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up focusing too much on mistakes the other model is
making without actually improving on the core task.
For example, if the generator is adding a blue blob to
the corner of nearly every image, then the discriminator
will heavily emphasize this blob in its decisions, improv-
ing its score without improving its function. The gener-
ator in turn may learn to change the color of the blob
to red without removing it. This can create a fruitless
back-and-forth that does not yield good images.

To solve this problem, Saliman et al. [23] proposed
a new loss function for the generator, called feature
matching loss, to prevent it from overtraining on the
current discriminator. Feature matching loss is com-
puted on the output of an intermediate layer of the
discriminator, which can be thought of as a represen-
tation of the features that the convolutional layers have
found. By seeking to minimize the di�erence between
the features found in real data and the features found
in its generated samples, the generator can avoid focus-
ing unduly on a single mistake it is making that would
be heavily emphasized in the �nal discriminator output.
This strategy makes GANs more stable in training, and
we leverage it in GANDaLF as well. In GANDaLF, the
feature matching loss was computed for both WF-I and
WF-S scenarios by capturing the feature vectors in the
�atten layer prior to the last convolutional 1D layer, as
shown in Figure 2.

5 GANDaLF

In this section, we introduce our new attack, GAN-
DaLF, starting with the threat model, then a discussion
of the intuition behind the choice of SGAN for WF, and
present details of its design and network architecture.
Furthermore, we emphasize the contribution of GAN-
DaLF based on our experiences and �ndings when tun-
ing the GAN for WF in the semi-supervised setting and
in comparison to prior WF attacks.

5.1 Threat Model
We assume a network-level, passive adversary who can
only observe the network traces between the client and
the middle node of a Tor circuit, possibly by operating
the entry guard or middle node. The attacker is not
able to drop or modify packets that have been sent and
received from servers or collude with web servers.

The attacker requires training data, but since col-
lecting data from a client-based web crawl can be ex-
pensive, this attacker seeks to run an entry guard or
middle node to both perform the attack and simulta-

neously gather live Tor tra�c that can be used as un-
labeled data. Note that while the middle node position
has less direct information about the client, Jansen et
al. [10] showed how an attacker can use the middle node
to perform attacks such as WF.

The attacker is interested in two attack scenarios,
both of which we explore in this paper. The �rst goal is
to train GANDaLF using website index pages and then
�ngerprint visits to index pages only. This approach has
been used by most previous WF research [6, 16, 22, 25].
We call this scenario WF-I, referring to �ngerprinting
websites with index pages.

The attacker's second goal, which might include
more realistic scenarios, is to train GANDaLF using
both index and subpages(i.e. non-index pages) from a
website and then try to identify visits to any subpage of
a website. For example, the attacker may want to clas-
sify any page of amazon.com as Amazon. Note that the
attacker only needs a subset of the subpages from each
website instead of all pages to train the model, and can
test it using unseen subpages by leveraging the genera-
tive ability of GANDaLF. We call this scenario WF-S,
referring to �ngerprinting websites with index and non-
index pages.

We explore WF-I and WF-S scenarios in both
closed-world (CW) and open-world (OW) settings. In
CW experiments, the attacker keeps a webpage �nger-
print database and assumes that users will only visit
webpages in this database. In the more realistic OW
setting, the attacker keeps a set of monitored sites and
attempts to classify whether a particular trace is to a
site in this set or outside the monitored set. To achieve
this, the attacker collects traces of both monitored and
unmonitored websites to train the classi�er and predicts
unseen webpages using this trained model to answer
whether or not they are monitored.

5.2 Sources of Unlabeled Data
Several groups of WF researchers [4, 16, 22, 25] have
demonstrated the e�ectiveness of convolutional neural
networks (CNNs) to model the distribution of website
traces, resulting in WF attacks with high classi�cation
accuracy. Based on CNNs, we built an SGAN model
with a generator and a discriminator, in which the dis-
criminator becomes a K+1 class WF classi�er ( K is the
number of websites in the labeled set). This classi�er
utilizes three di�erent sources of training data: labeled
website traces collected by the attacker, unlabeled web-
sites traces that could be from a publicly available WF
database or fresh Tor tra�c collected by running entry
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Fig. 2. GANDaLF architecture (FC : Fully-connected layer,
Conv : convolutional layer, r : ReLU, t : Tanh, and l : LeakyReLU).
Note that in WF-I, we used one fully connected layer for the gen-
erator.

guards or middle nodes, and fake website traces pro-
duced by the generator.

The combination of di�erent training sources en-
ables GANDaLF to learn from a broader perspective,
which leads to more precise WF classi�cation only us-
ing a few labeled samples for training. In contrast, the
learning capacity of supervised WF techniques is lim-
ited to the data distribution when using a small set
of training samples, which leads to signi�cantly weaker
performance in the limited-data setting.

Since GANDaLF needs multiple data sources, the
choice of unlabeled data impacts its classi�cation per-
formance. SGAN [23] constructed both labeled and un-
labeled datasets from the same data distribution. In a
WF attack, however, this would require the attacker to
collect a very large unlabeled set to be aligned with
the labeled data, which contradicts the goal of low-data
training. Thus, to investigate the applicability of SGAN
to low-data WF, we studied how di�erent the unlabeled
data distribution is from the labeled data distribution
if we construct them from di�erent datasets.

