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ABSTRACT: Improved understanding of charge-transport in single Aut ted

molecules is essential for harnessing the potential of molecules, e.g., as utoma e 8

circuit components at the ultimate size limit. However, interpretation Segmentation S

and analysis of the large, stochastic data sets produced by most N 2

quantum transport experiments remain an ongoing challenge to \\\ § >
discovering much-needed structure—property relationships. Here, we

introduce segment clustering, a novel unsupervised hypothesis
generation tool for investigating single molecule break junction
distance—conductance traces. In contrast to previous machine
learning approaches for single molecule data, segment clustering
identifies groupings of similar pieces of traces instead of entire traces. ™ Distance  Jy
This offers a new and advantageous perspective into data set structure

because it facilitates the identification of meaningful local trace behaviors that may otherwise be obscured by random fluctuations
over longer distance scales. We illustrate the power and broad applicability of this approach with two case studies that address
common challenges encountered in single molecule studies: First, segment clustering is used to extract primary molecular features
from a varying background to increase the precision and robustness of conductance measurements, enabling small changes in
conductance in response to molecular design to be identified with confidence. Second, segment clustering is applied to a known data
mixture to qualitatively separate distinct molecular features in a rigorous and unbiased manner. These examples demonstrate two
powerful ways in which segment clustering can aid in the development of structure—property relationships in molecular quantum
transport, an outstanding challenge in the field of molecular electronics.

A
Conductance

— Distance
Unsupervised

Clustering

1. INTRODUCTION Most commonly, such experiments yield “breaking traces”,
in which the junction conductance G = I/V is recorded as a
function of stretching distance during the breaking process.
Figure la contains example breaking traces collected using our
MCB]J setup with the molecule OPV3-2BT-H (Chart 1),
plotted on a log—linear scale in order to capture the large
dynamic range of possible molecular conductances, as is
standard in the field. These examples illustrate three character-
istic features of breaking traces: (1) Just before rupture, a
plateau occurs at the conductance value corresponding to a
single atomic point contact. For Au electrodes, this value is
77.48 uS,'° and denoted 1 G,; (2) when no molecule is bound
in the junction (blue traces), the conductance is solely due to

Ever since 1974, when Aviram and Ratner proposed using a
single molecule to rectify current,’ the nanoscale transport
community has pursued the goal of molecular-based circuitry
to take advantage of the small size, enormous design space, and
potential low manufacturing costs of circuit components
composed of individual molecules.” However, in order to
create functional devices that can capitalize on these
advantages, it is first necessary to understand the fundamental
physics and design principles underlying charge transport in
single molecule systems. This understanding is most
commonly gained using either mechanically controlled break
junctions (MCBJs)*™'° or scanning tunneling microscope
break junctions (STM-BJs),"'~"* techniques which pull apart a

thin metal bridge, typically made from gold, to form a nanogap, Received: April 24, 2020
while simultaneously applying a small bias across the bridge or Revised:  July 3, 2020
gap and recording the resulting current. The changes in current Published: July 22, 2020

when individual molecules bridge the gap provide insight into
the electrical nonequilibrium properties of single-molecule
circuit components.
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Figure 1. Break junction data collected with the molecule OPV3-2BT-H. (a) Selected breaking traces from before (blue) and after (red) the
addition of molecules, offset by 1.5 nm for clarity. The blue traces illustrate exponential tunneling decay in an empty nanogap (linear on a
logarithmic scale), while the red traces illustrate molecular plateaus and their variability. (b, ¢) 2D histograms of 7122 and 6280 consecutive
breaking traces collected before and after the addition of molecules, respectively. Part b exhibits a clear tunneling decay feature below 107> G,
while part ¢ exhibits a pronounced molecular feature extending out to ~1.5 nm at ~107*G,. (d) 1D histograms for the data sets in (b) (blue) and
(c) (red). While both histograms display a sharp peak at ~1G, from the single gold point contact plateaus, only the histogram collected after
molecular addition displays a broad peak at ~107*G, due to the presence of molecules.

Chart 1. Structures of Molecules Considered in This Work
and Their Associated Abbreviations
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Br, NO,, CN
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tunneling and decays exponentially; and (3) when a molecule
is bound in the junction (red traces), the conductance is

roughly constant (though potentially fluctuating) over the
length of the molecule, forming a “molecular plateau”.

However, because of the stochastic nature of the breaking
process, molecular conformation, and molecular diffusion in
and out of the junction, individual molecular traces are highly
variable. In particular, plateaus for the same molecule can vary
by over an order of magnitude in conductance (e.g, first two
red traces in Figure 1a); some traces collected in the presence
of molecules do not display any molecular plateau at all (e.g,
third red trace in Figure 1a); and molecular plateaus may break
off and re-form within the same trace (e.g., last two red traces
in Figure 1a). In order to capture this variability, thousands of
traces are collected under the same experimental conditions. A
set of traces can then be summarized by a 2D histogram
(Figure 1b,c), which shows the frequency of observing each
pair of interelectrode distance and log(conductance) values; or
a 1D histogram (Figure 1d), which is obtained from the 2D
histogram by integrating out the interelectrode distance
dimension to “collapse” all of the data onto the log-
(conductance) axis.

