IEEE.org

University of Texas at San Antonio
UTSA.LIBRARIES Y

All

IEEE Xplore

IEEE-SA IEEE Spectrum More Sites

Access provided by:

University of Texas at San Antonio
UTSA.LiBRARIES y

Browse v My Settings v Help v

Access provided by: Contact Administrator

Sign Out

Journals & Magazines > |EEE Internet of Things Journal > Volume: 8 Issue: 6 (2}

A Multikernel and Metaheuristic Feature Selection Approach for
loT Malware Threat Hunting in the Edge Layer

Publisher: IEEE

Hamed Haddadpajouh

356
Full
Text Views

Abstract

Cite This PDF

Document Sections
I. Introduction
Il. Related Work

Ill. Our Proposed
ML-Based loT
Malware Threat
Hunting Model

IV. Results and
Discussion

V. Conclusion

Authors

Figures

References

Keywords

; Alireza Mohtadi ; Ali Dehghantanaha ; Hadis Karimipour ; Xia... All Authors

Q<LO=A
Alerts

Manage Content Alerts

Add to Citation Alerts

-
Downl

PDF

Abstract:Internet-of-Things (IoT) devices are increasingly targeted, partly due to their
presence in a broad range of applications (including home and corporate environments)
In ... View more

» Metadata

Abstract:

Internet-of-Things (loT) devices are increasingly targeted, partly due to their presence in
a broad range of applications (including home and corporate environments). In this
article, we propose a multikernel support vector machine (SVM) for loT cloud-edge
gateway malware hunting, using the gray wolves optimization (GWO) technique. This
metaheuristic approach is used for optimum selection of features distinguishing betweer
malicious and benign applications at the loT cloud-edge gateway. The model is trained
with the Opcode and Bytecode of loT malware samples (i.e., the training data set
comprises 271 benign and 281 malicious Cortex A9 samples) and evaluated using the
K-fold cross-validation technique. We validate the robustness of the proposed model, in
terms of its ability to detect previously unseen loT malware samples. We achieve an
accuracy of 99.72% on the combination of the radial basis function (RBF) and
polynomial kernels. Moreover, our proposed model only requires 20 s for training in
comparison to the previous deep neural network (DNN) model that requires over 80 s to
be trained on the same data. Overall, the proposed multikernel SVM approach

Cart Create Account

Personal Sign In 42

Contact Admi
Sign Out

Q

ADVANCED SEARCH

More Like This

Improving performance of radial
basis function network based with
particle swarm optimization

2009 IEEE Congress on
Evolutionary Computation
Published: 2009

Improving generalization of radial
basis function network with
adaptive multi-objective particle
swarm optimization

2009 IEEE International
Conference on Systems, Man and
Cybernetics

Published: 2009

Show More

PDF

Help

Vietrics

More Like This

outperforms DNNs and fuzzy-based loT malware hunting techniques, in terms of
accuracy, while significantly reducing the computational cost and the training time.

Published in: IEEE Internet of Things Journal (Volume: 8 , Issue: 6, March15, 15
2021)

Page(s): 4540 - 4547 INSPEC Accession Number: 20507124

Date of Publication: 25 September 2020 DOI: 10.1109/JI0T.2020.3026660
(2]
Publisher: |[EEE

> ISSN Information:
» Funding Agency:

i= Contents

SECTION 1.
Introduction

Internet-of-Things (IoT) devices are found in various settings (e.g.,
homes and smart cities), and will be increasingly common in the
foreseeable future. For example, Cisco estimated IoT-related device sales
revenue would reach $14.4 trillion by 2022 [1]. Data collected by IoT
devices can be shared directly or via application programming interfaces
(API), to facilitate pattern collection, behavior observation, attack
prediction, quality assessment, and other decision making and policy
making [2], [3].

Hence, it is not surprising that attackers are seeking to exploit
vulnerabilities in IoT devices (hardware and software) and their
implementations. Such vulnerabilities can arise due to inherent
computational limitations, insecure network protocols, and even using
default credentials [4], [5]. An investigation of ten popular IoT devices,
for example, revealed a number of security issues, such as open telnet
ports, outdated Linux firmware, and unencrypted transmission of
sensitive data [6]. An increasing number of IoT malware have also been
reported in recent years that targeted vulnerable IoT devices [7], [8].
For example, it was estimated that the Mirai malware IoT botnet caused
more than $4207.03 damage per hour of operation in 2017 [9], [10].

