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Abstract—Machine-learning-based readout channels are 

presented for direct data symbol detection via decision-tree 

classification with gradient boosting for multiple-actuator data 

storage systems. The proposed learning module integrates energy-

efficient linear classifiers to extract features and structures from 

raw readback signals. The results demonstrate high detection 

accuracy, which is robust to inter-symbol interference (ISI) and 

jitter noise. The low-complexity machine learning module 

classifies low signal-to-noise ratio raw data with an accuracy rate 

higher than 95.8% in real-time and consumes only 53 mW.  

Keywords—machine learning, FPGA, classification, data 

detection 

I. INTRODUCTION 

Data centers that can offer low-latency data access, reliable 
data storage and high-performance computing are key enablers 
for a densely connected world. To provide the platform for 
multitask processing, multiple readout channels that parallelly 
process complex signals from hard disk drives (HDDs) for 
multiple-actuators are exploited to improve the access efficiency 
and computation performance. Meanwhile, heat-assisted 
magnetic recording (HAMR) [1] has proved to be a promising 
technology for future magnetic data storage products with high 
areal density [2][3]. During the write process of HAMR, near-
field plasmonics technology is utilized to elevate the media 
temperature close to the Curie point. However, HAMR-specific 
challenges, such as a switching field distribution that is unique 
to HAMR recording and leads to additional transition jitter and 
saturation noise [4], are required to be addressed in the backend. 
To mitigate noise issues and inter-symbol interference (ISI) due 
to high-speed interfacing, a conventional digital backend 
consists of equalizers, whitening noise filters, and decoders to 
carry out data detection algorithms, such as Partial-Response 
Maximum-Likelihood (PRML) and Noise-Predictive 
Maximum-Likelihood (NPML) [5]. In recent studies, high-
dimensional machine learning (ML) algorithms [6] may offer 
alternatives for error reduction, but the computational 
complexity is not suitable for energy-efficient hardware 
implementation of parallel channels in a multiple-actuator 
platform. Typical communication signal analysis involves pre-
processing to diminish dimensionality so that high-order signals 
can be removed from the set of points in the trace. Nevertheless, 
it is still computationally expensive to realize pre-processing and 
feature-extraction algorithms in parallel read channels to 
mitigate the influence of un-predictable jitter and noise from 
HAMR recording.  

Decision trees (DTs) are one of the most efficient algorithms 
used in ML for classification, but its error rate increases when 

feature distribution is not a simple 2-plane case. Process 
variations and noise influence can result in a significant 
degradation of classification accuracy. The weak learner like 
DTs can be improved by using ensembles that combine a group 
of linear learners to form a strong learner. The Gradient Boosted 
Decision Trees (GBDTs) is deployed to break the trade-offs 
between accuracy and hardware complexity [7]. To eliminate the 
need of pre-processing the raw data, energy-efficient decision 
tree algorithms with accuracy-boosting methods are exploited to 
enable strong classification with linear classifiers to perform 
direct data detection from raw signals. Specifically, the boosted 
decision tree interface (BDTI) exploits a data-driven approach 
to detect complex datasets, so that it can rapidly learn noise 
behavior and ISI and adapt to characteristics of magnetic media, 
heads, and detection channels. In this way, the ML data detector 
can offer better generalization and adaptability to enable an 
energy-efficient multitasking data-storage system. 

II. THE SYSTEM ARCHITECTURE 

The proposed computational readout channel is shown in 
Fig. 1, which consists a low-noise amplifier, an analog-to-digital 
converter (ADC) and the ML data classification module. The 
ML module directly processed quantized raw data from a 6-bit 
ADC for data detection without digital equalization and error 
correction code (ECC). Among those nonidealities of read 
channels and the magnetic medium, correlated noise and 
nonlinearity, such as jitter noise and ISI, are main factors that 
dominate bit error rates (BERs), which are significantly 
improved with the proposed low-complexity BDTI as the ML 
module can efficiently learn correlated data symbol structures 
from the noisy and distorted signals.  

Fig. 2(a) shows the hierarchy of the DTs. The principle of 
the DTs is that the object is first categorized to a certain group 
with a specific feature. Decision making is iterative until the 
object arrives a leaf. The arrangement of a group in such 
decision-making processes forms a DT, where each leaf 
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Fig. 1. Machine-learning-based readout channels for multiple-actuator data 

storage systems: the boosted decision trees learn features of magnetic medium 

and recording heads to characterized data-clock behavior for error-aware data 

detection. 
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represents one category. At each node the set is divided again 
based on its features. Gradient boosting is exploited to enhance 
classification accuracy for fast data detection with good energy 
efficiency. As shown in Fig. 2 (b), the learner is trained 
iteratively through the pseudo residuals of the learner. The 
computing for pseudo residuals of the DTs is shown in 
Algorithm 1. In this paper feature decisions and gradient 
calculations are realized in low-complexity FPGA hardware to 
perform high-accuracy classification for real-time data symbol 
detection from the noisy and distorted signals. 

