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SLIP Walking Over Rough Terrain via H-LIP
Stepping and Backstepping-Barrier Function

Inspired Quadratic Program
Xiaobin Xiong and Aaron Ames

Abstract—We present an advanced and novel control method to
enable actuated Spring Loaded Inverted Pendulum model to walk
over rough and challenging terrains. The high-level philosophy is
the decoupling of the controls of the vertical and horizontal states.
The vertical state is controlled via Backstepping-Barrier Function
(BBF) based quadratic programs: a combination of control Lya-
punov backstepping and control barrier function, both of which
provide inequality constraints on the inputs. The horizontal state
is stabilized via Hybrid-Linear Inverted Pendulum (H-LIP) based
stepping, which has a closed-form formulation. Therefore, the im-
plementation is computationally-efficient. We evaluate our method
in simulation, which demonstrates the aSLIP walking over various
terrains, including slopes, stairs, and general rough terrains with
uncertainties.

Index Terms—Backstepping and control barrier function,
humanoid and bipedal locomotion, legged robots, SLIP.

I. INTRODUCTION

THE Spring Loaded Inverted Pendulum (SLIP) [1], [2] has
been a valuable model to study in legged locomotion.

Despite its simplicity, it has been used to model and study
the dynamics of complex biological locomotion [2], [3], and
has also inspired control methodologies [1], [4]–[6] and design
principles [7], [8] for high dimensional legged robots.

The SLIP generates different locomotion behaviors, i.e., hop-
ping/running and walking. For hopping/running, the SLIP has
one spring-loaded leg attached to the point mass on the ground
phase; it has a linear point mass dynamics in the flight phase. For
walking, the (bipedal) SLIP [3] has two spring-loaded legs, and
its dynamics are described by the single support phase (SSP)
and double support phase (DSP), based on the number of legs
that contact the ground.

The canonical setting of the SLIP is energy-conservative. The
spring has no damping, and there is no energy loss at impact.
The control is thus by changing the touch-down angle [3], or

Manuscript received October 15, 2020; accepted February 16, 2021. Date of
publication February 23, 2021; date of current version March 11, 2021. This
letter was recommended for publication by Associate Editor P.-B. Wieber and
Editor A. Kheddar upon evaluation of the reviewers’ comments. This work
was supported by NSF 1924526 and 1923239. (Corresponding author: Xiaobin
Xiong.)

The authors are with the California Institute of Technology, Pasadena, CA
91125 USA (e-mail: xxiong@caltech.edu; ames@caltech.edu).

This letter has supplementary downloadable material available at https://doi.
org/10.1109/LRA.2021.3061385, provided by the authors.

Digital Object Identifier 10.1109/LRA.2021.3061385

Fig. 1. (a) aSLIP walking on rough terrain, (b) some examples of the aSLIP-
like robots: ATRIAS [14], Cassie [5], Digit (Photo by Dan Saelinger).

equivalently the step size [1]. This setting simplifies the control
synthesis and analysis; however, it loses certain correspondence
to the physical robots that are designed to resemble the SLIP [9],
[10] (namely SLIP-like robots). This is due to the added actua-
tion to compensate for energy dissipation on the real systems. As
a result, either heuristics-based controllers [1], [10] are directly
synthesized on the SLIP-like robots, or actuated versions of the
SLIP [5], [11]–[14] are proposed for better-approximating the
robot dynamics and synthesizing the controllers for their robots.

One common way of actuating the SLIP is via the leg length
actuation [14]–[17], which is in series with the spring. [5],
[12], [13] further traced back the leg length to its second order
dynamics to map the actuated robot dynamics to the SLIP. We
refer to this class of SLIP as the actuated SLIP (aSLIP) and
theirs associated robots as aSLIP-like robots [5], [7], [14], [18]:
typically with serial-elastic torque-actuated legs (Fig. 1). The
aSLIP is an important model to study, since it has not only been
successfully used to synthesize controllers [5], [12], [14], [18],
[19] on the aSLIP-like robots, but also been used to provide
template dynamics for fully-actuated humanoids [15], [20], [21].

