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Abstract—Motile cilia are a highly conserved organelle found on the exterior
of many human cells. Cilia beat in rhythmic patterns to transport substances or
generate signaling gradients. Disruption of these patterns is often indicative of
diseases known as ciliopathies, whose consequences can include dysfunction
of macroscopic structures within the lungs, kidneys, brain, and other organs.
Characterizing ciliary motion phenotypes as healthy or diseased is an essential
step towards diagnosing and differentiating ciliopathies. We propose a modular
generative pipeline for the analysis of cilia video data so that expert labor may
be supplemented for this task. Our proposed model is divided into three mod-
ules: preprocessing, appearance, and dynamics. The preprocessing module
augments the initial data, and its output is fed frame-by-frame into the generative
appearance model which learns a compressed latent representation of the cilia.
The frames are then embedded into the latent space as a low-dimensional path.
This path is fed into the generative dynamics module, which focuses only on
the motion of the cilia. Since both the appearance and dynamics modules are
generative, the pipeline itself serves as an end-to-end generative model. This
thorough and versatile model allows experts to spend less time caught in the
minutiae of cilia biopsy analysis, while also enabling new insights by quantifying
subtle patterns that would be otherwise difficult to categorize.

Index Terms—Machine Learning, Data Science, Video Analysis, Generative
Modeling, Variational Autoencoder, Modular, Pipeline

Introduction

Motile cilia are organelles commonly found throughout the
human body, such as in the bronchial and nasal passages
[HGGRD99][SS90]. Cilia beat in synchronous, rhythmic patterns
to expel foreign matter, collectively forming the mucociliary
defense, a vital mechanism for sinopulmonary health [BMO17].
Ciliopathies are genetic disorders which can adversely affect the
motion of cilia [FL12]. Disorders resulting from the disruption of
ciliary motion range from sinopulmonary diseases such as primary
ciliary dyskinesia (PCD) [OCH+07] to mirror symmetric organ
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placement and situs inversus [CA17] or randomized left-right
organ placement as in heterotaxy [GZT+14]. Precise diagnosis
of patients exhibiting abnormal ciliary motion prior to surgery
may provide clinicians with opportunities to institute prophylactic
respiratory therapies to prevent complications. Therefore, the
study of ciliary motion may have a broad clinical impact.

Visual examination of the ciliary waveform by medical pro-
fessionals is critical in diagnosing ciliary motion defects, but such
manual analysis is highly subjective and prone to error [RWH+14]
[KSC17]. This approach also precludes the possibility of cross-
institutional and longitudinal studies which include assessment of
ciliary motion. Therefore, we aim to develop an unsupervised,
computational approach to analyze ciliary motion, developing a
quantitative "library" of well-defined, clinically relevant ciliary
motion phenotypes. Clustering and classification are established
problems in machine learning. However, their applications to
ciliary waveform analysis are difficult, as cilia exhibit subtle, ro-
tational, non-linear motion [QFLC11]. While attempts have been
made at addressing this problem, we note that generic dynamics
models fail to classify and cluster this type of motion accurately
or meaningfully, and are insufficient for generating a semantically
potent representation. We thus apply a novel machine learning
approach to create an underlying representation which then can be
used for downstream tasks such as classification and clustering,
and any other tasks that experts may deem necessary. Furthermore,
we avoid using labeled data—specifically videos anotated based
on the health/type of ciliary motion displayed—in order to free the
model from systematic assumptions naturally imposed by labels:
the choice of labels themselves can inadvertently limit the model
by asserting that all data must conform to those exact labels.
An unsupervised model has the freedom to discover potential
semantically meaningful patterns and phenotypes that fall outside
current clinical thinking. Furthermore, an unsupervised model is
independent of expert input. Pragmatically, an unsupervised model
can be trained and used directly after data acquisition, rather than
having to wait on expert labeling. This simultaneously reduces the
barriers to access as a scientific tool, and the associated expenses
of use.

Our approach is to create a pipeline that learns a low-
dimensional representation of ciliary motion on unlabeled data.
The model we propose considers the spatial and temporal di-
mensions of ciliary motion separately. The pipeline encodes each
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frame of the input video and then encodes the paths between
frames in the latent space. The low-dimensional latent space in this
pipeline will have semantic significance, and thus the distribution
and clustering of points in the latent space should be meaningful
for those studying ciliary motion and its connection to ciliopathies.

