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Abstract

Listeners use lexical knowledge to modify the mapping from acoustics to speech sounds,
but the timecourse of experience that informs lexically guided perceptual learning is unknown.
Some data suggest that learning is contingent on initial exposure to atypical productions, while
other data suggest that learning reflects only the most recent exposure. Here we seek to reconcile
these findings by assessing the type and timecourse of exposure that promote robust lexcially
guided perceptual learning. In three experiments, listeners (n = 560) heard 20 critical productions
interspersed among 200 trials during an exposure phase and then categorized items from an ashi—
asi continuum in a test phase. In experiment 1, critical productions consisted of ambiguous
fricatives embedded in either /s/- or /[/-biasing contexts. Learning was observed; the /s/-bias
group showed more asi responses compared to the /[/-bias group. In experiment 2, listeners heard
ambiguous and clear productions in a consistent context. Order and lexical bias were
manipulated between-subjects, and perceptual learning occurred regardless of the order in which
the clear and ambiguous productions were heard. In experiment 3, listeners heard ambiguous
fricatives in both /s/- and /[/-biasing contexts. Order differed between two exposure groups, and
no difference between groups was observed at test. Moreover, the results showed a monotonic
decrease in learning across experiments, in line with decreasing exposure to stable lexically
biasing contexts, and were replicated across novel stimulus sets. In contrast to previous findings
showing that either initial or most recent experience are critical for lexically guided perceptual
learning, the current results suggest that perceptual learning reflects cumulative experience with

a talker’s input over time.



Introduction

Listeners achieve constancy in speech perception despite variation in talkers’ productions
(e.g., Allen et al., 2003; Hillenbrand et al., 1995; Newman et al., 2001; Theodore et al., 2009).
One mechanism that underlies this ability is perceptual learning, in which listeners restructure
phonetic categories to accommodate systematic variation in speech input (e.g., Norris et al.,
2003). Considerable evidence suggests that listeners accumulate distributional information about
talker-specific acoustic-phonetic characteristics and use this information to dynamically adjust
mappings to linguistic representations (e.g., Norris et al., 2003; Nygaard & Pisoni, 1998; Samuel
& Kraljic, 2009; Theodore et al., 2015; Theodore & Miller, 2010). These findings support
distributional tracking accounts of perceptual learning, which posit that listeners use statistical
contingencies in the speech signal to accommodate variation (e.g., Kleinschmidt & Jaeger, 2015;
Maye et al., 2008; McMurray et al., 2009).

Lexically guided perceptual learning offers a means to assess how listeners maintain
tension between flexibility and stability in speech perception (Notris et al., 2003). During an
exposure phase, listeners hear an ambiguous sound (e.g., a fricative with spectral energy
ambiguous between /s/ and /[/) embedded in a disambiguating lexical context that differs
between listener groups. For example, the ambiguity replaces /s/ for some listeners (e.g.,
compensate) and /[/ for other listeners (e.g., publisher). Following exposure, listeners categorize
members along a speech sound continuum (e.g., ashi — asi). Given exposure to an ambiguous
sound in disambiguating lexical contexts, listeners subsequently modify the perceptual boundary
along a speech sound continuum in line with biasing lexical context (e.g., listeners biased to
interpret the ambiguity as /s/ show more /s/ responses at test than listeners biased to interpret the

ambiguity as /[/). Listeners use lexical knowledge to accommodate ambiguities for a host of



acoustic-phonetic properties including those that cue fricative place of articulation (Kraljic et al.,
2008; Norris et al., 2003), vowel identity (Maye et al., 2008), voicing (Kraljic & Samuel, 2006),
and stop consonant place of articulation (Maye et al., 2008).

What remains unclear for theories of perceptual learning is the timecourse of experience
that informs lexically guided perceptual learning. The Bayesian belief-updating model of speech
adaptation (Kleinschmidt & Jaeger, 2015) predicts that learning reflects a context-dependent
(e.g., talker-specific) cumulative integration of listeners’ experience with speech input. Initial
input from a novel talker is processed based on prior knowledge (e.g., knowledge of language-
specific cue distributions). Learning occurs if the talker’s input deviates from these expectations,
reflecting an integration of prior knowledge and the observed new evidence. Iterative updating is
predicted to occur until a new context in encountered (e.g., a change in talker), at which point
priors are reset to initial expectations.

Though numerous investigations suggest that listeners use cumulative (i.e., global)
experience with input statistics for adaptation in speech perception (e.g., Idemaru & Holt, 2011;
Kraljic et al., 2008; Kraljic & Samuel, 2005; Theodore & Monto, 2019) and auditory perception
more generally (e.g., Baese-Berk et al., 2014; McAuley & Miller, 2007), the timecourse of
experience that contributes to perceptual adaptation remains unknown (Theodore & Monto,
2019; Xie et al., 2018). Indeed, findings from lexically guided perceptual learning remain
equivocal on this point. Kraljic and colleagues (2008) found that perceptual recalibration for a
talker’s ambiguous productions only occurred if listeners had no prior experience with that talker
producing clear productions. This “first impressions” effect suggests that listeners are sensitive
to global experience to the degree that initial exposure affects (or blocks) learning from later

exposure, but also suggests that adaptation does not simply reflect aggregated experience. In



contrast, Saltzman and Myers (2018) suggested that perceptual learning reflects sensitivity to
recent (i.e., local) input statistics. Listeners were biased to perceive an ambiguous fricative as
both /s/ and /[/ in separate exposure-test blocks and block order was manipulated. A learning
effect of similar magnitude was observed in each block, suggesting that perceptual recalibration
reflects sensitivity to the most recent statistical cues in the input.' Disparate results regarding
listeners’ reliance on local versus global input statistics preclude drawing definitive conclusions
about the learning mechanism.