Fig. 3. Distribution of euclidean distances between labeled and
unlabeled data (A1 : AWF [22] set consisting of 100 websites,
A2 : AWF set consisting of 100 websites (di�erent from A2), and
D : DF set [25]).

We explored three datasets � WF-I, and WF-S, and
the MNIST computer vision dataset to serve as a base-
line. For MNIST, we built both labeled and unlabeled
data from the MNIST set. For WF-I, we constructed
the labeled set using the AWF1 set [22] and three dif-
ferent unlabeled sets: (i) one based on the same AWF1
set (WF-I in Figure 3), (ii) one based on the AWF2 set
(WF-I-A2), and (iii) one based on the DF set collected
with di�erent network settings (WF-I-D). For WF-S,
we used GDLF21 to be used as labeled set and build
two unlabeled sets: (i) one from the same GDLF21 set
(WF-S in Figure 3) and (ii) one from AWF1 (WF-S-A1).
Then we computed the pair-wise Euclidean distances
between labeled and unlabeled data in these settings;
the distributions of these distances are shown in Fig-
ure 3.

Figure 3 shows that WF-I-A2 is close to WF-I,
which indicates that if the traces are collected in the
same network environment, their distance distributions
are almost the same, even though they comprise di�er-
ent website traces. In WF-I-D, as the DF set was col-
lected in di�erent network settings, the distances had
more variance. Similarly, the distance distributions of
WF-S-A1 and WF-S became more di�erent from each
other, which we assumed as the most di�cult data setup
for GANDaLF. We will empirically show in Section 6
the impact of using unlabeled data chosen from other
distributions, and conclude that it has minimal impact
on the classi�cation accuracy, but it does a�ect the sta-
bility of training and somewhat restricts the capacity of
supervised learning.

With this preliminary analysis, we see that SGAN
is promising to explore WF in the low-data setting by
using a small labeled set together with a large unlabeled
set to help train the discriminator. Furthermore, we will
study more optimal labeled and unlabeled data settings
to maximize the classi�cation power of GANDaLF in
Section 6. Compared to MNIST with a normally dis-
tributed curve, however, Figure 3 shows more variance
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in the distances between labeled and unlabeled data for
WF data. This means that we need careful tuning of
SGAN to ensure better performance, which we discuss
in Section 5.3.

In addition, we expect that WF-S is a more chal-
lenging task than WF-I, because traces in WF-S are
more di�erent than WF-I as they are plotted on a wider
curve in Figure 3. This results in additional di�culty to
simulate realistic fake subpage �ngerprints as well as to
classify �ngerprints to correct website labels.

5.3 SGAN Optimization for GANDaLF
Saliman et al. [23] proposed several SGAN architec-
tures optimized for di�erent datasets, including MNIST,
CIFAR-10, and SVHN. Among these architectures, we
selected the one optimized for CIFAR-10 as our start-
ing point, since it yielded better initial accuracy on the
AWF1 set.

In this section, we discuss the technical challenges
we addressed to �nd the optimal SGAN architecture
for WF tasks and key design decisions. First, we found
several aspects of SGAN to be problematic when applied
directly to the WF problem.

� SGAN was built based on two-dimensional (2D) con-
volutional layers. As pointed out by Sirinam et al.,
however, network tra�c features do not carry a mean-
ingful 2D spatial pattern in the same way as the im-
ages that most CNNs operate on [25]. Thus, we had to
incorporate one-dimensional (1D) convolutional lay-
ers into SGAN, and further, tune the model towards
WF classi�cation tasks. The application of 1D convo-
lutional layers to SGAN revealed several additional
problems that we needed to address to improve the
performance of GANDaLF.

� SGAN used neither a batch normalization (BN) nor
dropout in the generator. However, building the ini-
tial SGAN architecture to use 1D convolutional layers
made training unstable. Thus, we explored whether
adding BN or dropout layers to both generator and
discriminator would help improve the training pro-
cess.

� Saliman et al. proposed feature matching loss using
the mean absolute di�erence (i.e., L1 loss) between
the expected features of real data and the expected
features of the generated data. However, since web-
page traces are di�erent from image features, we also
investigated di�erent feature matching loss functions
(L2 vs L1 distance).

� The choice of hyperparameters impacts the perfor-
mance of SGAN. Thus, we had to empirically �nd

the optimal parameters for WF-I and WF-S, respec-
tively.

To overcome these limitations of the original SGAN
architecture, we introduced the following technical in-
novations. Note that we used the same architecture for
WF-I and WF-S, but we empirically selected hyperpa-
rameters for each scenario as shown in Table 2.

Deeper 1D-Based Design. The initial SGAN im-
plementation [1] with feature matching was based on
the generator containing four deconvolutional 2D lay-
ers 1 and a discriminator consisting of seven 2D con-
volutional layers. After simply switching from 2D con-
volutional layers to 1D layers, we trained it using 90
instances per website and it reached 78% CW accuracy
in the WF-I setting. As shown in Figure 2, we added
more 1D convolutional layers, which resulted in a higher
accuracy. This change led to a classi�er that obtained
95% accuracy with 90 training instances for each of the
100 websites.

