

## PREDICTORS OF MISCOMMUNICATION

1

## **Predictions of Miscommunication In Verbal Communication During Collaborative Joint**

3

## Action

4 Alexandra Paxton<sup>1,2†</sup>, Jennifer M. Roche<sup>3†</sup>, Alyssa Ibarra<sup>4</sup>, & Michael K. Tanenhaus<sup>5</sup>

5

<sup>6</sup> <sup>†</sup>Authors Paxton and Roche equally contributed to this work.

7 <sup>1</sup>Department of Psychological Sciences, University of Connecticut

<sup>8</sup> <sup>2</sup>Center for the Ecological Study of Perception and Action, University of Connecticut

<sup>9</sup> <sup>3</sup>Department of Speech Pathology & Audiology, School of Health Sciences, Kent State University

10 <sup>4</sup> Department of Brain & Cognitive Sciences, University of Rochester

11 <sup>5</sup>Department of Brain & Cognitive Sciences, University of Rochester

12

13 **Conflicts of Interest.** The authors have no conflicts of interest to report.

14 **Funding Statement.** Preparation of this manuscript was supported by a National Institute of  
15 Health grant (R01 HD027206) to M. K. Tanenhaus.

16

## 17 Corresponding Author:

18

Alexandra Paxton

19

Department of Psychological Sciences

20

## University of Connecticut

21

Storrs, CT, 06269

22

Email: alexandra.paxton@uconn.edu

## PREDICTORS OF MISCOMMUNICATION

23

**Abstract**

24 **Purpose:** The purpose of the current study was to examine the lexical and pragmatic factors that  
25 may contribute to turn-by-turn failures in communication (i.e., miscommunication), that arise  
26 regularly in interactive communication.

27 **Method:** Using a corpus from a collaborative dyadic building task, we investigated what  
28 differentiated successful from unsuccessful communication and potential factors associated with  
29 the choice to provide greater lexical information to a conversation partner.

30 **Results:** We found that more successful dyads' language tended to be associated with greater  
31 lexical density, lower ambiguity, and fewer questions. We also found participants were more  
32 lexically dense when accepting and integrating a partner's information (i.e., *grounding*) but were  
33 less lexically dense when responding to a question. Finally, an exploratory analysis suggested that  
34 dyads tended to spend more lexical effort when responding to an inquiry and used assent language  
35 accurately—that is, only when communication was successful.

36 **Conclusion:** Together, the results suggest that miscommunication both emerges and benefits from  
37 ambiguous and lexically dense utterances.

38 *Keywords:* miscommunication, dialogue, ambiguity, conversation, grounding

39

40

41

42

## PREDICTORS OF MISCOMMUNICATION

### 43 **Predictors of Miscommunication in Verbal Communication During Collaborative Joint Action**

44 Miscommunication—that is, the failure to communicate an intended message to another  
45 person—is often seen as an unfortunate byproduct of everyday communication. It has been blamed  
46 for a host of negative short- and long-term effects on communication, from creating momentary  
47 discomfort to damaging interpersonal relationships (e.g., Guerrero, Andersen, & Afifi, 2001;  
48 Keysar, 2007; McTear, 1991; 2008). Given these harmful effects, psycholinguistic research on  
49 miscommunication has tended to focus on understanding how communication breakdowns are  
50 repaired (Bazzanella & Damiano, 1999; Levelt, 1983).

51 However, there is currently little understanding of the processes of miscommunication  
52 itself. Although many domains that are visibly affected by miscommunication explored the  
53 negative effects of miscommunication, understanding how miscommunication works—and even  
54 how we might be able to use it to our advantage—may help us mitigate communication failure.  
55 Research in healthcare-related fields has shown alarming effects of miscommunication on patient  
56 health. Unfortunate and even fatal recovery outcomes have been linked to miscommunications  
57 about care between caregivers and surgical patients (Halverson et al., 2011; Lingard et al., 2004).  
58 An estimated 15.8% of medication errors stem from miscommunication about appropriate use  
59 (Phillips et al., 2001), and approximately 32% of unplanned pregnancies are related to  
60 miscommunications about effective contraception use (Isaacs & Creinin, 2003). Perhaps most  
61 alarmingly, 67% of trauma patient deaths result directly from miscommunication between  
62 members of the trauma team (Raley et al., 2016); in 2000 alone, between 44,000 and 98,000 people  
63 died in hospitals because of medical miscommunication (Sutcliffe, Lewton, & Rosenthal, 2004).  
64 These efforts underscore the potential for direct application of basic research into the processes of  
65 miscommunication to improve lives.

## PREDICTORS OF MISCOMMUNICATION

66        Most consequences of miscommunication are not this dire, but these examples demonstrate  
67        the importance of studying miscommunication. A thorough understanding of miscommunication  
68        cannot simply propose methods to prevent it but must also improve our understanding of how we  
69        function despite it. Before we can promote ways to prevent the most severe negative consequences  
70        of miscommunication, we must build a foundation for understanding how miscommunications  
71        occur in language during interaction. In the current study, we contribute to the basic study of  
72        miscommunication by examining its pragmatic and lexical contributors within a collaborative task.

### 73        **Miscommunication as an Opportunity for Success**

74        Previous work on learning has suggested that learning may be more likely to happen when  
75        the cognitive system is perturbed, thanks to the recruitment of additional attentional resources  
76        (D'Mello & Graesser, 2011; Graesser & Olde, 2003). This raises the possibility that  
77        miscommunication may sometimes provide a stepping-stone for improved communication:  
78        Miscommunication can capture attention when it perturbs the cognitive system by triggering the  
79        learner or listener to recruit attentional resources to the situation.

80        Successful communication necessarily requires interlocutors to coordinate and regularly  
81        update their mutual knowledge, experiences, beliefs, and assumptions (e.g., Clark & Carlson,  
82        1982; Clark & Marshall, 1981). One way that interlocutors can do this is by establishing  
83        *conceptual* or *lexical pacts*, negotiating meanings of shared items or experiences with one another  
84        (Brennan & Clark, 1996). These pacts may not always be explicit (cf. Fusaroli et al., 2012; Mills,  
85        2014), but these shared ideas and referential expressions quickly coordinate joint action. However,  
86        the *grounding* process—that is, the process of establishing these pacts—is often riddled with  
87        unsuccessful attempts that slowly pave the way to a common goal. Some researchers have provided  
88        insights into how interlocutors might resolve communication problems (e.g., through ambiguity

## PREDICTORS OF MISCOMMUNICATION

89 resolution, asking clarification questions, and repair; Clark & Brennan, 1991; Garrod & Pickering,  
90 2004; Haywood, Pickering, & Branigan, 2005; Levelt & Cutler, 1983). Interlocutors must  
91 therefore approach conversations with relative flexibility to adapt to moment-to-moment changes  
92 in conversational demands in order to successfully negotiate shared activities (Ibarra & Tanenhaus,  
93 2016).

94 At the same time, interlocutors do not want to provide more information than necessary  
95 (e.g., Grice, 1975). Increased information can tax the listener's cognitive resources and can result  
96 in inappropriate inferences. Producing the additional information will also be costly for the talker.  
97 By investing effort when important new information is introduced during the interaction,  
98 interlocutors can work together to establish efficient pacts by more equitably distributing effort  
99 (even implicitly; Brennan & Clark, 1996; Zipf, 1949).

100 During extended collaborative dialogue, what appears to be under-specification—that is,  
101 where the talker appears to be giving less information in a given utterance than is often needed to  
102 uniquely refer—is quite common: Because talkers' referential domains become closely aligned  
103 through their interaction, seemingly under-informative referential expressions actually provide  
104 necessary and sufficient information in the context of their shared goals and task constraints  
105 (Brown-Schmidt & Tanenhaus, 2008). However, problems may arise when a talker inaccurately  
106 estimates the listener's needs or the pair's conceptual pacts, goals, and task constraints.

107 Therefore, interlocutors must delicately balance when they must provide additional  
108 information and when they can get away with saying as little as possible. If a talker is too “cheap”  
109 in their message, the omission of critical details could lead the interaction to suffer. On the other  
110 hand, if a talker's message is too “expensive,” heavy cognitive demands may cause the interaction  
111 to suffer, including interlocutors making unnecessary and even inappropriate inferences. In fact,

## PREDICTORS OF MISCOMMUNICATION

112 ambiguity may even be a feature (not a flaw) of communication to maximize efficiency so long as  
113 the context is sufficiently rich (Piantadosi, Tily, & Gibson, 2012).

114 When reducing effort by providing less information, ambiguous language is likely to  
115 increase. However, listeners expect reduced information under some circumstances; for example,  
116 a “repeated name penalty” occurs when a talker repeats a name when a pronoun is expected  
117 (Gordon, Grosz, & Gilliom, 1993). In fact, using a fully specified referent—regardless of the state  
118 of discourse—increases processing difficulty relative to language with potentially ambiguous  
119 referents (Campana, Tanenhaus, Allen, & Remington, 2011).

120 Because spoken language unfolds over time, listeners routinely encounter temporary  
121 ambiguity at the segmental, lexical, and syntactic levels. When a talker uses ambiguous language,  
122 the listener may be able to situate it within the current context and easily settle on the talker’s  
123 meaning. To reduce some of the burden placed on a single individual’s cognitive system,  
124 interlocutors may communicate more easily by offloading some of the processing effort to one  
125 another and to the broader interaction context (e.g., Zipf, 1949).

126 However, listeners may not always understand the intended message from an ambiguous  
127 reference, leading to moments of uncertainty and misinterpretation. At this point, communication  
128 does not necessarily fail entirely. Instead, various processes within the dyadic system allow the  
129 listener to confirm the talker’s intent and solicit more information when the message is unclear.  
130 For example, back-channeling—or brief responses from the listener during a speaker’s turn—can  
131 increase conversational flow between interlocutors and indicate that the listener understands the  
132 speaker (Bavelas & Gerwing, 2011; Lambertz, 2011; Yngve, 1970).