Investigations to date also do not afford a specific test of a cumulative tracking tenet of
the belief-updating model of speech adaptation (Kleinschmidt & Jaeger, 2015); namely, that the
magnitude of learning should reflect the consistency of a talker’s input. In Kraljic et al. (2008),
the magnitude of learning resulting from exposure to 10 ambiguous and 10 clear productions of
the a given biasing context was not directly compared to learning that occurs from exposure to
20 ambiguous productions in the same biasing context. In Saltzman and Myers (2018), listeners
were given exposure to ambiguous productions in two different biasing contexts, and learning
was assessed after each biasing context. As such, although biasing context was inconsistent, the
learning assay itself may have triggered a return to prior knowledge (Kleinschmidt & Jaeger,
2015).

Here we test predictions of the local and global statistics hypotheses — and the extent to
which consistency in exposure promotes learning — by manipulating the type and timing of

critical productions while holding exposure “dose” constant (Figure 1).

! A retraction note (Saltzman & Myers, 2020) for this study was issued after the initial
submission of the current manuscript. Because the results presented in Saltzman and Myers
(2018) contributed to the scientific premise of the current work, we present them here so that the
introduction is a veridical representation of our understanding of the scientific record as this
study was developed.



Figure 1. Distribution of critical productions for each bias group (labeled in bold, at right)
during the exposure phase for each experiment. In experiment 1, the 20 critical productions
consisted of ambiguous fricatives consistently presented in either an /s/- or /[/-biasing context
(labeled as SS and SH, respectively); in both cases, the 20 critical productions appeared
randomly throughout the 200 exposure trials. In experiment 2, the 20 critical productions
consisted of 10 ambiguous productions (dark) and 10 clear productions (light) of the same
category. Order in which the ambiguous and clear productions were encountered was
manipulated between two order groups such that listeners heard 10 ambiguous productions
randomly interspersed in the first 100 exposure trials followed by 10 clear productions randomly
interspersed in the second 100 exposure trials (Bias—Clear) or the reverse order (Clear—Bias). In
experiment 3, critical productions consisted of 10 ambiguous fricatives presented in an /s/-
biasing context and 10 ambiguous productions presented in an /f/-biasing context. Order of the
biasing contexts was manipulated such that listeners heard 10 ambiguous /s/ productions
randomly interspersed in the first 100 exposure trials followed by 10 ambiguous /[/ productions
randomly interspersed in the second 100 exposure trials (SS—SH) or the reverse order (SH-SS).
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Exposure trial
The standard dose in the lexically guided perceptual learning paradigm is 20 critical productions
that are randomly distributed across 200 exposure trials. Experiment 1 is a replication of the
standard paradigm; critical productions were uniformly ambiguous and presented in a consistent

biasing context. Following Kraljic et al. (2008), critical productions in Experiment 2 consisted of



10 ambiguous and 10 clear productions in a consistent context, and we manipulated the order in
which the ambiguous and clear productions were encountered. In Experiment 3, critical
productions were uniformly ambiguous, but lexical context was inconsistent, as in Saltzman and
Myers (2018). Listeners heard 10 productions in each of the two biasing contexts, and we
manipulated the order in which each context was encountered. Finally, within each experiment,
we conducted parallel examinations for two stimulus sets to assess replicability and
generalizability of the results. That is, each experiment was conducted twice (e.g., 1A and 1B for
experiment 1), one for stimuli produced by a female talker (i.e., 1A, 2A, 3A) and one for stimuli
produced by a male talker (i.e., 1B, 2B, 3B).

If local input statistics are the putative determinant of perceptual learning, then learning
will be observed in experiments 1 and 3, and for the “Ambiguous second” conditions in
experiment 2. If perceptual learning is contingent on initial exposure to ambiguous productions,
then learning will be observed in experiments 1 and 3, and for the “Ambiguous first” conditions
in experiment 2. In contrast, the global statistics hypothesis predicts that (1) learning will be
observed in experiments 1 and 2 but not experiment 3, (2) learning in experiment 2 will not
depend on the order in which clear and ambiguous productions are encountered, and (3) the
magnitude of learning will decrease across experiments in line within diminishing consistency
between ambiguous input and lexical context. We present each experiment in turn, and then
present analyses that compare performance across experiments.

