2021 IEEE International Symposium on Circuits and Systems (ISCAS) | 978-1-7281-9201-7/20/$31.00 ©2021 IEEE | DOI: 10.1109/ISCAS51556.2021.9401676

Energy-Efficient Data Symbol Detection via Boosted
Learning for Multi-Actuator Data Storage Systems

Jiachen Xu, Ethan Chen, and Vanessa Chen
Department of Electrical and Computer Engineering
Carnegie Mellon University, Pittsburgh, PA, USA
Email: {jiachen, ethanchen, vanessachen}@cmu.edu

Abstract—Machine-learning-based readout channels are
presented for direct data symbol detection via decision-tree
classification with gradient boosting for multiple-actuator data
storage systems. The proposed learning module integrates energy-
efficient linear classifiers to extract features and structures from
raw readback signals. The results demonstrate high detection
accuracy, which is robust to inter-symbol interference (ISI) and
jitter noise. The low-complexity machine learning module
classifies low signal-to-noise ratio raw data with an accuracy rate
higher than 95.8% in real-time and consumes only 53 mW.

Keywords—machine learning, FPGA, classification, data
detection

L INTRODUCTION

Data centers that can offer low-latency data access, reliable
data storage and high-performance computing are key enablers
for a densely connected world. To provide the platform for
multitask processing, multiple readout channels that parallelly
process complex signals from hard disk drives (HDDs) for
multiple-actuators are exploited to improve the access efficiency
and computation performance. Meanwhile, heat-assisted
magnetic recording (HAMR) [1] has proved to be a promising
technology for future magnetic data storage products with high
areal density [2][3]. During the write process of HAMR, near-
field plasmonics technology is utilized to elevate the media
temperature close to the Curie point. However, HAMR-specific
challenges, such as a switching field distribution that is unique
to HAMR recording and leads to additional transition jitter and
saturation noise [4], are required to be addressed in the backend.
To mitigate noise issues and inter-symbol interference (ISI) due
to high-speed interfacing, a conventional digital backend
consists of equalizers, whitening noise filters, and decoders to
carry out data detection algorithms, such as Partial-Response
Maximum-Likelihood =~ (PRML) and Noise-Predictive
Maximum-Likelihood (NPML) [5]. In recent studies, high-
dimensional machine learning (ML) algorithms [6] may offer
alternatives for error reduction, but the computational
complexity is not suitable for energy-efficient hardware
implementation of parallel channels in a multiple-actuator
platform. Typical communication signal analysis involves pre-
processing to diminish dimensionality so that high-order signals
can be removed from the set of points in the trace. Nevertheless,
it is still computationally expensive to realize pre-processing and
feature-extraction algorithms in parallel read channels to
mitigate the influence of un-predictable jitter and noise from
HAMR recording.

Decision trees (DTs) are one of the most efficient algorithms
used in ML for classification, but its error rate increases when

This work was supported in part by the National Science Foundation
CARRER program under Grant No. 1953801 and the Data Storage Systems
Center (DSSC) at Carnegie Mellon University.

978-1-7281-9201-7/21/$31.00 ©2021 IEEE

HDD

Machine-Learning
3 -
ADC Data Detection QUtpuEDat

Fig. 1. Machine-learning-based readout channels for multiple-actuator data
storage systems: the boosted decision trees learn features of magnetic medium
and recording heads to characterized data-clock behavior for error-aware data
detection.

feature distribution is not a simple 2-plane case. Process
variations and noise influence can result in a significant
degradation of classification accuracy. The weak learner like
DTs can be improved by using ensembles that combine a group
of linear learners to form a strong learner. The Gradient Boosted
Decision Trees (GBDTs) is deployed to break the trade-offs
between accuracy and hardware complexity [7]. To eliminate the
need of pre-processing the raw data, energy-efficient decision
tree algorithms with accuracy-boosting methods are exploited to
enable strong classification with linear classifiers to perform
direct data detection from raw signals. Specifically, the boosted
decision tree interface (BDTI) exploits a data-driven approach
to detect complex datasets, so that it can rapidly learn noise
behavior and ISI and adapt to characteristics of magnetic media,
heads, and detection channels. In this way, the ML data detector
can offer better generalization and adaptability to enable an
energy-efficient multitasking data-storage system.

II. THE SYSTEM ARCHITECTURE

The proposed computational readout channel is shown in
Fig. 1, which consists a low-noise amplifier, an analog-to-digital
converter (ADC) and the ML data classification module. The
ML module directly processed quantized raw data from a 6-bit
ADC for data detection without digital equalization and error
correction code (ECC). Among those nonidealities of read
channels and the magnetic medium, correlated noise and
nonlinearity, such as jitter noise and ISI, are main factors that
dominate bit error rates (BERs), which are significantly
improved with the proposed low-complexity BDTI as the ML
module can efficiently learn correlated data symbol structures
from the noisy and distorted signals.