In this letter, we are interested in realizing dynamic walking of
the aSLIP on rough terrain. Despite extensive studies on running
on rough terrain [4], [17], SLIP walking on rough terrain has
been less studied. The nonlinear dynamics alternating between
the SSP and DSP challenge the control, and the influence of
the foot-placement on its hybrid dynamics becomes complex.
To solve this problem, we decouple the control of the aSLIP
walking into two sub-problems: the continuous control on the
vertical trajectory of the mass via leg internal actuation, and the
discrete control on the horizontal state of the mass via stepping.

The continuous control is realized via backstepping [22] based
control Lyapunov function inspired quadratic programs with an
integration of control barrier functions [23]. In short, we name

2377-3766 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 15,2021 at 21:43:25 UTC from IEEE Xplore.  Restrictions apply.



XIONG AND AMES: SLIP WALKING OVER ROUGH TERRAIN VIA H-LIP STEPPING AND BACKSTEPPING-BARRIER FUNCTION 2123

it as Backstepping-Barrier function (BBF). The backstepping
solves the hierarchical control from the leg actuation to the
leg force and then to the vertical state of the mass. The barrier
functions are utilized to keep the leg force remains positive in
the SSP and drive one of the leg forces to decrease to 0 in DSP
so that it transits to the next SSP at an appropriate timing. The
BBF represents affine inequality conditions on the control input,
thus quadratic programs (QPs) are formulated for realizing the
control.

The discrete control problem is solved via the stepping based
on the Hybrid Linear Inverted Pendulum (H-LIP) [21], [24],
[25]. The horizontal step-to-step (S2S) dynamics of the aSLIP
walking is approximated by that of the H-LIP, where the step size
becomes the input. we extend the results of the H-LIP stepping
on flat terrain in [21] to the case of walking on rough terrains. The
stepping keeps the discrete horizontal state of the aSLIP close
to that of the H-LIP, the error between which converges an error
invariant set. Desired walking behaviors are thus approximately
realized on the aSLIP.

Compared to the approaches in [26]–[28] for walking on
rough terrains, the proposed approach is highly efficient in
computation and easy to implement. The continuous controls
via BBF-QPs are convex optimizations. The discrete control
via H-LIP stepping is in closed-form. Additionally, compared
to [15], [27], [29], our controller tolerates significantly larger
height variations of the terrain. Moreover, the terrain does not
need to be exactly known, thus robustness is promoted.

We evaluate the proposed control scheme on walking on rigid
terrains with various shapes and uncertainties. The aSLIP can
achieve desired walking on all tested terrains successfully. We
envision this approach to be extended for aSLIP-like robots
and to provide template walking dynamics for fully-actuated
humanoids to walk on rough terrains.

II. THE ASLIP MODEL OF WALKING

In this section, we present the dynamics of the walking of the
actuated Spring Loaded Inverted Pendulum (aSLIP) and then
present the control methodology at the high-level.

A. Dynamics of Walking

The aSLIP (Fig. 1(a)), similar to the canonical SLIP [3],
contains a point mass attached on two prismatic springy legs.
The walking alternates between two domains: the Single Support
Phase (SSP) and the Double Support Phase (DSP). The point
mass moves under the leg forces and the gravitation. The point
mass dynamics is:

mP̈ =
∑

F+mg, (1)

where m is the mass, P = [x, z]T is the position vector of the
mass, F represents the leg forces on the stance legs, and g is
the gravitation vector. It transits from the DSP to the SSP when
one of the legs is about to lift off (the leg force is crossing zero).
The walking transits into the DSP when the swing foot strikes
the ground. One important control input of aSLIP and the only
input of the canonical SLIP are the swing leg angle in the SSP,

Fig. 2. (a) The control specifications and (b) the step-to-step dynamics.

which can be directly set since the swing leg is assumed to be
mass-less.