While such histograms usefully summarize the ensemble of
single molecule conductance behaviors, they obscure likely
meaningful differences within and among different molecular
constructs that could be harnessed to advance a host of
intriguing molecular electronics research directions. At present,
1D histograms are often used to determine a single “peak” or
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most probable” conductance for a given molecule,'’ "’ and

2D histograms have been used to separate molecular features
that may correspond to distinct physical phenomena, such as
different binding modes.”**73* However, the broad features
found in these histograms make it difficult to confidently
separate features without introducing bias, and the complex
“background” signature, composed of tunneling decay and
broken molecular plateaus, makes it hard to robustly fit
molecular peaks. These inter-related challenges have motivated
several research groups to develop automated clusterin$ and
data-sorting methods for analyzing breaking traces™ *' and
related data.">*~** Broadly speaking, the goal of these
approaches is to partition a large data set of highly varied
traces into separate groupings in order to improve the
robustness of peak conductance measurements and/or to
identify distinct junction behaviors. Using an automated
algorithm to identify clusters of data helps eliminate bias
toward seeing only the types of groupings that are expected a
priori. The clustering approaches developed so far are based on
techniques ranging from principal component analysis®**® to
neural networks,™?”?®*"*3 and they have found success in
separating known features in experimental or simulated
data®**>°7*>*% and in detecting intriguin§ subfeatures for
further quantitative or qualitative analysis.*>>*">%*#>%
Nearly every published clustering approach applied to
breaking traces treats each entire trace as one single
object.'>*3 73337744 Thig choice implicitly assumes that the
overall trajectories that traces follow are nonrandom, and
hence such algorithms are best suited for traces that exhibit few
unpredictable fluctuations. However, our own experimental
data and many published examples suggest that this is often
only true over distances much shorter than most molecular
lengths. Over longer distances, there are often sudden and
unpredictable conductance shifts between mostly linear
sections,32’46_50 and in some instances, such traces constitute
the majority of all molecular “plateaus”. Whole-trace focused
methods can thus easily miss a meaningful subfeature, even
one conserved across many traces, if the other parts of those
traces differ significantly due to random and uncorrelated
behavior. We therefore designed a new approach, “segment
clustering”, based on the idea of defining pieces of traces as the
objects to be clustered and, in particular, linearly approximated
segments. This definition better matches the empirical
structure of trace trajectories in most systems studied so
far,' 331757 ranging from in situ chemical reactions to
photoswitching. Segment clustering is thus able to identify
the truly conserved features in highly stochastic data sets and
has the potential to reveal insights not available to other
clustering approaches. Additionally, segment clustering does
not require training, like some neural network-based
approaches,”***"** nor does it rely on criteria that are likely
data set-specific, like many filtering-based approaches">***
and so is expected to be easily generalizable to new data sets.
We emphasize that segment clustering is neither expected
nor designed to identify every meaningful feature in every single
molecule data set. Instead, it focuses on one broad category of
features—approximately linear trace sections—which are
evidently quite common in distance—conductance traces,
thus providing a new perspective into data set structure. At
the same time, just because segment clustering identifies a
given cluster does not, by itself, constitute proof that such a
cluster corresponds to a distinct physical behavior. Rather,
segment clustering is designed as a hypothesis generation tool: by

identifying data groupings that may not be obvious to the
naked eye and which do not rely on preconceived and
potentially flawed notions of meaningful data structure, it can
help spawn ideas of what types of behaviors may be present in
single-molecule junctions. These ideas can then be tested via
additional experiments or targeted data analysis, laying the
basis for further insight into the fundamental physics of single-
molecule transport.

In the remainder of this paper, we describe our experimental
methodology and then explain in detail the motivation and
mechanics behind segment clustering. We next present two
case studies using our own MCBJ data to illustrate two
applications of segment clustering. In the first case study, we
show that segment clustering can reliably separate the
“primary” molecular feature from a shifting background signal,
enabling us to confidently distinguish small changes in
conductance across a family of similar molecules. In the
second case study, we use a known data mixture to
demonstrate that segment clustering can separate molecular
features even when they come from overlapping conductance
distributions.

2. EXPERIMENTAL SECTION

2.1. Fabrication. Samples for the MCBJ experiment were
fabricated by depositing a gold wire on a polyimide-coated
phosphor bronze substrate using electron beam evaporation. A
4 nm titanium layer was used to improve adherence of the 80
nm thick gold film. The pattern for gold deposition, including
an ~100 nm wide gold bridge in the center of the wire, was
fashioned by electron beam lithography. The gold bridge was
then created via O,/CHF; plasma etching of the polyimide to
produce an ~1—2 pm undercut (Figure Slab).

2.2. Trace Collection. Samples were clamped and then
bent with a push rod placed underneath the gold bridge
(Figure Slc). A 100 mV bias was applied across the gold
bridge while simultaneously measuring the conductance of the
bridge using a custom, high-speed amplifier described
previously.”’ A stepper motor (ThorLabs DRVS50) was used
to move the push rod until the bridge conductance was
between 5 and 7 Gy, at which point a linear piezo actuator
(ThorLabs PAZ60 or ThorLabs PAS009) was used to break
and then re-form the bridge at a rate of 60 ym/s. The motor
and the piezo were both controlled with custom LabView
software that automatically collected thousands of breaking
traces for each sample. The entire bending apparatus is built on
a vibrationally isolated laser table to reduce mechanical noise
and placed inside a copper Faraday cage to reduce high-
frequency electromagnetic noise.