Dropout and BN. We found that selective use of
dropout layers and the full use of BN layers in the gen-
erator helps to make the training more stable in WF-
S. More speci�cally, we added a dropout layer after all
convolutional layers except the �rst and last layers as
shown in Figure 2. In contrast, for WF-I, we only used
BN layers in the generator, since the use of dropout lay-
ers in any location worsened the performance. Further-
more, we added several fully connected layers, followed
by dropout layers between the �attened layers, where
we captured features to compute the feature matching
loss, and the last output layer.

Different Generator Loss. We noticed that the same
L1 feature matching loss works properly for WF-I, while
L2 loss improved the testing accuracy in the WF-S sce-
nario more than L1 loss. However, in both scenarios,
generator loss started with very low value around 0 and
did not decrease much, while discriminator loss continu-
ally decreased. This indicates that the generator did not
generate actual good fake traces, while the supervised
performance was constantly improved. This is because
intra-class variation in WF traces is more signi�cant
than for images such as MNIST, which made it harder
for GANDaLF to reduce the feature matching loss. Fur-
thermore, when using AWF1 set as unlabeled data in

1 A deconvolution is the inverse operation of the convolution,
which means performing the convolution in the back propaga-
tion.
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Table 2. Hyperparameter optimization showing the chosen parameters and search spaces for the WF-I and WF-S scenarios
(G : generator, D : discriminator, [Conv] : 1D convolutional layer block, [Full] : fully-connected layer block, Up : Upsampling layer,
act : activation function, and # : number).

Scenario→ WF-I WF-S

HyperParam ↓
Choice

Search Space
Choice

Search Space
G D G D

[Conv] layer# 9 8 4∼12 9 8 4∼12
[Conv] �lter# 64∼ 512 32∼ 256 10∼1,000 32∼ 256 32∼ 256 10∼1,000
[Conv] �lter size 5 5 2∼10 20 20 2∼30
[Conv] stride size 1 1∼2 1∼4 1 1∼4 1∼4
[Conv] dropout rate - 0.3 0.2∼0.9 0.3 0.3 0.2∼0.9
[Conv] act ReLU LeakyReLU ReLU, LeakyReLU, ELU ReLU LeakyReLU ReLU, LeakyReLU, ELU
[Conv] Up# 4 - 2∼9 4 - 2∼10
[Full] layer# 1 5 1∼6 3 5 1∼5
[Full] node# 316 512∼ 2,048 128∼2,048 316 512∼ 2,048 10∼2,048
[Full] dropout rate - 0.5 0.2∼0.9 0.5 0.5 0.2∼0.9
[Full] act ReLU ReLU ReLU,LeakyReLU ReLU ReLU ReLU, LeakyReLU
input dim 5,000 5,000 5,000 3,000∼8,000
z dim 100 50∼700 100 50∼700
optimizer Adam Adam Adam Adam
learning rate 2e−4 5e−5 1e−5 ∼ 0.1 2e−4 5e−5 1e−5 ∼ 0.1
epoch ≤30(CW), ≤150(OW) 10∼1,000 ≤10(CW), ≤100(OW) 10∼1,000
batch 32 16∼128 16 16∼128

WF-S, the generator loss kept increasing even as the
discriminator loss was decreasing. We will investigate
this problem in detail in Section 6.3.

Stride and Kernel Choice in WF-S. Furthermore,
we found that a greater length of strides and kernels
helped improve the performance of GANDaLF in WF-S.
This was consistent with our expectation that increasing
the stride length and kernel sizes, which shrinks the out-
put volume after the convolutions, might lead the net-
work to better handle WF-S having greater intra-class
variation than WF-I and capture meaningful features.
This resulted in the number of features used to compute
the feature matching loss in WF-I being 20,224, while
it was 1,280 in WF-S scenario. As such, losing some
details by increasing the stride and kernel sizes helps
to better capture the tra�c pattern when features are
more variable within each class.

Input Representation for WF-S. Most DL-based
WF attacks represent a website trace as a sequence of
±1's that indicate packet direction. In our investiga-
tions, we explored several alternative data representa-
tions, such as inter-packet delay (IPD) and Tik-Tok [21]
sequences, for both WF-I and WF-S scenarios. In the
WF-S scenario, we found that IPD yielded +9% and
+8% better CW accuracy than the direction and Tik-
Tok features. Hence, we used IPD sequences in WF-S
scenarios throughout the paper.

Parameter Tuning. Along with the architectural
tuning, we also explored di�erent combinations of pa-
rameters involved in the architecture for WF-I and WF-
S. Since the GDLF dataset is di�erent from the AWF
dataset, we conducted hyperparameter tuning sepa-
rately for each scenario. We used 90 instances of AWF1
and all of AWF2 for tuning WF-I, and 90 instances of
GDLF25 and all of AWF1 for tuning WF-S. In this way,
we can ensure that the overlap is minimal between the
tuning sets and the testing sets used in Section 6.

The parameter search space and chosen parameters
are reported in Table 2. Beyond these parameters, we
also adjusted other components in SGAN. First, the
SGAN of Saliman et al. [1] used weight normalization
(WN) [24] in the discriminator, while we applied batch
normalization since WN barely impacted the perfor-
mance, and BN is easier to implement. Second, we ap-
plied di�erent learning rates to the discriminator and
generator during the optimization based on �ndings by
Heusel et al. [9] that this ensures better convergence to
Nash equilibrium, and further, led GANs such as DC-
GAN [20] to achieve better performance.