The leg length actuation on the aSLIP provides additional
control inputs. The actuation can extend and retract the uncom-
pressed leg length L. Let r be the compressed leg length and s
be the spring deformation, thus L = s+ r. The actuation of the
leg length is L̈ = τ , where τ is the input.

We also add damping on the spring for energy dissipation.
Then, the leg force is Fs = Ks+ Dṡ, where K and D are the
spring stiffness and damping,1 respectively. As a result, its
system dynamics can be written in polar coordinates, e.g., the
stance leg dynamics in SSP are:

r̈s =
Fs

m − gcos(θs) + rsθ̇
2
s

θ̈s =
1
rs
(−2θ̇sṙs + gsin(θs))

s̈s = τs − r̈s

where θ is the leg angle, and the subscript s denotes the stance
leg. In the latter, we use sw to denote the swing leg in the SSP.
In DSP, the subscript s1 and s2 denote the two stance legs and s1

is the leg that will lift off from the ground. Using the subscripts,
the vertical acceleration in DSP is:

z̈ =
Fs1

m cos(θs1) +
Fs2

m cos(θs2)− g. (2)

B. Control Scheme for Walking on General Rigid Terrain

We consider that the walking requires three specifications as
shown in Fig. 2(a): it keeps a vertical distance from the ground,
the swing foot periodically lifts off and strikes the ground to
switch support legs, and the swing foot steps to certain locations
to produce a desired horizontal behavior. The corresponding
controls are briefly explained as follows.

1) Vertical Mass Control via BBF-QP: The vertical state
z is expected to follow a desired trajectory zd which has an
approximately constant distance from the ground (see Fig. 2).
The leg forces are expected to be positive and Fs1 has to cross 0
at the end of the DSP. The vertical tracking and the leg force
conditions are solved via the Backstepping-Barrier function
based quadratic programs (BBF-QPs), which will be explained
in section III and IV.

2) Vertical Swing Foot Control: The vertical position of the
swing foot is controlled to lift off, avoid scuffing, and strike on
the ground to finish the SSP at appropriate timing. The desired

1K and D of the leg spring on the physical robot can be nonlinear [5] of L for
best approximation or constant for simplifications.
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vertical swing foot position is constructed as:

zdsw = ztime
sw (t) + zterrain(xsw), (3)

where ztime
sw (t) is the time-dependent component and zterrain(xsw)

is the terrain profile. ztime
sw (t) is constructed so that the swing foot

lifts off from the ground, reaches to a maximum height zmax
sw and

then strikes the ground at t = TS, where TS is the duration of the
SSP. An example of the time-dependent component is: ztime

sw (t) =
zmax
sw cos( t

TS
π − 1

2π). The spring compression is assumed to go
to zero on the swing leg, thus we select zsw = z − Lswcos(θsw)
and apply a feedback linearizing controller to drive zsw → zdsw.

Note that the terrain profile may not be exactly known in
practice, for which we assume an estimated version is available.
The uncertainty on the terrain height creates an uncertainty on
the duration of the SSP: early strike causes a shorter duration
and late strike produces a longer duration.

3) Horizontal Mass Control via H-LIP Stepping: The hori-
zontal state x = [x, ẋ]T should be controlled for walking. Due
to the point-foot underactuation, the horizontal state cannot be
continuously controlled. We stabilize the state at the pre-impact
event based on the discrete step-to-step (S2S) dynamics [21]
of the walking (see Fig. 2(b)). The step size u is considered
as the input to the S2S of the discrete horizontal state. The
S2S dynamics is approximated by the S2S dynamics of the
H-LIP. The H-LIP based stepping is applied to provide the
desired step size on the aSLIP, which is explained in section V.
Since the swing angle can be directly set, we simply construct a
smooth trajectory of the horizontal swing foot position to transit
from previous step location to the desired location. Then the
horizontal swing foot position xd

sw is:

xd
sw = xs + c(t)uk − (1− c(t))uk−1, (4)

where xs is the horizontal position of the stance foot, c(t) is a
smooth time-based curve to transit from 0 to 1 within the SSP
duration TS, and uk−1 is the previous step size.

