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Multi-Rate Control Design Under Input
Constraints via Fixed-Time Barrier Functions

Kunal Garg
Aaron D. Ames

Abstract—In this letter, we introduce the notion of peri-
odic safety, which requires that the system trajectories
periodically visit a subset of a forward-invariant safe set,
and utilize it in a multi-rate framework where a high-level
planner generates a reference trajectory that is tracked by
a low-level controller under input constraints. We introduce
the notion of fixed-time barrier functions which is leveraged
by the proposed low-level controller in a quadratic pro-
gramming framework. Then, we design a model predictive
control policy for high-level planning with a bound on the
rate of change for the reference trajectory to guarantee that
periodic safety is achieved. We demonstrate the effective-
ness of the proposed strategy on a simulation example,
where the proposed fixed-time stabilizing low-level con-
troller shows successful satisfaction of control objectives,
whereas an exponentially stabilizing low-level controller
fails.

Index Terms—Lyapunov methods, hierarchical systems,
nonlinear systems.

|. INTRODUCTION

ONSTRAINTS requiring the system trajectories to

evolve in some safe set at all times while visiting
some goal set(s) are common in safety-critical applications.
Constraints pertaining to the convergence of the trajectories
to certain sets within a fixed time often appear in time-
critical applications, e.g., when a task must be completed
within a given time interval. Most popular approaches on the
control synthesis under such specifications include quadratic
programming techniques, where the safety requirements are
encoded via control barrier functions (CBFs) and conver-
gence requirements via control Lyapunov functions (CLFs),
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see, e.g., [1], [2], or via one function that encodes both the
safety and convergence requirements [3], [4].

Quadratic program (QP)-based approaches have gained pop-
ularity for control synthesis [1]-[5] in real-time, since QPs can
be solved efficiently. Most of the prior work, except [3], [4],
deals with asymptotic or exponential convergence of the
system trajectories to the desired goal set. Fixed-time sta-
bility (FxTS) [6] is a stronger notion of stability, where the
time of convergence does not depend on the initial conditions.
The problem of FxTS in the presence of input constraints is
addressed in [5] via characterization of a domain of attraction
for FXTS under input constraints.

As argued in the recent article [7], myopic control syn-
thesis approaches relying solely on QPs are susceptible to
infeasibility. To circumvent this issue, combining a high-level
planner with a low-level controller has become a popular
approach [8]-[12]. The underlying idea in these strategies is
to design low-level controllers to track a reference trajectory,
which is computed by a high-level planner using a simplified
model. In [8] the authors presented the FaSTrack framework
where the error bounds are computed using Hamilton-Jacobi
(HJ) reachability analysis. This framework has been extended
in [9], where the authors used Sum-Of-Squares (SOS) to
compute the tracking error bounds. The constraint on the
planner and the tracking error bounds may also be updated
using an iterative procedure as suggested in [10]. A differ-
ent approach that uses Model Predictive Controller (MPC)
for high-level planning has been presented in [11] where
the tracking controller is designed using control contraction
metrics.

In this work, we introduce the notion of periodic safety
where the system trajectories are required to remain in a safe
set for all times and visit a subset of this safe set periodically.
Inspired from [12], we use a multi-rate control framework
where the low-level controller and the high-level planner oper-
ate at different frequencies. The high-level planner is used to
generate a reference trajectory, and the low-level controller to
track this reference trajectory. The contribution of this letter
is twofold. First, we combine the concepts of FxTS Lyapunov
functions [5] and CBFs [1] to define the notion of fixed-
time barrier functions. We use it in a provably feasible QP,
guaranteeing fixed-time convergence to a neighborhood of the
reference trajectory from a region of attraction under input
constraints. Second, we design the constraints of the MPC
problem to consider this region of attraction of the low-level
controller in the high-level planner. Compared to [12], we
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limit the rate of change for the planned trajectory so that
the low-level controller is able to track the resulting reference
trajectory within a predefined error bound. The limitation on
rate change along with the tracking within the chosen error
bound helps the system achieve periodic safety. Furthermore,
we demonstrate that such constraints, which guarantee the cor-
rect operation of the low-level controller, do not jeopardize the
feasibility of the MPC problem. Simulations demonstrate the
fixed-time stabilizing low-level controller successfully satis-
fying the state constraints while an exponentially stabilizing
controller [1] fails.

