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1 Introduction

Chern-Simons gauge theory connects many different topics in mathematics and physics. On
closed manifolds it is a topological theory that can be used to compute knot invariants [1],
while on manifolds with boundaries it acquires additional boundary degrees of freedom
that connect it to gravity in three dimensions [2–5] and to the theory of the fractional
quantum Hall effect [6, 7]. As remarked in [8], one intriguing feature distinguishes Chern-
Simons theory from conventional topological field theories, such as topological Yang-Mills
theories on Riemann surfaces or four-manifolds: the latter can be interpreted in terms of
the cohomology ring of some classical moduli space of connections, while Chern-Simons, in
general, cannot. In fact Chern-Simons theory is intrinsically a quantum theory that is best
described by a Hilbert space. When the three-manifold on which the theory is defined has
special characteristics, the theory simplifies and may become computable. One remarkable
example is the case of Seifert manifolds studied in [8]. Another case which could lead to
exact computations is that of handlebodies [9]. The latter is interesting for various reasons.
One of the most fascinating is that in order to test any conjectured holographic dualities
relating pure gravity in three dimensions to a conformal field theory [10] (or an ensemble
average thereof [11–13]), one would need to know the partition function of SL(2,C) Chern-
Simons theory on a negatively curved manifold, whose boundary is a Riemann surface.
Handlebodies are the simplest such manifolds for a fixed genus of the boundary [14].
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The reason why one may think that a Chern-Simons theory may be exactly soluble on
handlebodies is that these spaces are almost factorized as the topological product [0, R]×Σ.
We say “almost” because the closed Riemann surface Σ defining the foliation of the space
becomes singular at one of the extrema of the interval [0, R]. The simplest example of this
foliation is the solid torus handlebody, that is the direct product of a disk D2 and a circle
S1. Its singular foliation is D2×S1 ≈ [0, R]×T 2. The ≈ sign means that the two-torus leaf
T 2 = S1×S1 becomes singular at the end r = 0 of the interval [0, R], where one of the two
S1 cycles degenerates. By interpreting r ∈ [0, R] as time, we can quantize the theory and
define a Hamiltonian that evolves in r. This allows us to rewrite the partition function of
the theory as a transition amplitude between some initial state |i〉 at r = 0 and some final
state |f〉 at r = R. We will show in this paper that the condition that the initial state is
a “shrunken,” degenerate surface imposes a restriction on the initial state that, combined
with the constraints descending from gauge invariance and the independence of the scalar
product from the complex structure, completely fixes the partition function.

Let us describe now more precisely the procedure that we shall follow and the organiza-
tion of this paper. We study partition functions of Chern-Simons theory of compact gauge
groups on handlebodies using a radial quantization. First, we establish the equivalence
between three quantities: Euclidean path integrals with holomorphic boundary condition,
transition amplitudes under radial evolution with a coherent state as the final state, and
wave functions integrated over the gauge orbit. Second, we map a Wilson loop inserted in a
path integral to a “blown-up” operator defined on the Riemann surface, which in the radial
quantization acts on a seed wave function and defines an initial state of definite holonomy
along the contractible cycles. Together with an appropriate choice of normalization, this
procedure singles out a unique vector in the Hilbert space obtained by a canonical quanti-
zation of Chern-Simons theory on the Riemann surface. Moreover, we find that requiring
that such “blown-up” operator must be gauge-invariant corresponds to selecting a partic-
ular class of framings of the original Wilson loop. We are thus able to establish a precise
state-operator correspondence associating each vector in the Hilbert space of the canon-
ically quantized Chern-Simons theory on Σ to an explicitly computed partition function
with insertions of Wilson loops. We first consider the Abelian U(1) gauge group on the
solid torus, then on handlebodies of arbitrary genus and finally we study general compact
simple groups on the solid torus.

In section 2, we study the U(1) Chern-Simons theory, first on a torus handlebody
and then on handlebodies defined by higher-genus Riemann surfaces. In section 3, we
move on to consider the case of a general non-Abelian simple compact Lie group on the
torus handlebody. Appendices A and B respectively summarize essential facts about the
Riemann theta function and quadratic differentials on a Riemann surface.

2 The Abelian case

To study Chern-Simons theory with gauge group U(1) on the genus-g handlebody M , we
define a singular foliation on M as M = Σ× [0, R]. The constant-radius leaves are closed
Riemann surfaces, Σ, and the initial surface Σ0 at r = 0 is degenerate. The final surface
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ΣR is at r = R. On Σ we specify the complex structure by giving the period matrix Ω,
for which Σ has area det ImΩ, and which defines the basis {ωI |I = 1, . . . , g} of Abelian
differentials and the local complex coordinate z on Σ. Since we will be considering either
Abelian gauge fields at genus g or non-Abelian gauge fields at genus one, the period matrix
will suffice to define the complex structure; we will not need to give explicit definitions of
either Teichmüller or moduli space coordinates. We also use the notation ωI = ωI(z)dz,
and when it can be done unambiguously we keep the index I implicit. The integration
measure on Σ is normalized to d2x = dz ∧ dz̄/(−2i), so that

∫
Σ d

2xωI(z)ωJ(z̄) = (ImΩ)IJ .
One of our goals is to establish the equivalence of three different quantities. The first

is a path integral, in which on the final surface ΣR we impose a holomorphic boundary
condition that fixes the antiholomorphic part Az̄dz̄ of the gauge connection A, while on
the initial surface Σ0 we fix the component of A along the contractible cycles. The second
is a transition amplitude under radial evolution, from an initial state of definite holonomy
along the contractible cycles to a coherent final state. The third is a wave function in a
coherent state basis, obtained by integrating over the gauge orbit a seed wave function
which is an eigenstate of the holonomy operator along the contractible cycles.

These quantities will be compared to the Chern-Simons partition functions that are
identified with the wave functions obtained by a holomorphic quantization on the Riemann
surface Σ [15–17]. The basis wave functions spanning the gauge-invariant Hilbert space
were explicitly given in [16] as

Z(Az̄, µ; Ω) = e+ kπ
2 u(ImΩ)−1u

F̃ (Ω)
1
2

e+ k
2π

∫
Σ d

2x∂zχ∂z̄χθ

[
µ
k

0

]
(ku, kΩ), (2.1)

Az̄dz̄ = ∂z̄χdz̄ + iπu(ImΩ)−1ω, µ ∈ Zgk, k/2 ∈ Z. (2.2)

The complex number u defines the harmonic part of the differential Az̄dz̄ while the integer-
valued vector µ labels the independent vectors spanning the basis of the Hilbert space.
Moreover, k is the Chern-Simons level, χ is a periodic function on Σ, and θ

[ a
b

]
(u,Ω) is

the Riemann theta function with characteristics [18], as defined in (A.1). F̃ (Ω)
1
2 is the

“holomorphic square root” of the scalar Laplace determinant on Σ [19],

det′∆
Im det Ω = |F̃ (Ω)|2 exp(−SZTL). (2.3)

The obstruction to holomorphic factorization [20], SZTL, is the nonholomorphic part of the
Liouville action defined by Zograf and Takhtajan (see [19, 21]). For genus one on the flat
metric, F̃ (Ω)

1
2 coincides with the Dedekind eta function: F̃ (τ)

1
2 = η(τ).1

2.1 The torus case

As a warm-up, we first consider the case where M is the solid three-dimensional torus.
On each constant-radius surface Σ = T 2 (which is a two-torus) the period matrix is the

1At genus one, the Liouville action SL defined in refs. [19, 21] is related to ours by SL = SZTL −πiτ/6 +
πiτ̄/6.
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modular parameter τ ≡ τ1 + iτ2 and defines the global holomorphic coordinate z on the
torus. From this, we can define local real coordinates x1,2 by z ≡ x1+ix2, where x1 ∼ x1+1
parametrizes the contractible cycle on M . The restriction to T 2 of a one-form field A,
(A1dx

1 +A2dx
2), satisfies

A1 = Az +Az̄

A2 = i(Az −Az̄)
⇔


Az = 1

2(A1 − iA2)

Az̄ = 1
2(A1 + iA2)

. (2.4)

Although these real coordinates are also valid locally on higher-genus Riemann surfaces,
for those cases we will use a better description, given in terms of Strebel differentials [22].

In the next subsections, we establish the equivalence between the three quantities
mentioned earlier: the partition function given as a path integral, the transition amplitude,
and the gauge invariant wave function obtained from an appropriate “seed” wave function.