133 We cannot always know when our referential domains are completely aligned and when  
134 they have become mismatched. An efficient strategy, then, may be to provide utterances that are

## PREDICTORS OF MISCOMMUNICATION

135 as minimally “content-full” (or lexically dense) as needed by the current context. However, with  
136 such a strategy, unless interlocutors’ referential domains are *perfectly* aligned throughout an entire  
137 interaction, miscommunication will likely follow from missing or impoverished information, at  
138 least occasionally. We can view this strategy as arising from interlocutors’ attempts to balance  
139 talker effort with listener understanding in an uncertain environment.

140 Given this view, efficient task-oriented dialogue should be marked by intermittent  
141 instances of miscommunication. These would likely occur when language is just a bit too  
142 ambiguous or missing just a bit too much information. Under this view, miscommunication should  
143 be both common and a natural consequence of minimizing communicative effort, with  
144 interlocutors providing additional information only when prompted by miscommunication.

### 145 **The Present Study**

146 Previous psycholinguistic research has demonstrated how pragmatic and linguistic  
147 behaviors impact language processing. We aim to contribute to this literature by quantifying the  
148 roles that a targeted subset of pragmatic and lexical behaviors plays in miscommunication. More  
149 closely evaluating the behaviors associated with miscommunication may shed light on the  
150 processes behind miscommunication. At present, miscommunication is poorly understood, but it  
151 is likely tied to basic cognitive processes and patterned aspects of the communicative context.

152 We created an interactive dyadic task with a clear turn structure with an objective measure  
153 of communicative success. Crucially, partners had to work together toward a shared goal without  
154 a shared visual environment, allowing us to specifically target the contributions of language to  
155 performance and miscommunication. The task allowed us to hold overall success constant:  
156 Because all dyads eventually completed the joint task successfully, we could separate the dynamics  
157 of local success (i.e., the turn-by-turn successes or miscommunications) from global success (i.e.,

## PREDICTORS OF MISCOMMUNICATION

158 achieving the stated goal of the interaction). Rather than examining overall success or confounding  
159 overall and local success, we were able to look at how each dyad's moment-to-moment success or  
160 failure were related to their language patterns. By operationalizing local miscommunication and  
161 restricting communication to explicit linguistic patterns, we were able to isolate specific  
162 contributions to communicative success or failure.

163 Through experimental paradigms like the map task (e.g., Anderson et al., 1991) or the  
164 tangram task (e.g., Clark & Wilkes-Gibbs, 1986), researchers have built decades of findings on  
165 the ways in which interacting individuals emerge from miscommunication during joint action  
166 through the constellation of studies on *repair*. We seek to complement these findings by explicitly  
167 focusing on the characteristics of miscommunication itself. By directly comparing successful and  
168 unsuccessful communication, we can better understand the processes of communication more  
169 broadly. To do this, we consider the roles of linguistic and pragmatic behaviors in “local” (or turn-  
170 by-turn) miscommunication.

171 **How Pragmatic and Lexical Behaviors Affect Local Miscommunication (Model 1).**  
172 Miscommunication may emerge as a result of the (mis-)interpretation of pragmatic behaviors and  
173 lexical items within the specific conversational context. We target five pragmatic and lexical  
174 behaviors that could contribute to turn-by-turn failures in communication: the use of task-specific  
175 ambiguous language, the use of statements of assent or negation, responding to a question, and the  
176 amount of content being conveyed between interlocutors (operationalized here as lexical density;  
177 see Measures section). These behaviors—while individually interesting and vital to successful  
178 communication—may together influence the dynamics of turn-level success.

179 By its nature, ambiguous language omits concrete or explicit content; therefore, if that  
180 ambiguous utterance is not sufficiently grounded, miscommunication is likely to follow. Although

## PREDICTORS OF MISCOMMUNICATION

181 ambiguity can emerge naturally from a variety of sources (e.g., increased cognitive load, assumed  
182 grounding, failures in perspective-taking), we are here able to isolate ambiguous language in a  
183 task-relevant domain: spatial terms. Since partners lack a shared visual environment in our task,  
184 any spatial referent will be somewhat ambiguous, allowing us to examine how these behaviors  
185 influence miscommunication.

186 Questions are an essential pragmatic behavior, allowing interlocutors to request  
187 clarification or to check if their partner requires clarification. Whether an interlocutor is responding  
188 to a question could provide useful information about the pragmatic state of the conversation, even  
189 when ignoring the semantics. Under the current assumption that interlocutors may be prompted to  
190 include more detail only when asked a question by their partner, we choose here to focus on  
191 *responses to questions* (rather than to questions themselves).

192 In spite of the “yes” bias (i.e., the increased likelihood of individuals to answer a question  
193 with an affirmation rather than a negation; e.g., McKinstry, Dale, & Spivey, 2008) and the  
194 tendency to back-channel using affirmations (rather than negations or other types of words; e.g.,  
195 Schegloff, 1982), individuals should be more likely to use assent words to establish grounding or  
196 signal understanding within this context. Similarly, interlocutors should be more likely to use  
197 negation when communication falters (e.g., when aware of their own lack of understanding).

198 Finally, interlocutors should only provide one another with the information necessary  
199 within the conversational context (Grice, 1975). However, interlocutors may have difficulty  
200 providing the appropriate amount of information when deprived of vital shared information within  
201 the conversation context—including a shared visual environment, as in the current study. Given  
202 the difficulties associated with these pressures, we hypothesize that miscommunication will be

## PREDICTORS OF MISCOMMUNICATION

203 associated with content-impoverished (i.e., lexically shallow) utterances as compared with  
204 content-rich (i.e., lexically dense) utterances.

205        Taken together, we hypothesize that increased use of ambiguous language, negation, and  
206 lexically shallow utterances will be associated with miscommunication in a given turn—all of  
207 which may stem from the difficulty in accurately providing the amount and type of content needed  
208 to promote success. However, we hypothesize that assent, responding to a question, and more  
209 lexically dense utterances will predict successful communication in a given turn.

210        **How Joint State and Pragmatics Shape Communication Richness (Model 2).** We are  
211 also interested in identifying the circumstances in which interacting individuals provide their  
212 partners with additional information. Certain types of communicative behaviors—like grounding  
213 and responding to questions—are believed to facilitate successful communication (e.g., Clark &  
214 Brennan, 1991; White, 1997), perhaps by contributing to content and context during  
215 communication. Therefore, we were interested in the way these behaviors and current  
216 communicative success influenced lexical density. Our second set of analyses targets how three  
217 variables influence the amount of content that interlocutors provide one another (operationalized  
218 as lexical density) in each utterance: grounding, responding to a question, and communication state  
219 (i.e., miscommunication or successful communication).

220        In collaborative problem-solving tasks, the act of grounding usually refers to occasions in  
221 which an interlocutor confirms (e.g., through explicit verbal affirmation) a conversational partner's  
222 referent to an object in their shared environment. This process serves to increase an interlocutor's  
223 ability to find common ground by establishing shared knowledge in the current task. While  
224 grounding can often occur within the context of responding to a question, grounding and question-  
225 responding are distinct: A person can exhibit grounding behavior in response to their partner's

## PREDICTORS OF MISCOMMUNICATION

226 statement (rather than a question), and they can respond to a question without grounding (e.g.,  
227 asking another question, negating new information, providing a clarification rather than a new  
228 piece of information).

229 Specifically, individuals should tend to use more lexically dense language when engaging  
230 in grounding behaviors and when responding to a question, with a stronger association seen in  
231 successful communication (as opposed to miscommunication). During moments of grounding and  
232 when responding to a question, lexical density may increase as interlocutors try to establish novel  
233 referents or re-ground. However, when conversation is lexically shallow, interlocutors might not  
234 have the necessary information to communicate successfully.

235 **Exploratory Analyses.** We will also engage in exploratory analyses to better understand  
236 our findings and suggest new avenues of research into the impact of miscommunication. After  
237 conducting our planned analyses, we will conduct exploratory analyses to help better understand  
238 the effects observed. Because these will be exploratory (rather than *a priori*) analyses, these  
239 analyses will be guided by the specific results of the planned analyses.

240 **Method**

241 **Participants**

242 Participants included 20 dyads of paid undergraduate students from the University of  
243 Rochester who did not know one another before participating ( $N = 40$ ; females<sup>1</sup> = 26; males = 14;  
244 mean age = 19 years). Participants were recruited through the university subject pool. All provided  
245 informed consent using IRB-approved procedures. All were native talkers of American English  
246 with normal to normal-corrected vision. None reported speech or hearing impairments.

---

<sup>1</sup> The experiment was run in 2012 and asked participants to self-report their gender using only “male” and “female” options, which are now associated with sex rather than gender.

## PREDICTORS OF MISCOMMUNICATION

247 **Stimuli and Procedure**

248 The current project analyzed a subset of a larger corpus aimed at capturing the linguistic  
249 and behavioral dynamics of dyadic task performance with and without shared visual fields (Paxton,  
250 Roche, Ibarra, & Tanenhaus, 2014; Paxton, Roche, & Tanenhaus, 2015; Roche, Paxton, Ibarra, &  
251 Tanenhaus, 2013; see similar paradigm in Ibarra & Tanenhaus, 2016).<sup>2</sup> Here, we analyzed the  
252 behavioral dynamics of only the interactions in which participants did not have a shared visual  
253 field. Participants engaged in a turn-taking task that required them to build a three-dimensional  
254 puzzle based on pictorial instruction cards. Participants were unable to see their partner, their  
255 partner's workspace, and their partner's instruction cards during the interaction; dyads coordinated  
256 building exclusively through spoken language exchanges. Interactions were transcribed and  
257 annotated for linguistic and behavioral measures.

