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Multi-Rate Control Design Under Input
Constraints via Fixed-Time Barrier Functions
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Aaron D. Ames , Fellow, IEEE , and Dimitra Panagou , Senior Member, IEEE

Abstract—In this letter, we introduce the notion of peri-
odic safety, which requires that the system trajectories
periodically visit a subset of a forward-invariant safe set,
and utilize it in a multi-rate framework where a high-level
planner generates a reference trajectory that is tracked by
a low-level controller under input constraints. We introduce
the notion of fixed-time barrier functions which is leveraged
by the proposed low-level controller in a quadratic pro-
gramming framework. Then, we design a model predictive
control policy for high-level planning with a bound on the
rate of change for the reference trajectory to guarantee that
periodic safety is achieved. We demonstrate the effective-
ness of the proposed strategy on a simulation example,
where the proposed fixed-time stabilizing low-level con-
troller shows successful satisfaction of control objectives,
whereas an exponentially stabilizing low-level controller
fails.

Index Terms—Lyapunov methods, hierarchical systems,
nonlinear systems.

I. INTRODUCTION

CONSTRAINTS requiring the system trajectories to
evolve in some safe set at all times while visiting

some goal set(s) are common in safety-critical applications.
Constraints pertaining to the convergence of the trajectories
to certain sets within a fixed time often appear in time-
critical applications, e.g., when a task must be completed
within a given time interval. Most popular approaches on the
control synthesis under such specifications include quadratic
programming techniques, where the safety requirements are
encoded via control barrier functions (CBFs) and conver-
gence requirements via control Lyapunov functions (CLFs),
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see, e.g., [1], [2], or via one function that encodes both the
safety and convergence requirements [3], [4].

Quadratic program (QP)-based approaches have gained pop-
ularity for control synthesis [1]–[5] in real-time, since QPs can
be solved efficiently. Most of the prior work, except [3], [4],
deals with asymptotic or exponential convergence of the
system trajectories to the desired goal set. Fixed-time sta-
bility (FxTS) [6] is a stronger notion of stability, where the
time of convergence does not depend on the initial conditions.
The problem of FxTS in the presence of input constraints is
addressed in [5] via characterization of a domain of attraction
for FxTS under input constraints.

As argued in the recent article [7], myopic control syn-
thesis approaches relying solely on QPs are susceptible to
infeasibility. To circumvent this issue, combining a high-level
planner with a low-level controller has become a popular
approach [8]–[12]. The underlying idea in these strategies is
to design low-level controllers to track a reference trajectory,
which is computed by a high-level planner using a simplified
model. In [8] the authors presented the FaSTrack framework
where the error bounds are computed using Hamilton-Jacobi
(HJ) reachability analysis. This framework has been extended
in [9], where the authors used Sum-Of-Squares (SOS) to
compute the tracking error bounds. The constraint on the
planner and the tracking error bounds may also be updated
using an iterative procedure as suggested in [10]. A differ-
ent approach that uses Model Predictive Controller (MPC)
for high-level planning has been presented in [11] where
the tracking controller is designed using control contraction
metrics.

In this work, we introduce the notion of periodic safety
where the system trajectories are required to remain in a safe
set for all times and visit a subset of this safe set periodically.
Inspired from [12], we use a multi-rate control framework
where the low-level controller and the high-level planner oper-
ate at different frequencies. The high-level planner is used to
generate a reference trajectory, and the low-level controller to
track this reference trajectory. The contribution of this letter
is twofold. First, we combine the concepts of FxTS Lyapunov
functions [5] and CBFs [1] to define the notion of fixed-
time barrier functions. We use it in a provably feasible QP,
guaranteeing fixed-time convergence to a neighborhood of the
reference trajectory from a region of attraction under input
constraints. Second, we design the constraints of the MPC
problem to consider this region of attraction of the low-level
controller in the high-level planner. Compared to [12], we
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limit the rate of change for the planned trajectory so that
the low-level controller is able to track the resulting reference
trajectory within a predefined error bound. The limitation on
rate change along with the tracking within the chosen error
bound helps the system achieve periodic safety. Furthermore,
we demonstrate that such constraints, which guarantee the cor-
rect operation of the low-level controller, do not jeopardize the
feasibility of the MPC problem. Simulations demonstrate the
fixed-time stabilizing low-level controller successfully satis-
fying the state constraints while an exponentially stabilizing
controller [1] fails.