The path integral. We impose a holomorphic final condition, fixing Az̄dz̄|ΣR = ∂z̄χdz̄+
iπuτ−1

2 ω, as in (2.2); on the torus, ω = dz̄. In addition, as initial condition we fix the
component of A along the contractible cycle x1 to some A1|Σ0 = A

(0)
1 . The corresponding

Chern-Simons partition function Z(Az̄|ΣR , A
(0)
1 ; τ) is given by the path integral

Z(Az̄|ΣR , A
(0)
1 ; τ) ≡C

∫
Az̄ |ΣR

A1|Σ0=A(0)
1

DAei(ICS+IB), (2.5)

where ICS = − k

4π

∫
M
AdA− ik

2π

∫
ΣR

d2xAzAz̄,

IB = + k

4π

∫
Σ0
d2x(A1A2 + fB[A1]). (2.6)

In (2.6), the boundary term IB = (k/4π)
∫

Σ0
d2x(A1A2 + fB[A1]), with fB[A1] an arbitrary

functional of A1, is an appropriate choice for fixing A1 on the initial surface Σ0. The
normalization constant C may depend on the complex structure and it can be fixed only by
imposing additional conditions on the partition function. The path integral makes the wave
function gauge invariant. An explanation about the gauge invariance of Z(Az̄|ΣR , A

(0)
1 ; τ)

is in order. We are considering the gauge group U(1), not R. The distinction is that U(1)
includes large gauge transformations defined on the boundary ΣR of the handlebody M .
A large gauge transformation that has a non-trivial winding along a homotopy cycle of
ΣR that is contractible in M cannot be extended smoothly to M . This implies that the
partition function is a sum of terms that are not related by bulk gauge transformations.

Integrating out Ar, the path integral imposes F12 = 0 [17], so we get

Z(Az̄|ΣR , A
(0)
1 ; τ) =C

∫
Az̄ |ΣR

A1|Σ0=A(0)
1

DA1DA2δ(F12) exp
(
− ik2π

∫
M
d2xdrA2∂rA1

)
(2.7)

× exp
(
− k

2π

∫
ΣR

d2xAz̄Az̄ + k

π

∫
ΣR

d2xAz̄A1 −
k

4π

∫
ΣR

d2xA1A1

)
× exp

(
+ ik

4π

∫
Σ0
d2xfB[A1]

)
.
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The standard procedure is to express (A1dx
1 + A2dx

2) as a flat connection, resulting in a
chiral Wess-Zumino-Witten path integral on the final surface [17].

The transition amplitude. We turn now to the coherent state method. The first term
in (2.7) (the bulk term) defines the symplectic structure of the theory, implying that A1
and A2 are conjugate variables and satisfy upon quantization the equal-radius canonical
commutation relation:

[A1(x), A2(y)] = −i
(2π
k

)
δ(2)(x, y) (2.8a)

⇔ [Az̄(x), Az(y)] = −π
k
δ(2)(x, y). (2.8b)

Here δ(2)(x, y) denotes the delta function with respect to the (x1, x2)-coordinates. More-
over, define the A1-eigenstate |A1〉 as a translation from the A1 = 0 eigenstate |0〉 effected
by applying the conjugate momentum Â2

|A1〉 ≡ C̄ exp
(

+ ik

2π

∫
Σ
d2xÂ2A1

)
|0〉. (2.9)

Here too C is a normalization constant, which we leave arbitrary for the time being.
Using (2.9) together with (2.4), we can construct the wave function of the coherent state
|Az) in the |A1〉-basis,

〈A1|Az) = C exp
(
− k

2π

∫
Σ
d2xA2

z + k

π

∫
Σ
d2xAzA1 −

k

4π

∫
Σ
d2xA2

1

)
, (2.10)

which satisfies the defining properties (with Az̄ = A∗z),

Âz(x)〈A1|Az) = 1
2

(
A1(x) + 2π

k

δ

δA1(x)

)
〈A1|Az) = Az(x)〈A1|Az), (2.11a)

Â1(x)(Az̄|A1〉 =
(

+π

k

δ

δAz̄(x) +Az̄(x)
)

(Az̄|A1〉 = A1(x)(Az̄|A1〉. (2.11b)

Let us consider the transition amplitude, from an A1-eigenstate |A(0)
1 〉 on the initial surface

Σ0, to a coherent state |ARz ) on the final surface ΣR, as we radially evolve the system with
the Hamiltonian read off from (2.7):

(ARz̄ |e−iHR|A
(0)
1 〉

=
∫
DAR1 (ARz̄ |AR1 〉〈AR1 |e−iHR|A

(0)
1 〉 (2.12)

=C

∫
DAR1 exp

(
− k

2π

∫
ΣR

d2xARz̄
2 + k

π

∫
ΣR

d2xARz̄ A
R
1 −

k

4π

∫
ΣR

d2x(AR1 )2
)

(2.13)

×
∫
A1|ΣR=AR1
A1|ΣR=A(0)

1

DA1DA2δ(F12) exp
(
− ik2π

∫
M
d2xdrA2∂rA1

)

=C

∫
A1|ΣR=A(0)

1

DA1DA2δ(F12) exp
(
− ik2π

∫
M
d2xdrA2∂rA1

)
(2.14)

× exp
(
− k

2π

∫
ΣR

d2xARz̄
2 + k

π

∫
ΣR

d2xARz̄ A
R
1 −

k

4π

∫
ΣR

d2x(AR1 )2
)
.
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This is identical to the partition function (2.7), Z(Az̄|ΣR , A
(0)
1 ; τ), with the boundary term

fB[A1] = 0, and ARz̄ = Az̄|ΣR . In both cases, we have imposed the initial condition
A1|Σ0 = A

(0)
1 . The equivalence between (2.7) and (2.14) holds for arbitrary genus because

it only relies on a local decomposition of the complex coordinate z into real coordinates
that is independent of the topology of the surface Σ. From now on, without ambiguity, we
drop the superscript R from ARz̄ .

Next, we evaluate eq. (2.14) and find out what it computes for the torus case. We
parametrize the A1,2 that solve the constraint F12 = 0 by

A1(r, x1, x2) = a1(r) + 2πn+ ∂1λ0(r, x1, x2)

A2(r, x1, x2) = a2(r) + ∂2λ0(r, x1, x2),
(2.15)

where λ0(r, x1, x2) is a periodic function on Σ, and the shift in A1 by 2πn with n ∈ Z
comes from the large gauge transformations that are singular inside the bulk. Note that
a shift in λ0(r, x1, x2) by any x1-independent function f2(r, x2) also solves F12 = 0 and
leaves the integrand of the path integral invariant, thus the x1-independent modes can be
factored out of the path integral and consistently discarded.2 On the other hand, shifting
λ0(r, x1, x2) by some f1(r, x1) changes the boundary action, so these modes cannot be
factored out from the path integral. We restrict our initial condition to A1|Σ0 = a1(0) with
a1(0) = constant— this is a natural choice since the initial surface is in fact degenerate, so
λ0(r = 0, x1, x2) = λ0(r = 0, x2) is independent of x1. The integration measure in (2.14)
satisfies [17]

DA1DA2δ(F12) = Da1Da2D
′λ0, (2.16)

i.e. the change of variables (2.15) has unit Jacobian. Here a prime denotes discarding x1-
independent functions. Moreover, as in (2.2), Az̄ = ∂z̄χ + iπuτ−1

2 . The amplitude (2.14)
becomes

(Az̄|e−iHR|a1(0)〉 =Ce
+ kπ

2 uτ
−1
2 u+ k

2π

∫
ΣR

d2x∂zχ∂z̄χ

×
∫
D′λ̃0 exp

(
− k

2π

∫
ΣR

d2x∂1λ̃0∂z̄λ̃0

)
(2.17)

×
∑
n∈Z

exp
(

+ikπu(a1(0) + 2πn)− k

4π (a1(0) + 2πn)τ2(a1(0) + 2πn)
)

= e+ kπ
2 uτ

−1
2 u

η(τ) e
+ k

2π

∫
ΣR

d2x∂zχ∂z̄χ
θ

[
a1(0)

2π
0

]
(ku, ikτ2). (2.18)

In arriving at (2.17), we integrated out a2(r) to obtain an r-independent a1(r) = a1.
Together with the initial condition A1(r = 0) = a1(0), this means a1(R) = a1(0). We also
defined λ̃0 ≡ λ0 + χ.

The path integral on λ̃0 equals det−1/2(− k
2π∂z̄∂1). We are still free to choose the

constant C. Besides removing ultraviolet divergences in the functional determinant, it can
2This can be shown more rigorously using the BRS formalism [23].
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be further fixed by requiring that eq. (2.18) be a section of a projectively flat connection
on the moduli space of complex structures [15]. This is simply the requirement that the
scalar product of the base wave functions (2.18) must be independent of the complex
structure. By making this choice we get 1/F̃ (Ω)

1
2 = 1/η(τ).3 Let us compare this to the

wave functions Z(Az̄, µ; Ω) (2.1) obtained from holomorphic quantization, that span the
gauge-invariant Hilbert space. On the genus g = 1 torus Σ = T 2, they are given by

Z(Az̄, µ; τ) = e+ kπ
2 uτ

−1
2 u

η(τ) e+ k
2π

∫
Σ d

2x∂zχ∂z̄χθ

[
µ
k

0

]
(ku, kτ), (2.19)

where Az̄ = ∂z̄χ+ iπuτ−1
2 , and µ = 0, 1, . . . , k − 1.