Malware threat hunting refers to the identification of malicious
application(s) or malware within a network environment normally prior
to their execution. Most malware threat hunting systems use malware
analysis techniques to identify malicious and benign applications [11].
Malware analysis approaches can be broadly categorized into those
based on static analysis and those based on dynamic analysis [12]. In
static analysis, malicious applications are examined without execution
using static features (e.g., Bytecodes, control flow graph, Opcodes,
strings, and API calls) [13]. In contrast, in dynamic analysis, the
malware sample is executed in a controlled environment to observe its
behavior. Generally, IoT malware threat hunting uses static analysis.
Most IoT communications share similar patterns, and hence a
combination of statistical pattern recognition and machine learning
(ML) techniques may offer a good performance in hunting IoT malware

[6]. ML anomaly detection models can be applied directly to the
network communication of IoT devices as well as malware threat
hunting. However, a large number of features in ML algorithms may
result in overfitting during learning time, higher computational

PDF

Help

resources consumption, and lower detection accuracy [14]. This
phenomenon is known as the high dimensional problem, and can be
addressed using feature selection and feature extraction algorithms [15].
Feature selection removes redundant or irrelevant features to reduce the
size of the data, while feature extraction transforms a high dimensional
data set into a new space with fewer dimensions [16]. Many feature
selection techniques (e.g., wrappers, filters, and embedder) have been
proposed in the literature. Metaheuristic search algorithms like particle
swarm optimization (PSO) and gray wolves optimization (GWO) are
examples of wrappers that are widely used for feature selection [15],

[17]. These approaches attempt to identify the optimum feature set to
improve ML algorithms’ accuracy, and they are less prone to reach the
local optima of the features.

There have also been attempts to perform malware threat hunting in IoT
networks at the edge layer, with the aim of improving efficiency and
minimizing latency. However, edge layer resources are much more
constrained in comparison to conventional server farms. Resource
limitation and diversity of IoT nodes compound the challenge of threat
hunting at the edge layer. For example, to create a sandbox to run a
malware, to collect dynamic malware data, and then analyze these
sample would be resource demanding, and this would create a
bottleneck situation at the edge layer with current technologies.
Moreover, most IoT devices are running in real time and hence, threat
identification should also be performed in near real time. Therefore, we
posit the potential of static analysis for threat hunting at the edge-layer
in a typical IoT environment.

In this article, we propose an ML-based threat hunting model utilizing a
multikernel support vector machine (SVM) as a classifier and GWO
module for feature selection. The novelty of the proposed model lies in
the unique combination of SVM classifier’s kernels for static malware
threat analysis based on Opcode and Bytecode. Patterns in the static
analysis (e.g., string signature, byte-sequence n-grams, syntactic library
call, control flow graph, Opcode frequency distribution, and syntactic
library call) are used for threat hunting. A summary of the contributions
in this article is as follows.

1. We propose a malware threat hunting mechanism for cloud-edge
gateways in an IoT environment, based on the multikernel SVM
approach (in order to obtain high detection accuracy and F1
score). Also, we demonstrate that the proposed model outperforms
previous malware threat hunting models based on fuzzy pattern
tree and maximal-frequent pattern deep recurrent neural network
(RNN).

2. We minimize the computational costs by using a metaheuristic
feature selection algorithm to extract the optimum feature set
from static IoT applications properties (i.e., Opcode and
Bytecode). The proposed optimum feature selection algorithm
significantly reduces both training and testing times, in
comparison to prior deep RNN malware threat hunting models. In
other words, our system is more practical for malware threat
hunting in the edge layer of IoT networks.

The remainder of the article is organized as follows. Section II reviews
the related literature. The proposed multikernel treat hunting model is
explained in Section III. Section IV presents the experimental results,
followed by the conclusion in Section V.