2.3. Molecular Solutions. OPV2-2BT and all OPV3-2BT-
X molecules were synthesized on-site, while C6-2SMe was
purchased from Sigma-Millipore and used as received. OPV2-
2BT and all OPV3-2BT-X molecules were dissolved in
dichloromethane (HPLC grade, > 99.8%), and C6-2SMe was
dissolved in a mixture of hexanes (reagent grade, > 98.5%). All
OPV3-2BT-X solutions were ~1 yM; both ~1 yM and ~10
UM solutions of OPV2-2BT were used (see Supporting
Information, Table S3, for details); the C6-2SMe solution
was ~10 uM.

2.4. Running Samples. Each sample was cleaned with O/
UV immediately before use, and a Kalrez gasket (0.114 in. ID,
0.250 in. OD) was placed around the gold bridge (Figure S1d).
Initially, 10 uL of pure dichloromethane or hexanes was
deposited inside this gasket using a clean glass syringe for
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dichloromethane or a micropipette for hexanes, after which a
few thousand breaking traces were collected. Only samples
displaying clean breaking and clear tunneling behavior were
considered for subsequent experiments. After pausing the
LabView program and fully breaking the gold bridge, 10—20
uL of the molecular solution was deposited inside the Kalrez
gasket using a clean glass syringe for dichloromethane
solutions or micropipette for hexanes solutions, and data
acquisition was resumed. For many samples, molecular
solution or pure solvent was redeposited multiple times and/
or the push rod was fully relaxed prior to restarting the
experiment (see Supporting Information, section S.4, for
details).

2.5. Initial Data Processing. The voltage applied to the
piezo actuator was converted to piezo displacement using a
previously performed interferometric calibration. For each
sample, the conversion factor between piezo displacement and
interelectrode distance was determined by fitting the
distribution of tunneling slopes from the traces collected
before molecular deposition (see Supporting Information,
section S.2, for details), and this conversion factor was applied
to all traces collected with that sample. Each breaking trace was
aligned at zero interelectrode distance using its last crossing of
0.7G, following the method of Mischenko et al®! Breaking
traces with no data points between 0.8G, and 1.2G, were
excluded from subsequent analysis (typically <1% of the total
breaking traces).

3. RESULTS AND DISCUSSION

3.1. Description of Segment Clustering. 3.1.1. Motiva-
tion. A key consideration when deciding how to cluster
multidimensional data is what type of object to cluster. In the
case of break junction distance—conductance traces, two
natural choices are to treat each trace as a single object
(“trace clustering”, which most approaches'>**~*>*7=*>* haye
used so far) or to treat different visited points in distance—
conductance space as individual objects (“point clustering”,
which we used in a previously reported clustering approach™).
Neither choice is inherently superior to the other. Instead, each
has potential advantages that are best understood by
considering the question of how much “history” distance—
conductance traces have—i.e., how much a trace’s behavior at
one distance is correlated with its behavior at a previous or
future distance. If traces randomly transition between different
stable distance/conductance configurations (i.e., traces have
“no history”), then point clustering can better identify these
stable configurations whereas trace clustering may get confused
by the random trajectories. On the other hand, if trace
trajectories are highly nonrandom (i.e., traces have “significant
history”), then trace clustering can identify groupings of similar
trajectories that point clustering will likely miss.

In our experience, however, real experimental traces fall
somewhere between these extremes: they display “partial” or
“local” history. To illustrate this, we calculate the correlation
coefficient between the conductances of all traces at one
specific distance with their conductances at a second distance.
This is repeated for each pair of distances, and the results are
summarized in a “distance correlation histogram”, shown in
Figure 2 for one of our OPV3-2BT-H data sets. This plot
shows that while conductances are strongly correlated at close
distances, there is essentially no correlation over longer
distances. Similar behavior was found in all of the single
molecule data sets we examined, suggesting that trace history is
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Figure 2. Distance correlation histogram for the OPV3-2BT-H data
set from Figure lc, showing the Pearson’s correlation coeflicient
between the conductances of all traces at each pair of distances. While
trace conductances are highly correlated over short distances, this
correlation quickly fades with distance, demonstrating that trace
“history” is important only locally, not globally.

only relevant over short pieces of an entire trace. This is
consistent with investigations of the dynamics of single-
molecule junctions held at a fixed distance,**~®” which have
found that junction conductance is relatively stable over short
periods of time but jumps unpredictably between different
levels over longer time windows. Therefore, both trace
clustering and point clustering fail to fully and appropriately
capture the empirical balance between predictable and random
junction behaviors, limiting the insight they can provide. This
motivates the development of a novel clustering approach in
which pieces of traces are the type of object clustered.

While certain theoretical models predict significantly curved
trace features, experimental traces collected from an extremely
wide variety of molecular systems'>*'™>" appear (on a
logarithmic conductance scale) to be composed mainly of
sudden changes between fairly linear sections. Segment
clustering is therefore based on using a piecewise-linear
approximation to determine where to separate each trace
into different sections. This design choice helps ignore noisy
high frequency components and instead focuses attention on
the principal features of each trace. Additionally, linear
segments are a computationally efficient way to represent a
trace, since a handful of linear segments can well-approximate
thousands of individual data points (e.g, Figure 3a).
Implementing segment clustering via this approach consists
of four major steps, summarized in Figure 3: segmentation,
parametrization, calculating the overall clustering structure,
and extracting specific clusters. Where appropriate, we employ
established algorithms for these individual steps in order to
increase confidence in the robustness of the overall approach,
which combines these algorithms in a new way.