III. BACKSTEPPING-CONTROL LYAPUNOV FUNCTION FOR

VERTICAL STABILIZATION

In this section, we describe one of the main components of
this letter for controlling the vertical behavior of the walking
of the aSLIP. We present the dynamics structure of the vertical
state in each domain. Then we show the canonical Lyapunov
backstepping that guarantees to stabilize this class of control
problem without heuristic gain-tuning. Last, we formulate a
control Lyapunov backstepping, which yields an inequality con-
dition for the control and opens opportunities to include extra
constraints on the input in an optimization-based controller.

A. Strict-Feedback Form of the Vertical State

The objective is to drive the vertical position of the mass to
follow a desired trajectory. We define the output as:

η :=
[
z − zd(t), ż − żd(t)

]T
, (5)

where [zd(t), żd(t)] is the desired trajectory to follow. Differen-
tiating the output yields the output dynamics:

η̇ = fη + gηF
SSP/DSP
z , (6)

where fη :=
[
ż − żd,−g − z̈d

]T
, gη :=

[
0, 1

m

]T
. F SSP/DSP

z is

the net vertical force in each domain:

F SSP
z = Fscos(θs), F

DSP
z = Fs1cos(θs1) + Fs2cos(θs2).

We view F SSP/DSP
z as the fictitious input to this system in Eq.

(6). Differentiating F SSP/DSP
z yields the affine dynamics with the

actual actuation of the leg length as the input. The dynamics are
different in the SSP and DSP:

Ḟ SSP
z = fSSP

z + gzτ
SSP
z , ḞDSP

z = fDSP
z + gzτ

DSP
z , (7)

where gz = D �= 0, and,

τSSP
z := cos(θs)τs, τ

DSP
z := cos(θs1)τs1 + cos(θs2)τs2 . (8)

The expressions of fSSP
z and fDSP

z are omitted. τSSP/DSP
z repre-

sents the vertical component of the leg length actuation. The leg
angles θ ∈ (−π

2 ,
π
2 ); thus, given a desired τSSP/DSP

z , there always
exists leg length actuation for realization. Note that the desired
τDSP
z is not uniquely realized by τs1 and τs2 .

As a result, for walking in both domains, we can synthesize
τz ∈ R to stabilize the vertical trajectory of the mass based on
the dynamics in the strict-feedback form [30]:

η̇ = fη + gηFz,

Ḟz = fz + gzτz.

(9)
(10)

B. Lyapunov Backstepping

Lyapunov Backstepping [22] can be applied to stabilize the
dynamics in Eq. (9) and (10). For Eq. (9) withFz being the input,
a feedback linearizing controller can be synthesized:

F̄z = 1
gη2

(−fη2 +KIOη), (11)

where KIO = [Kp,Kd] is the linear feedback gain and the sub-
script 2 indicates the second element of the vector. This yields
the linear closed-loop dynamics:

η̇ = fη + gηF̄z =

[
0 1

Kp Kd

]
η := Aclη. (12)

KIO is chosen with Kp < 0,Kd < 0 so that Acl is stable (with
negative eigenvalues). On the closed-loop dynamics, a Lyapunov
function can be found: Vη = ηTPη, with P > 0 (being positive
definite). P satisfies the continuous-time Lyapunov function
PAcl +AT

clP = −Q, where Q > 0 is selected. It is easy to
verify that: V̇η = −ηTQη ≤ −λmin(Q)||η||2, where λmin(Q) is
the smallest eigenvalue of the matrix Q.