Related Works

A computational method for identifying abnormal ciliary motion
patterns was proposed by Quinn 2015 [QZD+15]. The authors
hypothesize ciliary motion as an instance of a dynamic texture,
which are rhythmic motions of particles subjected to stochastic
noise [DCWS03] and include familiar patterns such as flickering
flames, rippling water, and grass in the wind. Each instance of
dynamic texture contains a small amount of stochastic behavior
altering an otherwise consistent visual pattern. The authors chose
to consider ciliary motion as a dynamic texture as it consists
of rhythmic behavior subject to stochastic noise that collectively
determine the beat pattern. They then used autoregressive (AR)
representations of optical flow features that were fed into a support
vector machine classifier to decompose high-speed digital videos
of ciliary motion into "elemental components," or quantitative
descriptors of the ciliary motion, and classify them as normal or
abnormal.

While this study proved there is merit in treating ciliary motion
as a dynamic texture, the use of an AR model for the classification
task imposed some critical limitations. While AR models are often
used in representing dynamic textures, they are primarily used in
distinguishing distinct dynamic textures (e.g., rippling water from
billowing smoke), rather than identifying different instances of
the same texture (e.g., cilia beating normally versus abnormally).
Additionally, AR models impose strong parametric assumptions
on the underlying structure of the data, rendering AR models
incapable of capturing nonlinear interactions. Lastly, even though
the majority of the pipeline is automated, their study relied on
clinical experts to manually annotate the video data with regions of
interest (ROIs) in order to serve as ground truth for the inference.
Drawing ROIs required specialized labor, increasing the cost and
time of clinical operations. This is also potentially problematic in
that expert drawn ROIs introduce the same subjective bias that the
study is ostensibly attempting to remove.

The model proposed by Quinn 2015 was improved upon by
Lu 2018 [LMZ+18], the latter attempt using stacked Fully Con-
volutional DenseNets [HLW16] and Long Short-Term Memory
(LSTM) networks [GSC99]. Densely Connected Convolutional
Networks, referred to as DenseNets, do not make strong para-
metric or linear assumptions about the underlying data, allowing
more complex behavior to be captured. Once Lu 2018 extract
segmentation masks using their 74-layer FCDenseNet, ciliary
motion is treated as a time series using convolutional long short-
term memory (Conv-LSTM) networks, a specific type of recurrent
neural network (RNN), to model the long-term temporal depen-
dencies in the data.

We aim to build upon these studies by developing a fully un-
supervised approach to characterizing ciliary motion phenotypes.
This pipeline is advantageous in that it does not need hand-drawn
ROI maps nor a labeled dataset as training data. While clinicians
acknowledge the existence of distinct ciliary waveform pheno-
types beyond "normal" and "abnormal", experts lack standard
guidelines for qualitatively or quantitatively categorizing ciliary
beat pattern. Additionally, experts may not observe the level of

quantitative detail required to associate complex motion pheno-
types with specific ciliopathies and genetic mutations [QZD+15].
Thus, we shift away from a classification-style task (classifying
abnormal versus normal ciliary motion) to a representational learn-
ing task to generate meaningful, low-dimensional representations
of ciliary motion. Unsupervised representation learning enables
a model to learn families of complex ciliary motion phenotypes
beyond the normal-abnormal binary.

Methods

Our proposed model is divided into three modules: preprocessing,
appearance, and dynamics. The preprocessing module primarily
serves to supplement input data by generating segmentation masks
and extracting dense optical flow vector fields and pertinent differ-
ential quantities. Segmentation masks are used to limit spatial rep-
resentation learning to video regions containing cilia, and optical
flow fields are computed from consecutive frames as a compressed
representation of temporal behavior. The predicted segmentation
masks and optical flow entities are concatenated with the original
video data as additional channels to each frame to form an
augmented video. Each expanded video is fed frame-by-frame to
the appearance module which utilizes a Variational Autoencoder
(VAE) [KW19] to learn a compressed spatial representation for
images of cilia. Videos are then embedded as sequences of points
in the compressed latent space. The dynamics module employs
another VAE to learn a representation from this compressed
sequence, in order to reduce the amount of irrelevant information
considered. If it were to instead train on the original video itself,
the information would be too high-volume, potentially drowning
out useful information in a sea of noise. This compressed sequence
allows it to focus only on the motion of cilia. The dynamics
module VAE is trained on potentially random subsequences of
the embedded representations of video in order to assure that the
temporal representation learned is adequately robust to reconstruct
arbitrary parts of the sequence. Through this construction, we
factor the representation of cilia into disentangled spatial and
temporal components.