258 Each data collection session was run by a single researcher<sup>3</sup>, sometimes accompanied by  
259 an undergraduate research assistant who was blind to study hypotheses. Stimuli were two (2)  
260 bloco<sup>tm</sup> objects ([www.blocotoys.com](http://www.blocotoys.com)). Bloco objects are three-dimensional animal puzzles  
261 consisting of approximately 27 unique pieces each (grasshopper = 25 pieces; lizard = 28 pieces;  
262 see Fig. 1). During the condition analyzed here, each dyad was randomly assigned to construct  
263 only one of these two puzzles.

264 [Insert Figure 1 around here]

265 The building process was divided into an *Item phase* and a *Build phase* (see Table 1).  
266 During the *Item phase*, participants were asked to separate the individual building components  
267 anywhere within four square regions drawn on each participant's workspace. The participants

---

<sup>2</sup> The remainder of the corpus asked participants to engage in a similar task but asked participants to work together on the same object in a shared visual environment. Because of our operationalization of miscommunication (see “Measures” section below), this additional condition was not suitable for the current analyses.

<sup>3</sup> This researcher was either author J.R. or author A.I.

## PREDICTORS OF MISCOMMUNICATION

268 could freely decide together how to arrange the pieces, subject to two constraints: (1) Both  
269 participants needed to agree about where each of the objects should be placed; and (2) participants'  
270 separate workspaces must match one another's by the end of this phase. The *Item phase* facilitated  
271 participants' familiarity with each piece prior to the *Build phase* and tidied the workspace for easier  
272 building in the subsequent phase.

273 For the *Build phase*, we constructed a set of pictorial instruction cards that guided both  
274 participants through each step of the object-building process (see Figure 1B). The grasshopper  
275 puzzle required 13 steps, and the lizard puzzle required 15 steps. Each card displayed a single step  
276 and depicted only the pieces of the puzzle that were directly relevant to the current step. The cards  
277 were divided as evenly as possible between the participants (i.e., 8 versus 7 for the grasshopper  
278 puzzle and 7 versus 6 cards for the lizard puzzle).

279 After the *Item phase* was complete, participants were given the cards and were asked to  
280 work together to build the figure using the instruction cards. Although they were instructed to take  
281 turns providing the instructions, both participants could otherwise speak freely. Once they  
282 completed the final instruction, the experimenter informed the dyad whether they had correctly  
283 built the object. Two (2) dyads made minor mistakes after completing the figure (e.g., the  
284 grasshopper legs were upside-down). The pairs that did not construct the figure completely  
285 correctly were informed that something did not match and that they needed to identify and fix the  
286 errors (which all eventually did).

287 During the experiment, each dyad was video-recorded from three angles in order to obtain  
288 full views of each participant's workspace and to capture each participant in profile. This aided in  
289 coding the non-linguistic behavioral data through the course of the interaction (see "Measures"

## PREDICTORS OF MISCOMMUNICATION

290 section below). The video recordings also captured audio, from which we fully transcribed the  
291 verbal exchanges between participants.

### 292 **Open Code and Data**

293 Due to assurances of confidentiality of data given to participants in the informed consent  
294 documents, we are unable to openly share the data for the project. The data were collected in 2012,  
295 prior to the widespread discussion of data-sharing that has since emerged in psychology and  
296 beyond. However, we have openly provided our code for analysis in our GitHub repository for our  
297 project: <https://github.com/a-paxton/miscommunication-in-joint-action>.

### 298 **Measures**

299 We transcribed each dyad's utterances along with several other non-linguistic behavioral  
300 measures. All transcription and coding procedures were performed by individuals who were blind  
301 to study hypotheses.

302 **Turns.** Using the audio data, a turn was coded as soon as one of the participants began to  
303 speak. When participants talked over one another, we maintained the turn structure by transcribing  
304 the talker who was “holding the floor” first and transcribing the talker who was “intruding” second.  
305 Across all 20 dyads, the corpus included a total of 8,493 turns.

306 **Workspace Matching.** In the present analyses, we quantify task success as the matching  
307 (or visual congruence) of partners' workspaces. An undergraduate research assistant (RA) coded  
308 the dyads' workspaces as either matching or mismatching on a turn-by-turn basis by examining  
309 the video streams for each dyad. The RA coded the visual environment at the end of each turn, the  
310 point at which one participant finished talking and before their partner began talking.

311 Often, a talker ( $T_a$ ) was required to describe a spatial orientation to their partner ( $T_b$ ). If  $T_b$   
312 physically moved the object to the correct orientation (as intended by  $T_a$  based on by  $T_a$ 's

## PREDICTORS OF MISCOMMUNICATION

313 workspace and instruction card), the current turn was coded as having matching workspaces.  
314 However, if  $T_b$  failed to put the object in the correct orientation, the turn was coded as having  
315 mismatching workspaces. Figure 1C provides an imagined example of what a mismatched turn  
316 might look like. In this turn,  $T_a$  instructed  $T_b$  to orient the holes in an upward fashion, but the  
317 ambiguous use of “up” resulted in a visually incongruent turn—because the spatial term was  
318 applied to the referent in a way that was not intended by the talker.

319         Approximately 65% of the turns in the current subset of the corpus were successful  
320 communication turns (i.e., turns at the end of which participants’ workspaces matched), while  
321 approximately 35% of the corpus were characterized by communication failure (i.e., turns at the  
322 end of which participants’ workspaces mismatched). Thus, we were successful in creating a  
323 situation in which interlocutors communicated successfully with one another on most trials, yet  
324 local miscommunication occurred frequently enough to create a rich enough corpus for analysis.

325         We determined the coding reliability by having two additional hypothesis-blind coders  
326 with no prior knowledge of the experiment evaluate 5% of the visual congruence codes (425 turns)  
327 from the original RA codes. These coders were asked to determine whether they agreed or  
328 disagreed with the first RA’s visual congruence codes for each turn. An inter-rater reliability  
329 analysis of these codes found high agreement with the primary coder ( $\kappa = .96$ ).

330         **Lexical Density.** We operationalize the amount of content in language as *lexical density*—  
331 that is, the ratio of content words to all words in a given utterance. We chose this over *lexical*  
332 *diversity* (i.e., another measure of language complexity that counts the total number of unique  
333 words in an utterance; cf. Johansson, 2008) because language can include a high level of lexical  
334 diversity (i.e., with many unique words) while still containing low lexical density (e.g., with many  
335 of the unique words being pronouns and auxiliaries instead of nouns and verbs; Bradac, Desmond,

## PREDICTORS OF MISCOMMUNICATION

336 & Murdock, 1977; Halliday, 1985; Johansson, 2008). Moreover, lexical density—as a ratio—  
337 naturally controls for the length of an utterance.

338 For our purposes, “content words” are nouns and verbs, excluding auxiliary verbs,  
339 pronouns, and very common words. The stopword corpus (i.e., a list of the most common words  
340 in a language, routinely removed from natural language processing because of their lack of  
341 situational specificity; e.g., pronouns, articles) in the `nltk` toolkit in Python formed the basis of  
342 our stopword list (Bird, Klein, & Loper, 2009). However, we removed from this list any of the  
343 lexical items of specific interest to our analyses (specified in the “Lexical Items” subsections  
344 below). A list of all stopwords in our analyses are included in our supplemental material.

345 Lexical density is a proportion of content words to total words. For example, if the words  
346 “green Christmas tree” comprised an entire turn, the turn would have a lexical density of 1, with 3  
347 content words out of 3 total words. However, if the turn were “the green Christmas tree,” it would  
348 contain 3 content words out of 4 total words, for a lexical density of 0.75.

349 **Lexical Items: Assent and Negation.** To facilitate automatic analysis, RAs transcribed  
350 the assent (e.g., *yes*, *yeah*, *yup*) and negation words (e.g., *no*, *nope*) using consistent spelling based  
351 on participants’ utterances. Turns were then automatically annotated with separate binary variables  
352 for whether they included indications of assent and negation (0 = no words of that type included  
353 in the turn; 1 = at least 1 word of that type included in the turn). Assent and negation were not  
354 mutually exclusive—that is, a turn could be coded as 1 in assent and 1 in negation if that turn  
355 included at least one assent word and at least one negation word. A list of all identified assent and  
356 negation terms in our analyses and the software code used to implement the automatic annotation  
357 are included in our supplemental material on GitHub.

## PREDICTORS OF MISCOMMUNICATION

358        **Lexical Items: Spatial Terms.** We identified spatial terms (e.g., *up*, *down*, *left*, *right*)—  
359    which are likely to be ambiguous in the current task because of the lack of shared visual  
360    information—by examining the unique words uttered by all participants to find words that could  
361    be spatial in nature. We then confirmed that these words were used as spatial markers by reading  
362    through the turns in which these identified terms occurred. Potential words that were not used as  
363    spatial referents in the majority of turns were not considered to be spatial terms. As with assent  
364    and negation, turns were then automatically annotated with a binary variable for whether they  
365    included a spatial term (0 = no spatial words; 1 = at least 1 spatial word). A list of all identified  
366    spatial terms in our analyses and the software code used to implement the automatic annotation  
367    are included in our supplemental material on GitHub.

368        **Pragmatic Behavior: Grounding.** Grounding was manually coded by two coders (author  
369    J.R. and A.I.) using a procedure similar to the one described by Nakatani and Traum (1999).  
370    Grounding was established through evaluating *grounding units*, in which one talker presented a  
371    new piece of information. A turn was marked as grounded when the unit was accepted by the other  
372    talker (in Fig. 1C, T<sub>a</sub>: *Do you want to put, like, all the green ones in that box, or...?*; T<sub>b</sub>: *Okay*.).  
373    The coders reached 87.5% agreement and substantial inter-rater reliability ( $\kappa = .61$ ; see Landis &  
374    Koch, 1977). For instances that agreement was not met in the initial ratings, the two coders  
375    discussed the discrepancies until consensus on the code was reached.