Notation: The Minkowski sum of two sets X ,Y ⊂ R
n is

denoted as X ⊕ Y , and the Pontryagin difference as X � Y .
The set of positive integers, non-negative integers and non-
negative reals is denoted as N, N0+, and R0+, respectively.
The right and left limits of the function z : R → R

n are given
by z−(t) = limτ↗t z(τ ) and z+(t) = limτ↘t z(τ ) respectively.

II. PROBLEM FORMULATION

We first introduce the problem under study and then present
some related background material.

System Model: We consider nonlinear control affine system
of the following form:

ẋ = f (x) + g(x)u, (1)

where f : R
nx → R

nx and g : R
nx → R

nx×nu are locally
Lipschitz continuous functions with f (0) = 0, u ∈ R

nu is the
input and x ∈ R

nx is the system state. The control objective
is to design a controller u : R0+ × R

nx → U ⊂ R
nu such that

solutions to the closed loop system:

ẋ = fcl(t, x) � f (x) + g(x)u(t, x), t0 = 0, (2)

satisfy the state constraints:

x(t) ∈ X , ∀t ∈ R0+, x(iT) ∈ XT , ∀i ∈ N0+, (3)

where X ⊂ R
nx and XT ⊂ X �D with D = {x | ‖x‖ ≤ d} for

some d > 0. We assume that the input constraint set is given as
U = {u | Auu ≤ bu} for some Au ∈ R

m×nu , bu ∈ R
m. The time

constant T is a user-specified parameter that defines the update
frequency of the planned trajectory, as will be further clarified
in Section III-A. The control objectives as described in (3)
require safety of the system in terms of forward invariance
of the set X , and periodic fixed-time stability of the set XT ,
which means that the system trajectories need to visit this set
at each discrete time iT , i ∈ N0+. To capture these objectives,
we introduce the notion of periodic safety.

Definition 1 (Periodic Safety): Given the sets XT ,X ⊂ R
nx ,

with XT ⊂ X , and a time period T > 0, the set XT is said to
be periodically safe w.r.t. the safe set X for the closed-loop
system (2) if for all x(0) ∈ XT , the following holds

x(iT) ∈ XT , x(t) ∈ X , ∀ i ∈ N, ∀t ≥ 0. (4)

Figure 1 illustrates the periodic safety where the system tra-
jectories visit the set XT periodically, while remaining inside
the safe set X . There are several practical examples that
may require a system to visit a region periodically, e.g., an
autonomous robot vacuum (e.g., Roomba iRobot) docking
periodically, or a solar-powered spacecraft reorienting itself
periodically when it runs out of charge. Similar requirements

Fig. 1. Illustration of periodic safety of the set XT w.r.t. the set X .

are also commonly encoded via Signal Temporal Logic (STL)
via an “always-eventually” requirement (see, e.g., [13]).

In the context of our work, the notion of periodic safety
provides a framework to connect the low-level controller and
the high-level planner where the system requirement is to track
discrete way-points in a certain region. In particular, periodic
stability provides the multi-rate guarantee that the trajectory
x(t) stays inside of the set XT at a low frequency 1/T and
stays within X for all time. Note that this notion is stronger
than that of conditional invariance as defined in [14], where the
set X is called conditionally flow-invariant for the closed-loop
system (2) if for all x(0) ∈ XT ⊂ X , it holds that x(t) ∈ X
for all t ≥ 0. In particular, periodic safety of XT w.r.t. X
implies that X is conditionally flow-invariant. Next, we define
the notion of fixed-time domain of attraction.

Definition 2: Given a set C ⊂ R
nx and a time T > 0, a set

DC ⊂ R
nx with C ⊂ DC is a Fixed-Time Domain of Attraction

(FxT-DoA) of the set C for the closed-loop system (2), if
i) for all x(0) ∈ DC , x(t) ∈ DC for all t ∈ [0, T), and

iii) there exists 0 ≤ TC ≤ T such that limt→TC x(t) ∈ C.
The concept of FxT-DoA is important under a constrained

input u ∈ U , as it is not possible to guarantee that fixed-time
convergence can be achieved for arbitrary initial conditions. To
characterize this FxT-DoA, inspired from [4], we introduce a
class of barrier functions termed fixed-time barrier functions.

