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Abstract

Connected and autonomous vehicles is a 
disruptive technology that has the potential to 
transform the current transportation system by 
reducing traffic accidents and enhancing driving 
safety. One major challenge of building such a 
system is how to realize effective and efficient 
cooperative perception among vehicles, which 
enables them to share local (raw or processed) 
perception data with each other or roadside infra-
structures through wireless communications. As 
machine learning techniques become prevalent 
in autonomous vehicles, particularly in their per-
ception subsystem, we articulate the possibility to 
design a machine-learning-enabled cooperative 
perception system for connected autonomous 
vehicles. Not only are the research challenges 
in designing cooperative perception presented, 
but we also focus on how to reduce communi-
cation and data processing latency in order to 
meet the stringent time requirements posed by 
autonomous driving applications. The article out-
lines the research challenges and opportunities 
in designing cooperative perception for auton-
omous vehicles, leveraging the recent research 
outcomes from machine learning, feature map 
quantification, millimeter-wave communications, 
and vehicular edge computing.

Introduction
Perception for an autonomous vehicle is defined 
as the ability of a vehicle collecting information 
and extracting relevant knowledge from sensor 
data to develop a contextual understanding of the 
environment. Together with localization and map-
ping, path planning, decision making, and vehicle 
control modules, an autonomous vehicle is able 
to successfully navigate itself on roads. Coop-
erative perception, on the other hand, enables 
vehicles to share local perception data with 
each other (or infrastructures) through wireless 
communications. One of the prime reasons for 
developing cooperative perception is the need 
to maximize the line of sight and field of view of 
autonomous vehicles. In addition, it could reduce 
the uncertainty in local object detection results 
and increase perception accuracy. With increas-
ing situational awareness, cooperative perception 
is able to expand vehicles’ field of view, resulting 
in safer driving decisions.

Problem Statement 
As one of the most challenging tasks in coop-
erative perception, object detection has been 
studied for several years. According to the data 
reported on the KITTI website [1], however, the 
current best solution to pedestrian detection on 
autonomous vehicles only achieves a precision 
of 78.35–83.06 percent. As such, we focus in this 
article on cooperative object detection to dis-
cuss the research challenges and opportunities 
in cooperative perception for connected auton-
omous vehicles (CAVs). Traditional cooperative 
perception is realized at a high level [2], that is, 
vehicles combine the object detection results 
shared from others in pursuit of improving their 
own object detection precision. While it is easy to 
realize high-level cooperative perception, there is 
a fundamental flaw associated with this approach. 
It cannot avoid the issue of what happens if no 
car senses enough information to detect a critical 
object.

It was recently proven that more objects 
can be detected if vehicles share their raw light 
detection and ranging (LiDAR) data with each 
other. Cooperative perception relies on vehi-
cle-to-vehicle (V2V) and vehicle-to-infrastruc-
ture (V2I) communications; however, due to 
the limited spectrum allocated for automotive 
use, it is prohibited to transmit massive amounts 
of raw data among autonomous vehicles (or 
between vehicles and roadside infrastructures). 
The Federal Communications Commission has 
reduced the spectrum for vehicular communi-
cations from 75 MHz to 30 MHz, which cannot 
support high-volume data transmission. More-
over, fusing data from other vehicles involves 
data processing, synchronization, and fusion, 
which will introduce extra latency into the 
cooperative perception system. Solutions that 
increase vehicles’ perception precision, through 
cooperative perception, as well as reducing 
communication and data processing latency are 
rare in the literature.

Proposed Solution 
A useful insight of the current autonomous 
vehicle’s perception system is that modern 
object detection techniques commonly adopt 
a convolutional neural network (CNN) [3] to 
process sensor data. Within a CNN model, 
sensor data needs to be processed by multi-
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ple convolutional layers, resulting in feature 
maps that are used by fully connected layers 
to detect and classify objects. As a different 
representation of the raw sensor data, feature 
maps can be viewed as a substitute for the 
original data to realize cooperative perception. 
Although the size of feature maps is relatively 
smaller, a large number of feature maps are 
generated by a CNN model. It is challenging, 
if not impossible, to transmit feature maps in 
their original formats. Therefore, it is crucial to 
understand how to effectively transmit feature 
maps within a vehicular network. One possible 
solution is to leverage the high-speed millime-
ter-wave (mmWave) communications to real-
ize fast and reliable feature map transmission 
to realize cooperative perception.