To synthesize the actual control from τz to stabilize η → 0,
we define Fδ := Fz − F̄z and the Lyapunov function be:

V (η, Fz) = Vη +
1
2F

2
δ . (13)

Differentiating this yields,

V̇ (η, Fz) =
∂Vη

∂η (fη + gηFz) + FδḞδ

=
∂Vη

∂η (fη + gηF̄z) +
∂Vη

∂η gηFδ + FδḞδ

= V̇η +
∂Vη

∂η gηFδ + FδḞδ (14)

≤ −λmin(Q)||η||2 + ∂Vη

∂η gηFδ + FδḞδ. (15)

If we choose

Ḟδ = −∂Vη

∂η gη − kFδ, (16)
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with k > 0, then,

V̇ (η, Fz) ≤ −λmin(Q)||η||2 − kF 2
δ

≤ −min(λmin(Q), k)||[ηT , Fδ]
T ||2. (17)

By Lyapunov’s method, the system with (η, Fδ) as states is
exponentially stable to the origin (η, Fδ) = (0, 0). This provides
a closed-form Backstepping controller on τz from Eq. (16).
Since Ḟδ = fz + gzτz − ˙̄Fz , the controller is

τz =
1

gz

(
−∂Vη

∂η gη − kFδ +
˙̄Fz − fz

)
. (18)

C. Backstepping-CLF

The closed-form controller in Eq. (18) appears to be able
to stabilize η → 0. However, the resultant leg force Fz can
be negative, which is not valid for walking. Here we develop
the control Lyapunov function (CLF) of the backstepping to
provide an inequality condition on the input τz to stabilize η. The
inequality motivates an optimization-based controller, in which
the condition of non-negative leg forcing can be enforced via
additional constraints, e.g., the control barrier function (CBF)
in the next section.

Note that V̇ is an affine function w.r.t. the input τz:

V̇ (η, Fz) = V̇η +
∂Vη

∂η
gηFδ + Fδ(fz + gzτz − ˙̄Fz)

= V̇η +
∂Vη

∂η
gηFδ + Fδ(fz − ˙̄Fz) + Fδgzτz.

The exponential stability can be established via enforcing:

V̇ (η, Fz) ≤ −γV (η, Fz), (19)

with γ > 0. This yields a Backstepping-CLF inequality:

ABackstepping
CLF τz ≤ bBackstepping

CLF (20)

where ABackstepping
CLF := Fδgz, b

Backstepping
CLF := −V̇η − ∂Vη

∂η gηFδ −
Fδ(fz − ˙̄Fz)− γV. When Fδ �= 0, Eq. (20) is a constraint on
τz . When Fδ = 0, the inequality becomes V̇η ≤ −γV = −γVη ,

which is automatically satisfied as long as 0 ≤ γ ≤ λmin(Q)
λmax(P ) . As

a result, as long as τz satisfies the backstepping-CLF inequality,
η exponentially converges to 0. Note that this inequality is an
affine condition on τs in SSP or τs1 and τs2 in DSP as indicated
by Eq. (8). Thus, in the next section, we will formulate quadratic
program (QP) based controllers that include the inequality in Eq.
(20) with the incorporation of the control barrier functions.

IV. CONTROL BARRIER FUNCTIONS FOR WALKING

In the application of walking, the leg forces should be positive
during contact. Moreover, in DSP, one leg force should grace-
fully cross 0 to initiate lift-off. These conditions can be described
via sets and thus be enforced via control barrier function (CBF)
with an inequality condition which guarantees set invariance
on the dynamics. We start by introducing the CBF, show the
application for the walking of the aSLIP, and finally integrate it
with the Backstepping-CLF to formulate the final backstepping-
barrier function based quadratic program (BBF-QP) controllers
for walking.