Definition 3: A continuously differentiable function
h : R

nx → R is a FxT barrier function for the set
S = {x | h(x) ≥ 0} with time TS > 0 for the closed-loop
system (2) if there exist parameters δ ∈ R, α > 0, γ1 = 1+ 1

μ

and γ2 = 1 − 1
μ

for some μ > 1, such that the following
holds:

ḣ(x) ≥ −δh(x) + α max{0,−h(x)}γ1 + α max{0,−h(x)}γ2 , (5)

for all x ∈ DS ⊂ R
nx where TS and DS are functions of δ

2α
.

Using (5), it follows from [5, Th. 1] that the set DS is a
FxT-DoA of the set S with time TS , where

DS =
{

R
nx; r < 1,{
x | h(x) ≥ −kμ

(
r − √

r2 − 1
)μ}

; r ≥ 1,
,

TS =
{ μπ

α
√

1−r2
; r < r,

μk
α(1−k) ; r ≥ r,

with r = δ
2α

and 0 < r, k < 1. In particular, existence of a
FxT barrier function h implies: 1) forward invariance of the
set DS and 2) convergence to the set S within time TS .

III. MULTI-RATE CONTROL

In this section, we present a hierarchical strategy where
we first design a high-level planner that generates a reference

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 15,2021 at 21:41:04 UTC from IEEE Xplore.  Restrictions apply.



610 IEEE CONTROL SYSTEMS LETTERS, VOL. 6, 2022

trajectory z(t), and then, a low-level controller that tracks this
reference trajectory to guarantee that the closed-loop trajectory
x(t) satisfies (3). The control input is defined as

u(t) = ul(t) + um(t), (6)

where ul and um are defined using the policy � defined as1:

� :

{
ul(t) = πl(x(t), um(t), i), u̇m(t) = 0, t ∈ Ti

u+
l (t) = ul(t), u+

m(t) = πm
(
x+(t)

)
, t/T ∈ N,

(7)

where Ti = [(i − 1)T, iT). Here, πm : R
nx → UM ⊂ U is

the control policy from the high-level planner, to be designed
in Section III-A, that generates a reference trajectory using
a Linear Time-Invariant (LTI) model of system (1), and
πl : R

nx × R
nu × N → U is the low-level control policy,

to be designed in Section III-B, that helps track this reference
trajectory. The constraint set UM ⊂ U dictates how much of
the control authority is reserved individually for the high-level
planner and the low-level controller, and is a design parameter.

A. High-Level Planning

In this section we describe the high-level planning strategy.
Reference Model: We assume that the reference trajectory

z(t) is generated using the following piecewise LTI model:

�z :

{
ż(t) = Az(t) + Bum(t), t ∈ ∪∞

i=0(iT, (i + 1)T)

z+(t) = 	z(x−(t)), t ∈ ∪∞
i=0{iT}, (8)

where T from (3) is specified by the user and the reference
trajectory z(t) ∈ R

n is assumed right continuous. The matrices
(A, B) are known and, in practice, may be computed by lin-
earizing the system dynamics (1) about the equilibrium point,
i.e., the origin. The reference input um(t) ∈ R

d and the reset
map 	z, which depend on the state of the nonlinear system (1),
are given by the higher layer as discussed next.

Model Predictive Control: We design a Model Predictive
Controller (MPC) to compute the high-level input um(t) that
defines the evolution of the reference trajectory in (8), and
to define the reset map 	z for the LTI model (8). The MPC
problem is solved at 1/T Hertz and therefore the reference
high-level input is piecewise constant, i.e., u̇m(t) = 0 ∀t ∈ T
where T = ∪∞

i=0(iT, (i + 1)T). First, we introduce the
following discrete-time linear model:

zd
i+1 = Āzd

i + B̄vi, (9)

where the transition matrices are Ā = eAT and B̄ =∫ T
0 eA(T−η)Bdη. Now notice that, as the high-level input um

is piecewise constant, if at time ti = iT the state z(iT) =
z+(iT) = zd

i and um(iT) = vi, then at time ti+1 = (i + 1)T we
have that

z−((i + 1)T) = zd
i+1. (10)