Fig. 2(a) shows the hierarchy of the DTs. The principle of
the DTs is that the object is first categorized to a certain group
with a specific feature. Decision making is iterative until the
object arrives a leaf. The arrangement of a group in such
decision-making processes forms a DT, where each leaf

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on May 31,2021 at 15:51:32 UTC from IEEE Xplore. Restrictions apply.

represents one category. At each node the set is divided again
based on its features. Gradient boosting is exploited to enhance
classification accuracy for fast data detection with good energy
efficiency. As shown in Fig. 2 (b), the learner is trained
iteratively through the pseudo residuals of the learner. The
computing for pseudo residuals of the DTs is shown in
Algorithm 1. In this paper feature decisions and gradient
calculations are realized in low-complexity FPGA hardware to
perform high-accuracy classification for real-time data symbol
detection from the noisy and distorted signals.

D1

Dy

Sequential Data

Dny

Gradient Boosting .
(®)

Fig. 2. (a) The decision tree that utilizes multiple samples as the features and

(b) the gradient boosting method to improve the accuracy.

Algorithm 1: Gradient Boosting
e Initialize Fy(x) = argmin Y™, L(y;, p)
p
e Form=1toM:
1. Compute the pseudo-residuals:

S AL(yyF(xp))
Vi [IF (x;)]F(x)=Fm_1(x)

|

|

|

|

|
2. Fit a base learner (tree) /,,(x)to pseudo-residuals using the !
training set {(x;, ;) }7=; |
|

|

|

|

|

|

|

|

|

|

|

| fori=1,..,n
|

|

1 3. Choose a gradient descent step size as
I N

|

|

|

|

|

P = arg “}.}“z L(Yi, Frne1 (%) + phon ()
i=1

4. Update the model:

Fn(x) = Fu1 (%) + prh(x)
end For
e QOutput the final regression function F,,(x)

III. ALGORITHM REALIZATION

Fig. 3 shows the structure of a DT and its inherent memory
buffers that contain respective parameters for this design. Each
node in the DT has an index and the root node’s index is 0. The
threshold buffer stores the value that is going to be compared
with the input features to make a decision on the nodes. The
comparator buffer contains the index of the input feature for non-
leaf node to be compared with. The score buffer defines each
leaf node’s score. The left children buffer and the parent buffer
are structure buffers that describe the structure of the binary tree
for traversing the tree when making the decisions. In this design
all of the DTs in the GBDT ensemble are complete binary trees
with identical structures. For a complete binary tree with depth
h, the tree has 2"** — 1 nodes, and 2" of them are leaf nodes.
The binary trees with identical structures can use the same
structure buffers, which eliminates the need for storing different
structure buffers for each tree. In the FPGA hardware design, all
of the trees share the same structure memory to traverse the
nodes, which reduces the usage of FPGA memory significantly.

Input[1]
<=

57

Threshold [5, -2, 0, 0, 3, 0, 0]
Comparator [1, 0, -1, -1, 2, -1, -1]
Score [-0.3, -0.1,0.4, -0.1]
Yes / Inputl0l} No Yes | Iputl2)\ No
Left children [1

. 2,-1, -1, 5, -1,-1]
Parent -1, 0, 1,

) 1,0, 4, 4]

-0.3 -0.1 0.4 -0.1

Fig. 3. The binary decision tree structure and its representation in the memory.
The index in the memory buffer is the node index in the DT. “-1” indicates the
node is a leaf node in the comparators and left children buffers.

The decision-making process of the DT is shown in Fig. 4.
The example input is [1, 2, 3]. Every non-leaf node compares its
threshold with the corresponding input feature, makes the
decision on its leaves to create a decision path, and stores the
result in the decision buffer. Then the decision tree will activate
its nodes on the correct decision path from the root to leaves.
Node 0 is inherently activated. The other nodes are activated
when its parent node is activated and the node itself falls on the
decision path. Eventually, one of the leaf nodes will be activated,
and its score will contribute to the GBDT final result. In this
learning module, each DT’s score in the ensemble is
accumulated to become the final result.

° Input: [1, 2, 3]
ONOEEI 00O

None-leaf nodes make decisions activation buffer: [1,0,0,0,0,0,0]
on the L/R children.
decision buffer: [1,0,-1,-1,1,-1,-1] *

Sequentially
traverse each
node

activation buffer: [1,1,0,1,0,0,0]

activation buffer: [1,1,0,0,0,0,0]

Fig. 4. The decision-making process of the GBDT with input features [1, 2, 3].
The DT first makes the decision on every none-leaf node, then activates the
node on the correct decision path in each layer from the root to leaves.