376        In the current analyses, we only counted explicit verbal grounding (i.e., at least one verbal  
377    indication in the turn immediately following one in which their partner offered new information).  
378    This did not have to be explicit assent but could include any kind of acknowledgement or response  
379    to their partner (e.g., responding with a location or direction).

## PREDICTORS OF MISCOMMUNICATION

380       **Pragmatic Behavior: Response to Questions.** Utterances containing an implicit or  
381 explicit question were indicated by the RA in the transcription with a question mark; these turns  
382 were counted as including questions. The utterance immediately following that turn (which was  
383 necessarily their partner's turn in the present transcription scheme) was automatically marked with  
384 our software as being a response to question. For instance, if one member of the dyad ( $T_a$ ) asked a  
385 question (as marked by a question mark in the transcription), the other member of the dyad ( $T_b$ )  
386 would be marked as "responding to a question" in the next turn. Turns marked as being a response  
387 to a question were not *necessarily* marked as grounding, although they *could* also be marked as  
388 grounding if grounding verbal behavior occurred during the response (see previous description).  
389 This relatively crude measure—again, simply marking whether the turn was preceded by one in  
390 which a question was asked by their partner—allowed us to capture information about question-  
391 responding behavior.

392       **Analytic Approach**

393       All analyses were performed in R (R Development Core Team, 2012), with all models built  
394 using the `lme4` package (Bates, Mächler, Bolker, & Walker, 2015). Each model reported below  
395 includes the maximal random effect structure supported by the data with dyad identity and turn  
396 number set as random intercepts. Each intercept included the maximal random slope structure  
397 justified by the data (using backward selection or "leave-one-out-method" until reaching  
398 convergence; Barr, Levy, Scheepers, & Tily, 2013). For clarity and ease of reading, we present all  
399 model results in tables and refer to the specific predictors in the text.

400       All dichotomous variables were dummy-coded and centered: whether the turn ended in  
401 miscommunication (-0.5 = matching state; 0.5 = mismatching state), whether grounding occurred  
402 during the turn (-0.5 = not grounded; 0.5 = grounded), whether the turn did not include (-0.5) or

## PREDICTORS OF MISCOMMUNICATION

403 included (0.5) at least one word from our target lexical items (assent, negation, and spatial words),  
404 and whether the turn was a response to a question (-0.5 = not a response to a question; 0.5 =  
405 response to a question). All main effects and interaction terms were centered and scaled prior to  
406 entry into the model, permitting estimates to be interpreted as effect sizes (Keith, 2005).

407 As discussed in the Method section, lexical density was calculated by dividing the number  
408 of content words by the number of total words in a turn, creating a natural floor and ceiling for the  
409 variable). After inspecting the data, we observed that participants used a number of one-word  
410 utterances (e.g., “Yeah,” “No,” “Up”) over the course of the task, creating a large number of turns  
411 at the ceiling or floor of lexical density. This means that it could be difficult to determine whether  
412 greater lexical density is having an effect (i.e., over the whole range of possible lexical density  
413 values; as we hypothesized) versus whether any effect of lexical density is driven by two additional  
414 possibilities: by one-word turns (i.e., which could only be at ceiling or at floor) or by turns with  
415 maximum lexical density (i.e., hitting the ceiling of the lexical density value). To rule out the  
416 possibility that our results were artifacts of the ceiling of lexical density or the presence of one-  
417 word turns, Models 1 and 2 were each constructed using multiple subsets of the data: (A) the full  
418 dataset (total turns = 8,494), (B) excluding MLD turns (i.e., turns with maximum lexical density;  
419 included turns = 3,341), and (C) excluding turns comprising only one word, which we call *OW*  
420 turns (included turns = 2,278). All unstandardized models are available at the GitHub repository  
421 for the project (see above).

422 **Model 1.** Model 1 evaluated the effects of pragmatic and lexical items (spatial, assent,  
423 negation, response to question, and lexical density) on successful communication (matching) and  
424 miscommunication (mismatching) turns using mixed-effects logistic regressions.

## PREDICTORS OF MISCOMMUNICATION

425 **Model 2.** To answer this question, we analyzed lexical density by grounding, responding  
426 to questions, and communicative state (along with their interactions) using linear mixed-effects  
427 models for three datasets: full turns, without MLD turns, and without OW turns. Moreover,  
428 exploring the patterns of lexical density may help shed light on some of the effects in Model 1.

429 **Exploratory Analyses.** Exploratory analyses will be conducted to investigate interesting  
430 patterns observed in Models 1 and 2. However, because they are contingent on the results from  
431 our planned models, we did not approach the exploratory analyses with a specific analysis plan in  
432 mind.

## Results

434 **Model 1**

435 **Model 1A: Full Data (Table 2).** As hypothesized, successful communication was more  
436 likely to be associated with higher lexical density and the presence of assent words and that  
437 miscommunication was more likely to be associated with the use of spatial terminology (i.e.,  
438 ambiguous language). As anticipated, we also saw a trend toward a positive relation between  
439 negation word use and miscommunication, although it did not reach statistical significance.  
440 Contrary to our hypothesis, however, we found that responses to a question were more likely to be  
441 associated with miscommunication at the end of the turn.

[Insert Table 2 around here]

443 **Model 1B: Without Maximum Lexical Density (MLD) Turns (Table 3).** Results were  
444 nearly identical to the raw model, with the exception that lexical density no longer predicted  
445 communication state but trended in a similar direction. Differences between the models with and  
446 without MLD turns could be driven by one-word turns (i.e., producing ceiling or floor effects).

[Insert Table 3 around here]

448 **Model 1C: Without One-Word (OW) Turns (Table 4).** Results were identical to the  
449 patterns found in our analysis of MLD turns (Model 1B): Negation again trended toward an effect  
450 but did not reach significance, and lexical density again failed to significantly predict  
451 communication state. Although we cannot conclusively discriminate between the effects of OW  
452 and MLD turns, these results suggest that OW/MLD turns drove the effect of lexical density  
453 observed in the full dataset but that the other effects were robust across all turns.

454 [Insert Table 4 around here]

455 Model 2

456 **Model 2A: Full Data (Table 5).** As expected, greater lexical density was positively  
457 associated with grounding. Contrary to expectations, however, lexical density was negatively  
458 connected with responding to a question, such that interlocutors tend to use shallower language  
459 when answering a partner’s question. We found a trend toward dyads using lexically shallow turns  
460 during miscommunication, although it did not reach statistical significance.

461 Against our expectations, we did not find that successful communication amplified the  
462 effects of grounding and responding to a question. However, dyads tended to produce more  
463 lexically shallow language when participants were grounding and responding to a question  
464 simultaneously (see Fig. 2): When asked a question that offered a new piece of information or re-  
465 established a lexical pact, the interlocutor's response tended to be less content-full. Interestingly,  
466 dyads were most lexically dense when grounding in response to statements (not questions). This  
467 could indicate verbal tracking or OW assent turns (e.g., saying “Uh-huh” in response to a partner’s  
468 statement to imply understanding).

469 [Insert Table 5 around here]

470 [Insert Figure 2 around here]

## PREDICTORS OF MISCOMMUNICATION

471 [Insert Figure 3 around here]

472 **Model 2B: Without MLD Turns (Table 6, Fig. 3).** Results were nearly identical to Model  
473 2A, with two exceptions: Mismatch state no longer trended toward significance, and the interaction  
474 between grounding behavior and responding to a question no longer reached significance, although  
475 it trended in a similar direction. These were again congruent with the possibility that OW assent  
476 turns—which would be marked as MLD—drove these effects. Our next model then tests whether  
477 removal of OW turns shows similar effects.

478 [Insert Table 6 around here]

479 **Model 2C: Without OW Turns (Table 7, Fig. 3).** Results were identical to Model 2A,  
480 supporting our intuition that these effects could be largely driven by OW assent turns.

481 [Insert Table 7 around here]

482 **Exploratory Analysis (Model 3, Table 8)**

483 As noted in our Analytic Approach section, we used our results from Models 1 and 2 to  
484 guide our choices in our exploratory analysis in Model 3. OW and MLD turns appeared to drive a  
485 number of effects in Model 2, but the invariance of lexical density in both subsets of the data leave  
486 us unable to disentangle these possible effects according to the amount of content being shared  
487 between talkers. Because Models 2C and 2B would both remove turns that included a single assent  
488 word (e.g., “yeah” or “uh-huh”), neither Model 2B nor Model 2C would be able to capture back-  
489 channeling. We identified OW assents as a potential means of disentangling the contributors to  
490 miscommunication in OW and MLD turns. When participants respond to one another with a single  
491 assent word, miscommunication could arise if the talker intends the assent to be a form of verbal  
492 tracking (or back-channeling) while the listener interprets it as grounding (e.g., saying “uh-huh”  
493 to affirm attention, not understanding). Therefore, we used our exploratory model to evaluate

## PREDICTORS OF MISCOMMUNICATION

494 assent words in a dataset that only included maximally dense utterances, using grounding, response  
 495 to a question, mismatch state, and all permissible interactions<sup>4</sup> as predictors. To do so, we created  
 496 a fourth (and final) dataset that *included* only maximally dense turns (turns = 5,460).

497 Our exploratory model found a significant main effect of grounding and response to a  
 498 question and a significant interaction between grounding and mismatch state. Consistent with  
 499 previous literature, dyads were significantly more likely to use an assent word when grounding.  
 500 (Again, grounding did not necessarily have to include an assent word; any explicit  
 501 acknowledgement or building onto a previous statement would be considered grounding.)