From four different aspects, we outline the 
research challenges and opportunities pertain-
ing to cooperative perception for CAVs . We first 
start with how machine learning will enable inno-
vative cooperative perception on CAVs. A key 
concept is that feature maps generated by the 
machine learning models on autonomous vehicles 
can be used to achieve cooperative perception. 
Following that, we discuss how to quantify the 
importance of different feature maps, and how 
to compress and select feature maps to reduce 
the amount of transmitted data. To facilitate faster 
data transmission, we then explore the possibility 
of applying mmWave communication to trans-
mitting feature maps among vehicles. Because it 
is possible to offload data and computing tasks 
from vehicles to roadside edge servers, we further 
describe how to design an efficient vehicular edge 
computing system to support faster and more reli-
able cooperative perception in CAVs. Finally, we 
conclude our work.

Machine-Learning-Enabled  
Cooperative Perception

For connected and autonomous vehicles, there is 
no optimal standard or framework that outlines 
the right level of information sharing for coop-
erative autonomous driving. It is prohibitively 
expensive to transmit raw data among vehicles, 
causing network congestion, packet drops, and 
large processing delay. Feature maps generated 
by the machine learning models on autonomous 
vehicles can be viewed as an alternative represen-
tation of the original sensor data, and thus can be 
transmitted and fused to effectively realize coop-
erative perception on CAVs. It was proven that 
feature maps generated on two vehicles can be 
combined to realize more accurate cooperative 
object detection [4].

Feature-Map-Based Cooperative Perception 
Taking a closer look at how data flows within a 
CNN [3], we find that when data is processed by 
a convolutional layer, a feature map is generated, 
which will be fed into another convolutional layer 
until it hits the last one. Feature maps are consid-
ered the output of their preceding convolutional 
layer and the input of the succeeding convolu-
tional layer.

When raw data is processed by a CNN, 
extraneous information is filtered out by the 
network, leaving behind only essential informa-

tion for object detection. Data passing through 
convolutional layers can be viewed as a process 
of raw data being processed/compressed into 
feature maps. The major advantage of trans-
mitting feature maps over raw data is that the 
amount of data transmitted can be significantly 
reduced. As feature maps extracted from 3D 
points cloud also contain location information, 
it is possible to combine the feature maps from 
different autonomous vehicles. Here, we make 
the assumption that cars compatible for fusion 
(e.g., perception systems) manufactured by the 
same original equipment manufacturing (OEM 
supplier) will employ the same CNN model for 
object detection.

Feature Map Alignment 
The first problem in achieving feature-map-based 
cooperative perception is how to synchronize 
feature maps received from different vehicles. 
After multiple feature maps are received, they 
must be synchronized in the spatial and tem-
poral domains [5]. By evaluating the similarity 
between received features, it is possible to align 
them in the spatial domain; however, research 
is lacking on how to synchronize feature maps 
in the temporal domain. Because received fea-
ture maps are likely generated at different time 
instances, it is possible that newly received 
feature maps were generated at earlier times. 
Therefore, it is critical to determine the fresh-
ness of received feature maps based on local 
ones. Moreover, feature maps may overlap with 
each other, so how to fuse the overlapped fea-
ture maps becomes an important problem. One 
possible solution is to assign different weights to 
different feature maps based on how much new 
information they can offer. 

Feature Map Compression
Although the size of a feature map is smaller 
than the original data, there are a relatively large 
number of feature maps generated; for example, 
SECOND [6] produces 128 feature maps to real-
ize 3D object detection. It is challenging, if not 
impossible, to transmit feature maps in their origi-
nal format. Therefore, it is crucial to explore how 
to effectively compress feature maps to reduce 
the amount of data transmitted in the network. 
Previous work has confirmed that feature maps 
tend to be sparse [7], implying that it is highly 
possible to compress feature maps to save net-
work bandwidth.