Experiment 1
Methods
Participants. All participants reported in this manuscript were recruited from the Prolific

participant pool (https://www.prolific.co). Participants were monolingual, native speakers of




American English between 18 and 35 years of age currently residing in the United States with no
history of language-related disorders per self-report. Each participant only participated once
across the experiments reported here. All passed the headphone screen of Woods et al. (2017) at
the time of testing, achieved > 70% lexical decision accuracy for all four item types presented
during exposure, and showed a logistic response function at test.” Experiments 1A and 1B each
included 70 participants; within each experiment, 35 participants were randomly assigned to the
SS exposure group and 35 participants were randomly assigned to the SH exposure group.
Demographic information for the participants in each experiment is shown in Table 1; all were
paid $3.33 for their participation.

Table 1. Demographic characteristics of participants in each experiment.

Gender Age
Experiment n Women Men Range Mean (SD)
1A 70 37 33 18 —35 27.1(5.0)
1B 70 38 32 18 —35 27.0 (5.0)
2A 140 65 75 18 —35 26.8 (4.9)
2B 140 71 69 18 —35 26.2 (4.9)
3A 70 41 29 18 —35 26.1 (5.1)
3B 70 29 41 18 —35 26.5 (4.8)

Stimuli. Two native speakers of American English (one female, one male) recorded the
stimuli from Kraljic and Samuel (2005) for the lexical decision (exposure) task and the phonetic
categorization (test) task. Stimuli for the lexical decision task consisted of 20 critical /s/ words,
20 critical /f7 words, 60 filler words, and 100 filler nonwords. The 40 critical words ranged in

length from two to four syllables, with the critical /s/ or /f/ sound occurring relatively late in the

? In addition to the 560 participants reported here, an additional 32 participants were tested but
excluded from the study because they showed lexical decision accuracy < 70% for at least one of
the item types presented during the exposure phase (n = 24) or did not show a logistic response
function at test (n = 8).



word. Half of the critical words contained a single instance of /s/ and no occurrences of /[/, and
the other half contained a single /f/ and no /s/. Both sets of critical words were matched in mean
syllable length and word frequency. The 60 filler words had no instance of /s/ or /[/ and were
matched to the critical words in stress pattern, number of syllables, and word frequency. Filler
nonwords contained no /s/ or /[/ phonemes (see Kraljic & Samuel, 2005 for details).

Both talkers produced a second version of each of the 40 critical words, replacing the
critical phoneme with its counterpart phoneme (e.g., compensate and compenshate). We created
an ambiguous s-/ mixture for each critical word in Praat (Boersma & Weenink, 2018). The /s/
and /f/ phonemes in each critical word pair were mixed together with seven equidistant
weightings from 80% /s/ - 20% /[/ to 20% /s/ - 80% /[/ (i.e., 80-20, 70-30, 60-40, 50-50, 40-60,
30-70, and 20-80). Each mixture was inserted into the /s/ word frame and saved as an
independent file. Two native speakers of American English listened to each of the seven
mixtures and independently judged which was most ambiguous for each item. If the two listeners
disagreed by more than one step, then the midpoint was selected as most ambiguous. If the two
listeners disagreed by a single step, then a new mixture was created that was intermediate
between the two steps. The specific mixtures for each exposure stimulus are listed in the OSF
repository for this manuscript as identified in the Open Practices Statement.

Stimuli for the phonetic categorization task consisted of nine items on a continuum that
ranged from /afi/ to /asi/, recorded by the same two talkers who recorded the lexical decision
stimuli. Items on the /afi/~/asi/ continuum ranged from 100% /afi/ - 0% /asi/ to 0% /afi/ - 100%
/asi/. The procedure for creating the seven intermediate items on the continuum was identical to
that for creating the ambiguous critical words in the lexical decision task such that the fricatives

in each of the continuum endpoints were mixed together with the same weightings (i.e., 80-20,
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70-30, 60-40, 50-50, 40-60, 30-70, and 20-80) and then reinserted into the /asi/ frame to create
seven equidistant mixtures.

Procedure. Stimuli from the female talker (f1) were used in 1A and stimuli from the male
talker (m2) were used in 1B. All experiments presented in this manuscript were web-based
studies hosted on the Gorilla platform (Anwyl-Irvine et al., 2019). After providing informed
consent, participants completed a headphone screen, exposure phase, and test phase. The
headphone screen followed the protocol of Woods and colleagues, which is designed to ensure
compliance with headphone use for web-based experiments (Woods et al., 2017). During the
exposure phase, the 200 items appropriate for each exposure condition were presented in
randomized order. For listeners in the SS groups, stimuli consisted of 20 tokens with ambiguous
fricatives embedded in /s/-biasing contexts, 20 tokens with clear /[/ productions, 60 filler words,
and 100 nonwords. For listeners in the SH groups, stimuli consisted of 20 tokens with clear /s/
productions, 20 tokens with ambiguous fricatives embedded in /[/-biasing contexts, 60 filler
words, and 100 nonwords. On each exposure trial, participants indicated whether the item was a
word or not by pressing one of two keys on the keyboard.

During the test phase, the nine test stimuli were presented in eight cycles, each consisting
of a random ordering of the nine continuum steps, for a total of 72 test trials. On each trial,
participants identified each item as either asi or ashi by pressing one of two keys on the
keyboard. For both the training and test phases, trials were separated by 1000 ms, timed from the
participant’s response. The entire procedure lasted approximately 20 minutes.