502 Interestingly, dyads were *less* likely to use an assent word when responding to a question  
 503 with an MLD turn, suggesting that participants tended to spend more time and (lexical) effort when  
 504 responding to one another's inquiries. Although responding with only a "Yes" or "No" would be  
 505 perfectly lexically dense, interlocutors did not necessarily do that. Instead, the dyads appeared to  
 506 provide "bite-sized" information that could be more targeted than a simple affirmation. When  
 507 grounding, dyads were equally likely to assent during successful and miscommunication turns;  
 508 when not grounding, they were more likely to assent during successful communication (see Fig.  
 509 4).

510 [Insert Table 8 around here]

511 [Insert Figure 4 around here]

512 **Discussion**

513 Miscommunication arises regularly during interaction in everyday life—especially in the  
 514 context of joint action or shared goals. Our current corpus reflects this reality, with

---

<sup>4</sup> Only the interaction between grounding and mismatch state could be included in this analysis. All other interactions did not include sufficient observations over the possible combinations to achieve convergence.

## PREDICTORS OF MISCOMMUNICATION

515 miscommunications occurring in approximately 35% of communicative turns in a collaborative  
516 dyadic task that asked participants to bridge distributed instructions to build puzzle objects without  
517 being able to see one another or one another's workspaces. As in everyday life, interlocutors were  
518 able to successfully complete a cognitively complex but mechanically simple task together despite  
519 ample miscommunication. We examine the effects of pragmatic and lexical behaviors on  
520 miscommunication, building on previous work on communicative processes that lead to successful  
521 communication and exploring how they function in miscommunication.

### 522 **Pragmatic and Lexical Predictors of Miscommunication**

523 Our first analysis unpacked the language dynamics associated with moment-to-moment  
524 miscommunication (Model 1A). Some behaviors—when an interlocutor was answering a partner's  
525 question or using more ambiguous task-specific language (i.e., spatial terms)—were more likely  
526 to result in miscommunication. Spatial terminology was particularly problematic because the  
527 dyads lacked a shared visual space during an inherently spatial task, although the interlocutors  
528 were still successfully able to use spatial terminology at least half of the time. While our task may  
529 appear somewhat unnatural, our connected societies are increasingly supporting remote  
530 collaboration—including during contexts without shared visual fields. The key to success is  
531 ensuring that ambiguity is grounded in relation to the current referent and within the current  
532 communicative context. Failure to appropriately ground appears to be the primary link between  
533 communication breakdown and spatial terminology.

534 We also saw a trend toward negation language leading to miscommunication, although it  
535 failed to reach statistical significance. Other behaviors—like using more assent words or more  
536 lexically dense language—were associated with successful communication. This is consistent with  
537 previous literature finding that interlocutors' production strategies often facilitate communication

## PREDICTORS OF MISCOMMUNICATION

538 (e.g., grounding, Bazzanella & Damiano, 1999; Clark & Brennan, 1991). Agreement's association  
539 with success is perhaps unsurprising, but it does lend support to the intuitive idea that partners use  
540 assent meaningfully and not simply as filler or backchanneling. Follow-up analyses controlling for  
541 maximal lexical density (Model 1B) and minimal turn length (Model 1C) found these results to be  
542 quite robust: Turns that included a question or more task-specific ambiguous language were  
543 consistently more likely to end in a state of miscommunication, while turns that included an  
544 indication of assent were consistently more likely to end in a state of successful communication.

545 Interactive collaborative conversation requires a balance of task success with language  
546 production costs. One way in which interlocutors reduce cognitive effort is by limiting the amount  
547 of explicit information in their utterances (Levinson, 1983)—including by relying on their context  
548 and environment to disambiguate (Piantadosi et al., 2012). If interlocutors have fully established  
549 referents, ambiguous language can help reduce redundancy and processing load (Aylett & Turk,  
550 2004; Levy & Jaeger, 2007; Piantadosi et al., 2012). However, ambiguous language can become  
551 problematic if the context is not sufficiently rich or if referents are not appropriately established.

552 We also evaluated contexts in which lexically shallow utterances have the potential to hurt  
553 communication, keeping in mind that lexically shallow utterances might be more ambiguous than  
554 lexically dense utterances. Miscommunication was associated more with lexically shallow  
555 utterances than was successful communication. Lexical density—that is, using a higher percentage  
556 of “content-full” words (like nouns and verbs) per turn (rather than, e.g., pronouns or articles)—is  
557 closely tied to Gricean maxims, especially the idea that talkers should provide precisely and only  
558 the amount of information needed by the listener (Grice, 1975). Lexical density was linked to  
559 successful communication in longer turns but this effect did not hold when controlling for  
560 maximum lexical density and single-word turns. These findings support the idea that variability of

## PREDICTORS OF MISCOMMUNICATION

561 content may play a key role in successful communication: Partners work together smoothly when  
562 they include more content per turn but not when the turn is completely saturated (Grice, 1975).

563         However, we cannot always know what our conversational partner knows or is currently  
564 experiencing. This makes communication difficult. In fact, lexically dense utterances are more  
565 often associated with successful communication in the full dataset (Model 1A), suggesting that the  
566 investment of effort can lead to improvement. This is consistent with complementary findings from  
567 previous research that finds that talkers are more likely to be over- rather than under-informative,  
568 even linking more successful communication to more lexically dense communication (Davies &  
569 Katsos, 2010; Engelhardt, Bailey, & Ferreira, 2006; Pogue, Kurumada, & Tanenhaus, 2016). A  
570 notable exception, however, is use of referring expressions in task-based practical dialogues where  
571 dyads engage in extended dialog. Under these circumstances, under-modification is extremely  
572 common (Brown-Schmidt & Tanenhaus, 2008).

573         Despite these similarities to previous research, our results suggest some nuance when we  
574 try to parse the effects of lexical density. Our follow-up models (Models 1B and 1C) found some  
575 evidence that the effect of informativeness is driven by extremely short and/or extremely dense  
576 turns, suggesting an avenue for future research.

577 **Contributors to Lexical Density during Collaborative Task Performance**

578         When analyzing the entire dataset (Model 2A), we found that lexical density increased with  
579 grounding. However, when interlocutors responded to a question with grounding or in a state of  
580 miscommunication, their utterances were typically lexically shallow. Dyads were least lexically  
581 dense when responding to a question without grounding and most lexically dense when responding  
582 to statements while grounding.

## PREDICTORS OF MISCOMMUNICATION

583        Although lexically shallow utterances could lead to miscommunication through under-  
584    specification, reducing lexical richness could facilitate long-term communicative success by  
585    prompting interlocutors to “check back in” with one another. Miscommunication may boost the  
586    integrity of the communication system by helping facilitate deeper understanding when required  
587    but otherwise allowing us to conserve cognitive resources (Haywood et al., 2005; Horton &  
588    Keysar, 1996; Roche, Dale, & Kreuz, 2010). Miscommunication may bootstrap a general cognitive  
589    process (e.g., monitoring and adjustment; Horton & Keysar, 1996) that encourages an investment  
590    of cognitive effort only when the context demands it and provides *cheap* and *simple* strategies to  
591    resolve miscommunication (see Svennevig, 2008).

592        These patterns were stable even when controlling for very lexically dense turns (Model  
593    2B), with the notable exception that the interaction between grounding and response to questions  
594    was no longer significant. Follow-up analyses further suggested that—in longer utterances—  
595    interlocutors tend to be more lexically dense when grounding but tend to use shallower language  
596    when responding to a question (Model 2C). Our ability to disentangle the possible effects of very  
597    short and very dense language, however, was limited due to the restricted variability of lexical  
598    density across the two subsets. This pushed us to look outside of the effects of lexical density and  
599    to indications of assent: It could be that turns comprising only assent words could lead to different  
600    patterns of success, depending on how they are used.

601        Because assent words have the potential to indicate understanding or attention, our final  
602    model (Model 3) evaluated whether the presence of an assent could differentially predict  
603    miscommunication in maximally lexically dense turns. Previous work has found that interlocutors  
604    tend to use assent as an affirmation of understanding or for affirmation of attention (Bavelas &  
605    Gerwing, 2011; Lambertz, 2011; Yngve, 1970). Congruent with previous work, we found that

## PREDICTORS OF MISCOMMUNICATION

606 assent words acted both as a way to ground during smooth communication and as a way to  
607 positively affirm one's attention to the current context in the face of miscommunication.

608        This “multitasking”—the context-sensitive meaning of assent terms given the situation—  
609        may be a significant contributor to miscommunication: A listener may misinterpret an assent as an  
610        affirmation of understanding when it was meant as an affirmation of attention (or vice-versa). We  
611        find that the processes underlying successful communication are also present during  
612        miscommunication—but their context-sensitivity leads them to function differently, leading to  
613        different outcomes.

614 **Limitations and Future Directions**

615        Here, we have only considered spatial terminology as a type of ambiguous language and  
616        did not include other forms of ambiguous communication (e.g., omission). This task was designed  
617        for unscripted language use, which benefits by capturing natural language patterns but may result  
618        in a loss of experimental control. In addition, the complexity of language and interaction likely  
619        means that a host of other pragmatic and lexical factors (outside of the scope of the current paper)  
620        also affected the conversation context and task performance.

621        However, the naturalistic nature of the task allowed us to contribute to the growing body  
622        of work on joint action and communication, supporting the idea that miscommunication may help  
623        bring greater attention to bear on the situation during difficult moments in interaction. This task  
624        also provides insights that may be used to design more targeted language-game experiments to  
625        explore the effects of pragmatic and lexical behaviors on communicative success and failures.

626        Though our current study does not speak directly to learning, our findings lead us to  
627        question more deeply what role miscommunication has on the communicative system. Future work  
628        should explore how miscommunication affects higher levels of socio-pragmatic effects on

## PREDICTORS OF MISCOMMUNICATION

629 communication, like rapport. This may be done by evaluating behavioral alignment (cf. Paxton et  
630 al., 2014) and self-reports of perceived rapport. Future work should also look at learning gains that  
631 may occur during moments of uncertainty and ambiguity resolution: Miscommunication's  
632 perturbation of the system could require the user to invest more effort cognitively, increasing the  
633 likelihood of encoding information into long-term memory.