As we set a1(0)/2π = µ/k, we see that the wave function (Az̄|e−iHR|a1(0)〉, or equivalently
the path integral Z(Az̄|ΣR , A

(0)
1 ; τ) in (2.7) with fB[A1] = 0, differs by a τ1-dependent

phase in the theta function from the function Z(Az̄, µ; τ) in (2.19). So, the wave functions
(Az̄|e−iHR|a1(0)〉 with a1(0)/2π = µ/k, µ = 0, 1, . . . , k − 1 exhibit a dependence on the
complex structure different from that of the basis wave functions (2.19).

We cannot reabsorb this difference into a redefinition of the constant C without giving
up one of the objectives of our paper, which is to establish a state-operator correspondence
associating each state obtained by applying Wilson loops to the vacuum to the partition
function of Chern-Simons on a solid torus containing the same Wilson loop. So, once we
normalize the vacuum and the vacuum partition function, we cannot further normalize
separately the other partition functions. What we can do is to understand where the
discrepancy comes from and try to fix it by appropriately changing the definition of the
Wilson loop operator.

To find the meaning of this discrepancy, we consider a different basis on the torus. We
define global coordinates (φ, t) which both have unit period, so that z = φ+ τt, φ ∼ φ+ 1,
τ ∼ τ + 1 and Aφ = Az + Az̄

At = τAz + τ̄Az̄
⇔

Az = (τ − τ̄)−1(−τ̄Aφ +At)
Az̄ = (τ − τ̄)−1( τAφ −At)

. (2.20)

In particular, Aφ = A1, but At = τ2A2 + τ1A1 6= A2 in general. The conjugate variables
(Aφ = A1, τ

−1
2 At) are related to the previous conjugate variables (A1, A2) by a canonical

transformation which simply shifts A2 by a term linear in A1. The canonical commutation
relation is

[Aφ(x), At(y)] = −iτ2

(2π
k

)
δ(2)(x, y) (2.21a)

⇔ [Az̄(x), Az(y)] = −π
k
δ(2)(x, y). (2.21b)

Here δ(2)(x, y) is again the delta function in the (x1, x2) coordinates. Similarly to (2.9),
we define the Aφ-eigenstate |Aφ〉〉 by translating the Aφ = 0 eigenstate |0〉〉 ≡ |0〉, but this

3In the genus-1 case C is in fact independent of the complex structure, as can be seen by an explicit
computation [23].
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time with the operator Ât,

|Aφ〉〉 ≡ C̄ exp
(

+ ik

2πτ
−1
2

∫
Σ
d2xÂtAφ

)
|0〉〉 and |0〉〉 ≡ |0〉. (2.22)

The eigenstates |Aφ〉〉 and |Aφ〉 are related by a pure phase,

|Aφ〉〉 = exp
(

+ ik

4πτ1τ
−1
2

∫
Σ
d2xA2

φ

)
|Aφ〉. (2.23)

By using (2.20), we see that the wave function of the coherent state |Az) in the |Aφ〉〉-basis
differs from (2.10)

〈〈Aφ|Az) = C exp
(
− k

2π

∫
Σ
d2xA2

z + k

π

∫
Σ
d2xAzAφ −

ik

4π τ̄τ
−1
2

∫
Σ
d2xA2

φ

)
. (2.24)

Repeating the same calculations as above, one finds that

(Az̄|e−iHR|aφ(0)〉〉

=Ce
+ kπ

2 uτ
−1
2 u+ k

2π

∫
ΣR

d2x∂zχ∂z̄χ ×
∫
D′λ̃0 exp

(
− k

2π

∫
ΣR

d2x∂1λ̃0∂z̄λ̃0

)
(2.25)

×
∑
n∈Z

exp
(
iku(aφ(0) + 2πn) + ik

4π (aφ(0) + 2πn)τ(aφ(0) + 2πn)
)

= e+ kπ
2 uτ

−1
2 u

η(τ) e
+ k

2π

∫
ΣR

d2x∂zχ∂z̄χ
θ

[
aφ(0)

2π
0

]
(ku, kτ), (2.26)

where we normalized C as in eq. (2.18). This is exactly one of the (2.19) when we set
a1(0)/2π = µ/k. Thus, we learn that to get an answer holomorphic in the complex structure
τ we need a particular choice of canonical variables (Aφ, At), or equivalently a particular
choice of eigenstate |Aφ〉〉. In terms of the path integral Z(Az̄|ΣR , aφ(0); τ), this corresponds
to a particular choice of the boundary term, namely: fB[A1] = τ1τ

−1
2 A2

1.

The gauge-invariant wave function. Under a gauge transformation

Az̄ −→ λAz̄ ≡ Az̄ − ∂z̄λ, (2.27)

a holomorphic wave function Ψ[Az̄] obtained from Kähler quantization transforms
as [16, 17]

Ψ[Az̄] −→ (U(λ) ·Ψ)[Az̄] ≡ exp
(
− k

2π

∫
Σ
d2x∂zλ∂z̄λ+ k

π

∫
Σ
d2x∂zλAz̄

)
Ψ[λAz̄]. (2.28)

Here λ can include large gauge transformations. Thus, starting from any “seed” wave
function Ψ0[Az̄] we can integrate over the gauge group to construct a gauge-invariant
wave function:

Ψ[Az̄] ≡
∫
D′λ(U(λ) ·Ψ0)[Az̄]. (2.29)
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This formula includes a sum over large gauge transformations, so the most general λ is

λ ≡ λ0 + λ′, (2.30)

where λ0 is periodic on the torus, while the multivalued large gauge parameter λ′ enters
in the integral only through its derivatives, which are single-valued on the torus; they are
given by 

∂z̄λ
′ = +iπ(m+ nτ)τ−1

2

∂zλ
′ = −iπ(m+ nτ)τ−1

2

, m, n ∈ Z. (2.31)

If we take (Az̄|a1(0)〉〉 to be a seed wave function Ψ0[Az̄] which is not necessarily gauge-
invariant and integrate over all gauge transformations including the large transformations
m,n ∈ Z, we reproduce the theta function in (2.19). To see this, we impose again the
conditions (2.2) Az̄ = ∂z̄χ+ iπuτ−1

2 ≡ ∂z̄χ+ ∂z̄χ
′ and aφ(0) = 2πµ/k, µ ∈ Z and find∫

D′λ(U(λ) ·Ψ0)[Az̄]

=
∑

m,n∈Z

∫
D′λ0 exp

(
− k

2π

∫
Σ
∂zλ∂z̄λ+ k

π

∫
Σ
∂zλAz̄

)
(λAz̄|a1(0)〉〉 (2.32)

=
∑

m,n∈Z
C

∫
D′λ0 exp

(
− k

2π

∫
Σ
d2x∂1λ0∂z̄λ0 + k

π

∫
Σ
d2xAz̄∂1λ0

)
(2.33)

× exp
(
− k

2π

∫
Σ
d2xA2

z̄ −
k

2π

∫
Σ
d2x∂1λ

′∂z̄λ
′ + k

π

∫
Σ
d2xAz̄∂1λ

′
)

× exp
(

+k

π

∫
Σ
d2xAz̄a1(0)− k

π

∫
Σ
d2x∂z̄λ

′a1(0) + ik

4πττ
−1
2

∫
Σ
d2x(a1(0))2

)
=

∑
m,n∈Z

C

∫
D′λ0 exp

(
− k

2π

∫
Σ
d2x∂1λ0∂z̄λ0 + k

π

∫
Σ
d2xAz̄∂1λ0

)
(2.34)

× exp
(
− k

2π

∫
Σ
d2xA2

z̄ + ikπnm− 2πikm
(
a1(0)

2π

))
× exp

(
+2k

∫
Σ
d2xAz̄

(
a1(0)

2π − n
)

+ iπk

(
a1(0)

2π − n
)
τ

(
a1(0)

2π − n
))

=C exp
(

+ k

2π

∫
Σ
d2x∂zχ∂z̄χ+ kπ

2 uτ−1
2 u

)∫
D′λ̃0 exp

(
− k

2π

∫
Σ
d2x∂1λ̃0∂z̄λ̃0

)
(2.35)

×
∑

m,n∈Z
exp

(
ikπnτn+ 2πiku

(
a1(0)

2π − n
)

+ iπk

(
a1(0)

2π − n
)
τ

(
a1(0)

2π − n
))

= e+ k
2π

∫
Σ d

2x∂zχ∂z̄χ e
+ kπ

2 uτ
−1
2 u

η(τ) θ

[
µ
k

0

]
(ku, kτ), (2.36)

which is exactly Z(Az̄, µ; τ) in (2.19). In arriving at (2.35), the constant C was fixed as
in (2.18) using the normalization condition C det−1/2(− k

2π∂z̄∂1) = η(τ)−1 and we used that
k/2 ∈ Z>0, m ∈ Z and ka1(0)/2π = µ ∈ Z, so the summand does not depend on m,

Because of this, in the last line we discarded the infinite sum over m ∈ Z. Similarly,
the same calculation done with (Az̄|a1(0)〉 as seed wave function reproduces (2.17). Notice
that discarding the sum over m means simply to remove identical gauge copies from the

– 9 –



J
H
E
P
0
7
(
2
0
2
1
)
1
9
4

definition of the gauge-invariant wave function. This is a standard part of the construction
of a gauge invariant, normalizable state or operator using an integral (and/or sum) over
gauge transformations. Its analog in the context of three-dimensional gravity is explained
for instance in [14].

