The controller uses the following pieces of information

to solve this problem: (i) the current value of the states,

(ii) forecasts of the exogenous inputs (Epv , Thouse, and Es),

and (iii) models for refrigerator thermal dynamics and battery

energy dynamics. The control commands for the first time

step obtained from the solution of this problem are applied

to the plant. This process is repeated at the next time step.

The MPC controller has the battery energy level (Ebat)
and refrigerator internal temperature (Tfr) as states, hence

we have x(k) := [Ebat(k), Tfr(k)]
T

. The control commands

are similar to the ones mentioned in II; however the discrete

battery control commands [c(k), d(k),m(k)]T are mapped

on to a single continuous command Γc(k) ∈ R. The

transformation of Γc(k) to its constituent [c(k), d(k),m(k)]T



is carried out using rule-based logic. The MILP is solved

to minimize: refrigerator temperature deviation from its

bounds, and battery degradation; and to maximize: battery

energy level, and servicing of secondary load; subject to:

(i) equality constraints due to battery storage system dynam-

ics model, refrigerator thermal dynamics model, and energy

balance model, (ii) box constraints to maintain battery energy

level and refrigerator temperature within desired limits, and

(iii) various control command constraints. Details of the

MPC controller are omitted due to lack of space, see [7]

for details.

B. Baseline Controller

The baseline controller consists of two rule-based con-

trollers that are independent of each other. The refrigerator

on-off command (ufr(k)) is computed by a thermostat con-

troller. The battery charging (c(k)) and discharging (d(k))
commands are computed by the battery logic controller; it

commands the battery to charge when there is excess PV

energy and to discharge when the PV energy cannot meet

the load demand. The baseline controller does not have a

fast charging mode, as certain amount of intelligence is

required to exploit the fast charging mode so as to avoid

battery degradation. The detailed rule-based logic of both

the controllers are presented in [7].

V. SIMULATION STUDY SETUP

Simulations are conducted for a period of 7 days starting at

00:00 hours from Sept. 11, 2017, to Sept. 17, 2017. The plant

is initialized with battery state at Ēbat (i.e., Ebat(0) = Ēbat)

and the refrigerator initial temperature at 2◦C (i.e., Tfr(0) =
2◦C). The simulation period selected corresponds to the time

hurricane Irma made landfall and passed over Gainesville,

FL, USA. The source of weather data is National Solar

Radiation Database (nsrdb.nrel.gov). The simulations

are carried out in MATLAB.

The sizing of the PV battery system is done using a con-

servative method described in [21]. Canadian Solar CS6K-

285 polycrystalline panel, and Trojan SPRE 12 225 (lead

acid type) solar battery unit were selected for the system

sizing. Lead acid batteries were chosen over Lithium-Ion (Li-

Ion) batteries for system cost reduction, as Li-Ion batteries

are four times more expensive than lead acid batteries per

kWh [22]. The size of the system obtained from this method

is as follows: 855 W of PV panels, 5400 Wh of battery

storage.

The house described in [23] consists of four bedrooms

(1 fan [65 W ] and 1 LED [8 W ] each), a living room (1

LED), and a kitchen (1 refrigerator [250 W ] and 1 LED).

The secondary load trajectory for a given day is composed

of: LED lights (total units = 6) being on from 18:00 hours

to 00:00 hours and fans (total units = 4) running from

21:00 hours to 09:00 hours and is constant for all the days

of the simulation.

TABLE II: RL parameters.

β ρ cfr pfr cbat pbat

0.95 0.8 -1 12500.25 -1 162340.9

cn cf cs ps ppv T

-0.25 -0.125 -0.5 500 500 10
7

A. Simulation Parameters

The parameters for the plant system models are mentioned

here concisely due to lack of space. For detailed simulation

parameters refer our prior work [7].

PV panels: P rated
pv = 285 W (rated power output of PV

module); Battery:
¯
Ebat = 1080 Wh, Ēbat = 5400 Wh,

ηbat = 0.9 (battery efficiency) ; Refrigerator:
¯
Tfr = 0 ◦C,

T̄fr = 4 ◦C.

RL parameters: The various parameters used in the RL

controller are listed in Table II, where T is the number of

training iterations. During learning, the Q function parame-

ters are seen to settle after 107 iterations, and takes about

7.5 hours to train. For these learning simulations, we use

2016 weather data for Gainesville, Florida, obtained from the

National Solar Radiation Database (nsrdb.nrel.gov).

MPC parameters: A planning horizon of 24 hours is used

with a time-step of 10 minutes (i.e. ∆Ts = 10 mins, N =
144). Hence, the MILP optimization problem central to the

MPC has a total of 1008 decision variables comprising of

720 continuous and 288 binary decision variables.

VI. RESULTS AND DISCUSSION

A. Load Servicing Performance

Figure 3 shows the simulation results when using the

RL, MPC, and baseline controllers. Both the proposed RL

controller and the MPC controller keep the refrigerator

temperature within the prescribed limits for the entire 7

days with negligible excursions; see Figures 3a and 3b. In

contrast, the baseline controller fails to keep the refrigerator

temperature within bounds for elongated periods; see Fig-

ure 3c. The average daily refrigerator temperature violation

is 8.37 hours/day for the baseline controller, but none for the

proposed RL controller; see Table III. Note that the Centers

for Disease Control and Prevention state that perishable

foods (including meat, poultry, fish, eggs and leftovers) in

the refrigerator should be thrown away if the power has been

off for 4 hours or more [24]. Thus, while the RL and MPC

controllers will be able to keep perishable foods fresh for the

entire seven days of the outage, with the baseline controller,

the stored food will get spoiled after the very first day without

grid power.

Figures 3d, 3e, and 3f show the trajectories of the

secondary load serviced by the RL, MPC, and baseline

controllers respectively. It can be seen that none of the

controllers are able to meet the secondary load for the desired

duration. The MPC controller has a better performance

than the RL controller in servicing the secondary load; see

Table III.

Hence, the proposed RL controller demonstrates similar

performance in servicing the primary load compared to
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potential used in the plant and the forecast used in the RL

controller to test its robustness to forecast errors.

In addition, recall that for the RL controller, the learning

simulations are done using weather data from 2016, while

all the testing simulations are done using weather data from

2017, during which Hurricane Irma occurred.

VII. CONCLUSION

We presented an RL-based controller for energy manage-

ment of a house—consisting of solar PV panels and battery

energy storage—during an extended grid power failure. Sim-

ulation results show that the RL controller performs similar

to an MPC controller that was proposed in our prior work

in servicing the primary load (refrigerator). The sensing

and forecast information used by RL and MPC are similar,

and simulations indicate they both have some robustness to

forecast errors. But the real-time computational effort in RL

is five orders of magnitude lower than that in MPC. No

special purpose solver is required for the real-time control

computation by the RL controller, and its computations can

be performed in a low power processor—even possibly in

a microcontroller—whereas the MPC controller requires an

MILP solver and a desktop or a laptop computer.

The RL controller’s secondary load performance (ser-

vicing lights and fans) is found to be poorer than MPC.

RL is sensitive to many design choices such as the cost

function and the penalties. It might be possible to improve

the performance of RL in servicing the secondary load by

varying these design choices. We plan to explore this in the

future.
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