Given the discrete-time model (9) and the state of the nonlinear
system (1) x(iT), we solve the following finite-time optimal
control problem at time ti = iT ∈ T c:

min
vd

i ,zd
i|i

i+N−1∑
k=i

(
‖zd

k|i‖Q + ‖vk|i‖R

)
+ ‖zd

i+N|i‖Qf (11a)

1The closed-loop solutions of a sampled-data system are uniquely deter-
mined under piecewise continuous, bounded control inputs [15, Sec. 2.2].

s.t. zd
k+1|i = Āzd

k|i + B̄vd
k|i (11b)

‖zd
k+1|i − zd

k|i‖2 ≤ d − c (11c)

zd
k|i ∈ XT � C, vd

k|i ∈ Um (11d)

zd
i|i − x(iT) ∈ C (11e)

zd
i+N|i ∈ XF,∀k = {i, . . . , i + N − 1} (11f)

where ‖p‖Q = p�Qp and C = {x | ‖x‖ ≤ c} for some
0 < c < d such that XT �C �= ∅, where C is a set that bounds
the difference between the nominal and true system trajecto-
ries. The constraints (11c)–(11e) are used to shrink the feasible
set and allow us to guarantee that the proposed strategy
meets the design requirements, as discussed in Section III-B.
Problem (11) computes an initial condition zd

i|i and a sequence
of open-loop actions vd

i = [vd
i|i, . . . , vd

i+N|i] such that the pre-
dicted trajectory steers the system to the terminal set XF ⊂ XT ,
while minimizing the cost and satisfying state and input
constraints. Let

vd,∗
i = [vd,∗

i|i , . . . , vd,∗
i+N|i], zd,∗

i = [zd,∗
i|i , . . . , zd,∗

i+N|i] (12)

be the optimal solution of (11), then the high-level policy is

πm(x(iT)) =
{

um(t) = vd,∗
i|i t = iT ∈ T c

u̇m(t) = 0 t ∈ T (13)

Finally, we define the reset map for (8) as follows:

	z(x(iT)) = zd,∗
i|i . (14)

B. Low-Level Control Synthesis

In this section we design the low-level policy πl. Consider
the system dynamics (1) under the effect of the policy (7):

ẋ(t) = f (x(t)) + g(x(t))(ul(t) + um(t)). (15)

We define the sets Di and Ci as

Di � z−(iT) ⊕ D = {x | ‖x − z−(iT)‖ ≤ d}, (16)

Ci � z−(iT) ⊕ C = {x | ‖x − z−(iT)‖ ≤ c}. (17)

We show in Section IV that Ci ⊂ Di+1 (guaranteed by bound
on the rate change of the reference trajectory z(t) in (11c))
along with Di ⊂ X and Ci ⊂ XT (guaranteed by (11e)) guar-
antees that closed-loop trajectories meet the objectives in (3).
Under these considerations, the low-level control objective for
t ∈ Ti = [(i − 1)T, iT) is to design the policy πl such that
the set Di is FxT-DoA for the set Ci. To this end, for the time
interval Ti with i ∈ N0+, consider the candidate FxT barrier
function hi : R

nx → R defined as

hi(x(t)) = 1

2
c2 − 1

2
‖x(t) − z−(iT)‖2, t ∈ Ti. (18)

and define the following QP:

min
ul,δ

1

2
u2

l + q

2
δ2 + qδ (19a)

s.t. Au(ul + um) ≤ bu, (19b)

Lf hi(x) + Lghi(x)(um + ul) ≥ −δhi(x)

+ α max{0,−hi(x)}γ1

+ α max{0,−hi(x)}γ2 (19c)
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where q > 0 and um = πm(x(i − 1)T). We denote the optimal
solution of the QP (19) as (u�

l (x, um, i), δ�(x, um, i)) and define
the low-level policy as

πl(x(t), um(t), i) = u�
l (x(t), um, i). (20)

The constraint (19b) guarantees that u = ul + um ∈ U . The
parameters μ, α, γ1, γ2 in (19c) are fixed, and are chosen as
α = max

{
μk

(1−k)T ,
μπ

T
√

1−r2

}
, γ1 = 1 + 1

μ
and γ2 = 1 − 1

μ
with

μ > 1 and 0 < r, k < 1, so that the closed-loop trajectories
reach the zero super-level set of the FxT barrier function hi
within the time step T .