Statistical analysis. Trial-level data and an analysis script for all experiments reported
here can be retrieved at https://osf.io/wa7m3/. Trial-level responses (0 = ashi, 1 = asi) were

submitted to a generalized linear mixed effects model (GLMM) with the binomial response



11

family as implemented in Ime4 (Bates et al., 2015); the Satterthwaite approximation of degrees
of freedom was used to evaluate statistical significance using ImerTest (Kuznetsova et al., 2017).
The 95% confidence interval for model coefficients was calculated using the summ() function of
the jtools package in R (Long, 2020). The model included continuum step, bias, and their
interaction as fixed effects. Continuum step was entered into the model as a scaled/centered
continuous variable; bias was sum-coded (SH = -0.5, SS = 0.5). The random effects structure
consisted of random intercepts by subject and random slopes for continuum step by subject,
which reflects the maximal random effects structure for the experimental design.
Results

Experiment 1A. Performance during the exposure phase was near ceiling for all
experiments and is presented in Table 2. Figure 2A displays mean proportion asi responses at
test. Visual inspection suggests a robust learning effect, reflecting more asi responses in the SS
bias group compared to the SH bias group. Model results are shown in Table 3. As expected,
there was a main effect of continuum step (p < 0.001), indicating that asi responses increased
with percent /s/ energy in the continuum. There was also a main effect of bias (p < 0.001), with
more asi responses in the SS compared to the SH exposure group. The interaction between
continuum step and bias was not reliable (p = 0.410). The main effect of bias was confirmed
using a likelihood ratio test that compared the omnibus model to a simpler model in which bias
was removed as a fixed effect; there was a significant improvement to goodness of fit when bias

was included in the model (¥2(2) = 34.435, p < 0.001).



Table 2. Mean lexical decision accuracy in each experiment for the four item types presented
during exposure. Means reflect grand means calculated over by-subject means; values in

parentheses indicate standard deviation.
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Item type
Experiment Bias Order /s/ /7 Filler word ~ Nonword

1A SS n/a 98 (4) 99 (3) 94 (6) 96 (4)
SH n/a 99 (4) 99 (2) 95 (3) 95 (5)

1B SS n/a 93 (7) 98 (4) 95 (4) 94 (6)
SH n/a 99 (3) 98 (4) 96 (3) 95 (3)

2A SS Bias —Clear 96 (5) 99 (2) 96 (4) 96 (5)
SH Bias —Clear 98 (4) 100 (2) 94 (6) 95 (6)

SS Clear—Bias 99 (2) 100 (1) 96 (3) 96 (3)

SH Clear—Bias 99 (2) 99 (3) 95 (3) 95 (7)

2B SS Bias —Clear 94 (8) 99 (2) 96 (3) 94 (5)
SH Bias — Clear 98 (4) 99 (3) 94 (5) 95 (5)

SS Clear—Bias 97 (4) 98 (3) 96 (4) 93 (5)

SH Clear —Bias 97 (4) 99 (4) 95 (5) 94 (6)

3A SH - SS SH - SS 95 (7) 98 (6) 95 (5) 93 (7)
SS-SH  SS-SH 97 (5) 97 (5) 96 (3) 95 (6)

3B SH - SS SH -SS 94 (6) 97 (5) 94 (5) 92 (6)
SS-SH  SS-SH 94 (8) 98 (2) 96 (4) 94 (5)

Figure 2. Mean proportion asi responses as a function of continuum step for each bias condition
in experiment 1A (panel A) and experiment 1B (panel B). Continuum step is presented in terms
of percent /s/ energy in each step of the test continuum. Means reflect grand means calculated

over by-subject means; error bars indicate standard error.
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Table 3. Results of the generalized linear mixed effects model for each experiment. The models

for experiments 1A, 1B, 3A, and 3B each contained 5,040 observations total across 70

participants. The models for experiments 2A and 2B each contained 10,080 observations total
across 140 participants.