Summary. Overall, the most e�ective design for GAN-
DaLF is to go much deeper by adding fully-connected
layers and more convolutional layers. As shown by Siri-
nam et al. [25], more layers help the model learn the in-
ner structure of website traces more e�ectively since WF
set has more inter- and intra-class variances than the
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image set. On the downside, this may make the model
more complicated, resulting in more chances of over�t-
ting. Thus, we added dropout and batch normalization
layers to relieve this concern.

6 Evaluation

In this section, we evaluate the performance of GAN-
DaLF in various experimental scenarios. First, we com-
pare GANDaLF to the state-of-the-art WF techniques
in the WF-I setting (index pages) with limited train-
ing data. Then we further investigate the applicability
of GANDaLF and other data-limited attacks in the WF-
S setting (subpages).

6.1 Experimental Setting

Setup. We implemented GANDaLF using Tensor�ow;
each experiment was conducted on a Tesla P100 GPU
with 16GB of memory. Using pseudocode, we provide
details of the GANDaLF experimental setup in Algo-
rithm 1 of Appendix B. We evaluated each technique us-
ing �ve trials and added more experiments up to a max-
imum of 20 when the standard deviation was greater
than 1%.

To implement state-of-the-art WF techniques, we
adopt the original implementations provided by re-
searchers [4, 6, 17, 25, 26]. We made few changes when
necessary for the data loading pipeline and for hyperpa-
rameter tuning. When tuning k-FP, we explored di�er-
ent numbers of trees from 500 to 2,000 and �nally chose
2,000 for both scenarios. For DL-based WF attacks, we
explored di�erent mini-batch and convolutional stride
sizes, as these are parameters that are signi�cant for
GANDaLF. Both DF and TF were also allowed to train
for additional epochs until validation loss increased for
�ve consecutive epochs. Since TF [26] used 1-20 training
instances per website for the N-shot learning, we chose
similar training set sizes, however, we increased the size
up to 90 instances to see how much DL-based classi�ers
are bene�ted by additional training instances. That is,
to construct the training labeled set, we randomly sam-
pled 5, 10, 20, 50, and 90 instances for 100 websites in
WF-I. In WF-S (subpages), we randomly chose one in-
stance using each ofns subpages per site in whichns =
5, 10, 20, 50, and 90 (i.e., total 1× ns instances).

For GANDaLF, we randomly sampled these in-
stances rather than using one subpage per site, since
this approach yielded slightly higher closed world ac-
curacy, which will be detailed in Section 6.3. For other

Table 3. WF-I, CW: Comparison to k-FP, DF, Var-CNN, and TF
using 5-90 training instances. We do not show standard devia-
tions less than 1%. We measured the time (s: seconds) for testing
42k testing samples. Other numbers are %.

TrainN GANDaLF k-FP DF Var-CNN TF

5 70±2 61 60±2 25.9 78±1
10 81±1 72.5 79±2 69.1 81.6
20 87±1 77.3 89±2 90.8 83.1
50 93±1 82.8 95.1 97.1 83.9
90 95±1 85.5 97.1 98.3 84.2

time 5.5s 1.1s 7.6s 43.6s 8.5s

classi�ers, we chose1× ns achieving a higher accuracy.
In either case, the standard deviations between trials in
WF-S are greater than WF-I, most likely due to much
larger intra-class variance.

Metrics. We summarize the metrics for CW and OW
evaluation as follows.

� Accuracy : The percentage of predictions that are cor-
rect. This metric is traditionally used to evaluate clas-
si�ers in the CW setting in prior WF work, which we
adhere to.

� Precision : The percentage of positive predictions (i.e.
predicted as �monitored�) that are correct. If the clas-
si�er is tuned for high precision, it minimizes the
number of users being misdetected as �guilty,� but
may miss some instances that were truly monitored.

� Recall: The percentage of monitored-site instances
that are classi�ed as �monitored.� A classi�er tuned
for high recall will reliably identify when a sensitive
site has been visited, but may also misidentify �inno-
cent� websites as sensitive.

A WF adversary must consider both the precision and
recall of their classi�er when evaluating the results of a
real-world attack, so we show precision-recall curves for
our OW experiments.

6.2 Fingerprinting Websites with Index
Pages

In this section, we evaluate the classi�cation ability
of GANDaLF and other WF techniques in a low-data
setting by training and testing with website index pages.

CW Performance. We trained GANDaLF, k-FP,
DF, Var-CNN, and TF classi�ers using 5-90 instances
per website, randomly sampled from the AWF1 dataset.
To train GANDaLF, we used AWF2 as the unlabeled
data. For a fair comparison, we also used the AWF2
dataset for the pre-training phase of the TF attack. The
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Table 4. WF-I, CW : Impact of circuit diversity on labeled train-
ing data (DF set [25]). We used DF as labeled data and AWF2 as
unlabeled data. All standard deviations are less than 0.5%.

train (25) acc train (90) acc

1 circuit 86.6 slow 93.4
5 circuits 86.8 fast 92.9
40 circuits 87.1 random90 93.5

performance for each technique is shown in Table 3. The
best results for a given number of training instances is
shown in bold.