Notation: The Minkowski sum of two sets X, )Y C R” is
denoted as X @ ), and the Pontryagin difference as X & ).
The set of positive integers, non-negative integers and non-
negative reals is denoted as N, No;, and Rg4, respectively.
The right and left limits of the function z : R — R” are given
by z7 (1) = lim;  z(7) and z¥ (1) = lim,\, z(7) respectively.

Il. PROBLEM FORMULATION

We first introduce the problem under study and then present
some related background material.

System Model: We consider nonlinear control affine system
of the following form:

X =f(x) +gMu, 6]

where f : R — R™ and g : R™ — R™*™ are locally
Lipschitz continuous functions with f(0) = 0, u € R™ is the
input and x € R™ is the system state. The control objective
is to design a controller u : Roy x R™ — I/ C R™ such that
solutions to the closed loop system:

I =falt,x) £ f(0) +g@u(t, x), 1 =0, 2)
satisfy the state constraints:
x(t) € X, Vt € Roy, x(iT) € X7, Vi € No4, 3)

where X C R™ and Xr C X ©D with D = {x | ||x|| < d} for
some d > 0. We assume that the input constraint set is given as
U= {u|Au < b,} for some A, € R™*"™ b, € R™. The time
constant 7 is a user-specified parameter that defines the update
frequency of the planned trajectory, as will be further clarified
in Section III-A. The control objectives as described in (3)
require safety of the system in terms of forward invariance
of the set X, and periodic fixed-time stability of the set X7,
which means that the system trajectories need to visit this set
at each discrete time iT, i € No4. To capture these objectives,
we introduce the notion of periodic safety.

Definition 1 (Periodic Safety): Given the sets X7, X C R,
with Xr C X, and a time period T > 0, the set X7 is said to
be periodically safe w.r.t. the safe set X for the closed-loop
system (2) if for all x(0) € A7, the following holds

x(iT) € Xr, x() e X, VieN, Vt>0. 4)

Figure 1 illustrates the periodic safety where the system tra-
jectories visit the set X7 periodically, while remaining inside
the safe set X'. There are several practical examples that
may require a system to visit a region periodically, e.g., an
autonomous robot vacuum (e.g., Roomba iRobot) docking
periodically, or a solar-powered spacecraft reorienting itself
periodically when it runs out of charge. Similar requirements

Fig. 1. lllustration of periodic safety of the set X1 w.r.t. the set X’.
are also commonly encoded via Signal Temporal Logic (STL)
via an “always-eventually” requirement (see, e.g., [13]).

In the context of our work, the notion of periodic safety
provides a framework to connect the low-level controller and
the high-level planner where the system requirement is to track
discrete way-points in a certain region. In particular, periodic
stability provides the multi-rate guarantee that the trajectory
x(t) stays inside of the set X7 at a low frequency 1/7 and
stays within X" for all time. Note that this notion is stronger
than that of conditional invariance as defined in [14], where the
set X is called conditionally flow-invariant for the closed-loop
system (2) if for all x(0) € A7 C A, it holds that x(¢r) € X
for all + > 0. In particular, periodic safety of A7 wrt. X
implies that A" is conditionally flow-invariant. Next, we define
the notion of fixed-time domain of attraction.

Definition 2: Given a set C C R™ and a time 7 > 0, a set
D¢ C R™ with C C D¢ is a Fixed-Time Domain of Attraction
(FxT-DoA) of the set C for the closed-loop system (2), if

i) for all x(0) € D¢, x(t) € D¢ for all t € [0, T), and
iii) there exists 0 < T¢ < T such that lim,— 7, x(¢) € C.

The concept of FxXT-DoA is important under a constrained
input u € U, as it is not possible to guarantee that fixed-time
convergence can be achieved for arbitrary initial conditions. To
characterize this FXT-DoA, inspired from [4], we introduce a
class of barrier functions termed fixed-time barrier functions.