Feature Map Streaming 
As data sharing among vehicles is continuous, 
the feature maps corresponding to the adjacent 
frames of data will show a certain degree of cor-
relation. Such dependency can be leveraged to 
reduce both temporal and spatial redundancy, 
using motion compensation techniques. As a 
salient function of an autonomous vehicle, real-

Feature maps generated by the machine learning models on autonomous vehicles can be viewed as 
an alternative representation of the original sensor data, and thus can be transmitted and fused to 

effectively realize cooperative perception on CAVs. It was proven that feature maps generated on two 
vehicles can be combined to realize more accurate cooperative object detection.
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time object detection results are always available, 
which could be used to estimate objects’ loca-
tions in future frames.

Although video compression has been inten-
sively studied in the wireless network domain, 
the impact of lossy compression on cooperative 
object detection is not well understood. In par-
ticular, the subtle changes of the data in feature 
maps, due to compression and decompression, 
may or may not affect the final object detec-
tion results. If the information loss occurs in the 
background regions of a feature map, it would 
not degrade the fi nal object detection precision. 
Instead, as the noise/background data is fi ltered 
out during the data compression process, the 
detection results can in fact be improved. On the 
other hand, if the information loss is related to the 
objects, worse object detection performance is 
expected. Therefore, the research challenge lies 
in how to preserve features pertaining to objects 
while suppressing those related to the back-
ground.

FeAture mAP selectIon In 
cooPerAtIve PercePtIon

Different feature maps have different impacts 
on object detection performance; therefore, it 
is imperative to quantify the importance of fea-
ture maps, and then identify and transmit only the 
most prominent ones among vehicles. As such, it 
is critical to design a feature map selection-based 
cooperative perception framework, as illustrat-
ed in Fig. 1, where fewer feature maps are trans-
mitted among vehicles to reduce the amount of 
shared data. As only a subset of feature maps is 
selected for transmission, the networking delay 
could be signifi cantly reduced.

ImPortAnt FeAture mAP selectIon
Previous works have shown that the massive 
amount of feature maps output by a CNN mod-
el’s convolutional layers contain lots of zeros 
[8], implying that not all feature maps are useful. 
Existing solutions to feature map selection gen-
erally seek to structure pruning, which directly 
removes structured components (e.g., kernels, 
filters, or even convolutional layers) to simulta-
neously reduce computation complexity and 

memory overhead. This is diff erent from the pro-
posed framework, in which the CNN model on 
vehicles remains the same, as only a subset of 
feature maps is exchanged among vehicles. Here, 
we assume that the CNN model on vehicles has 
already been pruned and is capable of detecting 
objects precisely. It is therefore important to rank 
feature maps based on their importance. Only the 
most important feature maps are selected and 
shared among vehicles.

The choice of utilizing feature maps for trans-
mission rests on several factors, including data 
scarcity, wireless channel condition, interference 
level, distance, and link duration. Although sim-
ilar solutions can be created to aggregate inter-
mediate feature maps on vehicles, it may take a 
longer time to process the fused feature maps as 
they need go through all other filters in the rest 
of the CNN network. To meet the stringent time 
requirements posed by cooperative perception in 
CAVs, it is more effi  cient to fuse the last-layer fea-
ture maps. It is effi  cient if fewer important feature 
maps that capture/contain the most prominent 
information are considered in the object detec-
tion task.

QuAntIFYIng A FeAture mAP’s ImPortAnce
The importance of a feature map can be analyzed 
from two perspectives: the convolutional kernel 
that produces the feature map and the value of 
the information contained in the feature map. As 
a feature map is usually produced by a 2D kernel 
in a CNN model, it is intuitive to study the struc-
ture characteristics of the corresponding kernel 
to understand the importance of the produced 
feature map.