PDF

Help

SECTION II.
Related Work

Kang et al. [18] proposed a DL model based on RNN using applications’
Opcode for malware threat hunting. The authors used word2vec long
short-term memory (LSTM) architecture for detecting malware, which
resulted in the detection accuracy of 97.59%. In addition, the proposed
model has a high computational complexity as using the
backpropagation approach consumes more computational resources.

Cakir and Dogdu [19] presented an ML model that was trained on the
microsoft malware classification challenge data set Opcodes for training
the model. The authors used the Word2Vec Opcodes operand to create
feature vectors based on a gradient boosting machine (GBM). The
proposed model resulted in the 95% detection accuracy using the five-
fold cross-validation.

Yuxin and Siyi [20] developed a deep belief network (DBN) model to
detect malware. The authors used Opcode property and employed DBN
as an autoencoder to reduce the number of features. Their proposed
feature selection module maintained the same performance (detection
accuracy) compared to the existing works that use the full feature set.

Santos et al. [21] proposed a model for hunting unknown malware which
utilized opcode sequences. The authors used weighted term frequency
(WTF) for each Opcodes before applying any classification technique. In
addition, their model leveraged from frequency-based feature selection
module for employing most effective features. In the result, the proposed
model obtained 96% detection accuracy against unknown malware.

Darabian et al. [22] used the frequent pattern of Opcode files in IoT
devices for malware threat detection. The authors obtained the accuracy
and F-measure of almost 99% with different classification modules like
SVM, KNN, MLP, random forest (RF), DT, and AdaBoost. Moreover,
Haddadpajouh et al. [23] used Opcodes as features set on a deep RNN
model to train a three-layer LSTM network. The proposed LSTM model
achieved a detection accuracy of 98.18% and 94% by 10-fold cross-
validation for seen and unseen malware, respectively.

Opcode sequences have also received increasing attention in IoT
malware detection because of the promising results based on Opcodes
features. Azmoodeh et al. [24] developed a DL-based model to detect
Internet-of-Battlefield-Things (Io0BT) malware via the device’s Opcode
sequence and they achieved 99.68% of accuracy. Dovom et al. [3]
proposed a fuzzy pattern tree ML model for malware threat hunting. The
authors applied Opcode on their proposed model and obtained 99.17%
detection accuracy. Although their proposed model could obtain a high
detection accuracy but the model has a complex structure.

Overall, previous models showed the suitability of using static properties
of executable samples for malware detection in IoT devices. Although
previous works achieved a relatively high accuracy in detecting IoT
malware samples, they are highly complex and incur significant
computational and storage costs.

SECTION III.

Our Proposed ML-Based IoT Malware
Threat Hunting Model

PDF

Help

This section presents the proposed ML-based IoT malware threat
hunting model, where we use a multikernel SVM classifier on an
optimum feature set to increase the detection accuracy while seeking to
minimize the computational cost. Optimum features are selected using
the GWO algorithm. As shown in Fig. 1, our proposed model consists of
three modules, namely, preprocessing, feature selection, and multikernel
threat hunting model (see Sections III-A — III-C).

seeeNouoflierations. ..., Multi-Kemel Engine

gl H \ 0 \ Intelligence
Pre-Processing GWO Feature ' Detaction
TEIDF *| | " solaction > | .
. L) -
: 1|00 I of(1]0
alpha

Fig. 1.
Proposed model based on an SVM multikernel engine

A. Preprocessing

We used our previously collected real-world IoT malware data set [23] to
evaluate our proposed model. The data set consists of Cortex Ag cloud-
edge gateway application with training and test sets of 548 and 100
samples, respectively. Due to a lack of diversity in the cloud-edge
device’s applications, unlike the conventional malware data set, the
number of samples in the data sets is limited. To the best of our
knowledge, this is the only publicly available IoT malware data set
collected at the edge layer. The data set offers two static properties for
each sample, namely, Opcode and Bytecode.

1. Opcode: Opcode refers to Operational Code, which is the
instruction interpreted at the hardware layer [25]. For example,
%86 OpCodes refer to microinstructions that are understandable
by Intel x86 processors. Our proposed model is optimized to work
with Cortex A9 Opcodes, which are the most widely used opcode
instruction set in IoT devices [23].