2.1.1 Blowing up Wilson loops

One can insert into the path integral a gauge-invariant Wilson loop operator defined along
a loop C on M , as

Ŵµ[C] ≡ P exp
(
iµ

∮
C
Â

)
, µ ∈ Z. (2.37)

P means path-ordering, and the U(1) charge µ is integer-valued such that Ŵµ[C] is invariant
under large gauge transformations defined on C. We restrict C to be a path that runs along
the non-contractible cycle of M , and without loss of generality put it at the origin r = 0
of the solid torus.

We would like to map Ŵµ[C] to a “blown-up” operator in radial quantization, which
acts on a state defined on Σ. To this end, recall that the A1-eigenstate |A1〉 is the translation
of the A1 = 0 eigenstate |0〉 by the operator Â2 given in (2.9),

|A1〉 ≡ exp
(

+ ik

2π

∫
Σ
d2xÂ2A1

)
|0〉. (2.38)

The initial surface Σ0 is degenerate but the Wilson loop operator Ŵµ[C2], with C2 at r = 0
running along the x2-direction, can be “blown-up” and identified with the translation
operator defined in (2.38) acting on the Hilbert space on Σ,

Ŵµ[C2] = P exp
(
iµ

∮
dx2Â2

)
(2.39)

−→ Ŵµ[Σ, 2] ≡ exp
(
i

∫
Σ
d2xµÂ2

)
= exp

(
i

∫
Σ
d2x

(
iµÂz − iµÂz̄

))
. (2.40)

Alternatively, choosing At as the conjugate momentum from (2.22) we have

|Aφ〉〉 ≡ exp
(

+ ik

2πτ
−1
2

∫
Σ
d2xÂtAφ

)
|0〉. (2.41)

We can also define a “blown-up” version of the Wilson loop operator Ŵµ[Ct], with Ct at
r = 0 running along the t-direction, and identify it with the translation operator in (2.41),

Ŵµ[Ct] = P exp
(
iµ

∫ 1

0
dtÂt

)
(2.42)

−→ Ŵµ[Σ, t] ≡ exp
(
iτ−1

2

∫
Σ
d2xµÂt

)
= exp

(
i

∫
Σ
d2x

(
ττ−1

2 µÂz + τ̄ τ−1
2 µÂz̄

))
. (2.43)

Gauge invariance and framing. Both C2 and Ct trace the same closed loop at the
origin, though with twists differing by τ1. One may wish to assign a framing to this loop
by defining a vector field on it [1, 24], thereby extending this loop into a ribbon. Such a
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vector field must be periodic under the global identification (x1, x2) ∼ (x1 + τ1, x
2 + τ2)

— now that we are away from the degenerate r = 0 surface. The simplest choice is that
corresponding to Ct, while that corresponding to C2 does not respect the periodicity.

In the language of the “blowing-up” procedure, this fact translates to demanding that
the “blown-up” Wilson loop operator on Σ must be gauge-invariant. Both of the original
Wilson loops Ŵµ[C2] and Ŵµ[Ct] are invariant under gauge transformations defined on
the loops. But among their “blown-up” versions, only Ŵµ[Σ, t] is gauge-invariant on Σ.
Ŵµ[Σ, 2] is not invariant under large transformations with a non-trivial winding along the
φ-direction, which were not well-defined transformations on the original loop C2. Gauge
invariance thus selects Ŵµ[Σ, t] as the preferred operator on Σ.

Note that the Ŵµ[Σ, t], µ ∈ Z, are not the only gauge-invariant operators. The most
general gauge invariant “blown-up” operator on Σ with constant coefficients4 takes the form

Ŵ [Σ;µ,N ] ≡ exp
(
iµ

∫
Σ
d2x

(
ττ−1

2 Âz + τ̄ τ−1
2 Âz̄

)
+ iNτ−1

2

∫
Σ
d2x

(
Âz + Âz̄

))
(2.44)

= Ŵ [Σ, t] exp
(
iN

∫
Σ
d2xÂφ

)
exp

(
+ iπ

k
µN

)
, µ,N ∈ Z, (2.45)

where we used a special case of the Baker-Campbell-Hausdorff formula:

if [X, [X,Y ]] = 0 = [Y, [X,Y ]], then eX+Y = eXeY e−
1
2 [X,Y ], (2.46)

and the canonical commutation relation (2.8b) to arrive at this result. That is, Ŵ [Σ;µ,N ]
is equivalent to blowing up the loop Ct together with the loop Cφ along the φ-direction. So
we can identify the pure phase as due to the linking of these two loops [1]. Since Ŵ [Σ;µ,N ]
is gauge-invariant, we can commute it with the integral over gauge transformations (2.29),
and let it act on the seed wave function Ψ0[Az̄] = (Az̄|0〉〉, which is an eigenvector of Âφ
with eigenvalue Aφ = 0. The result reads

Ŵ [Σ;µ,N ](Az̄|0〉〉 = e+ iπ
k
µNŴ [Σ, t](Az̄|0〉〉 = e+ iπ

k
µN (Az̄|2πµ/k〉〉. (2.47)

The integral (2.29) is then∫
D′λ

(
U(λ) · Ŵ [Σ;µ,N ](Az̄|0〉〉

)
= e+ iπ

k
µN
∫
D′λ (U(λ) · (Az̄|2πµ/k〉〉) (2.48)

= e+ iπ
k
µN e

+ kπ
2 uτ

−1
2 u

η(τ) e+ k
2π

∫
Σ d

2x∂zχ∂z̄χθ

[
µ
k

0

]
(ku, kτ). (2.49)

Thus, the only contribution of the N -dependent term in Ŵ [Σ;µ,N ] to the gauge-invariant
wave function is a pure phase proportional to the linking number. This is expected from
general principles of canonical quantization, because the Wilson loops Ŵµ[Ct], µ ∈ Zk,
already span the full Hilbert space, and so the Wilson loop operators along Cφ can at
most contribute a pure phase [25]. Note that in the special case N = µN ′, N ′ ∈ Z,

4We will drop this restriction in the higher-genus cases.
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Ŵ [Σ;µ,N = µN ′] can be regarded as the blowing-up of the loop Ct with additional N ′

twists. The phase

exp
(

+ iπ

k
µN

)
= exp

(
+iπN ′µ

2

k

)
(2.50)

is then identified with the framing anomaly [1].

2.2 Higher genus

For partition functions on higher-genus handlebodies, it is convenient to make use of certain
special quadratic differentials on Riemann surfaces, reviewed in appendix B. Specifically,
we pick a Strebel differential ϕ, which is a quadratic differential on the Riemann surface
Σ, holomorphic in the complex structure; locally, ϕ = h(z)dz2 where h(z) is holomorphic.
The existence of such differentials is proven in [22]. We do not need to know their precise
form. All we need from a Strebel differential is the fact that it foliates the Riemann surface
Σ into horizontal trajectories, which are closed curves given by

f(p) ≡
∫ p√

hdz −
∫ p√

h∗dz̄ = constant. (2.51)

The Strebel differential ϕ also defines a metric on Σ, which takes the form

gzz̄ =
√
hh∗ = √g. (2.52)

This metric may have zeros or singularities, which define the singular points of the foliation.
We define next a vector field v of unit norm with respect to (2.52), whose integral curves
are the horizontal trajectories so that v(f) ≡ 0:

v ≡ v(z)∂z + v̄(z̄)∂z̄ = 1√
h
∂z + 1√

h∗
∂z̄ ≡ ∂h. (2.53)

We use the vector field v to define cycles on a higher-genus Riemann surface Σ, that
are contractible on the corresponding handlebody M . On the torus, v = v̄ = 1 and
∂h = ∂1. The square root in (2.53) can cause generically an obstruction to defining a global
holomorphic vector field on Σ. On the other hand, we do not need v to be holomorphic, so
we can always rescale v by a common factor: v → εv with ε a smooth real function. The
equations that we will find in the next subsections depend only on the ratio v̄/v, which is
not affected by the rescaling. The function ε can even vanish on subsets of measure zero
that are transverse to the horizontal trajectories without altering the ratio v̄/v. By making
ε vanish somewhere on Σ, a nonholomorphic vector field can be defined everywhere on Σ.

The horizontal trajectories and the vector field v that generates them are illustrated
schematically in figure 1.