3.1.2. Segmentation. The goal of segmentation is to break
each trace into consecutive sections such that each section can
be well-represented by a linear segment and corresponds to a
meaningful piece of the trace structure. Because this goal is
common in data-mining applications, several algorithms have
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Figure 3. Summary of the segment clustering process. (a) Each breaking trace in a data set is first approximated with a series of linear segments
using BUS with the greedy iterative L-method, and then each segment is parametrized to produce a S-tuple (see inset). (b) Next, the set of S-tuples
for all segments from all traces in the data set are clustered using the SOPTICS algorithm, producing a hierarchical clustering structure that can be
visualized using a reachability plot in which valleys correspond to clusters. Finally, a specific clustering solution can be extracted by making a cut
through the reachability plot and assigning the points in each valley dipping below that level to a separate cluster, while assigning any points with
reachability distances greater than the cut to a catch-all “noise cluster”. Extracting at the solid blue line in part b produces the clustering solution in
part ¢, with each valley dipping below the line filled in with color to match its corresponding cluster of segments and the noise cluster segments

shown in black.

been developed to try to optimally represent time-series data
with a set of piece-wise linear segments.”® After first applying
consistent starting and ending criteria to each trace (see
Supporting Information, section S.3.1, for details), we employ
the “bottom-up segmentation” (BUS) algorithm because it is
conceptually simple and has been found to produce excellent
and robust results for data from a variety of contexts.’®®
Briefly, BUS starts by perfectly representing a time series of n
points with 7n/2 two-point segments. Next, BUS iteratively
merges the pair of neighboring segments that will least increase
the error of the overall segment approximation, repeating until
some stopping criteria is met. At each step, every segment is
constructed as the linear regression line for the data points it is
currently representing, and the error for each segment is taken
as the sum of the squared residuals from that regression line.*®

For our stopping criteria, we use the “greedy iterative L-
method”, which was found to work well on a wide variety of
test data sets.” Briefly, this method first performs the merging
process to completion, so that a plot of the number of
segments remaining vs the error gained at each merge step may
be constructed. An iterative fitting process is then used to
locate the optimal number of segments by identifying the point
at which more segments produce diminishing returns in terms
of error reduction. Applying this combination of BUS and the
greedy iterative L-method to distance-log(conductance) traces
produces convincing segmentation solutions (e.g., Figure 3a).
In addition to the examples presented by the developers of the
greedy iterative L-method,” testing on our own single
molecule data demonstrates that this method is quite robust
(see Supporting Information, section S.5.5).

3.1.3. Parametrization. Because clustering algorithms need
to compute distances between the objects to be clustered, it is

18306

necessary to first extract “features” that can be used to
represent each object as a point in a metric space. In order to
avoid well-known challenges to clustering in high-dimensional
spaces (the “curse of dimensionality”)—such as increasingly
sparse data and a nonintuitive breakdown in the concept of
nearest neighbors’°—it is preferable to choose a minimal set of
features while still capturing most of the important information
about each trace piece. Our segmentation approach already
produces linear segments which capture most trace variation—
e.g., 82% for the data set in Figure 1c—and so parametrizing
these linear segments produces features that are both efficient
and easy to interpret. We therefore convert each segment into
a S-tuple consisting of four parameters that uniquely describe
each linear fit and a fifth parameter to describe the fit quality.

The specific parameters chosen to represent each segment
are illustrated in Figure 3a. The first two parameters—the
center of a segment on the interelectrode distance axis, X, and
on the log(conductance) axis, Y;—succinctly represent where
each segment is located. Another key segment attribute is its
length, L. However, in absolute terms, long segments will tend
to differ by more than short ones, making it difficult to form
clusters of long segments. We therefore use the logarithm of
the length of a segment on the interelectrode distance axis,
log(L), as our third parameter, so that the difference between
two segments on this dimension depends on their ratio. To
represent how tilted a segment is, the angle that it makes with
the horizontal, 8, is used as the fourth parameter. This angle is
less sensitive to outliers than a segment’s raw slope due to the
nature of the arctan function. Finally, to represent the linearity
of each trace piece, we include the coeflicient of determination,
R?, of each segment vis-a-vis the portion of raw data it
represents as the fifth parameter. This helps capture additional
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Figure 4. (a) Same reachability plot as in Figure 3b, but color-coded to indicate the maximum size of each valley containing at least 1% of all
clustered points. Valleys are filled in hierarchically: the pink valley, e.g., contains the dark green and lavender valleys, the green valley contains the
pink and yellow valleys, etc. (b—i) “Full-valley clusters” corresponding to each color-coded valley from part a, with segments assigned to the cluster
plotted in color on top of the overall data set distribution in gray.

information about mild segment curvature and/or the this standardization (see Supporting Information, section S.3.2,
magnitude of high-frequency noise and is important for for details).
differentiating the few segments that are not well-approximated 3.1.4. Calculating the Overall Clustering Structure. Many
as linear. These five parameters are each measured in different clustering algorithms can be applied to a set of S-tuples, and
units, so before clustering, each must be standardized so that each has its own advantages and disadvantages.71 For this
differences computed along different dimensions are com- work, we employ the ordering points to infer cluster structure
parable. In order to minimize the influence of outliers, we use (OPTICS) algorithm based on the following advantages
the range of the middle 80% for each parameter to carry out relevant to our specific context: (1) it can detect clusters of
18307 https://dx.doi.org/10.1021/acs.jpcc.0c03612
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arbitrary shape and is not biased toward spherical clusters like
other common algorithms;71’72 we acknowledge that this
necessarily brings along a danger that dissimilar groups of data
may end up in the same cluster if there is a continuous spread
of data between them; (2) it has a limited number of
parameters; (3) it does not require the number of clusters to
be specified as an input parameter, unlike many popular
algorithms such as K-means, BIRCH, etc;”* and (4) instead of
a single partitioning, OPTICS produces a clustering hierarchy
in which subclusters are contained within clusters, providing
relevant insight into the data structure (see below). To
overcome its poor computational scalability on large data sets,
we employ a variation called speedy-OPTICS (SOPTICS) in
which random projections are used to dramatically reduce the
clustering time while producing nearly identical results to the
original algorithm.”