### 634 **Implications**

635 Our findings—while basic research about low-stakes miscommunication contexts—have  
636 implications for high-pressure contexts, like the medical contexts we discussed in the opening of  
637 the paper (e.g., Halverson et al., 2011; Isaacs & Creinin, 2003; Lingard et al., 2004; Phillips et al.,  
638 2001; Raley et al., 2016; Sutcliffe, Lewton, & Rosenthal, 2004). Our results support a view of  
639 miscommunication as highly efficient for cognitive load, reducing individual strain by offloading  
640 it to the dyadic system: Rather than constantly investing precious cognitive resources in over-  
641 specifying information, interlocutors wait for the context (most notably, their partner) to nudge  
642 them into investing effort only when necessary. Waiting for these nudges is relatively benign in  
643 the current experimental context; failure only means waiting a bit longer before leaving the  
644 experiment. Clearly, such a strategy is untenable for medical contexts with life-or-death  
645 consequences or other high-stakes situations.

646 However, our findings dovetail with a growing literature on reducing workplace accidents  
647 and malpractice that relies not on individuals maintaining constant (and taxing) vigilance but on a  
648 *system* that will offload some of that cognitive strain (e.g., Harry & Sweller, 2016), including other  
649 people (e.g., Young, ten Cate, O'Sullivan, & Irby, 2016). Cognitive aids—tools like checklists and  
650 manuals—improve patient outcomes by accounting for cognitive load among the caregiving team  
651 (e.g., Fletcher & Bedwell, 2014; Goldhaber-Fiebert & Howard, 2013) in the face of the view of

## PREDICTORS OF MISCOMMUNICATION

652 (mis-)communication and (under-)specification demonstrated here in joint action contexts.  
653 Acknowledging that these high-stakes contexts are an outgrowth of normal human communicative  
654 processes and continuing to elucidate those dynamics through basic research will be critical to  
655 reducing miscommunication during life-or-death settings as well as more contrived ones.

656 **Conclusion**

657 Using language to facilitate joint action requires interlocutors to maintain a constant  
658 balance of effort between listeners and talkers, and we find that miscommunication may help the  
659 dyadic system achieve that balance. Brief communicative “stumbles” may help us communicate  
660 more effectively within our contextual and physical constraints, pushing us to check back in with  
661 one another, help us re-establish mutual understanding, and push us to further ground our  
662 interaction. Miscommunication may both emerge *and* benefit from the cost-saving cognitive  
663 processes associated with shallow and ambiguous language. As such, we point to the importance  
664 of miscommunication and its ramifications—suggesting, perhaps, that miscommunication may be  
665 as critical to interaction as successful communication.

666 **Acknowledgements**

667 Special thanks go to our undergraduate research assistants at University of Rochester  
668 (Chelsea Marsh, Eric Bigelow, Derek Murphy, Melanie Graber, Anthony Germani, Olga  
669 Nikolayeva, and Madeleine Salisbury) and University of California, Merced (Chelsea Coe and J.P.  
670 Gonzales). We would also like to thank the organizers (Patrick Healey and J.P. de Ruiter) and  
671 attendees of the 3rd International Workshop on Miscommunication for their feedback and  
672 suggestions for this project. Author Alyssa Ibarra is now affiliated with the Office of Institutional  
673 Research at the University of Rochester.

674

## PREDICTORS OF MISCOMMUNICATION

675 **References**

676 Anderson, A. H., Bader, M., Bard, E. G., Boyle, E., Doherty, G., Garrod, S., ... Weinert, R. (1991).

677 The Herc Map Task Corpus. *Language and Speech*.

678 <https://doi.org/10.1177/002383099103400404>

679 Aylett, M., & Turk, A. (2004). The smooth signal redundancy hypothesis: A functional explanation

680 for relationships between redundancy, prosodic prominence, and duration in spontaneous

681 speech. *Language and Speech*. <https://doi.org/10.1177/00238309040470010201>

682 Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory

683 hypothesis testing: Keep it maximal. *Journal of Memory and Language*, 68(3), 255–278.

684 <https://doi.org/10.1016/j.jml.2012.11.001>

685 Bates, D., Mächler, M., Bolker, B. M., & Walker, S. C. (2015). Fitting linear mixed-effects models

686 using lme4. *Journal of Statistical Software*, 67(1), 1–48.

687 <https://doi.org/10.18637/jss.v067.i01>

688 Bavelas, J. B., & Gerwing, J. (2011). The listener as addressee in face-to-face dialogue.

689 *International Journal of Listening*. <https://doi.org/10.1080/10904018.2010.508675>

690 Bazzanella, C., & Damiano, R. (1999). The interactional handling of misunderstanding in

691 everyday conversations. *Journal of Pragmatics*. [https://doi.org/10.1016/S0378-2166\(98\)00058-7](https://doi.org/10.1016/S0378-2166(98)00058-7)

693 Bird, S., Klein, E., & Loper, E. (2009). Language Processing and Python. *Computing*.

694 Bradac, J. J., Desmond, R. J., & Murdock, J. I. (1977). Diversity and density: Lexically determined

695 evaluative and informational consequences of linguistic complexity. *Communication*

696 *Monographs*, 44(4), 273–283. <https://doi.org/10.1080/03637757709390139>

697 Brennan, S. E., & Clark, H. H. (1996). Conceptual pacts and lexical choice in conversation.

## PREDICTORS OF MISCOMMUNICATION

698        *Journal of Experimental Psychology: Learning Memory and Cognition.*

699        <https://doi.org/10.1037/0278-7393.22.6.1482>

700        Brown-Schmidt, S., & Tanenhaus, M. K. (2008). Real-time investigation of referential domains in  
701        unscripted conversation: A targeted language game approach. *Cognitive Science.*  
702        <https://doi.org/10.1080/03640210802066816>

703        Campana, E., Tanenhaus, M. K., Allen, J. F., & Remington, R. (2011). Natural discourse reference  
704        generation reduces cognitive load in spoken systems. *Natural Language Engineering.*  
705        <https://doi.org/10.1017/S1351324910000227>

706        Cardosi, K. (1998). Human factors lessons learned in the design and implementation of air traffic  
707        control systems. *The Controller, 1*, 11–15.

708        Clark, H., & Brennan, S. (1991). Grounding in communication. *Perspectives on Socially Shared*  
709        *Cognition., 13*, 127–149.

710        Clark, H. H., & Carlson, T. B. (1982). Speech acts and hearers' beliefs. In *Mutual Knowledge*.

711        Clark, H. H., & Marshall, C. R. (1981). *Definite reference and mutual knowledge*. (A. K. Koshi,  
712        B. Webber, & I. A. Sag, Eds.), *Elements of Understanding*. Cambridge: Cambridge  
713        University Press.

714        Clark, H. H., & Wilkes-Gibbs, D. (1986). Referring as a collaborative process. *Cognition, 22*(1),  
715        1–39. [https://doi.org/10.1016/0010-0277\(86\)90010-7](https://doi.org/10.1016/0010-0277(86)90010-7)

716        D'Mello, S. K., & Graesser, A. (2011). The half-life of cognitive-affective states during complex  
717        learning.        *Cognition & Emotion, 25*(7),        1299–308.  
718        <https://doi.org/10.1080/02699931.2011.613668>

719        Davies, C., & Katsos, N. (2010). Over-informative children: Production/comprehension  
720        asymmetry        or        tolerance        to        pragmatic        violations?        *Lingua.*

## PREDICTORS OF MISCOMMUNICATION

721        <https://doi.org/10.1016/j.lingua.2010.02.005>

722        Eisenberg, E. M., Murphy, A. G., Sutcliffe, K., Wears, R., Schenkel, S., Perry, S., & Vanderhoef,  
723        M. (2005). Communication in Emergency Medicine: Implications for Patient Safety.  
724        *Communication Monographs*, 72(4), 390–413. <https://doi.org/10.1080/03637750500322602>

725        Engelhardt, P. E., Bailey, K. G. D., & Ferreira, F. (2006). Do speakers and listeners observe the  
726        Gricean Maxim of Quantity? *Journal of Memory and Language*.  
727        <https://doi.org/10.1016/j.jml.2005.12.009>

728        Fletcher, K. A., & Bedwell, W. L. (2014). Cognitive aids: Design suggestions for the medical field.  
729        *Proceedings of the International Symposium on Human Factors and Ergonomics in Health  
730        Care*, 3(1), 148-152. <https://doi.org/10.1177/2327857914031024>

731        Fusaroli, R., Bahrami, B., Olsen, K., Roepstorff, A., Rees, G., Frith, C., & Tylén, K. (2012).  
732        Coming to Terms: Quantifying the benefits of linguistic coordination. *Psychological Science*,  
733        23(8), 931–939. <https://doi.org/10.1177/0956797612436816>

734        Garrod, S., & Pickering, M. J. (2004). Why is conversation so easy? *Trends in Cognitive Sciences*.  
735        <https://doi.org/10.1016/j.tics.2003.10.016>

736        Gordon, P. C., Grosz, B. J., & Gilliom, L. A. (1993). Pronouns, names, and the centering of  
737        attention in discourse. *Cognitive Science*. [https://doi.org/10.1207/s15516709cog1703\\_1](https://doi.org/10.1207/s15516709cog1703_1)

738        Goldhaber-Fiebert, S. N., & Howard, S. K. (2013). Implementing emergency manuals: Can  
739        cognitive aids help translate best practices for patient care during acute events? *Anesthesia &  
740        Analgesia*, 117(5), 1149-1161. <https://doi.org/10.1213/ANE.0b013e318298867a>

741        Graesser, A. C., & Olde, B. A. (2003). How does one know whether a person understands a device?  
742        The quality of the questions the person asks when the device breaks down. *Journal of  
743        Educational Psychology*, 95(3), 524–536. <https://doi.org/10.1037/0022-0663.95.3.524>

## PREDICTORS OF MISCOMMUNICATION

744 Grice, P. (1975). Logic and conversation. In R. Stainton (Ed.), *Perspectives in the philosophy of*  
745 *language: A concise anthology* (pp. 41–58). Broadview.