Definition 3: A continuously differentiable  function
h : R™ — R is a FxT barrier function for the set
S = {x | h(x) > 0} with time Ts > O for the closed-loo
system (2) if there exist parameters § € R, o > 0, y; = 1+ m

and y» =
holds:

h(x) > —8h(x) + a max{0, —h(x)}"" + @ max{0, —h(x)}2, (5)

— i for some u > 1, such that the following

for all x € Dg C R™ where Ts and Dg are functions of %
Using (5), it follows from [5, Th. 1] that the set Dg is a
FxT-DoA of the set S with time Tg, where

r<1,

R
s { [e1ne = #(r=VE=T) f rz

U
pr<r,
Te = aa/1—12
S = uk . -
ai—p =5

with r = % and 0 < r, k < 1. In particular, existence of a

FxT barrier function & implies: 1) forward invariance of the
set Dg and 2) convergence to the set S within time Ts.

I11. MuLTI-RATE CONTROL

In this section, we present a hierarchical strategy where
we first design a high-level planner that generates a reference
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trajectory z(f), and then, a low-level controller that tracks this
reference trajectory to guarantee that the closed-loop trajectory
x(1) satisfies (3). The control input is defined as

u(t) = (1) + up(1), (6)
where u; and u,, are defined using the policy IT defined as':

Ju@® = mx@), un(0), 1), (@) =0, teT; 7
ul (1) = (1), ufh(t) =mu(xt (@), /T €N, @

where 7; = [(i — DT, iT). Here, 7, : R™ — Uy C U is
the control policy from the high-level planner, to be designed
in Section III-A, that generates a reference trajectory using
a Linear Time-Invariant (LTI) model of system (1), and
m; c R™ x R™ x N — U is the low-level control policy,
to be designed in Section III-B, that helps track this reference
trajectory. The constraint set Uy C U dictates how much of
the control authority is reserved individually for the high-level
planner and the low-level controller, and is a design parameter.

A. High-Level Planning

In this section we describe the high-level planning strategy.
Reference Model: We assume that the reference trajectory
z(t) is generated using the following piecewise LTI model:

s . [50 = Az + Bun(n. 1€ UXGT. i+ 1)T)
‘ 7H(n) = A (x (D), te Ui:(){iT},

where T from (3) is specified by the user and the reference
trajectory z(¢) € R" is assumed right continuous. The matrices
(A, B) are known and, in practice, may be computed by lin-
earizing the system dynamics (1) about the equilibrium point,
i.e., the origin. The reference input u,(f) € RY and the reset
map A,, which depend on the state of the nonlinear system (1),
are given by the higher layer as discussed next.

Model Predictive Control: We design a Model Predictive
Controller (MPC) to compute the high-level input u,,(f) that
defines the evolution of the reference trajectory in (8), and
to define the reset map A, for the LTI model (8). The MPC
problem is solved at 1/7 Hertz and therefore the reference
high-level input is piecewise constant, i.e., i, (1) =0 Vr € T
where 7 = UX (T, (i + 1)T). First, we introduce the
following discrete-time linear model:

2 = Az + Bu, ©)

(®)

where the transition matrices are A = e and B =
J T Bdn. Now notice that, as the high-level input i,
is piecewise constant, if at time #; = iT the state z(iT) =
(T = zﬁl and u,,(iT) = v;, then at time tiy1 = (i+ 1)T we
have that

T+ DD =7,

Given the discrete-time model (9) and the state of the nonlinear
system (1) x(iT), we solve the following finite-time optimal
control problem at time #; = iT € 7°¢:

(10)

i+N—1
. d d
min > (Izfillo + Ivuile) + Inylley (1)
Violili j=i

IThe closed-loop solutions of a sampled-data system are uniquely deter-
mined under piecewise continuous, bounded control inputs [15, Sec. 2.2].

st 2y = Al + B, (11b)
Iz 1y — 2hillz <d —c (11¢)
g e XreC. v el (11d)
@ —x(in ec (11e)
oy € Xp Vh=1{i,....i+N—1} (11D

where |pllp = p'Op and C = {x | |lx]| < ¢} for some
0 < ¢ < d such that X7 ©6C # ¥, where C is a set that bounds
the difference between the nominal and true system trajecto-
ries. The constraints (11c)—(11e) are used to shrink the feasible
set and allow us to guarantee that the proposed strategy
meets the design requirements, as discussed in Section III-B.
Problem (11) computes an initial condition zﬁi and a sequence
of open-loop actions vf’ = [vfll-, ceey V?+N|i] such that the pre-
dicted trajectory steers the system to the terminal set Xp C A7,
while minimizing the cost and satisfying state and input
constraints. Let

d,*

=1t (1)

d,* d,* d,*

; ooV

4 < Vienji

be the optimal solution of (11), then the high-level policy is

d,* . .