OPTICS/SOPTICS clustering works by starting at a
random data point and then iteratively proceeding to the
next unvisited point that is closest to any point visited so
far.*’* This journey is represented by a “reachability plot”
(Figure 3b) in which the distance to the next point (the
“reachability distance”) is plotted against the order in which
the points were visited (the “cluster order”). Valleys in the
reachability plot intuitively correspond to clusters of data
points, because the points in a valley are relatively close to each
other but relatively far from points outside of the valley.”* A
reachability plot thus visually represents the overall hierarchical
structure of a data set, as valleys may contain subvalleys which
themselves can contain sub-subvalleys, and so on. We refer to
the reachability plot and its associated information as the
“clustering output” for a given data set.

In our implementation, SOPTICS relies on four parameters:
¢, cp, minSize, and minPts. The first three parameters are
related to how SOPTICS approximates the original OPTICS
algorithm and, when in a reasonable range, they each have an
extremely minimal effect on the clustering results. We thus
assign fixed values to each of these parameters (see Supporting
Information section $.3.3, for details). The fourth parameter,
minPts, is the one holdover from OPTICS (SOPTICS does not
require the generating distance parameter ¢); it is related to
how the data density in S-dimensional standardized parameter
space is estimated at each point, and affects how “jagged” the
reachability plot is.”* While minPts is the most important
parameter for OPTICS/SOPTICS, its abstract definition
makes it difficult to assign rationally without a deep
understanding of the data under consideration. In acknowl-
edgment of this uncertainty, we recluster each data set using 12
different values of minPts (35, 45, 55, 65, 75, 85, 95, 105, 115,
125, 135, and 145). We then use the variation between these
12 clustering outputs as a measure of the uncertainty in the
exact boundaries of an extracted cluster. In practice, this
variation is quite limited, implying that segment clustering is
not overly sensitive to the value of minPts. Finally, because
OPTICS/SOPTICS is a density-based clustering algorithm
and longer segments represent more raw data points than
shorter segments, we find that clustering results are improved
if, in the density calculations, we weight each segment
according to its length (see Supporting Information, section
S.3.4, for details).

3.1.5. Extracting Specific Clusters. In order to extract
specific clusters from a given clustering output, a cut is made
across the reachability plot (e.g., Figure 3b), and the points in
each valley dipping below the cut are assigned to a separate

cluster, while all points with reachability distances larger than
the cut are assigned to a catch-all “noise cluster” (e.g., Figure
3c). We refer to the specific set of clusters generated by a given
cut as a “clustering solution”. Thus, while the hierarchical
nature of OPTICS/SOPTICS is a distinct advantage, it also
presents an interpretation challenge, because a single clustering
output can have many different clustering solutions based on
different extraction levels.

Meaningful extraction levels can be chosen using the
concept of &-steepness’* or by employing an internal cluster
validation index,””’® but these strategies introduce ambiguity
in the form of what value of £ to use or which index to employ,
and many validation indices are expensive to compute. We
therefore introduce a new strategy motivated by the
observation that the clustering solutions at most extraction
levels are extremely similar to one another. For example, Figure
3c shows the clustering solution obtained by extracting at the
solid line in Figure 3b. If this extraction level is increased to the
dashed line, the only change is that each valley grows slightly,
with a few segments moving into those clusters from the noise
cluster. The clustering solution will only qualitatively change if
the extraction level is raised, for example, to the dotted line,
where the red and blue valleys/clusters will merge into one. In
the context of segment clustering, we are interested in
categorizing as many data points as possible, so we extract
each individual valley at the highest extraction level before it
merges with a neighboring valley to produce what we call “full-
valley clusters”. If a minimum valley size is then set, an entire
clustering output can be efficiently summarized with just a
handful of full-valley clusters (Figure 4). This allows us to still
examine the hierarchical structure of a clustering output
without having to consider an unmanageable number of
different solutions. This novel extraction strategy works
especially well in the present context because valleys tend to
be quite sharp (e.g., Figure 4a), and its robustness is validated
by the fact that it successfully identifies equivalent clusters in
the multiple clustering outputs for each data set (see
Supporting Information, section S.6, for details). However,
we note that this extraction approach is not fundamental to
segment clustering, and so other methods can be substituted if
full-valley clusters were to exhibit shortcomings on new types
of data sets. The minimum valley size should be set according
to the specific context and what types of clusters a user is
interested in; we have found that a minimum size of 1% of the
total number of data points (after length-weighting) often
works well.

3.2. Using Segment Clustering to Distinguish the
Conductances of Similar Molecules. In structure—property
investigations of single molecule conductance, it is common to
determine a single “most probable” conductance for each
molecule by fitting the molecular peak in the 1D histo-
gram.'”7?02%2%2% The peak value is then identified as the
molecular conductance, and it is often compared across
different molecules or with first-principles calculations.
However, because the molecular signal is necessarily convolved
with a “background” signal due to traces in which no molecule
was bound or in which the molecule detaches and reattaches
multiples times (e.g, Figure la), molecular peaks in 1D
histograms tend to have complex, asymmetric shapes (e.g.,
Figure 1d). Fitting these peaks thus requires arbitrary and ill-
motivated restrictions and/or background subtraction. More-
over, it has been shown that the molecular peak can vary
significantly between repeated measurements under identical
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conditions,” likely due in part to uncontrolled variation of this
“background” signal. Using data collected from a series of
OPV3-2BT-X molecules (Chart 1), we show how segment
clustering can help address these twin challenges by separating
the primary molecular feature from the background signal,
enabling subtle conductance differences to be identified with
confidence.