The input features for the BDTI are readback bits processed
by anti-aliasing filter (AAF) and digitized by 6-bit ADC. The
raw data suffer correlations from the previous signals due to the
bandwidth limitation. To detect the target bit’s polarity, a
sampling window with n prior bits, one target (central) bit, and
n subsequent bits are fed into the BDTI as the input features, as
shown in Fig. 5(a). The classifier learns the correlations between
the 2n + 1 bits in the sampling window and classifies the central
bit’s polarity. Given that the worst-case signal-to-noise ratio

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on May 31,2021 at 15:51:32 UTC from IEEE Xplore. Restrictions apply.

(SNR) of the HAMR is 12dB, the BDTI with an ensemble 0f200
depth-5 decision trees as weak estimators was tested by using
different sampling windows to determine the optimal size for the
sampling window. 12 million such samples are partitioned into
10 million training data and 2 million test data. As shown in Fig.
5(b), nine samples are sufficient to represent the sampling
windows as a larger window size with increased hardware
resources does not give boosts on the performance.

96.5 -

96.0 - 95.71 95.857 95.868 95.846 95.848
95,54

95.0+

94.5

94.0 -

93.5

0 93.0- g5 gb5

assification accuracy (%)

3 5 7 9 11 13 15
Sampling window size

(2) (®)
Fig. 5. (a) An illustration using sampling window (n = 4) to classify the target
bit from the noisy bits and (b) the result of testing the target bit classification
accuracy using different sampling windows.

Fig. 6 shows the classification accuracy with different
numbers of estimators and tree depths. When the tree depth is
larger than 4, a GBDT ensemble of m trees with depth h has a
higher accuracy comparing with a GBDT of % trees with depth
of h+ 1. The number of nodes in these two designs is m *
(2"1—1) and %* (2"*2 — 1) correspondingly, which is
similar in the total amount of parameters. Therefore, less tree
depth and more weak estimators are preferred for better memory
efficiency. A GBDT ensemble of 180 trees with depth 5 achieves
log bit-error rate (BER) = —1.38, which overperforms the
conventional method [6] for raw data processing. This model is
further tested with various HAMR conditions and the results in
Fig. 7 show that the proposed module achieves better
classification accuracy with higher SNR data. The BDTI is
flexible for extending the number of weak estimators to improve
the performance. In this design the baseline-BDTI with 180 trees
of depth 5 is implemented in FPGA to achieve real-time
classification with low power consumption and low latency.

96.00 - T 1
BER=-1.38 e e ————
§ 95.75 -
T 95.50-
©
1.
3 95.25 -
1%}
©
£ 95.00-
s’
A
© 94.75- - Tree depth = 7
E = Tree depth = 6
% 94.50- —— Tree depth = 5
g - Tree depth = 4
94.25 - Tree depth = 3
—— log BER =-1.38
94.00 -

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
Number of trees

Fig. 6. The classification accuracy for GBDTs with different tree depth and
number of trees.

599" 98.771
<
= 98.207
& o5 -
5 97.493
v
®
97
c
5 96.57
5
S 95.847
Lo
)]
()]
5
Oos-
12 13 14
SNR (dB)

Fig. 7. The BDTI’s classification accuracy using data with different signal-to-
noise ratios.

IV. HARDWARE IMPLEMENTATION ON FPGA

The proposed BDTI is implemented through Vivado HLS
with the GBDT structure and memory organization
aforementioned in section III. Fig 8 illustrates the BDTI
architecture and the datapath in the FPGA. Note that in the
nodes, the comparator only works for non-leaf nodes and the
score only works for leaf nodes.

Tree Structure
Mem

XY I
v

1 Activation Unit -

{

Decision Buffer

Node Input
Select Ll
YIN
x[0]] eee X[n]
!hsrsholdq 'ﬂ-

(2o] . pral
¢ g Dutp:l
Node[0] _ ‘Nrode[N] e /s?

I (

Index Decoder

Input Feature Mem

Decision Tree [0]

R S

LT T T T T Decision Tree [M]

GBDT Parameter Mem

Decision

Fig. 8. Hardware architecture of the boosted decision tree interface.

In order to optimize the efficient memory usage, the BDTI
parameters are quantized with proper resolutions. The scores in
each tree are represented with 16-bit fixed-point numbers. While
the classification accuracy with fixed-point representations is
comparable to floating-point representations, less hardware
resources are required to perform fixed-point operations. The
parameters related to the tree node index are using 6-bit integers
to represent 64 different node indexes. The 6-bit input data from
the ADC have 64 different levels of magnitude(e.g.,
[1,3,5,...127]), and the thresholds in the decision need to have
65 numbers ([0,2,4,...128]) to compare with the 6-bit input.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on May 31,2021 at 15:51:32 UTC from IEEE Xplore. Restrictions apply.

Therefore, the input data and the threshold are quantized into 8-
bit integers to represent 129 different magnitudes.