Data

Our data, obtained from the Quinn 2015 study, consist of nasal
biopsy samples observed in patients with diagnosed ciliopathies
and in healthy controls [QZD+15]. Nasal epithelial tissue was ob-
tained from the inferior nasal turbinate using a Rhino-Pro curette,
and cultured for three passages prior to recording. Grayscale video
data was recorded for 1.25 seconds using a Phantom v4.2 high
speed camera at 200 frames per second, resulting in 250 frames
per sample. Recorded videos vary in dimension, ranging from 256
to 640 pixels on either axis. Segmentation masks used during the
training of the preprocessing module were generated manually
using ITK-SNAP, where each pixel is a binary value corresponding
to whether the pixel contains cilia. Our dataset has a total of
325 sample videos, taken from Quinn 2015’s cohort sampled at
the University of Pittsburgh, and 230 ground-truth segmentation
masks.

Because healthy cilia rhythmically beat at around 10-12Hz
and our grayscale videos are recorded at 200 frames per second,
there are approximately 17 frames per single ciliary beat cycle
[QZD+15]. As such, we truncate our videos to 40 frames to
capture at minimum 2 full beat cycles; the starting frame is
randomly sampled. Because each video varies in dimensions, we
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Fig. 1: The proposed framework for creating a disentangled spatiotemporal representation

obtain patches of size 128 ⇥ 128 as inputs to both the prepro-
cessing and appearance modules. Instead of randomly sampling
crops, we extract the first frame of the truncated video, and tile
each frame-mask set such that no 128⇥128 patches overlap. The
preprocessing module supplemented the 95 raw videos without
corresponding ground-truth segmentation masks with segmenta-
tion masks predicted by a Fully Convolutional DenseNet.

Preprocessing
The preprocessing module primarily functions to generate seg-
mentation masks that distinguish spatial regions containing cilia
from background noise and supplement cilia data with measures
of temporal behavior, such as optical flow and its derivative values.

Because we are interested in modelling the spatiotemporal
behavior of only cilia, segmentation masks, which provide a direct
mapping to pixels of interest within each frame, are critical within
the appearance module to limit representation learning to cilia
localities and ignore background noise. Although the end-to-end
pipeline provides an unsupervised framework to represent and
characterize complex and dynamic ciliary motion phenotypes,
this module utilizes supervised segmentation to produce initial
segmentation masks. Because we do not have ground-truth seg-
mentation masks for every sample in our dataset, a supervised
network allows us to augment our set such that each raw video
has a corresponding segmentation mask to be used in subsequent
modules. We draw upon prior supervised segmentation literature
to implement FCDenseNet, a fully convolutional dense network
that is able to leverage deep learning advantages without excessive
parameters or loss of resolution. Each layer in a DenseNet is
connected to every other layer in a feed-forward fashion; each
layer takes the previous layers’ feature maps as input, and its
respective feature map is used by following layers. Fully Con-
nected DenseNets (FCDenseNets) expand on this architecture
with the principle goal of upsampling to recover input resolution
[JDV+17]. Building a straightforward upsampling path requires
multiplication of high-resolution feature maps, resulting in a
computationally intractable number of feature maps. To mitigate
this "feature explosion" issue, FCDenseNets upsample only the
preceding dense block instead of upsampling all feature maps con-
catenated in previous layers. We modify and train a FCDenseNet
to generate usable segmentation masks as input to the appearance
module. Our architecture, shown in 2, consists of dense blocks,
transition blocks, and skip connections totalling to 103 layers.

Fig. 2: Fully Convolutional Dense Net with 103 layers

Although we utilize a supervised segmentation network, we note
that this is not necessary. We will be pursuing unsupervised
methodologies with comparable efficacy, and chose the supervised
network for the sake of creating an initial implementation and
proof of concept

Since we aim to represent both spatial and temporal features, it
is critical to obtain optical flow vector fields as a quantifiable proxy
for ciliary movement. Two dimensional motion can be thought of
as the projection of three dimensional motion on an image plane,
relative to a visual sensor such as a camera or microscope. As
such, optical flow represents the apparent motion of pixels within
consecutive frames, relative to the visual sensor. To calculate pixel
displacement, optical flow algorithms are contingent on several
assumptions.

1) Brightness constancy assumes that a pixel’s apparent
intensity does not change between consecutive frames

2) Small motion assumes that pixels are not drastically
displaced between consecutive frames

3) Spatial and temporal coherence assumes that a pixel’s
neighbors likely exhibit similar motion over gradual time

Solving these constraints yields a series of dense optical flow
vector fields; each vector represents a pixel, and the magnitude
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and direction of each vector signal the estimated pixel position in
the following frame. We refer to Beauchemin and Barron [BB95]
for detailed mathematical expression of optical flow derivation.
Healthy cilia largely exhibit delicate textural behavior in which
patches of cilia move synchronously, slowly, and within a set
spatial region near cell boundaries. Additionally, our imaging
modality allowed for consistent object brightness throughout se-
quences of frames. As such, we explored optical flow solutions
that focus on brightness constancy, small motion, and spatial
coherence systems of equations.