IV. CLOSED-LOOP PROPERTIES

In this section we show the properties of the proposed multi-
rate control architecture. Consider the closed-loop system (15)
under the control input (7) with policies πm and πl defined
in (13) and (20), respectively. Below, we explain how we show
that the closed-loop trajectories satisfy (3).
A. First, we show in Lemma 1 that under the low-level

controller ul, the set Di is FxT-DoA for the set Ci;
B. Next, in Theorem 1 we show recursive feasibility of the

MPC so that the closed-loop trajectories satisfy x((i −
1)T) ∈ Di for all i ∈ N, which along with item A, implies
that the closed-loop trajectories satisfy (3).

A. Fixed Time Domain of Attraction

In this section, we show that under the low-level controller
defined as the optimal solution of the QP (19), the set Di is
a FxT-DoA for the set Ci. To this end, it is essential that the
QP (19) is feasible for all x so that the low-level controller is
well-defined. The slack term δ ensures the feasibility of the
QP (19) for all x /∈ ∂Ci. For the feasibility of the QP (19)
for x ∈ ∂Ci, we make the following assumption, which is a
standard assumption in the literature for guaranteeing forward
invariance (see [16] for more details).

Assumption 1: For all x ∈ ∂Ci, i ∈ Z+, and um ∈ UM , there
exists ul ∈ Ul such that the following holds:

Lf hi(x) + Lghi(x)(um + ul) ≥ 0.

From Definition 3, we know that FxT-DoA depends on the
ratio δ

2α
. We make the following assumption on the maximum

value of δ�(x) as the solution of the QP (19) so that hi is a
FxT barrier function for Ci and Di is its FxT-DoA.

Assumption 2: For each interval Ti, the solution
(u�(x(t), um, i), δ�(x(t), um, i)) of the QP (19) is continuous
for all t ∈ Ti and the following holds

sup
t∈Ti

δ�(x(t), um, i)

2α
≤ r̄ �

( d2−c2

2 )
1
μ

2k
+ k

2( d2−c2

2 )
1
μ

. (21)

Remark 1: As argued in [5], for given input bounds (dic-
tated by the set U), the value of the slack term δ in QP (19)
depends on the time of convergence T . Furthermore, the upper-
bound in (21) depends on the parameters c and k, where
0 < c < d is such that XT � C is non-empty and 0 < k < 1.
Thus, in practice, numerical simulations can guide the choice
of the parameters c, k, and the time T , so that (21) can be
satisfied.

Lemma 1: Suppose that Assumptions 1-2 hold. Then, for
each time interval Ti with i ∈ N, under the control policy (20),
it holds that for all x((i−1)T) ∈ Di, the closed-loop trajectory
x(t) satisfies x(t) ∈ Di for all t ∈ Ti and x−(iT) ∈ Ci.

Proof: Under Assumption 1, it follows from [2, Lemma 2]
that the QP (19) is feasible for all x. Denote DCi as a FxT-
DoA for the set Ci for the time T . Note that by definition,
Ci = {x | hi(x) ≥ 0}. We first compute an expression for
DCi and then, we show that under Assumption 2, Di ⊆ DCi .
From [5, Th. 1], we know that the FxT-DoA DCi is given as
a function of rM = sup r� = δ�

2α
, i.e., the maximum value of

the ratio r�. We consider the two cases, namely rM < 1 and
rM ≥ 1 separately. For rM < 1, it follows from [5, Th. 1] that
DCi = R

nx is the FxT-DoA for Ci. Thus, Di is also a FxT-DoA
of the set Ci. For rM ≥ 1, it follows from [5, Th. 1] that a
FxT-DoA (i.e., the set DCi ) is given as

DCi =
{

x | hi(x) ≥ − inf
t∈Ti

kμ
(

r�(x(t)) −
√

(r�(x(t)))2 − 1
)μ

}
.