746 Guerrero, L. K., Andersen, P. A., & Afifi, W. A. (2001). *Close Encounters: Communicating in*  
747 *Relationships*. Mountain View, CA: Mayfield.

748 Halliday, M. A. K. (1985). *Spoken and written language*. Geelong VIC: Deakin University.

749 Halverson, A. L., Casey, J. T., Andersson, J., Anderson, K., Park, C., Rademaker, A. W., &  
750 Moorman, D. (2011). Communication failure in the operating room. *Surgery*, 149(3), 305–  
751 310. <https://doi.org/10.1016/j.surg.2010.07.051>

752 Harry, E., & Sweller, H. (2016). Cognitive load theory and patient safety. In K. J. Ruskin, S. H.  
753 Rosenbaum, and M. P. Stiegler (Eds.), *Quality and safety in anesthesia and perioperative*  
754 *care*. New York: Oxford University Press.

755 Haywood, S. L., Pickering, M. J., & Branigan, H. P. (2005). Do speakers avoid ambiguities during  
756 dialogue? *Psychological Science*, 16(5), 362–366. [https://doi.org/10.1111/j.0956-7976.2005.01541.x](https://doi.org/10.1111/j.0956-<br/>757 7976.2005.01541.x)

758 Horton, W. S., & Keysar, B. (1996). When do speakers take into account common ground?  
759 *Cognition*, 59(1), 91–117. [https://doi.org/10.1016/0010-0277\(96\)81418-1](https://doi.org/10.1016/0010-0277(96)81418-1)

760 Ibarra, A., & Tanenhaus, M. K. (2016). The flexibility of conceptual pacts: Referring expressions  
761 dynamically shift to accommodate new conceptualizations. *Frontiers in Psychology*, 7(APR).  
762 <https://doi.org/10.3389/fpsyg.2016.00561>

763 Isaacs, J. N., & Creinin, M. D. (2003). Miscommunication between healthcare providers and  
764 patients may result in unplanned pregnancies. *Contraception*, 68(5), 373–376.  
765 <https://doi.org/10.1016/j.contraception.2003.08.012>

766 Johansson, V. (2008). Lexical diversity and lexical density in speech and writing: A developmental

## PREDICTORS OF MISCOMMUNICATION

767 perspective. *Working Papers in Linguistics*, 53, 61–79.

768 Jones, R. K. (2003). Miscommunication between pilots and air traffic control. *Language Problems*  
769 & *Language Planning*, 27, 233–248. <https://doi.org/10.1075/lplp.27.3.03jon>

770 Keysar, B. (2007). Communication and miscommunication: The role of egocentric processes.  
771 *Intercultural Pragmatics*. <https://doi.org/10.1515/IP.2007.004>

772 Lambertz, K. (2011). Back-channelling: The use of yeah and mm to portray engaged listenership.  
773 *Griffith Working Papers in Pragmatics and Intercultural Communication*, 4(1/2), 11–18.

774 Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data.  
775 *Biometrics*, 33(1), 159–174. <https://doi.org/10.2307/2529310>

776 Levelt, W. J. M. (1983). Monitoring and self-repair in speech. *Cognition*, 14(1), 41–104.  
777 [https://doi.org/10.1016/0010-0277\(83\)90026-4](https://doi.org/10.1016/0010-0277(83)90026-4)

778 Levelt, W. M., & Cutler, A. (1983). Prosodic marking in speech repair. *Journal of Semantics*, 2(2),  
779 205–217. <https://doi.org/10.1093/semant/2.2.205>

780 Levinson, S. C. (1983). *Pragmatics*. Cambridge: Cambridge University Press.

781 Levy, R., & Jaeger, T. F. (2007). Speakers optimize information density through syntactic  
782 reduction. *NIPS*. <https://doi.org/10.1111/j.0956-7976.2005.01541.x>

783 Lingard, L., Espin, S., Whyte, S., Regehr, G., Baker, G. R., Reznick, R., ... Grober, E. (2004).  
784 Communication failures in the operating room: an observational classification of recurrent  
785 types and effects. *Quality & Safety In Health Care*, 13(5), 330–4.  
786 <https://doi.org/10.1136/qhc.13.5.330>

787 McKinstry, C., Dale, R., & Spivey, M. J. (2008). Action dynamics reveal parallel competition in  
788 decision making. *Psychological Science*, 19(1), 22–24. <https://doi.org/10.1111/j.1467-9280.2008.02041.x>

## PREDICTORS OF MISCOMMUNICATION

790 McTear, M. (1991). Handling miscommunication in spoken dialogue systems: why bother? In K.  
791 Mogford-Bevan & J. Sadler (Eds.), *Child Language Disability* (2nd ed., pp. 19–42).  
792 Clevedon: Multilingual Matters.

793 McTear, M. (2008). *Handling miscommunication: Why bother?* (Recent tre). Dordrecht: Springer.

794 Mills, G. (2014). Establishing a communication system: Miscommunication drives abstraction. In  
795 *Evolution of Language: Proceedings of the 10th International Conference* (pp. 193–194).

796 Nakatani, C. H., & Traum, D. R. (1999). *Coding discourse structure in dialogue (version 1.0)*.  
797 Technical Report UMIACS-TR-99-03.

798 Paxton, A., Roche, J. M., Ibarra, A., & Tanenhaus, M. K. (2014). Failure to (mis) communicate:  
799 Linguistic convergence, lexical choice, and communicative success in dyadic problem  
800 solving. In P. Bello, M. Guarini, M. McShane, & B. Scassellati (Eds.), *Proceedings of the*  
801 *36th Annual Conference of the Cognitive Science Society*. Austin, TX: Cognitive Science  
802 Society.

803 Paxton, A., Roche, J. M., & Tanenhaus, M. K. (2015). Communicative efficiency and  
804 miscommunication: The costs and benefits of variable language production. In R. Dale, C.  
805 Jennings, P. Maglio, T. Matlock, D. Noelle, A. Warlaumont, & J. Yoshimi (Eds.),  
806 *Proceedings of the 37th Annual Meeting of the Cognitive Science Society*. Austin, TX.

807 Phillips, J., Beam, S., Brinker, A., Holquist, C., Honig, P., Lee, L. Y., & Pamer, C. (2001).  
808 Retrospective analysis of mortalities associated with medication errors. *American Journal of*  
809 *Health-System Pharmacy*, 58(19), 1835–1841. <https://doi.org/10.1093/ajhp/58.19.1835>

810 Piantadosi, S. T., Tily, H., & Gibson, E. (2012). The communicative function of ambiguity in  
811 language. *Cognition*, 122(3), 280–291. <https://doi.org/10.1016/j.cognition.2011.10.004>

812 Pogue, A., Kurumada, C., & Tanenhaus, M. K. (2016). Talker-specific generalization of pragmatic

## PREDICTORS OF MISCOMMUNICATION

813        inferences based on under- and over-informative prenominal adjective use. *Frontiers in*  
 814        *Psychology*. <https://doi.org/10.3389/fpsyg.2015.02035>

815        R Development Core Team. (2012). R: A language and environment for statistical computing. R  
 816        Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL  
 817        <http://www.R-project.org/>. *R Foundation for Statistical Computing, Vienna, Austria*.

818        Raley, J., Meenakshi, R., Dent, D., Willis, R., Lawson, K., & Duzinski, S. (2016). The Role of  
 819        Communication During Trauma Activations: Investigating the Need for Team and Leader  
 820        Communication Training. *Journal of Surgical Education*, 1–7.  
 821        <https://doi.org/10.1016/j.jsurg.2016.06.001>

822        Roche, J. M., Dale, R., & Kreuz, R. J. (2010). The resolution of ambiguity during conversation:  
 823        More than mere mimicry? *Proceedings of the 32nd Annual Meeting of the Cognitive Science*  
 824        *Society*, 206–211. Retrieved from  
 825        [https://www.hlp.rochester.edu/resources/workshop\\_materials/EVELIN12/RocheETAL10\\_d](https://www.hlp.rochester.edu/resources/workshop_materials/EVELIN12/RocheETAL10_d)  
 826        isambiguation.pdf

827        Roche, J. M., Paxton, A., Ibarra, A., & Tanenhaus, M. K. (2013). From minor mishap to major  
 828        catastrophe: Lexical choice in miscommunication. *Proceedings of the 35th Annual*  
 829        *Conference of the Cognitive Science Society*, 3303–3308. Retrieved from  
 830        <http://mindmodeling.org/cogsci2013/papers/0588/paper0588.pdf>

831        Schegloff, E. (1982). Discourse as an interactional achievement: Some uses of “uh huh” and other  
 832        things that come between sentences. In *Analyzing discourse: text and talk*.  
 833        <https://doi.org/10.2307/324165>

834        Sutcliffe, K. M., Lewton, E., & Rosenthal, M. M. (2004). Communication Failures: An Insidious  
 835        Contributor to Medical Mishaps. *Academic Medicine*. <https://doi.org/10.1097/00001888->

## PREDICTORS OF MISCOMMUNICATION

836 200402000-00019

837 Svennevig, J. (2008). Trying the easiest solution first in other-initiation of repair. *Journal of*  
838 *Pragmatics*. <https://doi.org/10.1016/j.pragma.2007.11.007>

839 Tajima, A. (2004). Fatal miscommunication: English in aviation safety. *World Englishes*, 23(3),  
840 451–470. <https://doi.org/10.1111/j.0883-2919.2004.00368.x>

841 White, R. (1997). Back channelling, repair, pausing, and private speech. *Applied Linguistics*,  
842 18(3), 314–344. <https://doi.org/10.1093/applin/18.3.314>

843 Yngve, V. (1970). On getting a word in edgewise. *Papers from the 6th Regional Meeting of the*  
844 *Chicago Linguistic Society*, 568.