2. Bytecode: Bytecode refers to a program code that is compiled from
the source code into a low-level code designed for efficient
execution by software interpreters, such as java virtual machine
[26].

Each property includes sequences of textual data, such as sequences of
operands pop, push, mov, mul, mov, . .., ret. Each data set is vectorized
before being fed to our proposed model.

Since Bytecode and Opcode data are sequences of words and numbers,
text mining techniques are suitable for preprocessing activities.
Therefore, a word dictionary is generated from both Opcode and
Bytecode for preprocessing the data sets. TF-IDF is a common metric for
indicating how prominent a word in one document as shown in [27]. The
preprocessing module computes the occurrences of each specific word in
every Opcode and Bytecode file analyzed. Every word in the dictionary is
counted as a feature that can affect malware detection. In the proposed
model, all Opcode and Bytecode is transferred into a TF-IDF value to
keep the information about each token (Opcode, Bytecode) in each
malware/benign sample as follows:

TF (s, 0) =log(1 + f(.5)) (1)

IDF (O, D) :lOg m

TF-IDF =TF (S, O) - IDF (s, 0) 3)

PDF

Help

View Source

where s indicates a given malware/benign sample, o represents targeted
Opcode/Bytecode, D refers to the applied data set, and IV represents the
number of sample in the whole data set.

B. Feature Selection

GWO, first introduced in [28], is one of the metaheuristic optimization
methods which has been applied in various fields [29]- [30] [31]. GWO
is used to facilitate feature selection as it offers an optimum feature set
to achieve higher accuracy. Moreover, unlike other feature selection
methods, it does not require any threshold parameters to cut the
irrelevant features. This module works on the assumption that there are
three main types of wolves in nature. The leader is responsible for
making decisions, and the leader is referred to as Alpha («). The second
level in the hierarchy of gray wolves are referred to as Beta (), and the
lowest ranking gray wolves are named Omega (w). If a wolf does not
belong to one of the wolf groups, it counts as subordinary or named
Delta (§). In the GWO, « is considered as the best fitness solution. (3)
and (§) are the next fitness functions for generating the suboptimal
solution. In our case, they are used to shuffle the selected features.

All types of wolves try to find the best/optimum position for hunting
based on several attempts. Therefore, the hunting process can be
summarized in the following equations:

G :|C . Fprey (t) - Fwolf (t)| (4)
F({t+1)=F,(t)-A-G. (5)

View Source

In the above equation, G is the current position of each wolf, ¢ indicates
the current iteration, F' indicates the position vector, and Fj.y is the
position vector of the prey. A and C are coefficients and are introduced
in the following equations:

A =2ar1 —a (6)
C =2r,. (7)

View Source

In the above equations, q linearly decreases from 2 to 0 and r; and rs
are random vector lied in [0, 1] interval. Therefore, each type of wolf can
find the best position for hunting, which is in our case finding the
optimum features to reach high detection accuracy, through several
iterations as given in (10)

a=|Cy-Fo—F|,f=|C1-Fs— F|,w=|Cy-F,— F|
F1:FQ—A1~(a),F2:Fﬁ—A2~(B),F3:Fw—A3-(w)

Fi,+F, + F
F(t+1):%.

View Source

In the above equation, ¢ is the present iteration and F, , Fg , and F,, are
the location vector of the wolves. Hence, in order to find the best feature
set from the IoT data set Opcode and Bytecode properties, GWO is run
as given in Algorithm 1. In our scenario, the detection accuracy from
selected features is considered as the best position of the wolves
obtained from (10).