. wy(t) =vy" t=iT €TC
T)=1." ili 13
MWH){WmZO s (13)

Finally, we define the reset map for (8) as follows:
AL(x(iT)) = 2", (14)

B. Low-Level Control Synthesis

In this section we design the low-level policy ;. Consider
the system dynamics (1) under the effect of the policy (7):

x(t) = f(x(2)) + gx(0) (i (t) + um(1)). (15)

We define the sets D; and C; as
D2z (@D =({x||x—z (D <d}, (16)
CGE27 (T®C=1{x|x—z (D] <c} A7)

We show in Section IV that C; C D;;; (guaranteed by bound
on the rate change of the reference trajectory z(¢) in (l1c))
along with D; C X and C; C Xr (guaranteed by (11e)) guar-
antees that closed-loop trajectories meet the objectives in (3).
Under these considerations, the low-level control objective for
t € 7, = [(i — DT,iT) is to design the policy 7; such that
the set D; is FXT-DoA for the set C;. To this end, for the time
interval 7; with i € No4, consider the candidate FxT barrier
function h; : R™ — R defined as

1 1 .
() = 5¢* = SIx() =2~ (DI, €T (18)
and define the following QP:
I
- =6 8 1
rglgl 2”1+2 +gq (19a)
s.t. Ay(u; + wy) < by, (19b)
Lyhi(x) + Lghi(x) (um + u) > —8h;(x)
+ a max{0, —h;(x)}"
+ amax{0, —h;(x)}"? (19¢)
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where ¢ > 0 and u,, = 7, (x(i — 1)T). We denote the optimal
solution of the QP (19) as () (x, um, i), 8*(x, U, i)) and define
the low-level policy as

i (x (@), (1), §) = uj (x(0), um, i). (20)

The constraint (19b) guarantees that u = u; + u,, € U. The
parameters u, «, y1, y2 in (19c) are fixed, and are chosen as
_ © u _ 1 _ [
o _max{m,ﬁ}, Y1 = 1+ﬁ and V= 1—; with
w>1and 0 < r,k < 1, so that the closed-loop trajectories
reach the zero super-level set of the FxT barrier function #;

within the time step 7.

IV. CLOSED-LOOP PROPERTIES

In this section we show the properties of the proposed multi-
rate control architecture. Consider the closed-loop system (15)
under the control input (7) with policies 7, and 7; defined
in (13) and (20), respectively. Below, we explain how we show
that the closed-loop trajectories satisfy (3).

A. First, we show in Lemma 1 that under the low-level
controller u;, the set D; is FXT-DoA for the set C;;

B. Next, in Theorem 1 we show recursive feasibility of the
MPC so that the closed-loop trajectories satisfy x((i —
1)T) € D; for all i € N, which along with item A, implies
that the closed-loop trajectories satisfy (3).

A. Fixed Time Domain of Attraction

In this section, we show that under the low-level controller
defined as the optimal solution of the QP (19), the set D; is
a FXT-DoA for the set C;. To this end, it is essential that the
QP (19) is feasible for all x so that the low-level controller is
well-defined. The slack term & ensures the feasibility of the
QP (19) for all x ¢ 9C;. For the feasibility of the QP (19)
for x € dC;, we make the following assumption, which is a
standard assumption in the literature for guaranteeing forward
invariance (see [16] for more details).

Assumption 1: For all x € 9C;, i € Z, and u,, € Uy, there
exists u; € U; such that the following holds:

Lihi(x) + Lohi(x) (up + ug) = 0.

From Definition 3, we know that FXT-DoA depends on the
ratio % We make the following assumption on the maximum
value of §*(x) as the solution of the QP (19) so that A; is a
FxT barrier function for C; and D; is its FXT-DoA.

Assumption 2: For each interval 7;, the solution
(u* (x(2), uy, ), 8*(x(t), Uy, 1)) of the QP (19) is continuous
for all ¢ € 7; and the following holds

sup8 (x(2), up, 1) N (=5)

+
teT; 20 - 2k

21

=

2(459)

Remark 1: As argued in [5], for given input bounds (dic-
tated by the set U{), the value of the slack term § in QP (19)
depends on the time of convergence 7. Furthermore, the upper-
bound in (21) depends on the parameters ¢ and k, where
0 < ¢ < d is such that Xr & C is non-empty and 0 < k < 1.
Thus, in practice, numerical simulations can guide the choice
of the parameters c, k, and the time 7, so that (21) can be
satisfied.