3.2.1. Extraction of “Main Plateau Cluster” from Back-
ground. In order to perform this background separation, we
examined each full-valley cluster for the OPV3-2BT-H data set
shown in Figure 4b—i. Of these, the red cluster (Figure 4h) is
the unambiguous choice for the primary molecular signature
because (1) it most closely corresponds to the dense molecular
region in Figure Ic that is not present in Figure 1b and (2) it is
composed of relatively long and flat molecular plateaus that
approximately match the expected length of the molecule after
adding 0.5 nm to account for the “snapback” distance”®”””*
(see Supporting Information, section S.9, for details). We
therefore refer to the cluster in Figure 4h as the “main plateau
cluster”. In contrast to the raw data, the conductance peak for
the main plateau cluster has a simple shape that can be
confidently fit with no restrictions by a single Gaussian (Figure
5). This is a direct consequence of segment clustering’s novel

Data from Cluster

Fit to Cluster

Raw Data
R N Attempt to Fit Raw Data
=)
= %
S
o
O

X7

10° 10* 10® 102 10" 10°
Conductance/G0

Figure 5. Raw 1D histogram for the OPV3-2BT-H data set from
Figure lc (yellow), along with a restricted Gaussian fit to the
molecular peak (dotted purple, see Supporting Information, section
S.8, for details). Overlaid in blue is a 1D histogram of the data from
just the main plateau cluster (Figure 4h) and an unrestricted Gaussian
fit (red), both scaled up by a factor of 7 for clarity. Whereas the
complex shape of the raw data peak necessitates arbitrary fitting
restrictions to obtain reasonable results, the simple shape of the main
plateau cluster peak can be fit without restrictions, leading to a more
confident and robust peak value.

focus on pieces of traces as the clustering unit, since trace
clustering approaches will necessarily produce clusters with
complex conductance histogram shapes. However, the main
plateau cluster in Figure 4h does not represent all of the
molecular signature in the data set. In fact, the points in these
segments only account for a small fraction of the molecular
peak seen in the raw 1D histogram (Figure S). This may be
caused by a majority of molecular traces at room temperature
jumping back and forth between tunneling decay and

molecular plateaus (e.g, Figure la), whereas the segments in
the main plateau cluster only originate from the “cleanest”
molecular plateaus (ie., those that are long, unbroken, and
relatively constant). We hypothesize that these “cleanest”
plateaus will yield the most reliable measure of molecular
conductance and the underlying quantum transport, which is
otherwise obscured by the large and stochastically visited space
of possible junction configurations.

To test this hypothesis, we collected nine total OPV3-2BT-
H data sets across three different samples run under identical
conditions (see Supporting Information, section S.4, for
details). Within all but one of these data sets (see Supporting
Information, section S.7, for details), a main plateau cluster
analogous to the one shown in Figure 4h could be
unambiguously identified (Figure 6a—h), providing strong
evidence that this type of cluster is a meaningful and
reproducible structural element of these data sets. Each of
these main plateau clusters can again be effectively fit with an
unrestricted single Gaussian (see Supporting Information,
section S.8, for details). Comparing the spread of these 8 peaks
with the restricted peaks fit to the raw 1D histograms (Figure
6i) reveals a significantly tightened distribution (Table 1),
consistent with our hypothesis that segment clustering is aiding
the extraction of an inherent molecular feature from a widely
varying background.

3.2.2. Quantitative Comparison of Conductances of
Similar Molecules. Figures S and 6 demonstrate the power
of segment clustering: the need for complex and arbitrary
fitting criteria is eliminated and data set-to-data set
reproducibility is improved, allowing us to identify peak
molecular conductances with increased precision and con-
fidence. To illustrate the advantages of this increased precision,
we used our MCB]J setup to collect multiple sets of breaking
traces for a total of seven OPV3-2BT-X molecules (Chart 1;
see Supporting Information, section S.4, for details on data
sets). For all but two data sets (see Supporting Information,
section S.7, for details), we identified a clear and unambiguous
choice for the full-valley cluster corresponding to the main
plateau feature. Our peak conductance results for all of these
OPV3-2BT-X main plateau clusters are summarized in Figure
7, in which the error bars represent the uncertainty introduced
by varying the minPts parameter (see Supporting Information,
section S.6, for details).

Figure 7 shows that, as with OPV3-2BT-H, the peak
conductances for each molecule in the series are highly
reproducible, further supporting the claim that segment
clustering is extracting an inherently molecular feature.
Moreover, because of this high reproducibility, we are able
to confidently differentiate the conductances of these molecules
despite their high structural similarity. This makes it possible to
search for structure—property relationships to physically
explain such conductance differences. Extensive testing
confirms that the peak conductances in Figure 7 are not
meaningfully affected qualitatively or quantitatively by modest
changes to the clustering parameters (see Supporting
Information, section S.5, for details). Not only does this
increase confidence in these specific results but it also provides
strong evidence that segment clustering is a highly robust and
generalizable tool for unsupervised analysis of potentially
subtle variations in molecular conductances.