There is a fl urry of research on measuring fi lters 
in CNNs, including l1-norm, l1-regularization, aver-
age percentage of zeros (APoZ), group sparsity 
regularization, and kernel sparsity and entropy [9]. 
All the aforementioned solutions are designed for 
network structure pruning, so it is not clear if they 
are suitable for feature map selection in coopera-
tive perception. As existing feature quantifi cation 
criteria is very diverse, the question raised here 
is “what is needed in a good feature criterion in 
order to obtain the subset of the most relevant 
features for the problem at hand?”. Aiming to real-
ize precise cooperative perception, it is necessary 

FIGURE 1. System architecture of the feature map selection-based LiDAR data fusion framework.
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to perform a comprehensive comparison of exist-
ing approaches, and design a method considering 
both the pros and cons of previous ones.

Understanding kernels is the first step in quan-
tifying feature map importance; it is still of par-
amount importance to explicitly measure the 
information contained in feature maps. Because 
feature maps are the most direct reflection of 
the original data, they must be considered in fea-
ture map selection. Entropy plays a central role 
in information theory as it is proportional to the 
amount of information to be measured. There-
fore, it is possible to use entropy to measure the 
information contained in a feature map. 

Reduction on Data Transmission
According to the design of the proposed feature-
map-based cooperative perception, we carry out 
a preliminary study on how much data reduction 
can be achieved through feature map compres-
sion and channel selection. Figure 2 shows the 
different amounts of data transmitted between 
two vehicles when different data processing 
mechanisms are adopted. As raw LiDAR data 
are exchanged in Cooper [10], it generates the 
highest level of data transmission. If feature maps 
are transmitted, as in F-Cooper [4], the amount 
of data can be significantly reduced. Further-
more, if compression and/or channel selection 
are applied, the amount of network traffic can be 
reduced to around 0.1 MB. The overall data pro-
cessing time, excluding data transmission delay, 
for each case is 0.292, 0.281, 0.235, 0.249, and 
0.266 s, respectively. The experiment is carried 
out on a desktop with an Intel I7 7700 CPU, 16 
GB memory, a Nvidia Geforce 1060 6 Gb GPU, 
and Ubuntu 18.04.

Millimeter-Wave Communication for 
Cooperative Perception

As mmWave communication [11], operating 
between 10 GHz and 300 GHz, has very large 
bandwidth, it can achieve multi-gigabit-per-second 
wireless communications for bandwidth-intensive 
applications. Therefore, it becomes a perfect solu-
tion to massive amounts of data sharing among 
vehicles to realize cooperative perception. On the 
other hand, autonomous vehicles can collabora-
tively achieve accurate perception of surrounding 
environments, which provides useful informa-
tion (e.g., receiver’s antenna location and com-
munication environments) for designing efficient 
mmWave communications.

mmWave Vehicular Network 
There are some fundamental challenges in terms 
of mmWave radio propagation, such as higher  
propagation loss and diffraction. As an mmWave 
link attenuates over distance, it is better to 
employ one-hop V2V communications. One-hop 
mmWave communications allow vehicles to com-
municate with each other directly, or between a 
vehicle and a base station (roadside unit), which 
effectively increases network throughput and 
improves spectrum efficiency.

It is a challenging problem to deal with 
multiple V2V pairs in the networks to further 
improve network throughput and spectrum effi-
ciency for mmWave communications. This prob-

lem becomes even more challenging when the 
high mobility of autonomous vehicles is consid-
ered. Due to the large relative velocity, the link 
duration of a pair of vehicles may not last for 
a long period. In addition, the constantly chang-
ing location of a receiving vehicle may cause 
a transmitting vehicle to frequently change its 
beamforming setting to yield reliable communi-
cation. Fortunately, because vehicles move on 
pre-defined roads (available from digital maps) 
and the roadside infrastructures are stationary, it 
offers opportunities to design efficient mmWave-
based V2V and V2I communication. Especially 
by predicting a vehicle’s future locations based 
on its instantaneous velocity and the current traf-
fic situation, it is possible to design a continuous 
beamforming strategy to cope with the mobility 
of vehicles.