Our optical flow fields are computed using a coarse-to-fine im-
plementation of Horn-Schunck’s influential algorithm. Although
we tested other methods, namely Farneback [Far03], Lucas-
Kanade [LK81], and TV-L1 [SPMLF13], coarse-to-fine Horn-
Schunck produced fields more robust to background movement.
Horn-Schunck operates by firstly assuming motion smoothness
between two frames; the algorithm then minimizes perceived
distortions in flow by iteratively updating a global energy function
[HS81]. The coarse-to-fine aspect transforms consecutive frames
into Gaussian image pyramids; at each iteration, corresponding to
levels in the Gaussian pyramids, an optical flow field is generated
by Horn-Schunck, and then used to "warp" the images toward one
another. This process is repeated until the two images converge.
While Horn-Schunck has potential to be noise-sensitive due to its
smoothness assumption, we observe that this is mitigated by the
coarse-to-fine estimation and hyperparameter tuning. Additionally,
we find that this estimation is more computationally and time
efficient than its contemporaries.

For further insight into behavioral patterns, we extract first-
order differential image quantities from our computed optical flow
fields. Estimating linear combinations of optical flow derivatives
results in orientation-invariant quantities: curl, deformation, and
divergence [FK04]. Curl represents apparent rotation; each scalar
in a curl field signaling the speed and direction of local angular
movement. Deformation is the shearing about two different axes,
in which one axis extends while the other contracts. Divergence, or
dilation, is the apparent movement toward or away from the visual
sensor, in which object size changes as a product of varied depth.
Because our cilia data are captured from a top-down perspective
without possibility of dilation, we limit our computation to curl
and deformation, similar to Quinn 2011 [QFLC11].

Introduction To Autoencoders
Both the appearance and dynamics modules ultimately rely on a
choice of a particular generative model. The chosen model greatly
affects the rendered representation, and thus the efficacy of the
entire pipeline. Our current choice of generative model is a VAE,
an architecture that generates a low-dimensional representation
of the data, parameterized as a probability distribution. A VAE
can be considered a modified autoencoder (AE). A general AE
attempts to learn a low-dimensional representation of the data by
enforcing a so-called "bottleneck" in the network. This bottleneck
is usually in the form of a hidden layer whose number of nodes
is significantly smaller than the dimensionality of the input. The
AE then attempts to reconstruct the original input using only this
bottleneck representation. The idea behind this approach is that to
optimize the reconstruction, only the most essential information
will be maintained in the bottleneck, effectively creating a com-
pressed, critical information based representation of the input data.
The size of the bottleneck is a hyperparameter which determines
how much of the data is compressed.

With this task in mind, an AE can be considered as the
composition of two constituent neural networks: the encoder, and
the decoder. Suppose that the starting dataset is a collection of
n-dimensional points, S ⇢ Rn, and we want the bottleneck to be
of size l, then we can write the encoder and decoder as functions
mapping between Rn and Rl :

Eq : Rn ! Rl , Dq : Rl ! Rn

The subscript q denotes that these functions are constructed
as neural networks parameterized by learanble weights q . The
encoder is tasked with taking the original data input and sending
it to a compressed or encoded representation. The output of
the encoder serves as the bottleneck layer. Then the decoder is
tasked with taking this encoded representation and reconstructing
a plausible input which could have been encoded to generate this
representation, and thus is encouraged to become an approximate
inverse of the encoder. The loss target of a AE is generally some
distance function (not necessarily a metric) between items in the
data space, which we denote as

d : Rn ⇥Rn ! R.

Given a single input x 2 S, we then write the loss function as

Lq (x) = d(x,Dq (Eq (x)))

where a common choice for d is the square of the standard
euclidean norm, resulting in

Lq (x) = kx�Dq (Eq (x))k2.

The AE unfortunately is prone to degenerate solutions where
when the decoder is sufficiently complex, rather than learning a
meaningful compressed representation, it instead learns a hash of
the input dataset, achieving perfect reconstruction at the expense
of any generalizability. Notably, even without this extreme hash
example, there is no restraint on continuity on the decoder, thus
even if a point z 2 E(S) ⇢ Rl in the latent space decodes into a
nice, plausible data point in the original dataset, points close to z
need not nicely decode.