Our experiments show that GANDaLF is e�ectively
tied with TF when using 10 samples per class. However,
the testing cost of GANDaLF was lower than TF, DF,
and Var-CNN. For 50 samples and above, Var-CNN is
the best classi�er, but it was much less e�ective when
limited to 5 or 10 samples, with accuracies of 26% and
69%, respectively. In the lowest data setting with 5 sam-
ples, TF was the most accurate classi�er due to its pre-
trained WF model. Across all classi�ers, if the attacker
can a�ord this larger cost for data collection, the pay-
o� is worthwhile for closed-world classi�cation of index
pages. In particular, when either DF or Var-CNN is
trained on many more instances, performance is much
improved. When trained on 90 instances, the accuracy
of DF and Var-CNN improves to 97% and 98% respec-
tively. This is important evidence to suggest that these
models require very large labeled training datasets to
learn e�ective feature representations in the WF-I sce-
nario.

Impact of Circuit Diversity. The attacker using
GANDaLF needs to gather and use a smaller dataset
of labeled data than in other attacks, so the source of
that data may impact attack accuracy. In particular, the
circuits used to collect this data might be slow, fast, or
otherwise not representative of the kinds of conditions
faced by the victim. To investigate the impact on GAN-
DaLF of the diversity of circuits used to gather labeled
training data, we examine how the number of circuits
used to gather data impacts accuracy. We used a subset
of the DF dataset collected using 40 circuits, and split
it into 40 smaller subsets, one per circuit. Each subset
consists of 25 instances of each of 95 websites. Thus, we
randomly sampled 95 websites and 25 instances (95×25)
within one subset, four subsets, and 40 subsets to con-
struct three training labeled sets and 100 instances of
each of 95 websites within all 40 subsets to build one
testing set (We detailed this data sampling in Algo-
rithm 2 of Appendix C). Then we trained three di�er-

ent models using each labeled set and tested them using
the testing set. As shown in Table 4, the performance
somewhat improved with increasing number of circuits,
though it is far from critical in performing the attack.

Impact of Network Conditions. While the attacker
would likely use multiple circuits to gather labeled train-
ing data, the victim may have a particularly slow or fast
circuit. Thus, we examine how the speed of the victim's
circuit impacts the attack. We use the same 40 subsets
of the DF dataset as when testing circuit diversity. We
split out the four fastest circuits and the four slowest
circuits by using the total website load times.

We then constructed fast (or slow) testing sets by
randomly sampling 95×100 instances from data gath-
ered using the four fast circuits (or slow circuits), which
was the same testing set size used in DF [25]. To
train GANDaLF, we randomly chose 95 ×90 instances
over the remaining 36 subsets. We described this data
sampling details in Algorithm 3 of Appendix C.

As a baseline, we further trained GANDaLF us-
ing randomly chosen 95×90 samples over 40 subsets
and tested it using another randomly chosen 95×100
instances over 40 subsets. As shown in Table 4, GAN-
DaLF performs modestly worse when identifying traces
using fast circuits and about the same on slow circuits.
The small margins indicate that the network condition
when collecting the victim's tra�c minimally impacts
the performance of GANDaLF.

Impact of Unlabeled Data. To understand the
impact of the choice of unlabeled data, we also
trained GANDaLF using the AWF1 set as both labeled
and unlabeled data. In other words, this models the
case that both sample groups come from the same dis-
tribution. Interestingly, this change only led to a 1%
increase in the accuracy of CW classi�cation. We fur-
ther trained GANDaLF using the DF set (which was
collected in di�erent network settings) and GANDaLF
yielded 87% CW accuracy when using 20 labeled train-
ing instances per website. Even though the distributions
of distances between labeled and unlabeled sets were
somewhat di�erent as shown in Figure 3, this result
shows that the gap did not critically impact the clas-
si�cation ability of GANDaLF. This suggests that the
unlabeled data does not require either any of the moni-
tored sites in the labeled set or the same network setting
for the unlabeled data collection to provide a useful ba-
sis for semi-supervised learning.

OW Performance. Since GANDaLF and TF per-
formed more e�ectively in the low-data CW setting (i.e.,
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Fig. 4. WF-I, OW: Comparison to k-FP and TF. We used 360k
background traces for k-FP and TF.

5-10 instances), we further evaluated them in the open-
world scenario. In this evaluation, the classi�ers were
trained using 20 instances for each monitored site in
AWF1 and 2,000 unmonitored site instances from AWF-
OW. We then tested using a background set of 360,000
unmonitored website samples, which is the same size as
the largest background set explored by TF in their OW
evaluations [26]. We further varied the size of the un-
monitored set from 5,000 to 360,000 to show the impact
of the background set on the performance of GANDaLF.
As shown in Figure 4, GANDaLF outperformed k-FP
and TF and increasing the unmonitored set size de-
graded GANDaLF performance. Compared to the CW
setting, GANDaLF provides better performance than
TF by a more signi�cant margin in detecting monitored
websites versus unmonitored websites. The better e�ec-
tiveness in OW scenarios is mainly because the discrimi-
nator using additional supervised loss also became more
bene�ted by the binary classi�cation setting.

6.3 Fingerprinting Websites with
Subpages

In this section, we investigate the classi�cation ability
of GANDaLF and other techniques in the WF-S set-
ting. This scenario not only represents a more realistic
scenario for attacks, but also a more challenging one, as
the inclusion of many subpage tra�c instances results
in high intra-class variation.