845 Young, J. Q., ten Cate, O., O'Sullivan, P. S., & Irby, D. M. (2016). Unpacking the complexity of  
846 patient handoffs through the lens of cognitive load theory. *Teaching and Learning in*  
847 *Medicine*, 28(1), 88-96. <https://doi.org/10.1080/10401334.2015.1107491>

848 Zipf, G. (1949). *Human behaviour and the principle of least effort*. Cambridge, MA.

849

## PREDICTORS OF MISCOMMUNICATION

850

**List of Figure Captions**

851 **Figure 1.** Panel A: Grasshopper (left) and lizard (right) Bloco figures used in the current study.

852 Panel B: Sample instruction cards for the grasshopper figure (left) and lizard figure (right). Panel

853 C: Example of Bloco items oriented differently that may lead to miscommunication; here, *up* is

854 infelicitously indexed.

855 **Figure 2.** Lexical density when the response to a question (not answering - *left*; answering - *right*)

856 was grounded (green) or not grounded (purple) in the full dataset (Model 2A). Bars represent

857 standard error.

858 **Figure 3.** Lexical density when not grounding (left) or grounding (right) in response to a question

859 during matching (blue) and mismatching workspaces (red) across the three datasets used in Models

860 2A, 2B, and 2C (from left to right: full data, without MLD turns, and without OW turns). Bars

861 represent standard error.

862 **Figure 4.** Use of assent words when not grounding (left) or grounding (right) during mismatching

863 workspaces (red) and matching (blue) workspaces. Bars represent standard error.

864

## PREDICTORS OF MISCOMMUNICATION

865

**List of Tables and Table Captions**

866 **Table 1.** Experimental procedure for the corpus under consideration in the present analyses.

867 **Table 2.** Estimates, standard errors (SE), and *z*- and *p*-values for the predictors (spatial, assent  
868 and negation words; responses to questions, and lexical density) of communicative success for  
869 the raw data (all turns). As a note, negative estimates are associated with match (i.e., success)  
870 and positive estimates are associated with mismatch (i.e., miscommunication).

871 **Table 3.** Estimates, standard errors (SE), and *z*- and *p*-values for the predictors (spatial, assent  
872 and negation words; responses to questions, and lexical density) of communicative success  
873 (Success: Match coded as -0.5; Miscommunication: Mismatch coded as 0.5) for Model 1B  
874 (excluding MLD turns). As a note, negative estimates are associated with match (i.e., success)  
875 and positive estimates are associated with mismatch (i.e., miscommunication).

876 **Table 4.** Estimates, standard errors (SE), and *z*- and *p*-values for the predictors (spatial, assent  
877 and negation words; responses to questions, and lexical density) of communicative success  
878 (Success: Match coded as -0.5; Miscommunication: Mismatch coded as 0.5) for Model 1C  
879 (excluding OW turns). As a note, negative estimates are associated with match (i.e., success) and  
880 positive estimates are associated with mismatch (i.e., miscommunication).

881 **Table 5.** Estimates, standard errors (SE), and *t*- and *p*-values for grounding and response to  
882 questions as predictors of lexically dense turns for Model 2A (full data).

883 **Table 6.** Estimates, standard errors (SE), and *t*- and *p*-values for grounding and response to  
884 questions as predictors of lexically dense turns for Model 2B (excluding MLD turns).

885 **Table 7.** Estimates, standard errors (SE), and *t*- and *p*-values for grounding and responding to  
886 questions as predictors of lexically dense turns for Model 2C (excluding one-word [OW] turns).

## PREDICTORS OF MISCOMMUNICATION

887 **Table 8.** Results of exploratory analysis predicting the use of assent words with grounding,

888 response to a question, and workspace state during one-word turns (Model 3).

889

## PREDICTORS OF MISCOMMUNICATION

890

**Table 1**

| Phase              | Goal                                                                                                         | Structure                                                                                                                                                                | Duration                                             |
|--------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Phase I:<br>Item   | Arrange all puzzle<br>pieces for Bloco<br>objects in identical<br>patterns on their<br>individual workspaces | No turn-taking instructions<br>from experimenter;<br>completely free conversation                                                                                        | mean time = 8.26 min<br>mean turns = 14.38<br>turns  |
| Phase II:<br>Build | Assemble all puzzle<br>pieces to create<br>identical Bloco objects<br>in their individual<br>workspaces      | Instruction cards divided in<br>alternating order between<br>both participants to create<br>alternating instruction-givers;<br>otherwise completely free<br>conversation | mean time = 23.34 min<br>mean turns = 19.07<br>turns |

891

## PREDICTORS OF MISCOMMUNICATION

892

**Table 2**

| Effect               | $\beta$ | SE     | <i>z</i> | <i>p</i> |
|----------------------|---------|--------|----------|----------|
| Response to question | 0.238   | 0.0624 | 3.823    | <.001*** |
| Spatial word used    | 0.132   | 0.046  | 2.876    | 0.004**  |
| Assent word used     | -0.133  | 0.027  | -4.909   | <.001*** |
| Negation word used   | 0.101   | 0.054  | 1.862    | 0.06.    |
| Lexical density      | -0.063  | 0.029  | -2.14    | 0.03*    |

893

894

## PREDICTORS OF MISCOMMUNICATION

895

**Table 3**

| Effect               | $\beta$ | SE    | <i>z</i> | <i>p</i> |
|----------------------|---------|-------|----------|----------|
| Response to question | 0.240   | 0.064 | 3.747    | <.001*** |
| Spatial word used    | 0.146   | 0.061 | 2.389    | 0.02*    |
| Assent word used     | -0.105  | 0.031 | -3.342   | 0.001**  |
| Negation word used   | 0.113   | 0.059 | 1.899    | 0.06.    |
| Lexical density      | -0.045  | 0.031 | -1.454   | 0.15     |

896

## PREDICTORS OF MISCOMMUNICATION

897

**Table 4**

|                      | $\beta$ | SE    | <i>z</i> | <i>p</i> |
|----------------------|---------|-------|----------|----------|
| Response to question | 0.097   | 0.029 | 3.295    | 0.001**  |
| Spatial word         | 0.134   | 0.053 | 2.509    | 0.01*    |
| Assent word          | -0.132  | 0.031 | -4.217   | <.001*** |
| Negation word        | 0.109   | 0.061 | 1.789    | 0.07.    |
| Lexical density      | -0.039  | 0.031 | -1.276   | 0.2      |

898

## PREDICTORS OF MISCOMMUNICATION

899

**Table 5**

| Effect                                              | $\beta$ | SE    | <i>t</i> | <i>p</i> |
|-----------------------------------------------------|---------|-------|----------|----------|
| Grounded                                            | 0.379   | 0.049 | 7.725    | <.001*** |
| Response to question                                | -0.396  | 0.017 | -23.450  | <.001*** |
| Mismatch state                                      | -0.075  | 0.042 | -1.776   | 0.08.    |
| Grounded x Mismatch state                           | 0.017   | 0.020 | 0.867    | 0.39     |
| Grounded x Response to question                     | -0.094  | 0.019 | -4.882   | <.001*** |
| Mismatch state x Response to question               | 0.029   | 0.020 | 1.453    | 0.15     |
| Grounded x Mismatch state x Response<br>to question | -0.019  | 0.020 | -0.966   | 0.33     |

900

## PREDICTORS OF MISCOMMUNICATION

901

**Table 6**

| Effect                                            | $\beta$ | SE    | <i>t</i> | <i>p</i> |
|---------------------------------------------------|---------|-------|----------|----------|
| Grounded                                          | 0.360   | 0.059 | 6.007    | <.001*** |
| Responded to question                             | -0.081  | 0.023 | -3.455   | 0.001**  |
| Mismatch state                                    | -0.068  | 0.052 | -1.305   | 0.19     |
| Grounded x Mismatch state                         | -0.029  | 0.025 | -1.188   | 0.23     |
| Grounded x Response to question                   | -0.012  | 0.024 | -0.517   | 0.61     |
| Mismatch state x Responded to question            | 0.005   | 0.025 | 0.237    | 0.81     |
| Grounded x Mismatch state x Responded to question | -0.014  | 0.025 | -0.577   | 0.56     |

902

## PREDICTORS OF MISCOMMUNICATION

903

**Table 7**

|                                                   | $\beta$ | SE     | <i>t</i> | <i>p</i> |
|---------------------------------------------------|---------|--------|----------|----------|
| Grounded                                          | 0.325   | 0.052  | 6.236    | <.001*** |
| Responded to question                             | -0.175  | 0.022  | -7.815   | <.001*** |
| Mismatch state                                    | -0.055  | 0.050  | -1.088   | 0.28     |
| Grounded x Mismatch state                         | -0.008  | 0.023  | -0.320   | 0.75     |
| Grounded x Responded to question                  | -0.045  | 0.023  | -1.937   | 0.05.    |
| Mismatch state x Responded to question            | 0.005   | 0.025  | 0.196    | 0.84     |
| Grounded x Mismatch state x Responded to question | -0.0154 | 0.0234 | -0.647   | 0.52     |

904

## PREDICTORS OF MISCOMMUNICATION

905

**Table 8**

|                           | $\beta$ | SE    | <i>z</i> | <i>p</i> |
|---------------------------|---------|-------|----------|----------|
| Grounded                  | 1.449   | 0.191 | 7.586    | <.001*** |
| Responded to question     | -0.378  | 0.047 | -7.768   | <.001*** |
| Mismatch state            | -0.358  | 0.191 | -1.874   | 0.06.    |
| Grounded x Mismatch state | 0.229   | 0.092 | 2.492    | 0.01*    |

906