III. ALGORITHM REALIZATION 

Fig. 3 shows the structure of a DT and its inherent memory 
buffers that contain respective parameters for this design.  Each 
node in the DT has an index and the root node’s index is 0. The 
threshold buffer stores the value that is going to be compared 
with the input features to make a decision on the nodes. The 
comparator buffer contains the index of the input feature for non-
leaf node to be compared with. The score buffer defines each 
leaf node’s score. The left children buffer and the parent buffer 
are structure buffers that describe the structure of the binary tree 
for traversing the tree when making the decisions. In this design 
all of the DTs in the GBDT ensemble are complete binary trees 
with identical structures. For a complete binary tree with depth 

ℎ, the tree has 2 − 1 nodes, and 2 of them are leaf nodes. 
The binary trees with identical structures can use the same 
structure buffers, which eliminates the need for storing different 
structure buffers for each tree. In the FPGA hardware design, all 
of the trees share the same structure memory to traverse the 
nodes, which reduces the usage of FPGA memory significantly. 

The decision-making process of the DT is shown in Fig. 4. 
The example input is [1, 2, 3]. Every non-leaf node compares its 
threshold with the corresponding input feature, makes the 
decision on its leaves to create a decision path, and stores the 
result in the decision buffer. Then the decision tree will activate 
its nodes on the correct decision path from the root to leaves. 
Node 0 is inherently activated. The other nodes are activated 
when its parent node is activated and the node itself falls on the 
decision path. Eventually, one of the leaf nodes will be activated, 
and its score will contribute to the GBDT final result. In this 
learning module, each DT’s score in the ensemble is 
accumulated to become the final result. 

The input features for the BDTI are readback bits processed 
by anti-aliasing filter (AAF) and digitized by 6-bit ADC. The 
raw data suffer correlations from the previous signals due to the 
bandwidth limitation. To detect the target bit’s polarity, a 
sampling window with  prior bits, one target (central) bit, and 
 subsequent bits are fed into the BDTI as the input features, as 
shown in Fig. 5(a). The classifier learns the correlations between 
the 2 + 1 bits in the sampling window and classifies the central 
bit’s polarity. Given that the worst-case signal-to-noise ratio 

(a)                                                          (b) 
Fig. 2. (a) The decision tree that utilizes multiple samples as the features and 

(b) the gradient boosting method to improve the accuracy. 
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Algorithm 1: Gradient Boosting 

• Initialize  = arg min ∑  ,   

• For m = 1 to M: 
1. Compute the pseudo-residuals: 

 = − ,
 


   = 1, … , . 

2. Fit a base learner (tree) hm(x)to pseudo-residuals using the 

training set ,   
3. Choose a gradient descent step size as  

 = arg min   ,  + ℎ



 

4. Update the model: 

 =  + ℎ 
end For 

• Output the final regression function Fm(x) 

Fig. 3. The binary decision tree structure and its representation in the memory.
The index in the memory buffer is the node index in the DT. “-1” indicates the 

node is a leaf node in the comparators and left children buffers. 

 
Fig. 4. The decision-making process of the GBDT with input features [1, 2, 3].
The DT first makes the decision on every none-leaf node, then activates the 

node on the correct decision path in each layer from the root to leaves. 
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(SNR) of the HAMR is 12dB, the BDTI with an ensemble of 200 
depth-5 decision trees as weak estimators was tested by using 
different sampling windows to determine the optimal size for the 
sampling window. 12 million such samples are partitioned into 
10 million training data and 2 million test data. As shown in Fig. 
5(b), nine samples are sufficient to represent the sampling 
windows as a larger window size with increased hardware 
resources does not give boosts on the performance. 

Fig. 6 shows the classification accuracy with different 
numbers of estimators and tree depths. When the tree depth is 
larger than 4, a GBDT ensemble of  trees with depth ℎ has a 

higher accuracy comparing with a GBDT of 

  trees with depth 

of ℎ + 1 . The number of nodes in these two designs is  ∗
2 − 1  and 


 ∗ 2 − 1  correspondingly, which is 

similar in the total amount of parameters. Therefore, less tree 
depth and more weak estimators are preferred for better memory 
efficiency. A GBDT ensemble of 180 trees with depth 5 achieves 
log bit-error rate (BER) = −1.38,  which overperforms the 
conventional method [6] for raw data processing. This model is 
further tested with various HAMR conditions and the results in 
Fig. 7 show that the proposed module achieves better 
classification accuracy with higher SNR data. The BDTI is 
flexible for extending the number of weak estimators to improve 
the performance. In this design the baseline-BDTI with 180 trees 
of depth 5 is implemented in FPGA to achieve real-time 
classification with low power consumption and low latency. 