CW Performance. For the WF-S CW experiments,
we trained each technique in a low-data setting with
between 5-90 training instances per site, where each in-
stance was randomly sampled. This means that, at best,
the attacker is able to train on one sample per subpage
within each site in our dataset. Consequently, during ex-
periments where the training sample count is below 90,

Table 5. WF-S, CW: Comparison to k-FP, DF, Var-CNN (Var),
and TF using 5-90 training instances. For unlabeled sets, we used
AWF1 ( GF(A) ) or GDLF-OW-old ( GF(G) ). We do not show
standard deviations less than 1%. We measured the time (s: sec-
onds) for testing 12k testing samples. Other numbers are %.

TrainN GF(A) GF(G) k-FP DF Var TF

5 30±1 31±2 41 4 5±1 14±1
10 39±3 38±2 46 5±1 6±2 17±1
20 46±3 47±3 52 47±2 9±2 18
50 57±2 56±3 57 49±2 21±6 18
90 62±1 62±3 61 61 25±7 19

time 2.3s 2.3s 3.1s 5.1s 12.07s 8.2s

there are subpages within the testing set on which the
attack did not train. We believe this challenging CW
scenario appropriately models the real-world di�culty
of accurately pro�ling an entire website under reason-
able data restrictions.

As shown in Table 5, this di�cult training scenario
and the higher intra-class variance reduced the perfor-
mance for all WF methods. GANDaLF performed the
most e�ectively using 90 instances per site and ties with
k-FP when using 50 instances per site. In the lower data
settings, however, k-FP is more accurate. We believe
that the categorical features such as the total number
of packets enabled k-FP to gain an enhanced under-
standing about subpage traces even using more limited
training data. In contrast, deep learning models must
learn feature representations from scratch using the few
training samples provided, inevitably resulting in the
network gaining a poorer understanding of the data.

TF and Var-CNN achieved worse performance than
anticipated for all cases. The poor performance of Var-
CNN may be explained by how heavily tuned the model
is to the traditional WF-I scenario. The expanded recep-
tive �eld of the dilated convolutions used by the network
may cause the model to miss meaningful local patterns.

For TF, it seems that the distinctions between AWF
websites did not help the model generate good features
for the subpage traces, because the decision boundary
for the classi�cation in WF-S was di�erent from WF-I.
Since the pre-trained model was trained using labels, the
decision boundary became more biased towards WF-I,
leading to poor feature embeddings for subpage traces.

In contrast, GANDaLF was trained by additional
unsupervised loss and feature matching loss, enabling
it to learn a broader view of AWF1 traces without la-
bels rather than focusing on the di�erentiation between
AWF websites based on labels. This makes GANDaLF
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Table 6. GANDaLF CW accuracy (Acc ) according to di�erent
labeled set by varying the number of subpages (s) and instances
(i) in the labeled set. All numbers are %.

s× i 2× 10 10× 2 20× 1 random

Acc 42.78±2.3 46.03±3.5 45.91±2.0 46.7±2.0

performance solid even when learning from a di�erent
distribution (WF-S versus WF-S-A1 in Figure 3).

Impact of Subpages in Labeled Data. We further
varied the number of subpages used to represent each
website in the training data. More speci�cally, we var-
ied the number of subpage classes by �xing the total
instance count at 20. For example, we varied the sub-
page count s and instance count i to be s × i = 20.
We �rst randomly selected s subpages among 96 sub-
pages and then randomly sampled i instances for each
subpage. This scenario allows us to better see the ef-
fects of the increased intra-class variance as the number
of subpages (i.e., s) increases to labeled training data
and further guides us to build the optimal labeled set
to maximize the GANDaLF performance.

Based on Table 6, building the labeled set by ran-
dom sampling without considering s performed slightly
better than other cases while GANDaLF performance
remarkably worsened with more limited subpages when
s=2. This indicates that enough variance between sub-
pages in the labeled set is important to maximize the
performance of GANDaLF.

Impact of Unlabeled Data. As brie�y discussed in
Section 5.3, we studied the e�ect of unlabeled sets to
the classi�cation performance as well as the generator
loss. In this experiment, we used two unlabeled sets,
AWF1 and GDLF-OW-old which has a three-month
time gap with GDLF25 set, and one labeled set from
GDLF25. The generator loss somewhat decreased with
GDLF-OW-old while it kept increasing with AWF1.
Even though the GDLF-OW-old set made training more
stable, the CW accuracy was comparable across most
settings based on Table 5 (GF(A) versus GF(G)). How-
ever, the use of unlabeled set built from di�erent data
distribution degraded the generator ability, which led
to more biased training towards a better discriminator
and may eventually result in limiting the upper-bound
of supervised learning capacity sinceLu in Algorithm 1
of Appendix B also hardly decreased.

To create good fake samples against a greater num-
ber of classes than examined by Saliman et al. [23],
we should feed a much larger unlabeled set of subpage

(a) Comparison to k-FP. (b) Impact of unlabeled set.

Fig. 5. WF-S, OW: GANDaLF OW experiment by varying the
background sizes and unlabeled sets.