Lemma 1: Suppose that Assumptions 1-2 hold. Then, for
each time interval 7; with i € N, under the control policy (20),
it holds that for all x((i—1)7T) € D;, the closed-loop trajectory
x(1) satisfies x(¢) € D; for all r € 7; and x~ (iT) € C;.

Proof: Under Assumption 1, it follows from [2, Lemma 2]
that the QP (19) is feasible for all x. Denote D¢, as a FxT-
DoA for the set C; for the time 7. Note that by definition,
Ci = {x | hi(x) > 0}. We first compute an expression for
D¢, and then, we show that under Assumption 2, D; C Dg,.
From [5, Th. 1], we know that the FXT-DoA D¢, is given as
a function of ry = supr* = %, i.e., the maximum value of
the ratio r*. We consider the two cases, namely ryy < 1 and
ry > 1 separately. For ry; < 1, it follows from [5, Th. 1] that
D¢, = R™ is the FXT-DoA for C;. Thus, D; is also a FXT-DoA
of the set C;. For ry; > 1, it follows from [5, Th. 1] that a
FxT-DoA (i.e., the set D¢,) is given as

De, = {x | i) = — inf K" () = Vo ) = 1)“}.
tel;
Note that

}g P(0) = V@) =1 =ry — iy =1 (22)

where the equality follows from the fact that (r—+/r2 — 1) is a
monotonically decreasing function for r > 1. Thus, it follows
that D¢, = {x | hi(x) > —kHM(ryy — /13, — D*}. With the FxT
barrier function 4;(x) in (18), we have

1 Lo
De, = {x | 5l = (D)) < k! (rM — - 1) + Ecz.}(23)

22 L
Now, under Assumption 2, it holds that ry; < ¢ 22k ¥ +

k . .. . .
m. By re-arranging this inequality, we obtain that under

Assumption 2, it holds that
1 2 n 2 . 1 2
Ed <k'\ry—ry—1 +Ec.

Now, for any x((i — 1)T) € D;, it holds that ||x(( — DT) —
z~(iT)|| < d. Thus, it follows from (24) that

(24)

L,
+ EC )
for all x((i — 1)T) € D;. Using this, and (23), it follows that
D; = D¢,. Hence, we have that D; is a FXT-DoA of the set C;.
Thus, from [5, Th. 1], it follows that the closed-loop trajecto-
ries of (2) will reach the set C; for any x((i—1)7) € D; within a

fixed time T that satisfies 77 < max{a(’f—fk), —IZ_\ For the

as/1-12

choice of @ = max{~&_ LT 1 it follows that T} < T.
A=RT 7. /1—2" -

n
%le((i — D) — 2 (D)? < k* (rM — V- 1)

Thus, the system trajectories reach the set C; on or before
t=0—-1)TH+T=1iT.

Finally, we show that the closed-loop trajectories remain in
the set C; till + = (T, i.e., the set C; is forward invariant for
the closed-loop trajectories of (2). Let t =¢#; 2 (i — DT + Ty
denote the first time instant when the closed-loop trajectories
of (2) reach the boundary of the set C;, i.e., h;(x(¢;)) = 0. From
the analysis in the first part of tbe lemma, it holds that #; <
iT. From (19c), it follows that h;(x) > —8*(x, upy, D)hi(x) >
—8mhi(x) for all x € C;, where dy = sup,c7; 8*(x(1), U, i).
The proof can be completed using [1, Proposition 1]. |
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Thus, satisfaction of (19c) implies that system trajectories
reach the set C; on or before t = iT, and stay there till r = iT.
Now, in order for the closed-loop trajectories to reach the set
Cit1 on or before t = (i+1)T, it is required that x(iT) € Djy1,
which is shown in the following lemma.

Lemma 2: 1f the MPC problem (11) is feasible at time #; =
iT, then x(iT) € Djt1.