Note that

inf
t∈Ti

r�(x(t)) −
√

(r�(x(t)))2 − 1 = rM −
√

r2
M − 1 (22)

where the equality follows from the fact that (r−√
r2 − 1) is a

monotonically decreasing function for r ≥ 1. Thus, it follows

that DCi = {x | hi(x) ≥ −kμ(rM −
√

r2
M − 1)μ}. With the FxT

barrier function hi(x) in (18), we have

DCi =
{

x | 1

2
‖x − z−(iT)‖2 ≤ kμ

(
rM −

√
r2

M − 1

)μ

+ 1

2
c2.

}
(23)

Now, under Assumption 2, it holds that rM ≤ ( d2−c2
2 )

1
μ

2k +
k

2( d2−c2
2 )

1
μ

. By re-arranging this inequality, we obtain that under

Assumption 2, it holds that

1

2
d2 ≤ kμ

(
rM −

√
r2

M − 1

)μ

+ 1

2
c2. (24)

Now, for any x((i − 1)T) ∈ Di, it holds that ‖x((i − 1)T) −
z−(iT)‖ ≤ d. Thus, it follows from (24) that

1

2
‖x((i − 1)T) − z−(iT)‖2 ≤ kμ

(
rM −

√
r2

M − 1

)μ

+ 1

2
c2,

for all x((i − 1)T) ∈ Di. Using this, and (23), it follows that
Di = DCi . Hence, we have that Di is a FxT-DoA of the set Ci.
Thus, from [5, Th. 1], it follows that the closed-loop trajecto-
ries of (2) will reach the set Ci for any x((i−1)T) ∈ Di within a
fixed time T1 that satisfies T1 ≤ max{ μk

α(1−k) ,
μπ

α
√

1−r2
}. For the

choice of α = max{ μk
(1−k)T ,

μπ

T
√

1−r2
}, it follows that T1 ≤ T .

Thus, the system trajectories reach the set Ci on or before
t = (i − 1)T + T = iT .

Finally, we show that the closed-loop trajectories remain in
the set Ci till t = iT , i.e., the set Ci is forward invariant for
the closed-loop trajectories of (2). Let t = ti � (i − 1)T + T1
denote the first time instant when the closed-loop trajectories
of (2) reach the boundary of the set Ci, i.e., hi(x(ti)) = 0. From
the analysis in the first part of the lemma, it holds that ti ≤
iT . From (19c), it follows that ḣi(x) ≥ −δ�(x, um, i)hi(x) ≥
−δMhi(x) for all x ∈ Ci, where δM = supt∈Ti

δ�(x(t), um, i).
The proof can be completed using [1, Proposition 1].
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Thus, satisfaction of (19c) implies that system trajectories
reach the set Ci on or before t = iT , and stay there till t = iT .
Now, in order for the closed-loop trajectories to reach the set
Ci+1 on or before t = (i+1)T , it is required that x(iT) ∈ Di+1,
which is shown in the following lemma.

Lemma 2: If the MPC problem (11) is feasible at time ti =
iT , then x(iT) ∈ Di+1.

Proof: Since the MPC problem (11) is feasible at time ti =
iT , consider the optimal MPC solution (12) at time ti = iT .
By definition, we have that x(iT) − z∗,d

i|i ∈ C, which implies

that ‖x(iT) − z∗,d
i|i ‖ ≤ c. Furthermore, by feasibility of the

optimal MPC solution (12) for problem (11), we have that
‖z∗,d

i+1|i − z∗,d
i|i ‖ ≤ d − c. This implies that

‖x(iT) − z∗,d
i+1|i‖ = ‖x(iT) − z∗,d

i|i + z∗,d
i|i − z∗,d

i+1|i‖
≤ ‖x(iT) − z∗,d

i|i ‖ + ‖z∗,d
i|i − z∗,d

i+1|i‖ ≤ d

Finally, from (10) we have that z∗,d
i+1|i = z−((i + 1)T). Thus,

from the above equation we conclude that ‖x(iT) − z−((i +
1)T)‖ ≤ d, which implies that x(iT) ∈ Di+1.