A. Control Barrier Functions

The control barrier function [23] describes a condition for
the control input that guarantees set invariance. We consider a
super level set C of a continuously differentiable scalar function
h : Rn → R. By definition: C = {x ∈ Rn|h(x) ≥ 0}. Here we
use x for a general state representation, instead of the horizontal
position of the aSLIP.h is a control barrier function for the affine
control system ẋ = f(x) + g(x)u if:

sup
u∈U

[Lfh(x) + Lgh(x)u+ α(h(x))] ≥ 0, (21)

where Lfh(x) =
∂h
∂xf(x) and Lgh(x) =

∂h
∂xg(x) are the Lie

derivatives; Lfh(x) + Lgh(x) = ḣ(x). U is the set where the
input u is in, and α(·) is an extended class K∞ function.2 This
condition indicates that there exists an input to stabilize the set
C, i.e., making sure h(x) ≥ 0. If the state is in C, it will stay in
the set forever if the CBF inequality is satisfied:

Lfh(x) + Lgh(x)u ≥ −α(h(x)). (22)

This makes sure that the lower bound of the derivative ḣ is
increasing with the decrease of h. It can be proven that the set
C is exponentially stable under this condition [23].

B. Application to aSLIP Walking

Eq. (22) represents an inequality constraint on the input to
make sure that h ≥ 0, for which h is defined differently for the
walking in the SSP and the DSP.

SSP: The stance leg force Fs should be non-negative, so is its
vertical component F SSP

z . Thus, we let:

hs = F SSP
z , ḣs ≥ −α(hs), (23)

which provides an inequality on the input τs:

As
CBFτs ≤ bsCBF, (24)

whereAs
CBF := −gzcos(θs), bsCBF := fSSP

z + α(hs). We simply
select α(·) to be a linear function. This inequality naturally fits
with the Backstepping-CLF inequality in Eq. (20) to formulate
a backstepping-barrier function based quadratic program (BBF-
QP) controller:

(τs, δ) = argmin
(τs,δ)∈R2

τ2s + δ2

s.t. ABackstepping
CLF τSSP

z ≤ bBackstepping
CLF + δ

As
CBFτs ≤ bsCBF

(25)

where δ is a relaxation variable to avoid infeasibility. In case
when the CBF constraint violates the Backstepping-CLF con-
straint, the Backstepping-CLF constraint is relaxed and the CBF
constraint is still enforced.

DSP: Both leg forces should remain non-negative. The leg
force on s2 should remain non-negative through out the DSP.
Thus, we let hs2 = Fs2 , and the CBF inequality becomes

As2
CBFτs2 ≤ bs2CBF. (26)

The leg force on s1 should gradually decrease and reach
to zero to trigger the transition into the next SSP. Let F 0

s1
be

the leg force on s1 in the beginning of the DSP. A desired leg

2α : R → R, α(0) = 0 and α is strictly monotonically increasing.
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Fig. 3. Contact force condition for lift-off in DSP (the red region represents
the admissible region for the leg force).

force trajectory can be designed: F d
s1
(t) = F 0

s1
(1− t

TD
), where

TD is the duration of the DSP. One may consider to design a
feedback controller to drive Fs1 → F d

s1
. However, this creates

a high restriction on τs1 and can lead to conflicts between the
Backstepping-CLF inequality in Eq. (20) and the CBF inequality
in Eq. (26).

To decrease Fs1 in a relaxed fashion, we create the inequality
condition: (1− c)F d

s1
≤ Fs1 ≤ (1 + c)F d

s1
, where c ∈ (0, 1) is

a relaxation coefficient. As shown in Fig. 3, this generates an
admissible force region (indicated by the blue region), which
decreases as the desired force F d

s1
decreases with time. This

two inequalities can be converted into a single inequality: hs1 =
(cF d

s1
)2 − (Fs1 − F d

s1
)2 ≥ 0. Note that this barrier function is

ill-defined as F d
s1

approaches to 0 (the set C becomes trivial).
Thus, we increase the relaxation by adding a positive value ΔF
in the inequality:

(1− c)F d
s1

−ΔF ≤ Fs1 ≤ (1 + c)F d
s1

+ΔF, (27)

which generates the red admissible region. By defining:

hs1 = (cF d
s1

+ΔF )2 − (Fs1 − F d
s1
)2 ≥ 0, (28)

the set C is always non-trivial before lift-off. Thus we have
another CBF inequality: As1

CBFτs1 ≤ bs1CBF.
Similarly, the two CBF inequalities are incorporated with the

Backstepping-CLF inequality to formulate the final BBF-QP
controller for the walking in DSP:

(τs1, τs2, δ) = argmin
(τs1,τs2,δ)∈R3

τ2s1 + τ2s2 + δ2

s.t. ABackstepping
CLF τDSP

z ≤ bBackstepping
CLF + δ

As1
CBFτs1 ≤ bs1CBF, A

s2
CBFτs2 ≤ bs2CBF.