Experiment Fixed effect ¢ SE 5% Cl z p
Lower  Upper
1A (Intercept) -2.110 0.228 -2.557 -1.663 -9.252 <0.001
Step 5.185 0.317 4.564 5.806 16.367 <0.001
Bias 2.025 0.437 1.169 2.881 4.636 <0.001
Step * Bias 0.464 0.563  -0.640 1.568 0.824 0.410
1B (Intercept) -1.907 0.197 -2.293 -1.522 -9.689 <0.001
Step 4.798 0.292 4.225 5370 16.426 <0.001
Bias 2.143 0.380 1.397 2.888 5.632 <0.001
Step * Bias -1.735 0.532 -2.778 -0.691 -3.258 0.001
2A (Intercept) -2.651 0.170  -2.985 -2.318 -15.592 <0.001
Step 5.776 0.266 5.255 6.297 21.741 <0.001
Bias 0.606 0315 -0.011 1.223 1.924 0.054
Order -0.315 0.314 -0.930 0.301 -1.001 0.317
Step * Bias 1.601 0.469 0.683 2.520 3.418 0.001
Step * Order -0.357 0.465 -1.268 0.555 -0.767 0.443
Bias * Order -0.104 0.628  -1.334 1.126  -0.166 0.868
Step * Bias * Order  -1.053 0.930 -2.875 0.769  -1.133 0.257
2B (Intercept) -1.973 0.147 -2.261 -1.685 -13.440 <0.001
Step 5.162 0.223 4.726 5.599 23.167 <0.001
Bias 0.786 0.279 0.240 1.333 2.820 0.005
Order 0.047 0.278  -0.498 0.592 0.169 0.866
Step * Bias -0.352 0.394 -1.124 0.420 -0.894 0.371
Step * Order 0.000 0.393  -0.771 0.771 0.000 1.000
Bias * Order 0.783 0.555 -0.304 1.871 1.412 0.158
Step * Bias * Order  -0.319 0.785  -1.857 1.219  -0.407 0.684
3A (Intercept) -2.851 0.305 -3.449 -2.254 -9.353 <0.001
Step 5912 0.421 5.088 6.737 14.057 <0.001
Bias 0.310 0.575 -0.817 1.437 0.539 0.590
Step * Bias 0.030 0.761 -1.461 1.521 0.040 0.968
3B (Intercept) -1.381 0.158 -1.691 -1.072 -8.740 <0.001
Step 4.344 0.250 3.853 4.834 17362 <0.001
Bias 0.400 0.306  -0.200 0.999 1.307 0.191
Step * Bias -0.379 0.462 -1.286 0.527  -0.820 0.412
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Experiment 1B. Figure 2B shows performance at test. The model revealed a main effect
of continuum step (p < 0.001), a main effect of bias (p < 0.001), and an interaction between
continuum step and bias (p = 0.001), indicating that the learning effect (i.e., more asi responses
in the SS compared to the SH condition) differed across continuum steps. As for 1A, the effect of
bias was confirmed using a likelihood ratio test showing a significant improvement to goodness
of fit when bias was included in the model (¥2(2) = 29.780, p < 0.001).

Experiment 2

Experiment 1 confirms that perceptual learning in the standard lexically guided
perceptual learning paradigm was elicited for both stimulus sets in our web-based paradigm.
Experiment 2 consisted of two replications of Kraljic et al., 2008, one for each of the two
stimulus sets used in experiment 1. Listeners heard 10 ambiguous and 10 clear fricatives for the
20 critical items during the exposure block. The order in which listeners encountered ambiguous
and clear productions for the same sound was manipulated between listener groups. The “first
impressions” account (Kraljic et al., 2008) predicts that learning will only occur for listeners who
hear the ambiguous productions first, and makes no specific predictions regarding the magnitude
of learning in experiment 2 compared to experiment 1. The global statistics hypothesis predicts
that learning (as tested here, in a single session that follows all exposure) will not depend on the
order in which clear and ambiguous productions are encountered and that the magnitude of
learning will be smaller in experiment 2 compared to experiment 1.

Methods

Participants. Experiments 2A and 2B each tested 140 participants; within each

experiment, 35 participants were randomly assigned to one of the four between-subjects cells

formed by crossing bias (SS vs. SH) and order (Bias—Clear vs. Clear—Bias), as illustrated in
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Figure 1. All participants met the inclusion criteria described for experiment 1 and were paid
$3.33 for their participation.

Stimuli. Experiment 2 used the same stimuli as described for experiment 1.

Procedure. Stimuli from talker f1 were used in 2A and stimuli from talker m2 were used
in 2B. As described for experiment 1, the study consisted of a headphone screen, an exposure
phase, and a test phase that was completed online using the web-based Gorilla platform. The
procedure was a direct replication of that outlined for the “Audio-only” conditions of Kraljic et
al. (2008). All listeners completed one lexical decision exposure block consisting of 200 trials.
The 200 exposure items described for experiment 1 were randomly assigned to either the first or
second half of the exposure block so that the first 100 trials and the second 100 trials each
contained 10 critical /s/ words, 10 critical /[/ words, 30 filler words, and 50 nonwords. Trials
within each half of the exposure block were presented randomly for each participant. For those in
the Bias—Clear conditions, ambiguous fricatives appeared in a biasing context in the first half of
the exposure block and no ambiguous fricatives were heard in the second half of the block. For
those in the Clear—Bias conditions, clear fricatives were heard in the first half of the exposure
block followed by ambiguous fricatives in the second half of the block. For example, listeners
assigned to the SS bias condition in the Bias—Clear order heard 10 ambiguous fricatives in /s/-
biasing contexts (and 10 clear /[/ items) interspersed in the first 100 exposure trials, and then
heard 10 clear /s/ items (and 10 clear /J/ items) interspersed in the second 100 exposure trials
(Figure 1). On each exposure trial, participants indicated whether the item was a word or not by
pressing one of two keys on the keyboard.

The test phase was identical to that described for experiment 1. For both the training and

test phases, trials were separated by 1000 ms, timed from the participant’s response. The entire
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procedure lasted approximately 20 minutes.