PDF

Help

Algorithm 1 Opcode/Bytecode Feature Selection
Algorithm by GWO

function FeatureSelectionByGwo(Lx* <list of all Opcodes>))
Initialization:

Initialize wolves’ positions, populations, maxIterations;
Calculate the feature to class mutual information vector;
Calculate the feature to feature mutual information matrix;

GWO Optimization Filter-based: > Use mutual information as a
fitness function

« : gray wolf with the highest maximum mutual informarion(fitness);
B : gray wolf with the second maximum mutual informarion(fitness);
¢ : gray wolf with the third maximum mutual information(fitness);
GWO Optimization Wrapper-based:

while [i maziteration dO

fori = 1 : populationsize do

Update(current gray wolf position) by Eq. (10);

i+ +;

end for

Update(a, A,C')

Calculate the fitness if all gray wolves;

Update(a, 3,6)

l=1+1;

end while

return « ; > the highest fitness (the most important feature)

end function

C. Multikernel Threat Hunting Model

The proposed threat hunting model is using a multikernel SVM classifier
to detect IoT malware samples. Since the applied data set includes two
classes of samples, the classification task is binary. SVM classifier is very
suitable for binary classification problems to draw a good distinction
among malware and benign samples. SVM is a supervised ML classifier
that is defined with a separating hyperplane. In a 2-D space, this
hyperplane can be a line that classifies data into two categories with the
same feature set. In high dimensional problems, SVM performs a
nonlinear process. In these high dimensional cases, SVM must use
multiple kernels to support multiple dimensions to maximize the margin
between the classes and to reduce the distance between the hyperplane
focuses [32]. The common SVM classifier kernels are as follows.

PDF

Help

1) Linear Kernel:

Tt is used when data samples of different class labels can be separated
with a simple line as shown in (11), where z and y are vectors of samples
(feature vector) for kernel function (k)

k(o,y) = ay. (11)

View Source

2) Poly Kernel:
It is used to compute the similarity between two vectors. It also
considers cross dimensions as

d
k(z,y) = (va'y+co)”. (12)
View Source

3) RBF Kernel:

It calculates the radial basis function (RBF) kernel(k) between two
vectors. Equation (13) represents this kernel,where - is the inverse of the
standard deviation of the kernel

k(z,y) = exp(—7llz — y[?). (13)

View Source

4) Sigmoid Kernel:

Tt also known as hyperbolic tangent, comes from the neural networks
field, where the bipolar sigmoid function is often used as an activation
function for artificial neurons. Sigmoid kernel is defined in the following
equation:

k (z,y) = tanh(yz"y + co) (14)
View Source

where z and y are the input vectors, + is slope and ¢, is known as
intercept, and d is degree of polynomial.

In this article, to create the optimal multikernel SVM model every two
potential kernels of SVM are combined as shown in [33]. This
combination can be achieved by calculating the average of every kernel
output as

. 1
MultiKernel = P 21: Kernel; (z,y) . (15)

View Source

After transforming the Opcode and Bytecode files into a TF-IDF
sequential vector, GWO as the feature selection approach is applied to
select the optimal subpart of Opcode and Bytecode features. The number
of iterations and population in GWO can be varied based on the number
of features. Therefore, the population was initialized to a size of 30 over
15 iterations for the GWO. Due to the nature of the GWO techniques, the
results are consistent after several iterations, and the objective function
converges into the optimal solution after multiple runs. To avoid the
local minimum phenomena, the feature selection process is repeated five
times to generate the random starting point. Fig. 2 shows the detection
accuracy rates of the proposed model on different iteration. For the
Opcode, it can be clearly seen that accuracy converges to a constant

PDF

Help

value after the ninth iteration. Moreover, for the Bytecodes, a constant
converged accuracy is reached after the fifth iteration.

Opcode feature selection by GWO over 30 iterations Bytecode feature selection by GWO over 30 iterations
/ — 100 — T
s
el / . /
: . g oos /
g nos I/ B !
2, /
03 Ill]
o I /
. s | f
e |] /
1] = v 2 4 & 8 w1z B
Wo. of nerations No of rerations.
{a) b}
Fig. 2.

(a) Detection accuracy in Opcode by GWO over 30 iterations. (b) Detection
accuracy of the selected features in Bytecode by GWO over 30 iterations.

Table I shows the top 20 selected features of the Opcode data set based
on 30 iterations by the combination of Polynomial and RBF kernels. At
the end of feature selection iterations, when constant detection accuracy
value was reached, k -fold cross-validation was applied on the training
set.