The Variational Autoencoder
A VAE attempts to solve this problem by decoding neighborhoods
around the encoded points rather than just the encoded points
themselves. A neighborhood around a point z 2 Rl is modeled
by considering a multivariate gaussian distribution centered at
µ 2Rl with covariance S 2Rl⇥l . It often suffices to assert that the
covariance be a diagonal matrix, allowing us to write S = diag(s)
for some s 2 Rl . While the decision to model neighborhoods
via distributions deserves its own discussion and justification,
it falls outside the scope of this paper and thus we omit the
technical details while referring curious readers to [Doe16] for
further reading. Instead, we provide a sort of rationalization of
the conclusions of those discussions in the paragraphs that follow.
While this is a little backwards, we find it does a better job of
communicating the nature of the techniques to most audiences
than does touring the complex mathematical underpinnings. The
idea of modeling neighborhoods as distributions is implemented
by changing the encoder to a new function

Ẽq : Rn ! Rl ⇥Rl , Ẽq : x 7! (µ,s)

where µ is the analog to the encoded z in the AE. However now
we also introduce s , which is the main diagonal of a covariance
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matrix S, which determines how far, and in what direction, to
randomly sample around the mean µ . What this means is after
encoding, we no longer get a singular point, but a distribution
modeling a neighborhood of points as promised. This distribution
is referred to as the posterior distribution corresponding to x,
written as q(z|x) =N (µ,S). We sample from this posterior using
the following construction

z ⇠ qq (z|x) () z = µ +Se , where e ⇠ N (0, Il)

to ensure that we may complete backpropagation, since µ,s are
dependent on weights within the network. This is known as the
reparameterization trick. Our modified loss is then

Lq (x) = kx�Dq (z)k2.

Through this change, over the course of training we obtain a
Monte Carlo estimation of the neighborhoods around the em-
bedded points, encouraging continuity in their decoding. This
result is still incomplete in that there’s no guarantee that the
decoder doesn’t degenerate to setting s arbitrarily close to zero,
resulting in a slightly more complex AE. Thus we assert that if
one were to sample from some predetermined prior distribution
on the latent space, written as p(z), then the sampled point can
be reasonably decoded as a point in the starting data space. To
break that down, this means that the portions of the latent space
that our model should be best trained on should follow the prior
distribution. A common choice for prior, due to simplicity, is
the unit-variance Gaussian distribution. This is implemented by
imposing a Kullback–Leibler Divergence (KL Divergence) loss
between the posterior distributions (parameterized by our encoder
via µ,s ) and the prior distribution (in this case N (0, Il)). Thus
our final loss function is

Lq (x) = kx�Dq (z)k2 +KL(qq (z|x)k p(z)).

Now we finally have a vanilla VAE, wherein it can not only
encode and decode the starting dataset, but it can also decode
points in the latent space that it hasn’t explicitly trained with
(though with no strict promises on the resulting quality). Further
improvements to the VAE framework have been made in recent
years. To empower the decoder without introducing a significant
number of parameters, we implement a spatial broadcast decoder
(SBD), as outlined in [WMBL19]. To achieve greater flexibility
in terms of the shape of the prior and posterior distributions, we
employ the VampPrior in [TW17] with an added regularization
term. Both these changes afford us greater flexibility and perfor-
mance in creating a semantically meaningful latent space. The
VampPrior is an alternative prior distribution that is constructed
by aggregating the posteriors corresponding to K learned pseudo-
inputs c1, . . . ,cK . The distribution is given by

p(z) =
1
K

K

Â
i

q(z|ci)

This choice of prior optimizes the pipeline for downstream tasks
such as clustering and phenotype discovery. We apply a regulariza-
tion term to the loss to encourage that these pseudo-inputs look as
though they could be reasonably generated by the starting dataset
3. Thus our loss becomes

z̃i ⇠ q(z|ci)

Fig. 3: Pseudo-inputs of a VampPrior based VAE on MNIST without
additional regularization term (top row), and with regularization term
(bottom row)

Lq (x) = kx�Dq (z)k2 +KL(qq (z|x)k p(z))
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This has an immediate use in both clustering and semantic pattern
discovery tasks. Rather than the embedding E(S) ⇢ Rl of the
dataset being distributed as a unit gaussian, it is distributed as
a mixture of gaussians, with each component being a posterior of
a pseudo-input. Consequently, the pseudo-inputs create notable
and calculable clusters, and the semantic significance of the
clusters can be determined, or at least informed, by analyzing the
reconstruction of the pseudo-input responsible for that posterior
distribution.

Appearance

The appearance module’s role is to learn a sufficient representation
so that, frames are reconstructed accurately on an individual basis,
and that spatial differences of frames over time is represented with
a meaningful sequence of points in the latent space. The latter is
the core assumption of the dynamics module.