Statistical analysis. Trial-level responses (0 = ashi, 1 = asi) were submitted to a GLMM
with the fixed effects of continuum step (entered as a scaled/centered continuous variable), bias
(SH=-0.5, SS =0.5), order (Clear—Bias = -0.5, Bias—Clear = 0.5), and all interactions among the
three factors. The random effects structure consisted of random intercepts by subject and random
slopes by subject for continuum step, reflecting the maximal random effects structure given the
experimental design.

Results

Experiment 2A. Performance at test is shown in Figure 3A. Model results, shown in
Table 3, revealed a main effect of continuum step (p < 0.001) and an interaction between
continuum step and bias (p = 0.001), the latter indicating the presence of a learning effect that
varied in magnitude across the test continuum. No other main effects or interactions were
reliable, including the interaction between bias and order (p = 0.868).

Figure 3. Mean proportion asi responses as a function of continuum step for each bias and order
condition in experiment 2A (panel A) and experiment 2B (panel B). Continuum step is presented

in terms of percent /s/ energy in each step of the test continuum. Means reflect grand means
calculated over by-subject means; error bars indicate standard error.

A 2A: Talker f1 B 2B: Talker m2
1.00 A 1.00 A
0.751 Bias 0.75 1 Bias
- 8S - SS
— - SH _ - SH
& 0.50 & 050
o Order a Order
— Bias - Clear — Bias - Clear
0.257 - Clear - Bias 0.251 - Clear - Bias
0.00 A 0.00 A
0 25 50 75 100 0 25 50 75 100
Percent /s/ Percent /s/

Lexically guided perceptual learning was observed in experiment 2A, but learning was

not influenced by the order in which ambiguous productions were encountered. To confirm this
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interpretation, likelihood ratio tests were used to compare the omnibus model described above to
a simpler model in which bias and order were successively removed as fixed effects. There was a
significant change to goodness of fit when bias was included as a fixed effect (y%(2) = 39.876, p
< 0.001); however, there was no significant change to goodness of fit when order was further
included in the model (x%(4) = 7.071, p = 0.132).

Experiment 2B. Figure 3B shows performance at test; model results are shown in Table
3. There was a main effect of continuum step (p < 0.001) and a main effect of bias (p = 0.005).
No other main effect or interaction was reliable, including the interaction between bias and order
(p = 0.158). Likelihood ratio tests were used to compare the omnibus model to a simpler model
in which bias and order were successively removed as fixed effects. There was a significant
change to goodness of fit when bias was included as a fixed effect (y2(2) = 9.142, p = 0.010);
however, there was no significant change to goodness of fit when order was further included in
the model (y%(4) = 2.473, p = 0.649).°

The results of experiments 2A and 2B converged to show no evidence that learning that
was contingent on the order in which ambiguous and clear productions were encountered.
However, inspection of the beta coefficients for the bias by order interactions (shown in Table 3)

reveals a considerable difference in the effect size estimates for the two talkers. Given the

? In Kraljic et al. (2008), performance at test was analyzed using ANOVA after first collapsing
across steps of the test continuum. Parallel analyses were performed for experiment 2 in order to
examine whether the different pattern of results could be attributed to the different analysis
approaches. For experiment 2A, mean proportion asi responses was calculated for each
participant by collapsing across continuum step. These values were submitted to an ANOVA
with the between-subjects factors of bias and order. The ANOVA showed a main effect of bias
[F(1,136) =23.871, p <0.001] and no interaction between bias and order [F(1,136) = 0.263, p =
0.609]. The same procedure was used for experiment 2B. The ANOVA showed a main effect of
bias [F(1,136) = 7.706, p = 0.006] and no interaction between bias and order [F(1,136) = 2.103,
p = 0.149]. The results of these ANOV As converge with the GLMMs reported in the main text.
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contrast-coding structure (i.e., -0.5 vs. 0.5 for each level of bias and order), the effect size of the
interaction can be derived by dividing the beta coefficient by two; likewise, the uncertainty of the
beta estimate can be derived by dividing the standard error by two. The effect size for the bias by
order interaction was -0.052 (SE = 0.314) in 2A and 0.392 (SE = 0.278) in 2B; both effect sizes
show considerable uncertainty. To increase power for detecting potential order effects, data from
2A and 2B were analyzed together (see Supplementary Material), and the bias by order
interaction was not significant in this model ([? =0.358, SE=0.420,z=0.852, p = 0.394). The
corresponding effect size for the bias by order interaction in this model was 0.179 (SE = 0.210),
which falls intermediate to the effect sizes observed in the individual models and has slightly
greater precision as indexed by a smaller standard error.”
Experiment 3

In contrast to Kraljic et al. (2008), the results of experiment 2 provided no evidence of a
“first impressions” effect; perceptual learning occurred regardless of the order in which the
atypical productions were encountered. In experiment 3, exposure was inconsistent throughout
the exposure block, as in experiment 2, but listeners heard ambiguous fricatives in both biasing
contexts and we manipulated the order in which the biasing contexts were encountered. Across
conditions, listeners were exposed to either /s/- and then /[/-biasing contexts (the SS—SH group)

or the reverse order (the SH-SS group) to examine whether recent exposure or cumulative