2.2.1 The vacuum partition function

We would like to generalize the third approach used in the torus case: start from a non-
gauge invariant seed wave function Ψ0[Az̄] and integrate over the gauge orbit to arrive
at a gauge-invariant wave function. The most natural and simplest seed wave function is
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Figure 1. A schematic illustration of a Strebel differential on a genus-two Riemann surface, which
defines horizontal trajectories denoted by blue loops. The vector field v that generates the horizontal
trajectories is denoted by red arrows.

the eigenstate of trivial holonomy along the contractible cycles, Ψ0[Az̄], computed in the
coherent state basis (Az̄|. In terms of the vector field v that generates the closed horizontal
trajectories, it is defined by

(v · Â)Ψ0[Az̄] =
(
v
π

k

δ

δAz̄
+ v̄Az̄

)
Ψ0[Az̄] ≡ 0 (2.54)

⇒ Ψ0[Az̄] = C exp
(
− k

2π

∫
Σ
d2x

v̄

v
A2
z̄

)
. (2.55)

As for genus one, here the constant C may depend on the complex structure and is fixed
by properly normalizing the vacuum partition function. We show next that integrating it
over the gauge orbit does result in a particular vector in the Hilbert space (2.1) obtained
from Kähler quantization, holomorphic in the complex structure Ω. In particular, we will
see that, after integration, the vector v appears only in the Weyl anomaly.

Given any seed wave function Ψ0, the gauge integral is given by a generalization
of (2.29) on the torus. It reads

Ψ[Az̄] ≡
∫
D′λ(U(λ) ·Ψ0)[Az̄] (2.56)

=
∫
D′λ exp

(
− k

2π

∫
Σ
d2x∂zλ∂z̄λ+ k

π

∫
Σ
d2x∂zλAz̄

)
Ψ0[λAz̄], (2.57)

where Az̄ −→ λAz̄ ≡ Az̄ − ∂z̄λ.
We begin by decomposing

Az̄ = ∂z̄χ+ ∂z̄χ
′ ≡ ∂z̄χ+ iπu(ImΩ)−1ω(z̄), ω ≡ ω(z̄)dz̄, (2.58a)

λ = λ0 + λ′, (2.58b)

∂z̄λ
′ = iπ(m+ nΩ)(ImΩ)−1ω(z̄), ∂zλ′ = −iπ(m+ nΩ)(ImΩ)−1ω(z), (2.58c)

Uω(z̄) ≡ ∂z̄χ′ − ∂z̄λ′ = iπ(u− (m+ nΩ))(ImΩ)−1ω(z̄), m, n ∈ Zg, (2.58d)

where both χ, λ0 are single-valued on Σ. The multivalued function λ′ appears everywhere
only through its derivatives, which are also single-valued on Σ. Next we evaluate the
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integrand:

S ≡ ln (U(λ) ·Ψ0)− logC

= − k

2π

∫
Σ
d2x∂zλ∂z̄λ+ k

π

∫
Σ
d2x∂zλAz̄ −

k

2π

∫
Σ
d2x

v̄

v
(Az̄ − ∂z̄λ)2 (2.59)

= − k

2π

∫
Σ
d2x

1
v
∂hλ0∂z̄λ0 + k

π

∫
Σ
d2x

1
v
∂hλ0∂z̄χ+ k

π

∫
Σ
d2x

1
v
∂hλ0Uω(z̄)s (2.60)

− k

2π

∫
Σ
d2x∂zλ

′∂z̄λ
′ + k

π

∫
Σ
d2x∂zλ

′∂z̄χ
′

− k

2π

∫
Σ
d2x

v̄

v

[
∂z̄λ

′∂z̄λ
′ − 2∂z̄λ′(∂z̄χ+ ∂z̄χ

′) + ∂z̄χ∂z̄χ+ 2∂z̄χ∂z̄χ′ + ∂z̄χ
′∂z̄χ

′] .
(On the torus, this reduces to (2.33) with a1(0) = 0). Let us look now at the terms
involving λ0:

S̃ ≡ − k

2π

∫
Σ
d2x

1
v
∂hλ0∂z̄λ0 + k

π

∫
Σ
d2x

1
v
∂hλ0∂z̄χ+ k

π

∫
Σ
d2x

1
v
∂hλ0Uω(z̄). (2.61)

Since S̃ is quadratic, the λ0-integral in (2.57) can be evaluated exactly. The saddle point
λ0,cl at which S̃ is extremal satisfies the equation of motion

∂z̄ [∂h(λ0,cl − χ)− v̄Uω(z̄)] = 0. (2.62)

In addition, we recall that any horizontal trajectory γ(s) ∼
∑
I NIaI is homologous to a

linear combination of the a-cycles and that the trajectory is an integral curve of the vector
v, so that v(z(s)) = dz

ds . We thus have
∮
γ ∂h(λ0,cl − χ) = 0, since λ0,cl and χ are periodic.

Then (2.62) is integrated to

∂h(λ0,cl − χ) = −vUω(z) + v̄Uω(z̄). (2.63)

Substituting (2.63) back into the action (2.61) and including the fluctuation f around the
saddle point λ0,cl, the action S becomes

S = − k

2π

∫
Σ
d2x

1
v
∂hf∂z̄f + k

2π

∫
Σ
d2x∂zχ∂z̄χ (2.64)

− k

2π

∫
Σ
d2xUω(z)Uω(z̄)− k

2π

∫
Σ
d2x∂zλ

′∂z̄λ
′ + k

π

∫
Σ
d2x∂zλ

′∂z̄χ
′.

Thus, we see that the vector field v indeed drops out, except in the fluctuation term.
Substituting the definitions (2.58) into Ψ[Az̄] and repeating the same calculation done

in the torus case, we arrive at

Ψ[Az̄] ≡
∫
D′λ(U(λ) ·Ψ0)[Az̄] (2.65)

= C det−
1
2

(
− k

2π∂z̄∂h
)
e+ kπ

2 u(ImΩ)−1u+ k
2π

∫
Σ d

2x∂zχ∂z̄χ (2.66)

×
∑

m,n∈Zg
exp (−2πikun+ iπk(m+ nΩ)n)

= e+ k
2π

∫
Σ d

2x∂zχ∂z̄χ e
+ kπ

2 u(ImΩ)−1u

F̃ (Ω)
1
2

θ

[
0
0

]
(ku, kΩ), (2.67)

– 14 –



J
H
E
P
0
7
(
2
0
2
1
)
1
9
4

which is (2.1) with µ = 0. When computing the quadratic functional integral over the
fluctuations f (with the zero modes discarded), we used again the freedom in choosing the
constant C to ensure that the wave function is a section of a projectively flat bundle over the
complex structure moduli space. For Abelian Chern-Simons theories, this is achieved by
using the factorization of the Laplacian (2.3) (or by comparison with the formulas in [16]),
which results in C det−1/2(− k

2π∂z̄∂h) = 1/F̃ (Ω)
1
2 . Note that the constant C also reabsorbs

a term that contains a Weyl anomaly and therefore, because of (2.53), a dependence on
v. We also used k/2 ∈ Z and m,n ∈ Zg, and discarded the trivial sum over m, that is the
sum over large gauge transformations that can be extended to the bulk and under which
the wave function is invariant.

2.2.2 Wilson loops
On a higher-genus handlebody, besides Wilson loops that can be regarded as “world histo-
ries of mesons,” there is also another class of gauge-invariant observables, which correspond
to the “world histories of baryons” running along the non-contractible cycles; see [24]. For
the Abelian case that we have considered here, however, the fusion rule is trivial, so those
“baryon world histories” can be decomposed into disjoint Wilson loops running along the
non-contractible cycles of the handlebody. Therefore, it suffices to consider only standard
Wilson loops.

We would like to generalize the “blowing-up” of Wilson loops that we studied on the
torus in section 2.1.1 to higher genus. Consider the loops CI running along the g non-
contractible cycles of M and endowed with charges µI ∈ Zk. The resulting Wilson loops
are then “blown up” into operators Ŵ [Σ,w] on Σ, parametrized by real one-forms

w = (w0dz + w′ω︸ ︷︷ ︸
≡wdz

) + (w̄0dz̄ + w̄′ω︸ ︷︷ ︸
≡w̄dz̄

) ≡ w0 + w′, (2.68)

where the w0 are periodic on Σ and w′I are constant. A “blown-up” Wilson loop operator
is then

Ŵ [Σ,w] ≡ exp
(
i

∫
Σ
d2x(w̄Âz + wÂz̄)

)
, (2.69)

Importantly, gauge invariance of Ŵ [Σ,w] demands that
∂zw̄0 + ∂z̄w0 = 0 ⇒ w0 = i∂zη,∫

Σ
d2x(w̄′ω(z̄)∂zλ′ + w′ω(z)∂z̄λ′) ∈ 2πZ.