B. MPC Recursive Feasibility and Constraint Satisfaction

So far, we have shown that feasibility of the MPC guar-
antees that x(iT) ∈ Di+1, which, under the low-level control
policy (20), guarantees that x((i + 1)T) ∈ Ci+1. Thus, what
is remaining to be shown is that the MPC (11) is recursively
feasible, i.e., if (11) is feasible at t = 0T , then it is feasible
at t = iT for all i ∈ N. This would guarantee that x(iT) ∈ Ci
(and hence, x(iT) ∈ XT ) for all i ∈ N. We make the fol-
lowing assumption for the high-level planner that would help
guarantee recursive feasibility of the MPC (11).

Assumption 3: For all i ∈ N, the set XF is invariant for the
autonomous discrete time model zd((i + 1)T) = Āzd(iT) and
it holds that ‖zd(iT) − Āzd(iT)‖ ≤ d − c.

Remark 2: The above assumption is standard in the MPC
literature [17], [18] and it allows us to guarantee that the MPC
problem is feasible at all time instances. In practice, the set
XF can be chosen as a small neighborhood of the origin.

We are ready to state our result showing that the hierarchical
control strategy in Section III leads to satisfaction of (3).

Theorem 1: Let Assumptions 1-3 hold and consider the
closed-loop system (15) under the control policy (7), where
πm is defined in (13) and πl is defined in (20). If at time
t = 0 problem (11) is feasible, then the closed-loop trajecto-
ries under the control policy (7) satisfy (3), i.e., the set XT is
periodically safe w.r.t. the set X with period T .

Proof: The proof proceeds by induction. Let
[zd,∗

i|i , zd,∗
i+1|i, . . . , zd,∗

i+N|i] and [ud,∗
i|i , . . . , ud,∗

i+N−1|i] be the
optimal state input sequence to the MPC problem (11) at
time ti = iT . Then from the feasibility of the MPC problem
and Proposition 2 we have that x(iT) ∈ Di+1, which together
with Lemma 1 implies that x((i + 1)T) ∈ Ci+1. From (10)
we have z∗,d

i+1|i = z−((i + 1)T), which in turn implies that

x((i + 1)T) − zd,∗
i+1|i = x((i + 1)T) − z−((i + 1)T) ∈ C, and

therefore, by Assumption 3, the following sequences of states
and inputs

[zd,∗
i+1|i, . . . , zd,∗

i+N|i, Āzd,∗
i+N|i], [ud,∗

i+1|i, . . . , ud,∗
i+N−1|i, 0] (25)

Fig. 2. Plots that depict the system and the values of the barrier function
hi and total input um + ul .

are feasible at time ti+1 = (i+1)T for the MPC problem (11).
We have shown that if the MPC problem (11) is feasible
at time ti = iT , then the MPC problem is feasible at time
ti+1 = (i + 1)T . Per assumption of the theorem, problem (11)
is feasible at time t0 = 0, and hence, we conclude by induction
that (11) is feasible for all ti = iT and for all i ∈ N0+.

Next, we show that the state and input constraints are sat-
isfied for the closed-loop system. Notice that by definition
um(t) = v∗

i|i ∈ Um for all t ∈ [iT, (i+1)T) and from Lemma 1,
we have the low-level controller returns a feasible control
action ul(t), therefore we have that

u(t) = ul(t) + um(t) ∈ U ,∀t ∈ R0+. (26)

Finally, from the feasibility of the state-input sequences in (25)
for the MPC problem (11), we have that

xd,∗
i|i ∈ XT � C and x(iT) − xd,∗

i|i ∈ C, ∀i ∈ N0+. (27)

From the above equation we conclude that x(iT) ∈ XT for
all i ∈ N0+. Note that since z−(iT) ∈ XT � C, C ⊂ D, and
XT = X � D, it follows that Di = {z−(iT)} ⊕ D ⊂ X for all
i ∈ N. From [5, Th. 1], the set Di is forward-invariant for the
closed-loop trajectories x(t), i.e., x(t) ∈ Di for t ∈ [(i−1)T, iT)

for all i ∈ N. Hence, it follows that x(t) ∈ X for all t ≥ 0.
Thus, the closed-loop trajectories under the control policy (7)
satisfy (3), i.e., the set XT is periodically safe w.r.t. the set X
with period T .