* The Supplementary Material presents three additional sets of analyses to complement those
presented in the main text. The first set collates data across the A/B versions of each experiment
by including random intercepts by talker to models that are identical to the fixed effect structure
described in the main text. The second set also collates data across the A/B versions of each
experiment, but talker (and all interactions with talker) are included as additional fixed effects to
the models described in the main text. The third set of analyses are identical to those presented in
the main text except that the data are limited to trials in the first half of the test block (described
further in the Discussion). In all cases, the models presented in the Supplementary Material
converge with those presented in the main text.
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exposure determine the extent of perceptual learning. If the most recent exposure is the putative
factor for lexically guided perceptual learning, then listeners in the SH—SS condition should
show more asi responses at test compared to those in the SS—SH condition. The global statistics
hypothesis predicts no difference at test between the two exposure groups, given that cumulative
experience to biasing contexts is equivalent.
Methods

Participants. Experiments 3A and 3B each tested 70 participants; within each
experiment, 35 participants were randomly assigned to one of the two bias/order conditions (SH-
SS vs. SS-SH). All participants met the inclusion criteria described for experiment 1 and were
paid $3.33 for their participation.

Stimuli. The stimuli described in experiment 1 were used in experiment 3.

Procedure. Stimuli from talker f1 were used in experiment 3A and stimuli from talker
m?2 were used in experiment 3B. As described previously, the study consisted of a headphone
screen, an exposure phase, and a test phase that was completed online using the web-based
Gorilla platform. All listeners completed one lexical decision exposure block consisting of 200
trials. The 200 exposure items described for experiment 1 were randomly assigned to either the
first or second half of the exposure block so that the first 100 trials and the second 100 trials each
contained 10 critical /s/ words, 10 critical /[/ words, 30 filler words, and 50 nonwords. Trials
within each half of the exposure block were presented randomly for each participant. For those in
the SH-SS conditions, the first half of the exposure block contained ambiguous fricatives in /[/-
biasing contexts and clear /s/ tokens; the second half of the exposure block contained ambiguous
fricatives in /s/-biasing contexts and clear /[/ tokens. Listeners in the SS-SH conditions heard the

same tokens but in the opposite order. On each exposure trial, participants indicated whether the
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item was a word or not by pressing one of two keys on the keyboard.

The test phase was identical to that described for experiments 1. For both the training and
test phases, trials were separated by 1000 ms, timed from the participant’s response. The entire
procedure lasted approximately 20 minutes.

Statistical analysis. Trial-level responses (0 = ashi, 1 = asi) were submitted to a GLMM
with the fixed effects of continuum step (entered as a continuous variable), bias (SS—SH =-0.5,
SH-SS = 0.5), and the interaction between step and bias. The maximal random effects structure
was used, consisting of random intercepts by subject and random slopes by subject for
continuum step.

Results

Experiment 3A. Figure 4A shows performance at test; model results are shown in Table
3. The model revealed a main effect of continuum step (p < 0.001). There was no main effect of
bias (p = 0.590) nor an interaction between step and bias (p = 0.968). A likelihood ratio test
showed no change in goodness of fit between the omnibus model and a simpler model in which
bias was removed as a fixed effect (y%(2) = 0.769, p = 0.681).

Experiment 3B. Figure 4B shows performance at test; model results are shown in Table
3. The model revealed a main effect of continuum step (p < 0.001). There was no effect of bias
(» =0.191) and no interaction between step and bias (p = 0.412). A likelihood ratio test showed
no significant change in goodness of fit between the omnibus model and a simpler model in

which bias was removed as a fixed effect (x%(2) = 1.679, p = 0.432).
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Figure 4. Mean proportion asi responses as a function of continuum step for each bias/order
condition in experiment 3A (panel A) and experiment 3B (panel B). Continuum step is presented
in terms of percent /s/ energy in each step of the test continuum. Means reflect grand means
calculated over by-subject means; error bars indicate standard error.
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Comparisons across experiments. A final analysis was conducted to compare
performance across the three experiments. To do so, we collapsed across order conditions in
experiment 2 (given no evidence that learning in experiment 2 was influenced by order). Bias in
experiment 3 was coded to reflect the most recent bias. Figure 5 shows the distribution of
proportion asi responses at test across participants (collapsing across continuum step) in each
bias condition for each experiment. Visual inspection suggests a monotonic decrease in the
magnitude of the learning effect across experiments, consistent with decreased exposure to
regularity in ambiguous productions in the putative lexical context. This interpretation is also
supported by examination of the effect sizes for the bias effect in each experiment (shown in
Table 3), which are approximately halved from experiment 1 to experiment 2 and from
experiment 2 to experiment 3.