(29)

The BBF-QPs are designed to stabilize the vertical position
of the mass to the desired trajectory and simultaneously satisfy
the conditions on the leg forces during walking.

V. H-LIP STEPPING FOR HORIZONTAL STABILIZATION

We now describe the horizontal stabilization via stepping,
which is based on the step-to-step (S2S) dynamics approxima-
tion via the Hybrid Linear Inverted Pendulum (H-LIP) [21], [24].
The H-LIP based stepping has been proposed in [21], [24], [25]
for walking on flat terrain. Here, we generalize the stepping for
walking on non-flat terrain.

Fig. 4. Illustration of the walking on the H-LIP model on a flat terrain (a)
and on a slope (b). (c) H-LIP walking on rough terrain, where the dashed lines
indicate the leg that is about to lift off or strike the ground.

A. The H-LIP Model and Its Step-to-Step Dynamics

The H-LIP [24] is a formal adaptation of the Linear Inverted
Pendulum Model in [31]. It is assumed to walking with a constant
height of the mass, telescopic legs, and point feet (see Fig. 4(a)).
The walking is composed of two alternating phases, i.e., the
Single Support Phase (SSP) and the Double Support Phase
(DSP). The velocity in DSP is assumed to be constant [32],
[33]. The dynamics are:

SSP: p̈ = λ2p, DSP: p̈ = 0, (30)

where p is the horizontal position from the support foot to the
mass, λ =

√
g/z0, and z0 is the constant height of the mass.

The transitions between the phases are smooth. The walking is
controlled by changing the step size u. [21] proposed a Step-to-
Step (S2S) dynamics formulation, which treats the step size as
the input to discrete dynamical system at the step level. Consider
the pre-impact state (the state before the transition from SSP to
DSP) xk = [pk, ṗk]

T at the step indexed by k with the step size
being uk. The pre-impact state at the next step follows the S2S
dynamics:

xk+1 = Axk +Buk, (31)

where A =
[
cosh(TSλ) TDcosh(TSλ) + 1

λ
sinh(TSλ)

λsinh(TSλ) cosh(TSλ) + TDsinh(TSλ)

]
, B =[−cosh(TSλ)

−λsinh(TSλ)

]
.

As a result, we generate desired walking behaviors by control-
ling the discrete pre-impact state via changing the step size. The
periodic walking behaviors can be described in closed-form [24],
[25], and the non-periodic walking can be found via optimiza-
tion [21].

B. Generalization on Walking on Rough Terrain

We extend the H-LIP walking to rough terrains. We first
consider the H-LIP walking on a slope, as shown in Fig. 4(b).
We assume that the vertical distance between the mass and the
slope, i.e. z0, remains constant. θs is the degree of the slope. θx
is the angle between the leg and the slope. The step size u is
defined as the horizontal distance between the feet.
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SSP dynamics: In SSP, the H-LIP is the LIP in [33] with zero
ankle torque. The results of Eq. (12) in [33] can be applied and
yield the identical dynamics in Eq. (30). It can also be derived
from the Newton-Euler equations:

mp̈x = FLcos(θx)−mgsin(θs), FLsin(θx) = mgcos(θs).

where FL is the leg force. Solving for p̈x yields p̈x = λ2px −
gsin(θ). As p = pxcos(θ)− zxsin(θ), p̈ = p̈xcos(θ) = λ2p.

DSP dynamics: In DSP, two leg forces act on the point mass
to yield the net acceleration of the mass pointing to the direction
which is parallel to the slope. The Newton-Euler equations
cannot yield deterministic net accelerations. In other words, the
net acceleration is controllable from the leg forces. Thus we
assume that the acceleration is zero.