Proof: Since the MPC problem (11) is feasible at time #; =
iT, consider the optimal MPC solution (12) at time #; = iT.
By definition, We have that x(iT) — zl‘ld € C, which implies

that ||x(iT) — z,-li || < c. Furthermore, by feasibility of the
optimal MPC solution (12) for problem (11), we have that

d
”Z;'k+l\i z|z || < d — c. This implies that
. d : d
IXGT) = 25,1l = IxGT) — ,‘l +zl|l — 7l
< IxGT) = 0+ N5 — il < d

Finally, from (10) we have that ZH—lIt 7z ((i + 1D)T). Thus,

from the above equation we conclude that ||x(iT) — z~ ((i +
1)T)| < d, which implies that x(iT) € Djy. |

B. MPC Recursive Feasibility and Constraint Satisfaction

So far, we have shown that feasibility of the MPC guar-
antees that x(i7) € D;41, which, under the low-level control
policy (20), guarantees that x((i + 1)T) € Cit1. Thus, what
is remaining to be shown is that the MPC (11) is recursively
feasible, i.e., if (11) is feasible at t = 0T, then it is feasible
at t = iT for all i € N. This would guarantee that x(iT) € C;
(and hence, x(iT) € X7) for all i € N. We make the fol-
lowing assumption for the high-level planner that would help
guarantee recursive feasibility of the MPC (11).

Assumption 3: For all i € N, the set X is invariant for the
autonomous discrete time model z4((i + 1)T) = Az4(iT) and
it holds that ||Z¢(iT) — AZ(T)|| < d — c.

Remark 2: The above assumption is standard in the MPC
literature [17], [18] and it allows us to guarantee that the MPC
problem is feasible at all time instances. In practice, the set
XF can be chosen as a small neighborhood of the origin.

We are ready to state our result showing that the hierarchical
control strategy in Section III leads to satisfaction of (3).

Theorem 1: Let Assumptions 1-3 hold and consider the
closed-loop system (15) under the control policy (7), where
7, 1s defined in (13) and 7; is defined in (20). If at time
t = 0 problem (11) is feasible, then the closed-loop trajecto-
ries under the control policy (7) satisfy (3), i.e., the set A7 is
periodically safe w.r.t. the set X' with period 7.

Proof:  The proof proceeds by induction.  Let
[2%*, 2% d* land [ ] be th
Ziji ’Zt+1|1""’Z1+N\z a “” l+N 1)i e e

optimal state input sequence to the MPC problem (11) at
time #; = iT. Then from the feasibility of the MPC problem
and Proposition 2 we have that x(iT) € D;y, which together
with Lemma 1 implies that x((i + 1)T) € Cjyi. From (10)
we have zl+1‘l = z (i + DT), which in turn implies that

(i + DT) = 275 = 2+ DT) — 27 (i + DT) € C, and
therefore, by Assumption 3, the following sequences of states
and inputs

d,* d,* 3 d® d,* d,*
(i1 -+ G AZigds [y -+ Uipy ) 01 (29)

Vi

-4
0T 2T 4T 0T 2T 4T
t t

Fig. 2. Plots that depict the system and the values of the barrier function
h; and total input um + u;.

are feasible at time t;+1 = (i+1)7 for the MPC problem (11).
We have shown that if the MPC problem (11) is feasible
at time #; = iT, then the MPC problem is feasible at time
tiy1 = (i+ 1)T. Per assumption of the theorem, problem (11)
is feasible at time #y = 0, and hence, we conclude by induction
that (11) is feasible for all #; = iT and for all i € No.

Next, we show that the state and input constraints are sat-
isfied for the closed-loop system. Notice that by definition
Uy (t) = V;'ku € Uy, for all ¢ € [iT, (i+1)T) and from Lemma 1,
we have the low-level controller returns a feasible control
action u;(t), therefore we have that

u(t) = ui(t) + um(t) € U, vt € Ro. (26)

Finally, from the feasibility of the state-input sequences in (25)
for the MPC problem (11), we have that

e XroC and x(iT) — eC, VieNyp. (@27

l|l l|l

From the above equation we conclude that x(i7) € X7 for
all i € Noy. Note that since z7(iT) € Xr&C, C C D, and
Xr = X 6D, it follows that D; = {z~(iT)} & D C X for all
i € N. From [5, Th. 1], the set D; is forward-invariant for the
closed-loop trajectories x(t), i.e., x(t) € D; fort € [(i—1)T, iT)
for all i € N. Hence, it follows that x(r) € X for all r > 0.
Thus, the closed-loop trajectories under the control policy (7)
satisfy (3), i.e., the set A7 is periodically safe w.r.t. the set X’
with period T. |