To examine this pattern statistically, trial-level responses (0 = ashi, 1 = asi) were fit to a
GLMM with the fixed effects of bias, experiment, and their interaction. Bias was sum-coded (SH

=-0.5, SS = 0.5). Experiment was entered into the model as two sliding contrasts, one that
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Figure 5. Boxplots for participants’ proportion asi responses in each bias condition for each
experiment. Panel A shows performance for the talker f1 stimulus set; panel B shows
performance for the talker m2 stimulus set. As described in the main text, performance for 2A
and 2B is shown collapsed across order conditions and performance for 3A and 3B is coded to
reflect the most recent bias (i.e., those in the SH—SS bias/order condition are shown as SS; those
in the SS—SH bias/order condition are shown as SH).
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Experiment

compared performance between experiment 2 and experiment 1 (E1 =-2/3, E2 = 1/3, E3 = 1/3),
and one that compared performance between experiment 3 and experiment 2 (E1 =-1/3, -E2 = -
1/3, E3 = 2/3). Contrasts are listed in terms of the generalized inverse of the matrix used in the
contrasts() function in R, as specified by contr.sdif(3) in the MASS package (Venables & Ripley,
2002). The random effects structure included random intercepts by subject, random slopes for

continuum step by subject, and random intercepts by talker. The results of this model showed a
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smaller learning effect in experiment 2 compared to experiment 1 (8 = -0.853, SE=0.291, z=-
2.935, p =0.003; 95% CI =-1.423, -0.283) and a smaller learning effect in experiment 3
compared to experiment 2 (,[? =-0.767, SE =0.289, z = -2.667, p = 0.008; 95% CI = -1.330, -
0.203). These results confirm a monotonic decrease in learning across experiments, in line with
decreasing exposure to stable lexically biasing contexts.
Discussion

This study investigated timecourse and exposure characteristics that lead to robust
lexically guided perceptual learning. The results provide support for cumulative registration of
talker-dependent variation in the acoustic speech signal, consistent with the global statistics
hypothesis. Robust perceptual learning was observed in experiment 1, where listeners heard 20
ambiguous productions in a consistent lexically-biased context during the exposure phase. In
experiment 2, learning was again observed even though listeners heard only 10 ambiguous
productions in a consistent lexically-biased context (along with 10 clear productions in the same
context). Moreover, there was no evidence indicating that learning was influenced by the order in
which the ambiguous vs. clear productions were encountered. No evidence of learning was
observed in experiment 3 where listeners heard 10 ambiguous productions in each of the two
lexically-biased contexts (i.e., s-bias and [-bias). These results held across two different talkers’
idiosyncratic productions, suggesting that these experiments indexed general properties of
adaptation and learning in speech perception. English was the language examined here, and
future research is needed in order to examine whether these patterns will generalize to other
languages (e.g., Burchfield et al., 2017; Chan et al., 2020; Notris et al., 2003).

Across experiments, perceptual learning was dependent on cumulative and consistent

exposure to ambiguous tokens in lexically biasing contexts. This pattern of results provides
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evidence that listeners track detailed input statistics of their listening experience over time and
use that experience to adjust acoustic-phonetic category structure to reflect cumulative summary
distributions of pronunciation variants. These findings are broadly consistent with the Bayesian
belief updating model of speech adaptation (Kleinschmidt & Jaeger, 2015) and other accounts
(e.g., Goldinger, 1998) that posit dynamic sensitivity to shifting acoustic-phonetic instantiations
of individual talkers as a mechanism for resolving extensive variation in spoken language.

That learning was cumulative contrasts with previous findings (Kraljic et al., 2008);
listeners in the current work did not privilege either initial or most recent exposure, but rather
registered variation across exposure. Regarding the lack of an order effect in experiment 2, it
may be the case that the current design was insufficiently powered to detect the “first
impressions” effect reported in Kraljic et al. (2008), even though the sample size was comparable
between the two studies.” That listeners did not exhibit a reliance on local statistics points to
constraints on perceptual learning, which may be contingent on the degree to which the learning
assay promotes a “reset” in the registration of cumulative statistics. In the current assay, listeners
were exposed first to one and then to the other biasing context, and learning was assessed at the
end of the entire exposure. If learning is assessed at the end of exposure for each biasing context,
then sensitivity to more local input may emerge.

In the current study, learning was assessed for conditions that differed in the consistency

of the mappings between critical productions and biasing contexts. Diminished perceptual

> Given recent evidence that learning in this paradigm may become attenuated during the test
session (Liu & Jaeger, 2018, 2019), it is also possible that the order by bias interaction may have
emerged given a shorter test period. To examine this possibility, all models presented in the main
text were re-run, limiting data to the first half of the test session. These models showed the same
qualitative patterns that are reported in the main text and are presented in detail in the
Supplementary Material.
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learning was found for conditions with fewer and less consistent ambiguous productions, leading
to a monotonic decrease in learning across the three experiments, in line with diminished
consistent exposure to the talker’s idiosyncratic productions. These results indicate that lexically
guided perceptual learning is not binary, but rather a graded outcome that is tightly linked to
input statistics. This reliance on cumulative registration of acoustic-phonetic variation mirrors
findings in other auditory domains, perhaps suggesting a general principle of auditory and
perhaps perceptual processing more generally (e.g., Baese-Berk et al., 2014; McAuley & Miller,
2007). Future research should assess under what conditions listeners reset statistical tracking and
how task-related factors influence the time course and extent of perceptual learning.
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