Table 7. Various unlabeled data settings using AWF1, AWF-OW
(AOW ), and GDLF-OW-old ( GOW ). We reported the trace
count (size ), whether or not the network setting was di�erent
from the GDLF25 setting (network ), and time gap (y : years,
and m : months).

setup AWF1-AOW AWF1-GOW AOW GOW

size 649k 329k 400k 80k
network no-no no-yes no yes
timegap 3y-3y 3y-3m 3y 3m

traces in which the corpus of the websites, subpages,
and instances is tremendous to train the generator ef-
fectively. As a result, both generator and discriminator
may reach the optimal Nash equilibrium while gaining
powerful supervised performance with a high CW ac-
curacy. We leave further investigation on the usage of
more optimal unlabeled data as future work.

OW Performance. We further conducted an OW
evaluation of GANDaLF and k-FP in the WF-S set-
ting, since they had better performance than other WF
attacks in the CW evaluation. For this experiment, we
trained both classi�ers using the labeled set consisting
of 90 instances of 25 monitored sites and 2,250 unmoni-
tored subpages. In addition, we used AWF1 and AWF-
OW sets as unlabeled data for GANDaLF. Figure 5a
shows that as we increase the size of the unmonitored
set, GANDaLF becomes less e�ective, as expected. In
particular, k-FP outperformed GANDaLF in the OW
setting, which indicates that the handcrafted features
provide a more consistent basis to identify pages from
sites in the monitored set than the GANDaLF model.

We further investigated how combining unlabeled
sets could amplify the performance of GANDaLF.
For this experiment, we adopted AWF1, AWF-OW,
and GDLF-OW-old. We created combined datasets of
AWF1 with AWF-OW and AWF1 with GDLF-OW-old,
and compared these against AWF-OW and GDLF-OW-
old by themselves. See Table 7 for details.
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Figure 5b shows that both of the combined un-
labeled sets performed slightly more e�ectively. This
suggests that the amount and perhaps variety of unla-
beled data played a role in enhancing the performance of
GANDaLF, even though some of the data was collected
three years prior to the labeled data and from di�er-
ent network conditions (i.e., AWF-AOW in Table 7).
Furthermore, GANDaLF improved with the inclusion
of the GDLF-OW-old set, which suggests that the unla-
beled subpage traces help generate good fake samples to
distinguish monitored subpages from unmonitored sub-
pages by lowering Lu and LG in Algorithm 1 of Ap-
pendix B.

Summary. We �nd that GANDaLF outperforms other
DL-based classi�ers on subpages. Surprisingly, however,
k-FP was even more e�ective in both the CW and
OW settings. The greater intra-class variation made it
harder for automatic feature extraction to work e�ec-
tively, while manually de�ned features can still work
consistently in such a challenging setting.

7 Conclusion

We introduce a novel attack, GANDaLF, using GANs
in the semi-supervised setting, in which the generator
minimizes the di�erence between real trace and fake
trace distribution while the discriminator is trained to
distinguish between real and fake samples and, further,
improve classi�cation over the labeled set, by leverag-
ing both labeled and unlabeled traces. Because it re-
quires only a small amount of labeled data, we investi-
gated the applicability of this variant of GANs in the
low-data setting for WF attacks. Furthermore, we eval-
uated GANDaLF by considering both sites' index and
non-index pages using various experimental scenarios.
Finally, our empirical study showed that GANDaLF had
better performance than Var-CNN and TF, the most re-
cent low-data WF attacks, at non-index �ngerprinting,
with particularly signi�cant performance advantage in
the open-world setting. However, in WF-S, GANDaLF
did not become more e�ective than k-FP leveraging the
total packet statistics.

Reproducibility. The source code and datasets used
in this paper are available on Github. 2

2 https://github.com/tra�c-analysis/gandalf
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Appendix

A Discriminator Loss
Implementation

We implemented the discriminator and generator train-
ing based on an existing implementation of SGAN by
Wolfshaar, which is described in a blog post [29]. In this
section, we brie�y discuss the details of the discrimi-
nator loss implementation based on the interpretation
given in the blog post [29].

As Saliman et al. [23] suggested that having K+1
softmax distribution is overparameterized, subtracting
a function f(x) from each output logit hardly impacts
the output of the softmax. Thus, this is equivalent to
�x lK+1(x) = 0 ∀x where the supervised loss becomes
the standard supervised loss function of the classi�er
with K classes and the discriminator, D, will be D(x) =

Z(x)
Z(x) + 1 where Z(x) =

∑K
k=1 exp(lk(x)). As such, Z(x)

is the sum of the unnormalized probabilities. Since we
want to take the log probability of the fake class for our
loss function,

log(Z(x))− log(1 + (Z(x)))
= logsumexp(l1, ...lK)− softplus(logsumexp(l1, ...lK)),

where l: the output logits, K: the number of classes in
the labeled set, and softplus(x) = log(1+ x).