3.3. Using Segment Clustering to Separate Over-
lapping Molecular Features. In addition to the extraction of
a single “primary” molecular feature in different data sets,
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Figure 6. (a—h) Main plateau clusters selected for 8 different OPV3-
2BT-H data sets, demonstrating that this feature is a consistent
structural element of these data sets. (i) Comparison of peak
conductance values from unrestricted Gaussian fits to the main
plateau clusters from parts a—h with the peak conductance values
from restricted Gaussian fits to the raw 1D histograms (see
Supporting Information, section S.8, for details), demonstrating that
segment clustering increases the precision of peak conductance
measurements.

segment clustering can also be used to distinguish multiple
features in a single data set. When 2D histograms of breaking
traces display multiple “clouds” of increased density, it is often
taken as an impetus to investigate the possibility of different
binding modes, molecular configurations, etc.”**>> While such
clouds can ofter tantalizing hints of multiple transport motifs, a

Table 1. Comparison of Different Measures of Spread for
the Raw Data Peaks vs the Main Plateau Cluster Peaks for
the Eight Different OPV3-2BT-H Datasets (in Figure 6i)“

raw data peaks

main plateau cluster peaks

range 0.159 0.099
standard deviation 0.063 0.032
inter-quartile range 0.121 0.037
“All units are decades.
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Figure 7. Comparison of peak conductance values from main plateau
clusters for each OPV3-2BT-X data set considered in this work. Error
bars represent the uncertainty due to clustering with different values
of the minPts parameter (see Supporting Information, section S.6, for
details). Due to the high reproducibility enabled by segment
clustering, subtle conductance differences between molecules can be
identified with confidence.

major challenge is that it is often quite ambiguous whether
density clouds are truly separate or not. This introduces a
significant opportunity for bias, and it may also limit the scope
of hypotheses considered for further investigation. Because
segment clustering is unsupervised and largely model-free, it is
a useful tool for objective separation of molecular features.

To demonstrate this, we constructed a synthetic data set
consisting of equal numbers of experimental traces from
samples run with two structurally rather different molecules.
The first half of traces are taken from a data set collected with
the molecule C6-2SMe (Chart 1), which displays a short
molecular feature at ~107*G, (Figure 8a,c). Segment
clustering of this data set unambiguously identified a full-
valley cluster corresponding to this molecular feature (Figure
8b,c; see Supporting Information, section S.10, for details).
The remaining traces for our synthetic mixture are taken from
an OPV2-2BT (Chart 1) data set. The histograms of the
breaking traces for this molecule reveal a strong high-
conductance feature at ~1073G, as well as a subtler low-
conductance feature at ~107*G, (Figure 8d,f), likely due to
molecular stacking or direct 7—Au binding.”">” While segment
clustering identifies a main plateau cluster corresponding to the
high-conductance feature (Figure 8e), none of the full-valley
clusters matches well with the low-conductance feature (see
Supporting Information, section S.10, for details). This shows
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J. Phys. Chem. C 2020, 124, 18302—18315


http://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.0c03612/suppl_file/jp0c03612_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.0c03612/suppl_file/jp0c03612_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c03612?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c03612?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c03612?fig=fig6&ref=pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.0c03612/suppl_file/jp0c03612_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c03612?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c03612?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c03612?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c03612?fig=fig7&ref=pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.0c03612/suppl_file/jp0c03612_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c03612?fig=fig7&ref=pdf
pubs.acs.org/JPCC?ref=pdf
https://dx.doi.org/10.1021/acs.jpcc.0c03612?ref=pdf

The Journal of Physical Chemistry C

pubs.acs.org/JPCC

N
o
o

107"}

- -
e <
w N

Conductance/G0
S
S

Q) |
1:1 Synthetic
Mixture

Conductance/G 0

0
Inter-Electrode Distance (nm)

0.5 1 15 0

Inter-Electrode Distance (nm)

0.5 1 15 0 0.5 1 1.5

Inter-Electrode Distance (nm)

(c)

Count (A.U.)

(f) (i)

10 10* 10 102 10" 10°
Conductance/G0

x5
10° 10 10 102 10" 10° 10°  10% 102 1072
Conductance/G0 Conductance/G0

Figure 8. (a) 2D histogram for 1315 consecutive breaking traces collected in the presence of C6-2SMe. (b) Full-valley cluster identified as the main
plateau cluster for the data from part a. (c) 1D histogram for the raw data from part a (yellow), overlaid with the 1D histogram for the data from
the main plateau cluster in part b (blue) with an unrestricted Gaussian fit (dotted red). (d—f) Analogous plots to parts a—c for a data set containing
5807 consecutive breaking traces collected in the presence of OPV2-2BT. (g) 2D histogram for a synthetic data set constructed by combining equal
numbers of traces from the data sets in parts a and d. (h) Two full-valley clusters identified as molecular plateau features for the data from part g. (i)
1D histogram for the data from part g (dark blue), overlaid with the 1D histograms for the two clusters from part h (pink and yellow) and their
respective single Gaussian fits (dotted lines). For comparison, 1D histograms for five different raw OPV2-2BT data sets are included (various
shades of green), demonstrating that the intensity and location of the peaks in the synthetic mixture lie well within the range of the different pure

OPV2-2BT data sets.

that segment clustering will not always extract every mean-
ingful feature from a data set.