TABLE I Top 20 Selected Features From IoT Malware Opcode Data Set by GWO

Feature name Selection Kernel
aam, aas, adc, addb, addl, addps, addw, and, andl, Poly-RBF
bnd, bndldx, bndstx, bound, bsf, btl, callw, clflush,

cme, emovae, cmovb

SECTION 1V.
Results and Discussion

To evaluate the proposed model, we conducted two sets of experiments.
We first evaluated to performance of our model in detecting the
malicious and benign IoT applications using common ML performance
metrics, such as accuracy (ACC), precision, recall, and F1-Score.
Afterward, we compared the computational costs of our model against
two recent ML-based IoT malware threat hunting models.

All experiments were processed by Python3.6 and TensorFlow 2.0 [34]
environment, which was running on a PC powered by Intel Core i9 CPU
with 32-GB RAM and an RTX 2080 Ti GPU.

A. Performance Metrics

The performance of the proposed model is evaluated using the cross-
validation technique. The training data set includes 2771 benign and 281
malicious Cortex Ag samples. We used unseen samples of IoT malware
to verify the robustness of the proposed technique. Unseen malware
samples are those collected randomly from VirusTotal by [23] which
include 100 Cortex A9 malware samples.

The performance of the proposed model is quantified using the following
standard metrics.

1. True Positive (TP): When a malicious sample predicted as a
malware.

PDF

Help

2. True Negative (TN): When a malicious sample predicted as a
goodware.

3. False Positive (FP): When a benign sample predicted as a
malicious.

4. False Negative (FN): When a malicious sample predicted as a
goodware.

Based on the above core metrics, the performance of ML systems can be
measured using the following.

Accuracy: Accuracy indicated how the proposed model can
accurately predict malware and benign samples
TP + TN

Accuracy = . (16)
(TP + TN + FN + FP)

View Source

Precision: Precision for a certain APT group is the number of
samples in a class that are correctly predicted, divided by the total
number of samples that are predicted

TP

Precision = —————. (17)
(TP + FP)

View Source

Recall: Recall for a certain class, is the number of samples in a
class that are correctly predicted, divided by the total number of
samples in that class

TP

Recall = ——— . 18
A= TP + FN) (18)

View Source

F-Score (F1): F-Score is the harmonic mean of precision and
recall. It can be applied as a general classifier performance metric

precision X recall

F1 =2 X (19)

precision + recall ’

View Source

Findings from our evaluation demonstrated that the proposed model has

higher accuracy and lower FP rate with reduced processing time,
compared to the existing work in the literature. All experiments were
applied to both Opcode and Bytecode representations of the data set

samples. Fig. 7 shows the most promising combinations, in terms of

detection accuracy for selecting the prominent features from the Opcode

and Bytecode properties.

acy (%)

100

ag
o6 4

PDF

Help

5
v
< gl
92 4
mmm Testset{unseen)
mmm Trainset
Poly Bytecode RBF + Poly RBF + Sigmoid Poly Opcode
Bytecode Bytecode
Kemel Type
rA
LJd
Fig. 3.
F1 score of different combinations of SVM kernels on the unseen (test) and train
data set.
100.0
P98
9.6
_ wa
]
-
@
5 992
o
<
9.0
%.8
9.6 mm Testset{unseen)
mm Trainset
Poly Bytecode RBF + Poly RBF + Sigmoid Poly Opcode
Bytecode Bytecode
Kernel Type
ra
LdJd
Fig. 4.

Detection accuracy of different combinations of SVM kernels on the test and
train data set.

100.00

Precision (%]}

98.75 1

98.50 4

Fig. 5.

Poly Bytecode

RBF + Poly REBF + Sigmoid
Bytecode Bytecode
Kernel Type

mm Testset{unseen)
m Trainset

Poly Opcode

ra
(9]

PDF

Help

Precision rates of different combinations of SVM kernels on the test and train
data set.

100

Recall (%)

92

mm Testset{unseen)
mm Trainset

Poly Bytecode REF + Poly RBF + Sigmoid
Bytecode Bytecode
Kemnel Type

Fig. 6.
Recall rates of different combinations of kernels on test and train data set.