(2.70)

Here η is a real single-valued function on Σ, and λ′ is a large gauge transformation (2.58).
As discussed in section 2.1.1, by demanding large gauge invariance on the “blown-up”
surface one selects a class of preferred framings, satisfying

−iπm(w̄′ − w′) + iπn(Ωw′ − Ωw̄′) ∈ 2πZ. (2.71)

Inverting this condition yields

w̄′ = (ImΩ)−1(Ωµ+N), µ,N ∈ Zg. (2.72)

For η = 0 on the torus, we recover the Wilson loop Ŵ [Σ;µ,N ] in (2.44).
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The gauge invariance of Ŵ [Σ,w] allows us to commute it with the gauge integral (2.56),
and let it act on the seed wave function Ψ0[Az̄]. As seed wave function we use the wave
function of trivial holonomy along the contractible cycles given in (2.55):

Ψ0[Az̄] = C exp
(
− k

2π

∫
Σ
d2x

v̄

v
A2
z̄

)
. (2.73)

Using again the Baker-Campbell-Hausdorff formula (2.46), one gets

Ψw,0[Az̄] ≡ Ŵ [Σ,w]Ψ0[Az̄] (2.74)

=C exp
(
− k

2π

∫
Σ
d2x

v̄

v
A2
z̄ − i

∫
Σ
d2x

[
w̄

(
v̄

v

)
− w

]
Az̄

+ π

2k

∫
Σ
d2xw̄

[
w̄

(
v̄

v

)
− w

])
. (2.75)

We repeat the calculation done in the last subsection to evaluate the gauge integral (2.56).
The integrand is

S ≡ ln (U(λ) ·Ψw,0)− log(C) (2.76)

= − k

2π

∫
Σ
d2x∂zλ∂z̄λ+ k

π

∫
Σ
d2x∂zλAz̄ −

k

2π

∫
Σ
d2x

v̄

v
(Az̄ − ∂z̄λ)2 (2.77)

− i
∫

Σ
d2x

[
w̄

(
v̄

v

)
− w

]
(Az̄ − ∂z̄λ) + π

2k

∫
Σ
d2xw̄

[
w̄

(
v̄

v

)
− w

]
= − k

2π

∫
Σ
d2x

1
v
∂hλ0∂z̄λ0 + k

π

∫
Σ
d2x

1
v
∂hλ0(∂z̄χ+ Uω(z̄)) (2.78)

+ i

∫
Σ
d2x∂z̄λ0

[
w̄

(
v̄

v

)
− w

]
− k

2π

∫
Σ
d2x∂zλ

′∂z̄λ
′ + k

π

∫
Σ
d2x∂zλ

′∂z̄χ
′

+ i

∫
Σ
d2x∂z̄λ

′
[
w̄

(
v̄

v

)
− w

]
− i

∫
Σ
d2x

[
w̄

(
v̄

v

)
− w

]
Az̄

+ π

2k

∫
Σ
d2xw̄

[
w̄

(
v̄

v

)
− w

]
− k

2π

∫
Σ
d2x

v̄

v

[
∂z̄χ∂z̄χ+ 2∂z̄χ∂z̄χ′ + Uω(z)Uω(z̄)− 2∂z̄λ′∂z̄χ

]
.

The terms containing λ0 are

S̃ ≡ − k

2π

∫
Σ
d2x

1
v
∂hλ0∂z̄λ0 + k

π

∫
Σ
d2x∂zλ0∂z̄χ (2.79)

+ k

π

∫
Σ
d2x∂z̄λ0

(
v̄

v
∂z̄χ+ v̄

v
Uω(z̄)− iπ

k
w + iπ

k

v̄

v
w̄

)
= − k

2π

∫
Σ
d2x

1
v
∂hλ0∂z̄λ0 + k

π

∫
Σ
d2x∂zλ0∂z̄

(
χ+ π

k
η

)
(2.80)

+ k

π

∫
Σ
d2x

v̄

v
∂z̄λ0

(
∂z̄

(
χ+ π

k
η

)
+
(
U + iπ

k
w̄′
)
ω(z̄)

)
.

The saddle point λ0,cl at which S̃ is extremal satisfies the equation of motion

∂z̄

[
∂h

(
λ0,cl − χ−

π

k
η

)
− v̄

(
U + iπ

k
w̄′
)
ω(z̄)

]
= 0, (2.81)
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which is integrated to

∂hλ0,cl = ∂h

(
χ+ π

k
η

)
− v

(
U + iπ

k
w̄′
)
ω(z) + v̄

(
U + iπ

k
w̄′
)
ω(z̄). (2.82)

Substituting (2.82) back to the action (2.80) and including the fluctuation f around the
saddle point, we get

S = − k

2π

∫
Σ
d2x

1
v
∂hf∂z̄f + k

2π

∫
Σ
d2x∂zχ∂z̄χ (2.83)

− k

2π

∫
Σ
d2xUω(z)Uω(z̄)− k

2π

∫
Σ
d2x∂zλ

′∂z̄λ
′ + k

π

∫
Σ
d2x∂zλ

′∂z̄χ
′

− i
∫

Σ
d2xUω(z̄)(w̄′ − w′)ω(z) + π

2k

∫
Σ
d2x(w̄′ − w′)ω(z)w̄′ω(z̄).

So, once again, v drops out of the action— except in the fluctuation term which also gives
the Weyl anomaly. Moreover, the function η in w drops out as well. Evaluating the path
integral in the same way as before, we finally get

Ψw[Az̄] ≡
∫
D′λ(U(λ) ·Ψw,0)[Az̄] (2.84)

= C det−1/2
(
− k

2π∂z̄∂h
)
e+ kπ

2 u(ImΩ)−1u+ k
2π

∫
Σ d

2x∂zχ∂z̄χ (2.85)

×
∑

m,n∈Zg
exp (−2πikun+ iπk(m+ nΩ)n)

× exp
(

+2πiuµ− 2πimµ− iπnΩµ+ π

2k (2iµ)(Ωµ+N)
)

= e+ k
2π

∫
Σ d

2x∂zχ∂z̄χ e
+ kπ

2 u(ImΩ)−1u

F̃ (Ω)
1
2

θ

[
µ
k

0

]
(ku, kΩ)e

iπ
k
µN . (2.86)

Here used the same normalization for C as in eq. (2.67) together with k/2 ∈ Z, m,n ∈ Zg

and µ ∈ Z, and discarded the trivial sum over m.
Since η drops out eventually, we can repeat the analysis we performed in the torus

case. Namely,

Ŵ [Σ,w′] ≡ exp
(
i

∫
Σ
d2x(w̄′Âz + w′Âz̄)

)
, w̄′ = (ImΩ)−1(Ωµ+N), µ,N ∈ Zg (2.87)

= exp
[
iµ

∫
Σ
d2x

(
Ω(ImΩ)−1ω(z̄)Âz + Ω(ImΩ)−1ω(z)Âz̄

)
(2.88)

+iN(ImΩ)−1
∫

Σ
d2x

(
ω(z̄)Âz + ω(z)Âz̄

)]
= exp

[
iµ

∫
Σ
d2x

(
Ω(ImΩ)−1ω(z̄)Âz + Ω(ImΩ)−1ω(z)Âz̄

)]
(2.89)

× exp
[
+iN(ImΩ)−1

∫
Σ
d2x

(
ω(z̄)Âz + ω(z)Âz̄

)]
exp

(
+ iπ

k
µN

)
≡ Ŵ [Σ, µ]Ŵ [Σ, N ]e+ iπ

k
µN . (2.90)

In the end, the discussion in the torus case generalizes to higher-genus cases. Namely, we
can interpret Ŵ [Σ, µ] and Ŵ [Σ, N ] respectively as the “blowing-up” of loops along the
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non-contractible and contractible cycles of M . The only contribution of Ŵ [Σ, N ] to a
gauge-invariant wave function is the phase exp(+(iπ/k)µN) and is due to the linking of
the loops. In the special case NI = N ′IJµJ for some symmetric matrix N ′ with integer
entries, this phase exp(+(iπ/k)µN ′µ) is naturally interpreted as the framing anomaly.

3 The non-Abelian case

We consider now the non-Abelian case, with a compact, simply-connected and simple Lie
group G on a solid torus. In this section M is always the torus handlebody and Σ = T 2.
By generalizing the equation (2.24) found in the Abelian case, we will consider the Aφ-
eigenstate |Aφ〉〉 translated by the conjugate momentum At. In the coherent state basis,
it reads

(Az̄|Aφ〉〉 = C exp
(

+ k

2π

∫
Σ
d2xTrA2

z̄ −
k

π

∫
Σ
d2xTrAz̄Aφ −

ik

4πττ
−1
2

∫
Σ
d2xTrA2

φ

)
. (3.1)

The amplitude with Aφ|Σ0 = aφ(0) constant is

(Az̄|e−iHR|aφ(0)〉〉

≡
∫
Aφ|Σ0=aφ(0)

DA1DA2δ(F12)eiI (3.2)

=C

∫
Aφ|Σ0=aφ(0)

DA1DA2δ(F12) (3.3)

× exp
(

+ k

2π

∫
ΣR

d2xTrA2
z̄ −

k

π

∫
ΣR

d2xTrAz̄Aφ(R)
)

× exp
(
− ik4πττ

−1
2

∫
ΣR

d2xTr (Aφ(R))2
)

exp
(

+ ik

2π

∫
M
d2xdrTrAt∂rAφ

)
.