However, because the low-conductance feature of OPV2-
2BT partially overlaps the primary C6-2SMe feature, our
synthetic mixture provides an excellent challenge case for
segment clustering. This can be seen in the 2D histogram for
our mixture (Figure 8g), which is qualitatively quite similar to
the pure OPV2-2BT histogram (Figure 8d) and displays
exactly the type of ambiguous dual density cloud often
reported in the literature””* " and is sometimes imbued with
speculative microscopic meaning. Moreover, Figure 8i shows
that the intensity and location of the lower peak in the 1D

18311

histogram of our synthetic mixture falls within the variability
observed between different pure OPV2-2BT data sets, further
illustrating the challenge posed by separating these two
molecular distributions.

As shown in Figure 8h, segment clustering of our mixture
data set identifies two full-valley clusters that appear to
correspond to the main OPV2-2BT and C6-2SMe features
(though because both molecular features are “diluted” by
mixing, the minimum valley size was lowered below 1% to
locate these valleys; see Supporting Information, section S.11,
for details). Because this mixture was constructed synthetically,
we can quantitatively test this hypothesis. We find that the
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separation of molecular features is indeed quite accurate, even
though the two clusters partially overlap: 97% of the data in
the OPV2-2BT cluster belong to traces taken from the OPV2-
2BT data set, and 84% of the data in the C6-2SMe cluster
come from C6-2SMe traces. It is not surprising that the Cé6-
2SMe cluster has a higher misidentification rate, because this
cluster’s shorter segments are much more likely to be found in
an arbitrary data set simply by chance. This is evidenced by the
fact that a cluster of C6-2SMe-like segments did not exist in the
pure OPV2-2BT data set, indicating that the misassigned
segments added to the C6-2SMe cluster from the mixture data
set did not form a region of high density by themselves. To
further test the robustness of this feature separation, we
constructed seven additional 1:1 OPV2-2BT:C6-2SMe syn-
thetic mixture data sets using different combinations of traces
from different pure-molecule data sets (see Supporting
Information section S.4 for details). As shown in Figure S17
and Table S6 in the Supporting Information, segment
clustering successfully extracted both molecular features for
all but one of these mixtures (see Supporting Information,
section S.12, for details), and each of these separations
displayed high quantitative accuracy.

By reliably separating features in an experimental data set,
segment clustering contributes to an important goal of single
molecule transport research, toward which some progress has
already been made. For example, several existing clustering
algorithms have a demonstrated ability to extract multiple
subfeatures from experimental data sets of one molecular
species.” %% However, while these studies offer intrigu-
ing hints about different binding modes and molecular
conformations, such subfeatures are unfortunately difficult to
corroborate without extremely trustworthy atomistic simu-
lations. More-testable examples of feature separation have been
demonstrated by Hamill et al, whose sorting algorithm
successfully separated the features for two molecules in a
mixture displaying an “obvious bimodal feature”,’* and
recently by Huang et al, whose deep-learning clustering
algorithm separated two features from an overlapping
molecular mixture.”” However, because neither mixture was
synthetic, these separations could not be quantitatively
confirmed for the accuracy of cluster assignments. Finally,
Vladyka and Albrecht very recently applied a neural network-
based classification algorithm to a synthetic mixture of three
different molecules, and while some pairwise separation was
qualitatively observed, the combination of all three molecular
features could not be separated.”' The OPV2-2BT/C6-2SMe
case study described here is thus a significant advance in that it
constitutes a quantitatively validated example of experimental
feature separation, and it does so in the challenging case of
overlapping features. This provides a powerful demonstration
of the usefulness of segment clustering as a hypothesis
generation tool.

4. CONCLUSIONS

In this work we presented segment clustering, a novel
approach to aid hypothesis generation for data sets of single-
molecule breaking traces. Segment clustering is categorically
different than all previous clustering approaches since it treats,
for the first time, pieces of breaking traces as the fundamental
clustering unit, allowing behaviors occurring in just part of a
trace to be more readily identified. This subtrace focus gives
segment clustering the potential to yield new and powerful
insights into single-molecule data sets because grouping the
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data by segments is a better match for the empirical “local
history” and piece-wise linear structure of break junction data
than grouping by entire traces. This suggests that the
segmentation approach described here may be a valuable
avenue for future investigations even outside the context of
clustering, for example by comparing the distribution of
segment lengths between different data sets or exploring the
likelihood of certain types of segments to appear in the same
traces as others. To encourage such new directions, and to
enable the use of the segment clustering in other contexts, we
have made our code freely available in a user-friendly open-
source package (github.com/LabMonti/SMAUG-Toolbox).

To demonstrate the power and versatility of the full segment
clustering approach, we have applied it to two common
challenges faced in the analysis of breaking traces. First, to
address the related issues of complex peak shapes and varying
background signals in conductance histograms, we used
segment clustering to extract the “primary” molecular feature
in a series of similar molecules. We showed that this increases
measurement reproducibility and the robustness of peak-
fitting, allowing subtle conductance changes to be distin-
guished with confidence. Second, to address the problem of
separating ambiguous or overlapping molecular features, we
used segment clustering to search for clusters corresponding to
particular features in 1D and 2D histograms. By constructing a
synthetic mixture of traces from two different molecules with
overlapping conductance distributions, we demonstrated that
segment clustering performs this feature separation with high
quantitative accuracy even in challenging circumstances. We
expect that these two advances in particular, as well as the new
perspective offered by segment clustering in general, will aid in
the establishment of structure—property relationships in single
molecule quantum transport and thus help unlock new paths
toward harnessing molecular electronics by design.
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