Em OpCode
100 -
== ByteCode

90 - I]'IIII
REF

Sugmmd REBF+5ig RBF+POIy Poly- RBF+Poly+
Sigmoid Sigmoid

Kernel Type

Accuracy in (%)
tﬁ 5

£

B

Fig. 7.
Overall detection accuracy of the combination of kernels on the unseen malware
data set.

The performance of the proposed model was evaluated on different
numbers of epochs using the k -fold cross-validation technique. The
different number of epochs lead to the GWO approach to select different
features until we reach to the optimum set (see Tables II- V). Since the
GWO uses an iterative approach to improve accuracy and to find the
optimum feature set, the linear kernel models will be overfitted.
Therefore, the linear kernel results were removed from the final outputs
of the proposed model.

PDF

Help

TABLE II Evaluation Metrics of Poly-RBF Kernels Based on the Different Number
of Epochs on the Unseen Data Set Samples’ Opcodes

Number of epochs Accuracy Precision Recall FIScore

3 97.43 95.85 99.27 97.52
5 99.45 99.30 99.64 99.46
7 99.08 98.93 99.28 99.10
10 99.63 99.64 99.64 99.64

ra
La

TABLE III Evaluation Metrics of Poly-RBF Kernels Based on the Different
Number of Epochs on the Unseen Data Set Samples’ Bytecode

Number of epochs Accuracy Precision Recall FIScore

3 97.07 95.80 98.52 97.09
5 97.62 96.86 97.63 97.63
7 98.90 98.26 99.63 98.92
10 99.63 99.63 99.34 99.63

ra
(]

TABLE IV Evaluation Metrics of the Poly Kernels Combination Based on the
Different Number of Epochs on the Unseen Data Set Samples’ Bytecode

Number of epochs Accuracy Precision Recall FI1Score

3 98.90 100 97.78 98.88
5 99.45 100 98.89 99.43
7 99.82 100 99.63 99.81
10 99.45 100 98.90 99.44

TABLE V Evaluation Metrics Based on the Different Number of Epochs for the
Opcode on the Combination of All Kernels

Number of epochs Accuracy Precision Recall F1 Score

3 99.64 99.29 100 99.64
5 99.63 99.64 99.64 99.64
7 99.81 99.64 100 99.82
10 99.63 99.64 99.64 99.64

The performance of the model was also evaluated using Opcode and
Bytecodes of unseen malware data set as shown in Fig. 4. As observed,
the highest detection accuracy is achieved by the RBF and Sigmoid
function over Bytecodes. Hence, it can be concluded that the static
properties of the samples were sparse with a semi-Gaussian distribution
of feature space.

Fig. 5 illustrates the precision rate of the proposed multikernel model.
As we observe, the multikernel model achieved the highest precision
rate. The proposed model was also evaluated based on recall and F1-
score, to show the strength of the multikernel approach for detecting
unseen malware samples (see Figs. 3 and 6). Fig. 7 shows that the
combination of all kernels reached the highest detection accuracy.
Moreover, the combination of all kernels prevents the overfitting
phenomena [35]. Hence, the proposed model achieved high detection
accuracy with the low false alarm. As shown in Table VI, the proposed
multikernel approach outperforms the other competing approaches in
terms of accuracy, precision, recall, and F1-score.

TABLE VI Comparative Summary

Model Datwset Evaluation method ACC (%) Precision (%1 Recall (%) F1-Seore (%)
Fuzzy pattern tree [3] Tramn 10-Teld X validation w7 100 9873 LX)
Maxamal-frequent Tram 10-feld X vahdation .45 NA NA Y855
patterns (MFF) 28]

Deep LSTM [29] Train ke-fold X validation 48,18 NiA N/A NIA

Deep LSTM [29] Test Full Test E NA N/A NA

Deep Eigen [30] Train F-Told X validation IGR TEIT FEIT XS

Santos et al_ [27] Traln h-fold X validation G501 2635 (RS AT
Mulia-kernel Test Full Test W63 e ot Xz
Multi-kernel Train k-fold X validation 99,72 e "l Rk

ra
(9]

PDF

Help

B. Computational Analysis

The SVM classifiers are relaying on the number of free support vectors
and the computational complexity of these model can be formulated as
O(max(n, d) min(n, d)?) [36], where n is the number of sample and d
is the number of dimension. In contrast, the artificial neural network
(ANN)-based models computational complexity can be formulated as
O(n*) and O(n®) for forward propagation and backward propagation
approaches, respectively. Hence, the proposed model should have a
much lower computational cost due to its computational order as well as
its smaller number of features due to the optimal feature reduction
algorithm.