Solving the constraint F12 = 0 by [17]

Ai = g−1aig + g−1∂ig, ai : [0, R]→ G, g : [0, R]× Σ→ G, i = φ, t, (3.4)

the action (3.3) becomes

iI = k

2π

∫
ΣR

d2xTrA2
z̄ −

ik

12π

∫
M
d2xdrTr [(g−1dg)3]− ik

4πττ
−1
2

∫
ΣR

d2xTr (aφ(R))2

+ k

2π

∫
ΣR

d2xTr [g∂φ((∂z̄ + 2Az̄)g−1)]− 2 k

2π

∫
ΣR

d2xTr [aφ(R)g(∂z̄ +Az̄)g−1]

+ ik

2π

∫
M
d2xdrTr [−(aφat − ataφ)∂rgg−1 + at∂raφ] + log(C). (3.5)

On the torus aφ(r) and at(r) commute so they are elements of the Cartan subalgebra h of
g; this is not true in general for higher genus. Moreover, by integrating out at(r) we get
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aφ(r) = aφ(0), so the amplitude (3.3) becomes

(Az̄|e−iHR|aφ(0)〉〉 = Z(Az̄, aφ(0); τ) =
∫
DgeiI , (3.6)

iI = − ik

12π

∫
M
d2xdrTr [(g−1dg)3] + k

2π

∫
ΣR

d2xTrA2
z̄ (3.7)

− ik

4πττ
−1
2

∫
ΣR

d2xTr (aφ(R))2 + k

2π

∫
ΣR

d2xTr [g∂φ((∂z̄ + 2Az̄)g−1)]

− 2 k

2π

∫
ΣR

d2xTr [aφ(R)g(∂z̄ +Az̄)g−1] + log(C).

With an appropriate, Az̄-independent choice of C, this is the chiral Wess-Zumino-Witten
path integral. For aφ(0) = 2πµ/k where µ is an integral weight of G and Az̄ = iuτ−1

2 ,
ref. [26] shows that the path integral gives the Weyl-Kac character χµ,k(u, τ):

(Az̄|e−iHR|2πµ/k〉〉 = e−
kπ
2 Tr [uτ−1

2 u]χµ,k(u, τ) = e−
kπ
2 Tr [uτ−1

2 u] θ
−
µ+ρ,k+h∨(u, τ)
θ−ρ,h∨(u, τ)

, (3.8)

where ρ and h∨ are respectively the Weyl vector and the dual Coxeter number of g. The
Weyl-odd theta function is defined as

θ−µ,k(u, τ) ≡
∑
w∈W

ε(w)θµ,k(w(u), τ) (3.9)

where W is the Weyl group of G and ε(w) is the signature of w ∈ W . θµ,k(u, τ) is the
level-k theta function for the Lie algebra g, whose definition is recalled in (A.3).

3.1 Wilson loops

The Wilson loop operator of the representation generated by the integral highest weight µ
of G, along a loop C of constant radius in M , is

Ŵµ[C] ≡ Tr µP exp
(∮

C
Â

)
= Tr µP exp

(∮
C
â

)
. (3.10)

In the last equality, we stripped off the pure gauge part of Â (recall the definition Ai =
g−1aig + g−1∂ig) due to the trace in the definition of Ŵµ[C], so we only need to look at
the equal-radius canonical commutation relation of âi(r), which we read off from (3.5):

[âjφ(r), âlt(r)] = −2π
k
δjl. (3.11)

Here we have expanded aφ,t(r) =
∑rank(g)

j=1 ajφ,t(r)H j in the Cartan-Weyl basis {H j} of the
Cartan subalgebra h of g, where j, l = 1, . . . , rank(g). For the loop Ct at r = 0 running
along the t-direction,

Ŵµ[Ct] = Tr µP exp
(∮

Ct
â

)
. (3.12)

As in the Abelian case, we map (3.12) to a “blown up” gauge-invariant operator Ŵµ[Σ]
defined on Σ, which is to be identified with the translation operator by the conjugate
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momentum ajt, acting on the aφ = 0 eigenstate |0〉. Since ât is constant on Σ, the Wilson
loop is simply given by

Ŵµ[Ct] −→ Ŵµ[Σ] ≡ Tr µ exp (ât) = χµ(ât), (3.13)

The first equality is the character of ât as an element of h. This is expressed as a Weyl
character in the second equality. We recall the latter’s definition:

χµ(ât) ≡
∑
µ′∈Ωµ

exp
[
(µ′, ât)

]
, (3.14)

where µ′ are the weights in the weight system Ωµ of the highest weight µ, which span a
highest-weight representation of G. By the Weyl character formula, (3.14) can be written
as a ratio of sums over the Weyl group W of G:

χµ(ât) = Dµ+ρ(ât)
Dρ(ât)

, where Dµ(ât) ≡
∑
w∈W

ε(w)e(w(µ),ât). (3.15)

Now, we act with Ŵµ[Σ] on the aφ = 0 eigenstate |0〉, radially evolve it and compute the
overlap with the coherent state (Az̄| with a constant field as final condition: Az̄ = iuτ−1

2 .
By using (3.8) we get

(Az̄ = iuτ−1
2 |e

−iHRŴµ[Σ]|0〉 =
∑
µ′∈Ωµ

(Az̄ = iuτ−1
2 |e

−iHR|2πµ′/k〉〉 (3.16)

= e−
kπ
2 Tr [uτ−1

2 u] ∑
µ′∈Ωµ

χµ′,k(u, τ). (3.17)

The Wilson loop operator Ŵµ[Ct] should compute the Weyl-Kac character when inserted
into the path integral –as expected from a canonical quantization. Since Ŵµ[Σ] was ob-
tained by “blowing-up” Ŵµ[Ct], we expect the amplitude (Az̄|e−iHRŴµ[Σ]|0〉 to give the
same result, namely eq. (3.17). For this to be valid, the Weyl-Kac character needs to satisfy
the identity ∑

µ′∈Ωµ
χµ′,k(u, τ) = χµ,k(u, τ). (3.18)

Because the radial evolution is linear in the initial state, this identity holds if the corre-
sponding identity is true for the Weyl character of the Lie algebra,∑

µ′∈Ωµ
χµ′ = χµ. (3.19)

This should be understood as an equality in terms of the Weyl character formula (3.15).
Intuitively, this identity should hold due to the fact that all the weights (µ′ + ρ) with
µ′ ∈ Ωµ, except for the highest weight µ, pair up under simple Weyl transformations.

As an example, let us look at the G = SU(2) case, in the spin-J representation where
2J ∈ Z≥0. In this case we have

ŴJ [Σ]|0〉 ≡ Tr J exp (ât)|0〉 =
J∑

m=−J
exp (−imât)|0〉 =

J∑
m=−J

|2πm/k〉〉. (3.20)
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The amplitude is

(Az̄ = iuτ−1
2 |e

−iHRŴJ [Σ]|0〉 = e−
kπ
2 Tr [uτ−1

2 u]
J∑

m=−J
χm,k(u, τ), (3.21)

where here we used eq. (3.8). So the question is whether the following identity holds

J∑
m=−J

χm,k(u, τ) = χJ,k(u, τ). (3.22)

To prove this, note that (the numerator of) the su(2) Weyl character trivially satisfies (3.19):

J∑
m=−J

sin((2m+ 1)2πu) = sin((2J + 1)2πu), (3.23)

The proof that this implies (3.22) is achieved by first writing down explicitly the Weyl-Kac
character

χJ,k(u, τ)

=
∑
n∈Z q

1
k+2 (J+1/2+n(k+2))2−1/4)

(
e4πiu(J+1/2+n(k+2)) − e−4πiu(J+1/2+n(k+2))

)
(e2πiu − e−2πiu)

∏∞
l=1(1− ql)(1− qle4πiu)(1− qle−4πiu) (3.24)

= q−
1
4

sin(2πu)
∏∞
l=1(1− ql)(1− qle4πiu)(1− qle−4πiu) (3.25)

×
∑
n∈Z

q
1

4(k+2) (2J+1+2n(k+2))2
sin ((2J + 1 + 2n(k + 2))2πu),

substituting it into (3.22), and comparing both sides for each |n| ∈ Z≥0.
For the n = 0 terms, note that, by differentiating (3.23) 2l-times with respect to u,

we get

(−1)l

(2π)2l
d2l

du2l (3.23), l = 0, 1, . . . ⇒

J∑
m=−J

(2m+ 1)2l sin((2m+ 1)2πu) = (2J + 1)2l sin((2J + 1)2πu). (3.26)