V. SIMULATIONS

In this section, we present a simulation case study where we
use the proposed strategy to steer a Segway to the origin.> The
state of the system are the position p, the velocity v, the rod
angle 6 and the angular velocity w (see Figure 2). The control
action is the voltage commanded to the motor and the equa-
tions of motion used to simulate the system can be found
in [19, Sec. IV.B]. In this simulation, we run the high-level
MPC planner at SHz and the low-level controller at 10kHz
with parameters d = 0.6 and ¢ = 0.005. We choose the set
Xr={x=Ip,v.0,0]" | Ip| <10,|v <5,|6] <03, |0| <
10}, Xr = {0}, input bounds |lu|| < 25 with ||u,| < 15. In
the first scenario, the initial conditions are [—1.0 0 0.1 0.3]7
and T = 0.2. Figure 2 shows the evolution of the FxT bar-
rier functions %; and the control input u. It can be seen that
the input constraints are always satisfied, and the FxT barrier
functions reach zero at each time step 7, leading to periodic
safety of the underlying set X.

2Code available at github.com/kunalgarg42/fxts_multi_rate.
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Fig. 3. Simulation results demonstrating the proposed method. (Left) The trajectory x(t) projected onto p—6 — t axes. In each interval [iT, (i+1)T),
FxT-DoA D; is depicted as the colored region which decays to the set C; by the end of the interval. (Middle) Projection of the closed-loop trajectory
on the p — 0 plane. The trajectory leaves and enters the set X1 after t = 2T and before t = 3T, respectively. (Right) lllustration of a scenario
where the trajectory x(t) generated using an exponentially stabilizing CLF fails to enter C4, leading to infeasibility of the MPC at t = 1T, whereas
the trajectory x(t) generated by the proposed method enters Cq before t =1T.

Periodic safety is also evident from the left figure in
Figure 3, where the closed-loop trajectories are shown to
converge to the set C; by end of each interval 7;. The mid-
dle plot in Figure 3 shows the projection of the closed-loop
trajectories on the p — 6 plane. It can be seen from the inset
plot that the closed-loop trajectory leaves the set X7 in the
interval 73 and returns to the set before the next time step.
It can be observed (as discussed in Section III) that the sets
Ci, D; satisfy C; C X7 and D; C X, respectively, guaranteeing
x(iT) € Xr and x(r) € &, i.e., periodic safety of the set Xr
w.r.t. the set X.

To compare the performance of the fixed-time stabilizing
controller with an exponentially stabilizing one at the low
level, we performed a simulation with initial conditions very
close to the boundary of the set Xr. We chose A7 = {x =
[p.v,6,w]" | |p| < 10,|v| < 5,10] < 0.5, || < 107} and
initialized the system with 6(0) = 0.495. In this case, the
parameters are chosen as d = 1,¢ = 0.04 and T = 0.25. The
right plot on Figure 3 shows the trajectory x(f) generated by
the proposed controller, and the trajectory x(f) generated by an
exponentially stabilizing controller [1] with ¢3 = «. The inset
plot on the right plot of Figure 3 shows that both x(#) and x(f)
leave the set X7. The closed-loop trajectory x(f) returns back
to the set X7 before t = 17T, while x(¢) fails to do so, leading
to infeasibility of the MPC at r = 17. This demonstrates the
efficacy of the proposed framework over the existing methods
that use exponentially stabilizing controllers.

VI. CONCLUSION

In this letter, we introduced the notion of periodic safety
requiring system trajectories to visit a subset of a safe
set periodically. We defined the notion of fixed-time bar-
rier function and used it in a multi-rate control framework,
with MPC as a high-level planner, for control synthesis. We
demonstrated that the proposed framework is capable of solv-
ing corner cases where exponentially stabilizing controllers
might fail. Future work includes studying the robustness
properties of the proposed framework by considering model
uncertainties.

In future, in the light of Remark 1, the authors would like
to study (numerically, using state-space sampling, or analyt-
ically) the effect of the parameters c, k and period T so that
Assumption 2 holds for a given problem setup.
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