V. SIMULATIONS

In this section, we present a simulation case study where we
use the proposed strategy to steer a Segway to the origin.2 The
state of the system are the position p, the velocity v, the rod
angle θ and the angular velocity ω (see Figure 2). The control
action is the voltage commanded to the motor and the equa-
tions of motion used to simulate the system can be found
in [19, Sec. IV.B]. In this simulation, we run the high-level
MPC planner at 5Hz and the low-level controller at 10kHz
with parameters d = 0.6 and c = 0.005. We choose the set
XT = {x = [p, v, θ, ω]T | |p| ≤ 10, |v| ≤ 5, |θ | ≤ 0.3, |ω| ≤
10π},XF = {0}, input bounds ‖u‖ ≤ 25 with ‖um‖ ≤ 15. In
the first scenario, the initial conditions are [−1.0 0 0.1 0.3]T

and T = 0.2. Figure 2 shows the evolution of the FxT bar-
rier functions hi and the control input u. It can be seen that
the input constraints are always satisfied, and the FxT barrier
functions reach zero at each time step T , leading to periodic
safety of the underlying set X .

2Code available at github.com/kunalgarg42/fxts_multi_rate.
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Fig. 3. Simulation results demonstrating the proposed method. (Left) The trajectory x(t) projected onto p−θ − t axes. In each interval [iT , (i +1)T ),
FxT-DoA Di is depicted as the colored region which decays to the set Ci by the end of the interval. (Middle) Projection of the closed-loop trajectory
on the p − θ plane. The trajectory leaves and enters the set XT after t = 2T and before t = 3T , respectively. (Right) Illustration of a scenario
where the trajectory x̄(t) generated using an exponentially stabilizing CLF fails to enter C1, leading to infeasibility of the MPC at t = 1T , whereas
the trajectory x(t) generated by the proposed method enters C1 before t = 1T .

Periodic safety is also evident from the left figure in
Figure 3, where the closed-loop trajectories are shown to
converge to the set Ci by end of each interval Ti. The mid-
dle plot in Figure 3 shows the projection of the closed-loop
trajectories on the p − θ plane. It can be seen from the inset
plot that the closed-loop trajectory leaves the set XT in the
interval T3 and returns to the set before the next time step.
It can be observed (as discussed in Section III) that the sets
Ci,Di satisfy Ci ⊂ XT and Di ⊂ X , respectively, guaranteeing
x(iT) ∈ XT and x(t) ∈ X , i.e., periodic safety of the set XT
w.r.t. the set X .

To compare the performance of the fixed-time stabilizing
controller with an exponentially stabilizing one at the low
level, we performed a simulation with initial conditions very
close to the boundary of the set XT . We chose XT = {x =
[p, v, θ, ω]T | |p| ≤ 10, |v| ≤ 5, |θ | ≤ 0.5, |ω| ≤ 10π} and
initialized the system with θ(0) = 0.495. In this case, the
parameters are chosen as d = 1, c = 0.04 and T = 0.25. The
right plot on Figure 3 shows the trajectory x(t) generated by
the proposed controller, and the trajectory x̄(t) generated by an
exponentially stabilizing controller [1] with c3 = α. The inset
plot on the right plot of Figure 3 shows that both x(t) and x̄(t)
leave the set XT . The closed-loop trajectory x(t) returns back
to the set XT before t = 1T , while x̄(t) fails to do so, leading
to infeasibility of the MPC at t = 1T . This demonstrates the
efficacy of the proposed framework over the existing methods
that use exponentially stabilizing controllers.

VI. CONCLUSION

In this letter, we introduced the notion of periodic safety
requiring system trajectories to visit a subset of a safe
set periodically. We defined the notion of fixed-time bar-
rier function and used it in a multi-rate control framework,
with MPC as a high-level planner, for control synthesis. We
demonstrated that the proposed framework is capable of solv-
ing corner cases where exponentially stabilizing controllers
might fail. Future work includes studying the robustness
properties of the proposed framework by considering model
uncertainties.

In future, in the light of Remark 1, the authors would like
to study (numerically, using state-space sampling, or analyt-
ically) the effect of the parameters c, k and period T so that
Assumption 2 holds for a given problem setup.
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