This implies

J∑
m=−J

eα(2m+1)2 sin((2m+ 1)2πu), α ∈ C (3.27)

=
J∑

m=−J

∞∑
l=0

1
l! (2m+ 1)2l sin((2m+ 1)2πu) (3.28)

(3.26)= eα(2J+1)2 sin((2J + 1)2πu). (3.29)

Taking α = 1/(4(k + 2)), we prove the equality of the n = 0 terms in (3.22).
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Next, for the |n| ≥ 1 terms, we note that, for any b ∈ C,

sin((2m+ 1 + 2b)2πu) + sin((2m+ 1− 2b)2πu)
= 4 sin((2m+ 1)2πu) sin(π/4− b2πu) sin(π/4 + b2πu), (3.30)

and so (3.23) implies
J∑

m=−J
[sin((2m+ 1 + 2b)2πu) + sin((2m+ 1− 2b)2πu)]

= 4 sin((2J + 1)2πu) sin(π/4− b2πu) sin(π/4 + b2πu) (3.31)
= sin((2J + 1 + 2b)2πu) + sin((2J + 1− 2b)2πu). (3.32)

Differentiating this identity 2l-times with respect to u gives
J∑

m=−J

[
(2m+ 1 + 2b)2l sin((2m+ 1 + 2b)2πu) (3.33)

+(2m+ 1− 2b)2l sin((2m+ 1− 2b)2πu)
]

= (2J + 1 + 2b)2l sin((2J + 1 + 2b)2πu) + (2J + 1− 2b)2l sin((2J + 1− 2b)2πu),

and thus for any b, α ∈ C,
J∑

m=−J

[
eα(2m+1+2b)2 sin((2m+ 1 + 2b)2πu) + eα(2m+1−2b)2 sin((2m+ 1− 2b)2πu)

]
(3.34)

= eα(2J+1+2b)2 sin((2J + 1 + 2b)2πu) + eα(2J+1−2b)2 sin((2J + 1− 2b)2πu).

Taking α = 1/(4(k + 2)) and b = |n|(k + 2), we prove the equality of the |n| ≥ 1 terms
in (3.22).

3.2 Partition function as a gauge-invariant wave function

Here we proceed in the same way as in the Abelian case. A wave function transforms as

Az̄ −→ hAz̄ ≡ hAz̄h−1 − h−1∂z̄h
−1, h : Σ̃→ G (3.35)

(U(h) ·Ψ)[Az̄] ≡ exp
(

+ k

2π

∫
Σ
d2xTr [h−1∂zhh

−1∂z̄h]− ik

12π

∫
M
d3xTr [(h−1dh)3] (3.36)

−k
π

∫
Σ
d2xTr [h−1∂zhAz̄]

)
Ψ[hAz̄].

Since we consider a simply-connected group G, the gauge group G is connected. Similarly,
starting from a wave function Ψ0[Az̄] that is not gauge-invariant, we can construct a gauge-
invariant wave function by integrating over the gauge group:

Ψ[Az̄] ≡
∫
G
D′h(U(h) ·Ψ0)[Az̄]. (3.37)

Taking Ψ0[Az̄] = (Az̄|aφ〉〉 as the seed wave function in (3.1) and after a quick calculation,
one recovers the chiral Wess-Zumino-Witten path integral (3.6). In other words, radially
evolving the wave function is equivalent to integrating over the gauge group, which results
in a gauge-invariant wave function.
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A The Riemann theta function

We define the genus-g Riemann theta function θ[ab](z,Ω) with characteristics (a, b) as in
Mumford [18],

θ[ab](z,Ω) ≡
∑
n∈Zg

exp [πi(n+ a)Ω(n+ a) + 2πi(n+ a)(z + b)], z ∈ Cg, a, b ∈ Rg, (A.1)

with the quasi-periodicity
θ[ab](z +m,Ω) = exp (2πiam) θ[ab](z,Ω), m ∈ Zg,

θ[ab](z + Ωn,Ω) = exp (−2πibn) exp (−πinΩn− 2πinz) θ[ab](z,Ω), n ∈ Zg.
(A.2)

Consider a compact, simple and simply-connected group G. We identify the root space and
the co-root space using the inner product (·, ·), for which we use the standard normalization
such that the longest roots are of square-length two. We recall also the definition of the
level-k theta function on the genus-one Riemann surface (the torus) given in [15],

θµ,k(u, τ) ≡
∑

β∨∈ΛR
exp

(
πikτ

(
β∨ + µ

k
, β∨ + µ

k

)
+ 2πik

(
u, β∨ + µ

k

))
. (A.3)

Here ΛR ≡
∑rank(g)

j=1 Zα∨j is the co-root lattice of g, where α∨j are the simple co-roots.
u ∈ ΛR, and µ is a weight. Since the Cartan matrix for a simple Lie algebra has integer
entries, (α∨j , α∨l ) ∈ Z, the theta function (A.3) has the quasi-periodicity

θµ,k(u+mjα
∨
j , τ) = exp (2πimj(α∨j , µ))θµ,k(u, τ), mj, nj ∈ Z,

θµ,k(u+ njα
∨
j , τ) = exp (−πiτ(njα∨j , njα∨j )− 2πi(u, njα∨j )) θµ,k(u, τ).

(A.4)

In particular, if µ is an integral weight, i.e. µj ≡ (α∨j , µ) ∈ Z, then θµ,k(u + mjα
∨
j , τ) =

θµ,k(u, τ).

B Quadratic differentials

We summarize essential facts about quadratic differentials on a Riemann surface from
Strebel [22] and Hubbard & Masur [27].

Consider a compact Riemann surface Σ of genus g and n punctures, endowed with a
complex structure which defines a local complex coordinate denoted by z. A (meromorphic)
quadratic differential ϕ on Σ is a (2, 0)-meromorphic differential; it locally takes the form

ϕ = h(z)dz ⊗ dz ≡ h(z)dz2, (B.1)

where h(z) is meromorphic, and under a holomorphic change of coordinate z → z̃(z), it
transforms by the chain rule as

z → z̃(z), h(z)→ h̃(z̃) =
(
dz

dz̃

)2
h(z), so that ϕ = h̃(z̃)dz̃2 = h(z)dz2. (B.2)
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When h(z) is holomorphic, then ϕ is a holomorphic quadratic differential. On a closed
genus-g > 1 Riemann surface without punctures, the complex dimension of the space of all
holomorphic quadratic differentials is (3g − 3), as a result of the Riemann-Roch theorem.

Quadratic differentials find applications in physics, especially in conformal field theory
and string field theory (see e.g. [28–31]), because they provide a convenient foliation for a
Riemann surface Σ. Given a meromorphic quadratic differential ϕ, a horizontal trajectory
is a non-self-intersecting continuous loop on which ϕ is real and positive, while a vertical
trajectory is a non-self-intersecting continuous loop on which ϕ is real and negative. Equiv-
alently, on a local patch U of Σ with complex coordinate z, and a base point p0 ∈ U , we
can define a local natural complex coordinate w on p ∈ U by

w(p) ≡
∫ p

p0

√
h(z)dz , ϕ = h(z)dz2. (B.3)

Then, on a horizontal (vertical) trajectory, w has constant imaginary (real) part. A critical
point of a ϕ meromorphic on Σ is a zero or a pole of ϕ, while all other points on Σ are called
regular points. A critical trajectory is a horizontal trajectory that joins critical points. In
general, a zero of order n is the endpoint of some (n+ 2) critical trajectories.

A quadratic differential ϕ defines a metric on Σ, which is locally given by

ds2 = |h(z)|dzdz̄ =
√
h(z)

√
h∗(z̄)dzdz̄, (B.4)

with the corresponding line element

|dw| =
√
|h(z)||dz|. (B.5)

Since h(z) is holomorphic away from critical points, the metric (B.4) is flat away from
critical points, while the curvature at a critical point is singular.

A meromorphic quadratic differential ϕ on Σ is called (Jenkins-)Strebel5 if it has “al-
most only” closed horizontal trajectories, i.e. if its non-closed horizontal trajectories cover
a set of measure zero.

There are various existence and uniqueness theorems for quadratic differentials on
a Riemann surface, with or without punctures. One of them is Theorem 21.1 of [22]
which states:

Theorem. Consider a closed genus g > 1 Riemann surface Σ without punctures. Let
{γi} (i = 1, . . . , 3g − 3) be a system of non-self-intersecting continuous closed loop, which
are homotopically non-trivial on Σ, mutually disjoint and belong to different homotopic
classes. Also let mi=1,...,3g−3 > 0. Then there exists a holomorphic Strebel differential ϕ on
Σ that divides Σ into cylinders, each of modulus Mi = Kmi, where K is a positive constant
independent of i.

For g = 1, i.e. the torus, a Strebel differential ϕ obviously exists: ϕ = dz2.
5Some parts of the mathematical literature, e.g. Hubbard & Masur [27], further restrict a Strebel differ-

ential to be holomorphic.
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