The appearance module is designed to work with generalized
videos, regardless of specific application. Specifically it is de-
signed to take as input singular video frames, augmented with the
information generated during the preprocessing phase, including
optical flow quantities such as curl. These additional components
are included as additional channels concatenated to the starting
data, and thus is readily expandable to suit whatever augmented
information is appropriate for a given task. In the case of our
particular problem, one notable issue is that cilia occupy a small
portion of the frame as shown in Figure 6, and thus, the contents
of the images that we are interested in exist in some subspace that
is significantly smaller than the overall data space. This can result
in problems where the neural network optimizes components such
as background noise and image artifacts at the expense of the
clinically critical cilia information. To remedy this, we leverage
the segmentation masks created during the preprocessing phase to
focus the network on only the critical portions of the image.

To that effect, we mask the augmented frame data—the raw
images concatenated with additional information such as optical
flow quantities—using the segmentation masks and train the
network on these masked quantities. Mathematically we refer to
a single augmented frame with k channels as f , a doubly-indexed
collection of vectors, writing the channel information of pixel (i, j)
as fi, j 2 Rk. We similarly write the generated segmentation mask
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Fig. 4: The Appearance Module pipeline

m as a doubly-indexed collection of scalars with mi, j 2 [0,1]⇢ R,
then we construct the augmented frame

f̃i, j := fi, j ·mi, j

The appearance module ultimately embeds a segmented region
of cilia observed in a single frame into what we refer to as the
appearance latent space. Due to the temporally static nature of
individual frames, this latent space is an encoded representation
of only the spatial information of the underlying processed data.
This spatial information includes aspects such as the shape and
distribution of cilia along cells, as well as factors such as their
length, orientation and overall shape. These spatial features can
be then used in downstream tasks such as phenotype discovery,
by drawing a strong connection between apparent patterns in the
appearance latent space as and semantically meaningful patterns
in the underlying data as well.

Our proposed model for the appearance module uses a varia-
tion of ResNet [HZRS15] as an encoder, while employing SBD in
the decoder, as well as an upsampling, ResNet-like network in the
decoder. Figure 4 shows the training pipeline for the appearance
module, the encoder Eapp is the neural network implementing
the variational distribution q(z|x), by estimating parameters to
a normal distribution given a certain input frame x = f . q(z|x)
is therefore N (µz,diag(sz)) where µz and sz are the mean
and standard deviation vectors of a normal distribution estimated
given a certain input frame, or a pseudo-input frame. The de-
coder Dapp is trained to reconstruct the input from a sampled
z⇠N (µz,diag(sz)), by minimizing the L2 loss between the input
and the reconstructed output. The pseudo-inputs c1..k are only used
during the training, to enforce the prior constraint through a Monte
Carlo estimation of the KL divergence, as mentioned earlier.

Dynamics

While the appearance module handles representing the video
frames individually under a generative model, the dynamics mod-
ule is where the temporal behavior is represented. We propose a
VAE generative seq2seq module that consists of both an encoder
and a decoder to embed the temporal dynamics in a latent semantic
space for motion patterns (dynamics). The encoder handles em-
bedding the dynamics of the observed video frames (input) into a
latent vector w in the dynamics semantic space Rddyn . This vector
w encodes the dynamics of the video subsequence observed by the
encoder. The decoder, then, is able to extrapolate the video into
future time-steps by unrolling a sampled latent vector w from the
dynamics space into a sequence of vectors c1..k. These vectors are
not the extrapolated sequence themselves, but instead represent a
sequence of changes to be made on a supplied appearance vector
ẑ0. This vector serves as an initial frame—a starting point for

extrapolation—and can be any frame from the video since the
vector w encodes the dynamics of the entire video. Applying this
sequence of change vectors to the initial appearance vector one-
by-one, using an aggregation operator f(z,c), which could be as
simple as vector addition, results in a sequence of appearance
vectors ẑ1..k which represent the extrapolated sequence. This
sequence can then be decoded back into video frames through
the decoder of the appearance module Dapp.

Since the encoder and the decoder of the dynamics module
need to process sequences of vectors, they are modeled using a
Gated Recurrent Unit (GRU) [CvMG+14] and an LSTM unit,
respectively. They are types of RNN with unique architectures that
allow them to handle longer sequences of data than a generic RNN
could. A GRU cell operates on an input vector xt , and a hidden
state vector st at a certain time-step t. Applying a GRU step results
in an updated state vector st+1. An LSTM cell is similar, but it also
has an additional output state ht that gets updated as well like the
hidden state.

Figure 5 depicts the pipeline of the proposed dynamics mod-
ule, showing the encoder steps, sampling from the dynamics space,
and the decoder steps. The dynamics encoder GRU, Edyn, starts
from a blank state vector s0

enc = 0 that updates every time the
appearance vector of the next video frame is fed-in. After feeding
in the appearance vector of the final input frame zn, the state vector
sn

enc would encompass information about the motion patterns in
the observed video frames z1..n, and would then constitute a latent
vector in the dynamics semantic space w = sn.