A decision tree with depth 5 takes one clock cycle to
compare the nodes’ thresholds with the input features and five
clock cycles to traverse each layer. In this design the decision
tree is pipelined by updating the tree parameters to generate the
score in every clock cycle. The parallel degree of the BDTI is
determined by the number of concurrent trees running in
parallel. For M trees running in parallel, the interval of the BDTI

inference is % + 5 clock cycles. In order to determine the
parallel degree and optimize the energy and resource efficiency
for the design, the equation

Speed(samples/Sec)

Power(mW) * Average hardware resource usage(%)

is used to assess the energy-resource efficiency index with
different degrees of parallelism of the design. Fig. 9 shows the
percentages of the on-chip resource usages, power, speed up, and
energy-resource efficiency index versus the different degrees of
parallelism in the BDTI. The BDTI runs at 100MHz, and the
results are collected from the Vivado synthesis report.

35 - w=== BRAM (%)
w— FF (%)
30 - = LUT (%)
e pOWeEr (L0mw)
o speed up
25 s -
2 energy-resource efficiency index
0
3 20 -
[}
¥}
E
8 15+
[}
0
[}
e 10-
‘——__——-———-
O | 6——/~

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Number of parallel trees

Fig. 9. The on-chip resource usages and performance metrics versus different
degrees of parallelism in the boosted decision trees.

As shown in Fig. 9, the BDTI with two trees running in
parallel has the best energy-resource efficiency evaluated by
using the energy-resource efficiency index. This optimal model
was packaged with the AXI4lite-slave protocol in Fig. 10 and
deployed on Xilinx MPSoC ZCUI102 to evaluate the
performance of the proposal readout channel scheme. Fig. 11
shows the setup for the device evaluation. The programmable
logic (PL) on ZCU102 is programmed with the BDTI inference
intellectual property (IP). A computer communicates with the
SoC through UART and transmits the input features to the
processing system (PS) to generate the PL output. Then the PS
sends the output data back to the computer and the prediction
result is displayed on the graphical user interface. The light-
weight BDTI model on the FPGA achieves log BER < —1.38
for raw data processing with a flexible architecture, advancing
the prior art [6] that utilizes compute-intensive neural networks
and does not have a hardware implementation. The module
consumes a dynamic power of 53 mW to classify the readback

signals with the component SNR of 12dB. The performance is
summarized in Table 1.

Processing System

Programmable
Logic

| AXI14 Slave
i Readout Prediction I
! Bits Result

Tree

Fig. 11. The hardware setup for real-time data detection with measured
classification results versus the raw input data shown on the screen.

TABLE 1. PERFORMANCE SUMMARY

Classifier BDT with Gradient Boosting
Platform Xilinx ZCU102
Frequency 100 MHz
LUT 3254
FF 3008
BRAM 33
DSP 0
Dynamic Power 53 mW
Classification Accuracy >95.8%

V. CONCLUSIONS

Machine-learning-based data symbol detection is presented
to overcome noise-and-ISI influence in readout channels to
achieve better energy efficiency for multiple actuator
applications. The adaptive BDTI modules can learn the high
correlation between jitter noise and data patterns to make
accurate detections with higher than 95.8% accuracy while
consuming only 53mW on the FPGA.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on May 31,2021 at 15:51:32 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

M. Kryder, E. Gage, and T. McDaniel, “Heat assisted magnetic
recording,” Proc. IEEE, vol. 96, no. 11, pp. 1810-1835, Nov. 2008.

A. Wu et al,, “HAMR areal density demonstration of 1+ Tbpsi on
spinstand,” IEEE Trans. Magn., vol. 49, no. 2, pp. 779-782, Feb. 2013.

G. Ju et al., “High density heat-assisted magnetic recording media and
advanced characterization—Progress and challenges,” IEEE Trans.
Magn., vol. 51, no. 11, Nov. 2015, Art. no. 3201709, doi:
10.1109/TMAG.2015.2439690.

X. Wang, K. Gao, H. Zhou, A. Itagi, M. Seigler, and E. Gage, “HAMR
recording limitations and extendibility,” IEEE Trans. Magn., vol. 49, no.
2, pp. 686692, Feb. 2013.

A. Kavcic and J. M. F. Moura, “The Viterbi algorithm and Markov noise
memory,” IEEE Trans. Inf. Theory, vol. 46, no. 1, pp. 291-301, Jan. 2000.
Y. Qin and J. Zhu, “Deep Neural Network: Data Detection Channel for
Hard Disk Drives by Learning,” [EEE Transactions on Magnetics, vol.
56, no. 2, pp. 1-8, Feb. 2020.

J. H. Friedman, “Greedy Function Approximation: A Gradient Boosting
Machine,” The Annals of Statistics, vol. 29, no. 5, pp. 1189-1232, 2001.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on May 31,2021 at 15:51:32 UTC from IEEE Xplore. Restrictions apply.