Since the generative adversarial training requires to
ascend the gradients oflog(D(x)) + log(1-D(G(z))) (i.e.,
vanilla GAN loss function), the optimizer achieves the
following,

− log(D(x))− log(1−D(G(z)))
= −log(Z(x)/(1 + Z(x)))
− log(1− Z(G(x)))/(1 + Z(G(z)))
= −log(Z(x)/(1 + Z(x)))− log(1/(1 + Z(G(z))))

https://gitweb.torproject.org/torspec.git/tree/proposals/254-padding-negotiation.txt
https://gitweb.torproject.org/torspec.git/tree/proposals/254-padding-negotiation.txt
https://medium.com/@jos.vandewolfshaar/semi-supervised-learning-with-gans-23255865d0a4
https://medium.com/@jos.vandewolfshaar/semi-supervised-learning-with-gans-23255865d0a4
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By using the softplus function, the unsupervised loss of
the discriminator is implemented as follows.

softplus(logsumexp(lx1 , ..., lxK))− logsumexp(lx1 , ..., lxK)

+ softplus(logsumexp(lG(z)
1 , ..., l

G(z)
K ))

Saliman et al. [1, 23] implemented this for CIFAR-10
dataset and we also used it for GANDaLF.

B GANDaLF Training
We present the pseudocode of training GANDaLF to
detail our experimental setup in Algorithm 1.

Algorithm 1: GANDaLF training.
Input : Labeled examples (xl, yl) ∼ pd1 , Unlabeled

examples (xu) ∼ pd2 , latent variable
z ∼ p(z), number of iterations i, α1=2 e−4,
α2=5 e−5, and β=0.5.

1 G � generator network
2 D � discriminator network
3 f � output of the �atten layer of D
4 LD � discriminator loss
5 LG � generator loss
6 ω � parameters of discriminator
7 θ � parameters of generator
8 for i = 1 to m do
9 x̃ ← G(z)

10 x̂z , fz ← D(x̃)
11 x̂l, fl ← D(xl)
12 x̂u, fu ← D(xu)
13 Ls ← CrossEntropy( x̂l, yl)
14 Lu ← - logsumexp( x̂u) + softplus(logsumexp( x̂u))

+ softplus(logsumexp( x̂z))
15 LD ← Ls + Lu /* supervised+unsupervised loss */

16 ω ← Adam( ∇ω 1
m

∑
L

(i)
D , ω, α2) /* D optimizer */

17 LG ← MAE( fz , fu) /* MSE in WF-S */

18 θ ← Adam( ∇θ 1
m

∑
L

(i)
G , θ, α1, β) /* G optimizer

*/
19 end

C Data Sampling for the
Experiments to Show the
Impact of the Network
Condition

To show the e�ect of the network condition to GAN-
DaLF performance, we studied two scenarios by vary-
ing the circuit diversity involved in the data collection

and the network congestion when collecting the test-
ing set. In this section, we detailed how we constructed
training and testing sets to show the impact of circuit
diversity (Algorithm 2) as well as network congestion
(Algorithm 3).

Algorithm 2: Data sampling to generate labeled
sets by varying the circuit diversity.

Input : DF dataset ( D = ( X,Yl, Yc)), total circuit
index array ( C = {1, 2, ..., 40}), circuit count
(nc), website count ( nw), labeled sample
count per class (nl), and testing sample
count per class (nt).

Output: Training data ( Itr) and testing data ( Ite).

1 Shu�e D. /* (samples, labels, circuit labels) */

2 Shu�e C.
3 Initialize Ctr , Cte,Dtr , Dte, Itr , Ite.
4 Ctr ← randomly chosen nc entries in C.
5 for (x, yl, yc) in D do
6 if yc in Ctr then
7 Dtr ← Dtr ∪ (x, yl)
8 end
9 if nc < 36 then

/* To ensure that circuits in Cte should have

at least 9,500 entries since each circuit

subset consists of 95×25. */

10 Cte ← {C − Ctr}.
11 if yc in Cte then
12 Dte ← Dte ∪ (x, yl)
13 end

14 else
15 Dte ← randomly chosen nw × nt entries in

{D −Dtr}
16 end

17 end
/* sampling for each website subset. */

18 for i in ({1, 2, ..., nw}) do
19 Itr ← randomly chosen nl instances in Ditr
20 Ite ← randomly chosen nt instances in Dite
21 end
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Algorithm 3: Data sampling to simulate the vic-
tims with fast or slow circuits.

Input : DF dataset ( D = ( X,Yl, Yc)), total circuit
index array ( C = {(1, t1), ..., (40, t40)}),
website count ( nw), labeled sample count
per class (nl), and testing sample count per
class (nt).

Output: Training data ( Itr) and testing data ( Ite).

1 Shu�e D. /* (samples, labels, circuit labels) */

2 Shu�e C. /* (circuit index, mean of site loading

time). */

3 Cindex ← {1, 2, ..., 40} /* index. */

4 Ctime ← {t1, t2, ..., t40} /* mean loading time. */

5 Initialize Cf with top 4 indices in reverse( Ctime).
6 Initialize Cs with top 4 indices in Ctime.
7 Initialize Ctr , Cte,Dtr , Dte, Itr , Ite.
8 if choice == “fast” then
9 Cte ← Cf /* use fast subsets as testing data. */

10

11 else
12 Cte ← Cs /* use slow subsets as testing data. */

13

14 end
15 Ctr ← {Cindex − Cte}
16 for (x, yl, yc) in D do
17 if yc in Ctr then
18 Dtr ← Dtr ∪ (x, yl)
19 end
20 if yc in Cte then
21 Dte ← Dte ∪ (x, yl)
22 end

23 end
/* sampling for each website subset. */

24 for i in ({1, 2, ..., nw}) do
25 Itr ← randomly chosen nl instances in Ditr
26 Ite ← randomly chosen nt instances in Dite
27 end
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