The dynamics decoder LSTM Ddyn starts from a latent dy-
namics vector as its hidden state s0

dec = w, a blank output state
vector h0

dec = 0 and an initial supplied appearance vector to act
as the beginning output frame. Note that this supplied vector
can be any point but the last within the original input sequence,
thus we set ẑ0 = zi for some i 2 {1, . . . ,n�1}. Applying each step
results in a change vector ct+1 = ht+1 (output state vector), that
gets applied to the most recent appearance vector in the output
sequence to predict the next appearance vector ẑt+1 = f(ẑt ,ct+1),
which in turn is used as an input vector to the next LSTM step. The
sequence of predicted appearance vectors are then passed through
the appearance decoder Dapp(ẑ1), ...,Dapp(ẑk), to generate back the
video frames. During training time, an L2 loss is minimized on the
predicted k points in the appearance latent space and the true ones.

A prior constraint is imposed on the encoder’s output, as
per the VAE formulation. Therefore, the size of the state vec-
tor of the encoder is 2ddyn, composed of both µw, and sw,
such that w ⇠ N (µw,diag(sw)). The prior loss then becomes
KL(N (µw,diag(sw)) ||N (0, I)) and is minimized throughout the
training.

It is important to note that the appearance module and the
dynamics module are decoupled, such that sampling a different
vector w from the dynamics latent space results in different motion
dynamics in the extrapolated sequence of video frames despite
starting from the same initial supplied frame. As is the case when
supplying a different initial output frame as well. To reinforce that,
after encoding an input sequence into a dynamics latent vector w,
multiple sequences of k+ 1 frames are sampled uniformly from
the same training video, where each generated sequence is set to
extrapolate from its first frame, and the same dynamics vector w.
The L2 loss between the extrapolated frames and the remaining k
frames in each sequence is minimized with backpropagation.

To summarize, encoder of the dynamics module is trained
to extract the motion dynamics from the appearance vectors of
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ẑ
k−1 ẑ
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Fig. 5: The Dynamics Module pipeline

a sequence of video frames, and embeds them in a semantic
space representing all possible cilia motion patterns. The decoder
applies motion patterns from a sampled dynamics vector to a
given starting frame, and predicts the appearance vectors to future
frames.

Results

The data used for the segmentation task consists of 223 cor-
responding sets of ground truth masks and high-speed digital
microscopy video data. The ground truth masks were manually
generated to represent regions of cilia, and the video contains
time-series differential image contrast grayscale frames. Each
model trained is evaluated by testing intersection over union (IoU),
testing precision, and testing accuracy. For every mask generated
by FCDN-103, IoU computes the region of overlap between
predicted pixels containing cilia and ground truth pixels containing
cilia over the joint regions of either prediction or ground truth
that contain cilia. Although IoU is typically a superior metric for
segmentation evaluation, FCDN-103 is optimized with the goal of
minimizing type II error or the presence of false positives because
the output masks will be used to narrow representation learning
to our region of interest. Thus, we aim to produce segmentation
masks with high precision that exclusively identify regions of cilia
containing minimal background scene.

We train our FCDN-103 model, written in PyTorch
[PGM+19], with an Adam optimizer and cross-entropy loss on
one NVIDIA Titan X GPU card. We split our data to consist of
1785 training patches and 190 testing patches. Throughout training
and tuning, we experiment with several parameters: standard
parameters such as batch size, learning rate, and regularization
parameters such as learning rate decay, weight decay, and dropout.
We observe optimal performance after 50 epochs, 14 patches per
batch, learning rate of 0.0001, learning rate decay of 0.0, and
weight decay of 0.0001. This model achieves 33.06% average
testing IOU, and 53.26% precision. Figure 6 shows two exam-
ples of 128 x 128 test patches with their corresponding ground
truth mask (middle) and FCDN-103 generated mask (right); the
predicted masks cover more concise areas of cilia than the ground

Fig. 6: Segmentation examples from left to right: raw test frame,
frame overlain with ground truth segmentation mask, frame overlain
with FCDN-103 predicted segmentation maskline

truths and ignore the background in entirety. Previously, Lu 2018
implement a Fully Convolutional DenseNet with 109 layers in a
tiramisu architecture trained on ciliary data [LMZ+18]; FCDN-
103 achieves an average of 88.3% testing accuracy, outperforming
Lu 2018’s FCDN-109 by two percentage points.