Several studies have investigated the theoret-
ical performance of mmWave communication 
for autonomous vehicles. However, the feasi-
bility of using mmWave to transmit a massive 
amount of real-time sensor data among connect-
ed and autonomous vehicles has not been thor-
oughly studied. A research question one might 
ask is how to design an effective and efficient 
mmWave vehicular communication system for 
cooperative perception on CAVs, based on the 
understanding of the characteristics of mmWave 
channels. 

Sensor-Assisted mmWave Communication
A major difference between autonomous vehicles 
and conventional vehicles lies in the selection of 
sensors. To achieve the self-driving function, an 
autonomous vehicle is typically equipped with 
various types of sensors, for example, LiDAR, 
radar, vision camera, thermal camera, ultra-sound, 
Global Positioning System (GPS), and inertial 
measurement unit (IMU). To ensure better sensor 
coverage, multiple sensors of the same type are 
installed in an autonomous vehicle. These sensors 
provide real-time sensing data to the processing 
unit to guarantee that enough information is col-

FIGURE 2. Comparison of data volume using different data processing solutions.
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lected to allow an autonomous vehicle to suc-
cessfully accomplish its perception task. Currently, 
the collected information is barely used for sup-
porting V2V communications; instead, it is mainly 
used for perception and is discarded/saved after 
being processed.

The rich semantic information contained in the 
collected sensor data plays a critical role on set-
ting up a vehicular network. For example, one 
challenging problem in mmWave communication 
is beamforming which essentially shapes the radi-
ation pattern of a directional antenna to make 
sure mmWave signals more powerful and target-
ed. The state-of-the-art solution to beamforming 
needs to fi rst transmit a pilot signal over all possi-
ble directions, and then measure the correspond-
ing channel qualities to decide the best direction 
for communication.

Although some works investigate whether 
GPS information can be leveraged to facilitate 
effective beamforming for mmWave communi-
cations [12], an unexplored problem is to design 
an effective beamforming solution considering 
the rich semantic information included in the 
sensor data. For instance, an advanced image 
processing model is able to accurately detect the 
locations of potential receiving antennas from 
the images captured by autonomous vehicles. 
Such information could be used to assist the 
communication system to at least search for a 
minimum number of directions. Together with 
other information (e.g., a vehicle’s GPS location), 
a sender vehicle might be able to lock down 
the target receiver vehicle instantly. Swift beam-
forming is critical for mmWave communication 
between vehicles as cooperative perception on 
autonomous vehicles cannot tolerate large net-
working delay.

cooPerAtIve PercePtIon In the 
vehIculAr edge sYstem

In addition to V2V communications, it is 
important to discuss how V2I communication 
would affect the performance of cooperative 
perception on connected and autonomous 
vehicles. To facilitate effective cooperative 

perception among vehicles and reduce the 
onboard computation overhead on vehicles, 
roadside edge servers bring computation and 
storage closer to where data is generated, thus 
reducing response times and saving network 
bandwidth [13].

vehIculAr edge comPutIng
The concept behind CAV is as powerful as it is 
complex, that is, an overlapping group of core 
technologies are the fundamental building blocks 
of CAV, including wireless networking, artificial 
intelligence, computer vision, control, and distrib-
uted computing. To tackle this issue, a layered sys-
tem architecture would allow us to divide a CAV 
system into different subsystems, each of which 
composes specific and well-defined parts of the 
complex CAV system.

We choose a three-layer CAV architecture, 
as shown in Fig. 3, which contains the percep-
tion layer, network layer, and application layer. 
The perception layer consists of autonomous 
(and/or conventional) vehicles and roadside 
infrastructures, equipped with various types 
of sensors for perceiving surrounding environ-
ments. The network layer resides in the mid-
dle, and is responsible for data transmission and 
data processing, also referred to as edge com-
puting. Edge servers are usually deployed on 
roadside infrastructures (e.g., traffic cabinets) 
and base stations (e.g., operated by telecommu-
nication companies), or operated by third-party 
edge service providers. Edge servers are limited 
in computing and storage resources; therefore, 
cloud servers are needed to support other key 
applications, such as simulations, high defi nition 
map production, and deep learning model train-
ing [14].