IV. HARDWARE IMPLEMENTATION ON FPGA 

 The proposed BDTI is implemented through Vivado HLS 
with the GBDT structure and memory organization 
aforementioned in section III. Fig 8 illustrates the BDTI 
architecture and the datapath in the FPGA. Note that in the 
nodes, the comparator only works for non-leaf nodes and the 
score only works for leaf nodes. 

In order to optimize the efficient memory usage, the BDTI 
parameters are quantized with proper resolutions. The scores in 
each tree are represented with 16-bit fixed-point numbers. While 
the classification accuracy with fixed-point representations is 
comparable to floating-point representations, less hardware 
resources are required to perform fixed-point operations. The 
parameters related to the tree node index are using 6-bit integers 
to represent 64 different node indexes. The 6-bit input data from 
the ADC have 64 different levels of magnitude(e.g., 
[1,3,5,…127]), and the thresholds in the decision need to have 
65 numbers ([0,2,4,…128]) to compare with the 6-bit input. 

 
(a)                                             (b)                                                   

Fig. 5. (a) An illustration using sampling window (n = 4) to classify the target 

bit from the noisy bits and (b) the result of testing the target bit classification 

accuracy using different sampling windows. 

Fig. 6. The classification accuracy for GBDTs with different tree depth and 

number of trees. 

 
 

Fig. 8. Hardware architecture of the boosted decision tree interface. 

 
Fig. 7. The BDTI’s classification accuracy using data with different signal-to-

noise ratios. 
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Therefore, the input data and the threshold are quantized into 8-
bit integers to represent 129 different magnitudes.  

A decision tree with depth 5 takes one clock cycle to 
compare the nodes’ thresholds with the input features and five 
clock cycles to traverse each layer. In this design the decision 
tree is pipelined by updating the tree parameters to generate the 
score in every clock cycle. The parallel degree of the BDTI is 
determined by the number of concurrent trees running in 
parallel. For M trees running in parallel, the interval of the BDTI 

inference is 

 + 5  clock cycles. In order to determine the 

parallel degree and optimize the energy and resource efficiency 
for the design, the equation 

Speed/
PowermW ∗ Average hardware resource usage% 

is used to assess the energy-resource efficiency index with 
different degrees of parallelism of the design. Fig. 9 shows the 
percentages of the on-chip resource usages, power, speed up, and 
energy-resource efficiency index versus the different degrees of 
parallelism in the BDTI. The BDTI runs at 100MHz, and the 
results are collected from the Vivado synthesis report. 

 As shown in Fig. 9, the BDTI with two trees running in 
parallel has the best energy-resource efficiency evaluated by 
using the energy-resource efficiency index. This optimal model 
was packaged with the AXI4lite-slave protocol in Fig. 10 and 
deployed on Xilinx MPSoC ZCU102 to evaluate the 
performance of the proposal readout channel scheme. Fig. 11 
shows the setup for the device evaluation. The programmable 
logic (PL) on ZCU102 is programmed with the BDTI inference 
intellectual property (IP). A computer communicates with the 
SoC through UART and transmits the input features to the 
processing system (PS) to generate the PL output. Then the PS 
sends the output data back to the computer and the prediction 
result is displayed on the graphical user interface. The light-
weight BDTI model on the FPGA achieves log BER  −1.38 
for raw data processing with a flexible architecture, advancing 
the prior art [6] that utilizes compute-intensive neural networks 
and does not have a hardware implementation. The module 
consumes a dynamic power of 53  to classify the readback 

signals with the component SNR of 12dB. The performance is 
summarized in Table 1. 

V. CONCLUSIONS 

 Machine-learning-based data symbol detection is presented 
to overcome noise-and-ISI influence in readout channels to 
achieve better energy efficiency for multiple actuator 
applications.  The adaptive BDTI modules can learn the high 
correlation between jitter noise and data patterns to make 
accurate detections with higher than 95.8% accuracy while 
consuming only 53mW on the FPGA. 

Fig. 9. The on-chip resource usages and performance metrics versus different 

degrees of parallelism in the boosted decision trees. 

 
 

Fig. 11. The hardware setup for real-time data detection with measured 

classification results versus the raw input data shown on the screen. 

TABLE I. PERFORMANCE SUMMARY 

 

Classifier BDT with Gradient Boosting 

Platform Xilinx ZCU102 

Frequency 100 MHz 

LUT 3254 

FF 3008 

BRAM 33 

DSP 0 

Dynamic Power 53 mW 

Classification Accuracy > 95.8% 

 

 
 

Fig. 10. The system architecture on Xilinx ZCU102. 
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