We compared the computational costs of the proposed model with two
recent ML-based IoT malware threat hunting models, namely, a deep
RNN model [23] and a fuzzy model [3]. Fig. 8 shows a comparison
between the training and testing time in different epochs of cross-
validation between the proposed model and the deep RNN-based model
(LSTM). While the deep model requires more than 1 min to converge,
the proposed model achieves the same conversion in less than 20 s. As
we could not access the fuzzy model source code we were not able to
measure its computational time using the cross-validation process.

i V\‘_/\‘___.
g 1
w
L=
o
E
]
&
2w
w
20 4
== Deep RNN model
== Proposed GWO Model
0 2 3 5 8
No. of fold
Fig. 8.

Comparison of training and testing time between the proposed model and a
deep RNN during convergence.

However, as shown in Fig. 9, we could compare the overall computation
time (training + testing time) of all three models [deep neural network
(DNN), fuzzy, and our proposed model]. As can be seen, the proposed
model overall computation time is four times less than the deep RNN
approach and 50 times less than the fuzzy approach.

500 -

400 -

300 -

inal ime (in minute)

PDF

Help

200 -

Comptutatic

100

I Se——— |
0- T '
GWO Deep RNN Fast Fuzzy Pattern Tree
Model Name
Fig. 9.

Comparison of the overall computational time of the proposed model with
previous deep RNN and fuzzy pattern tree models.

We have shown that our proposed multikernel approach achieves
increased detection accuracy, with the significantly reduced
computational cost.

SECTION V.
Conclusion

10T devices are increasingly targeted, partly evidenced by the number of
reported attacks and detected malware. In this article, a multikernel
SVM model based on GWO (a metaheuristic feature selection approach)
was designed to detect malware targeting ARM processors on cloud-edge
devices. Our proposed approach uses malware’s static properties
(Opcode and ByteCode). We designed a preprocessing module to
transfer the textual content of each sample into a vector using the TFIDF
metric. Afterward, a feature selection module is used to reduce the
number of features and minimize the computational costs of the
proposed model. Finally, a multikernel SVM classifier is used to
accurately identify IoT malware. The model achieved a high accuracy
rate of 99.72%, outperforming previous deep learning and fuzzy ML
based IoT malware detection models. Moreover, the computational
analysis of the proposed model showed that the proposed model
converges faster than existing ML systems, such as DNNs and fuzzy
pattern three classifiers.

In the future, we will develop a multikernel approach for malware threat
hunting using other ML algorithms. Moreover, using multikernel
approaches for malware threat attribution is another potential future
research.

Authors

Figures

References

Keywords

Metrics

PDF

Help

CHANGE USERNAME/PASSWORD PAYMENT OPTIONS COMMUNICATIONS PREFERENCES US & CANADA: +1 800 678 4333 f in ’
VIEW PURCHASED DOCUMENTS PROFESSION AND EDUCATION WORLDWIDE: +1 732 981 0060

TECHNICAL INTERESTS CONTACT & SUPPORT

About IEEE Xplore | Contact Us | Help | Accessibility | Terms of Use | Nondiscrimination Policy | IEEE Ethics Reporting [£' | Sitemap | Privacy & Opting Out of Cookies
A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.

© Copyright 2021 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

IEEE Account Purchase Details Profile Information Need Help?
» Change Username/Password » Payment Options » Communications Preferences » US & Canada: +1 800 678 4333
» Update Address » Order History » Profession and Education » Worldwide: +1 732 981 0060

» View Purchased Documents » Technical Interests » Contact & Support

About IEEE Xplore | Contact Us | Help | Accessibility | Terms of Use | Nondiscrimination Policy | Sitemap | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.
© Copyright 2021 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

PDF

Help