Autonomous vehicles can directly com-
municate with each other if they are using the 
same wireless communication technology (e.g., 
mmWave or 5G) [15]. Otherwise, they can coor-
dinate with the aid of edge/cloud servers via 
relaying traffi  c or integrating heterogeneous data 
produced by different vehicles. The application 
layer is the highes layer, which delivers applica-
tion-specific services to end users. Edge servers 
and cloud servers are linked by high-speed net-
works, such Ethernet or fi ber networks, to support 
delay-sensitive applications. 

comPutAtIon oFFloAdIng 
As a killer application of edge computing, CAVs 
can off load computation-heavy tasks to edge serv-
ers to save the precise local computing resources. 
Most importantly, several computation tasks such 
as cooperative perception can be better imple-
mented on the edge compared to implemen-
tation on individual vehicles. Because the goal 
of cooperative perception is to let all vehicles 
exchanging data with each other obtain a more 
accurate and comprehensive perception of their 
surroundings, it is straightforward to carry out the 
data fusion and processing tasks on edge servers 
and then transmit the processed results to partic-
ipating vehicles. It would be prohibitively expen-
sive to let each vehicle conduct the same task of 
data fusion and processing to achieve coopera-
tive perception individually. Thus, it is critical to 
design an optimized data offloading scheme to 

FIGURE 3. Architecture of a vehicular edge system. 
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facilitate data transmission and data processing in 
a vehicular edge system. 

Resource Task Scheduling 
Vehicles tend to form clusters both in town (e.g., 
between traffic lights) and on highways. Thus, an 
edge server receives data from multiple vehicles. 
The number of vehicles that an edge server ser-
vices can vary dramatically, for example, in rush 
hours vs. off hours, and in downtown vs. remote 
areas. One challenge that this class of edge com-
puting faces is the high mobility of vehicles. As a 
result, the geo-distribution of vehicles is tempo-
rary, as is the multi-vehicle cooperation and data 
processing performed on edge servers. Moreover, 
edge servers often contain more than one het-
erogeneous computing unit, with each behaving 
significantly different in performance on different 
types of computation tasks. This phenomenon has 
not been considered in either Linux or third-party 
frameworks, leading to mismatched resource-task 
scheduling.

Another research challenge is that edge serv-
ers must coordinate the data collection and 
processing task with each other. For example, 
it is meaningless to collect data from vehicles 
whose sensor data are already provided by other 
vehicles. It is paramount to design an intelligent 
scheduling algorithm to solicitate feature maps 
from different vehicles. The design guideline 
here is to obtain data from the most “unknown” 
regions that are barely covered. Another oppor-
tunity is to integrate the sensor data provided by 
sensors on roadside infrastructures, for example, 
cameras or LiDAR sensors on traffic lights, or 
sensors used in existing road weather informa-
tion systems.

Conclusions
As an important type of processed data generated 
by CNN models, feature maps contain sufficient 
information for autonomous vehicles to accurate-
ly detect and classify objects. To realize coopera-
tive perception, sharing feature map data among 
vehicles is more advantageous compared to shar-
ing the raw sensor data, because the former offers 
better privacy protection, as well as flexibility on 
the amount of data to be transmitted. To design a 
feature-map-based cooperative perception system 
on CAVs, however, several technical challenges 
need to be overcome to ensure that the resulting 
system is reliable and practical. Although some 
research challenges are identified in this article, 
including feature map compression, feature map 
selection, mmWave communications, and vehicu-
lar edge computing, they merely pave the way for 
more advanced solutions to cooperative percep-
tion for CAVs. The goal of this article is to open 
the door for developing new machine-learning-en-
abled approaches for cooperative perception, 
and building more efficient and safer autonomous 
driving vehicles.
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It would be prohibitively expensive to let each vehicle conduct the same task of data fusion and  
processing to achieve cooperative perception individually. Thus, it is critical to design an optimized 

data offloading scheme to facilitate data transmission and data processing in a vehicular edge system.
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