Curl and deformation fields are extracted from the generated
optical flow fields using SciPy’s signal and ndimage packages
[VGO+20]. Figure 7 shows an example of healthy cilia and
its mid-cycle optical flow where vector magnitude corresponds
to color saturation; we can reasonably assume that the primary
region of movement within optical flow fields will contain healthy
cilia. While optical flow fields can potentially provide information
on cilia location, we avoid solely using optical flow fields to
generate segmentation masks due to the presence of dyskinetic
cilia. Identifying stationary cilia is a crucial step in learning
ciliary motion phenotype. However, it is possible that optical flow
provides insight into both ciliary location and temporal behavior.

During optimization of the appearance module, we observe
that cilia do not tend to exhibit a large degree of spatial differences
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Fig. 7: Raw imagery and corresponding optical flow visualization

over time, thus rather than processing every frame of the dataset,
we used the NumPy [vdWCV11] library to efficiently sample a
fixed number of frames from each video. For testing purposes, we
set the number of sampled frames to 40. We sample these frames
uniformly throughout the video to ensure that both high-frequency
(e.g. cilia beats) and low-frequency (e.g. cell locomotion) spatial
changes are represented to ensure that we train on a sufficiently
varied base of spatial features.

The entirety of the appearance module’s architecture was
written using PyTorch. The encoder is a composition of residual
blocks, with pixel-wise convolutions and maxpooling operations
between them to facilitate channel shuffling and dimensionality re-
duction respectively, connecting to a fully-connected layer which
represents the means and log-variances along each axis of the
latent space. We use log-variances instead of the usual standard
deviation, or even variance, to guarantee numerical stability, make
subsequent calculations such as KL divergence easier, and reduce
the propensity for degenerate distributions with variances that ap-
proach 0. Since we use a modified VampPrior, the KL Divergence
is between a single Gaussian, the posterior, and a mixture of
Gaussians, the prior, and thus intractable. In order to estimate
this, we employ a Monte Carlo estimation technique, manually
calculate the difference in log-probabilities for each distribution at
every pass of the loss function, asserting that throughout training
these values approximate the ideal KL Divergence. All figures
were generated using Matplotlib [Hun07]. The current project can
be found at our github repository.

Conclusion

While the initial task of this model was to represent cilia, it
also serves as a general framework that is readily extensible
to almost any task that involves the simultaneous, yet separate,
representation of spatial and temporal components. The specific
aim of this project was to develop separate, usable tools which
sufficiently accomplish their narrow roles and to integrate them

together to offer a more meaningful understanding of the overall
problem. While we are still in the early phases of evaluating
the entire integrated pipeline as a singular solution, we have
demonstrated early successes with the preprocessing module, and
have situated the appearance and dynamics modules in the context
of modern machine learning approaches well enough to justify
further exploration.

Further Research

This generative framework is a foundational element of a much
larger project: the construction of a complete library of ciliary
motion phenotypes for large-scale genomic screens, and the devel-
opment of a comprehensive and sophisticated analytics toolbox.
The analytics toolbox is intended to be used by developmental
and molecular biologists in research settings, as well as clinicians
in biomedical and diagnostic settings. By packaging this frame-
work in an easy-to-use open source toolbox, we aim to make
sophisticated generative modeling of ciliary motion waveforms
available to researchers who do not share our machine learning
backgrounds. This pipeline will also serve as a basis and back-end
for an exploration into the realm of collaborative, crowd-driven
data acquisition and processing in the form of a user-friendly web
tool.

More research should also be done to the implementations of
each module, and namely their codependencies. For example, how
do the quality of segmentation masks in the preprocessing module
affect the quality of spatial representation, and consequently dy-
namic representation? Is there virtue in allowing partial entangle-
ment between the appearance and dynamics module to optimize
their joint representation? Can the learned spatial representation
influence and inform the preprocessing module in a meaningful
way? We hope to explore these questions, and many more, in the
near future.

We also encourage the expansion and application of this frame-
work to various other problem contexts. The modular approach to
its design ensures portability and adaptability to other projects.
The fact that the dynamics module is designed to operate within
the abstract latent space of the appearance module means that
the appearance module acts as a buffer or converter between the
concrete data and the temporal analysis. Consequently, when ap-
plying the framework to new projects, only the appearance module
need be altered, while the preprocessing module may optionally be
adapted or entirely dropped, and the dynamics module preserved.

One example task this pipeline could be adapted to is that
of RNA folding analysis. The study of RNA folding patterns is
essential in areas such as drug development. One way to model
RNA folding is to consider a strand of RNA as a partially-
connected point cloud, tracked through time. In this case, the
preprocessing module may be forgone, and altering the appearance
encoder/decoder to a generic architecture compatible with point
clouds, e.g. a geometric neural network or GCNN is all that is
necessary. The dynamics module could be readily applied without
significant changes.
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