S2S dynamics: As a result, by describing the state and input
in the inertial frame, the dynamics of the H-LIP walking on
the slope is identical to the dynamics on flat ground, so is the
step-to-step dynamics and the resulting stepping controller.

On rough terrain: The walking model of the H-LIP on general
non-flat terrains is based on the walking on slopes. Given a
sequence of steps of the H-LIP walking on rough terrain, the
walking is equivalent to walking on piecewise continuous slopes,
as illustrated in Fig. 4(c). Since the slope changes with each step,
the assumption has to be made to enable the change of the slope.
For instance, in [34], an impulse of the leg force is assumed to
change the slope rate when the leg is strictly vertical in the SSP.
Here we assume the slope changes in DSP, where the two leg
forces can simultaneously create zero horizontal acceleration
and change the vertical trajectory. Therefore, the dynamics in
both domains remain the same, so does the S2S dynamics. The
assumptions on the H-LIP walking are designed to have a linear
S2S dynamics to approximate and control the actual walking of
the aSLIP model, which is explained as follows.

C. Stepping Control Based on the S2S Approximation

After we verify that the S2S dynamics of the H-LIP on
rough terrain can still be a linear dynamics, we use it as an
approximation to the actual S2S dynamics of the aSLIP walking.
Here we briefly explain the stepping controller based on the S2S
approximation. More details are in [21].

Consider the S2S of the horizontal aSLIP state as:

xaSLIP
k+1 = Px(uk, τ, xk, zk, . . .), (32)

where xaSLIP
k+1 = [xk+1, ẋk+1]

T is the horizontal state at pre-
impact, uk is the previous step size, τ represents the leg length
actuation over the step, and xk, zk, . . . are the pre-impact states
at the previous step. Px is guaranteed to exist since we control
the swing foot to periodically lift off and strike the ground in Eq.
(3). The exact expression ofPx cannot be obtained. We consider
to approximate it via the S2S of the H-LIP in Eq. (31). Thus,
Eq. (32) is rewritten as:

xaSLIP
k+1 = AxaSLIP

k +Buk + w, (33)

where w := Px −AxaSLIP
k −Buk can be viewed as the integral

of the difference of the walking dynamics between the two
models on the horizontal state over the step. Since each step
happens in finite time, the integral is assumed to be bounded,
i.e.,w ∈ W withW being the set ofw. Let uH-LIP be the nominal
step size to realize a desired walking behavior on the H-LIP, and

Algorithm 1: BBF-QP With H-LIP Stepping for Walking.

Initialization: Terrain: zterrain(x). Behavior: z0 = 1 m,
TS = 0.4s, TD = 0.1s. Control: α = 500, γ = 10, k = 10,
c = 0.5, ΔF = 20.

1: while Simulation/Control loop do
2: if SSP then
3: Desired step size ← H-LIP stepping in Eq. (34)
4: Desired swing foot position ← Eq. (4) (3)
5: τ ← BBF-QP in Eq. (25)
6: else
7: τ ← BBF-QP in Eq. (29)
8: end if
9: end while

K is the feedback gain to make A+BK stable. For the aSLIP,
applying the H-LIP stepping:

uk(x
aSLIP
k ) = uH-LIP

k +K(xaSLIP
k − xH-LIP

k ) (34)

yields the error stateek := xaSLIP
k − xH-LIP

k to evolve on the error
dynamics:

ek+1 = (A+BK)ek + w, (35)

which has an error (disturbance) invariant setE by treatingw as
the disturbance. By definition, (A+BK)E ⊕W ∈ E, where
⊕ is the Minkowski sum. If e0 ∈ E, ek ∈ E, ∀k ∈ N. A small
W produces a small E. As a result, the H-LIP based stepping
controller can approximately control the horizontal state of the
aSLIP to exert the desired behavior with the tracking error being
bounded by E. Note that since the pre-impact state of the aSLIP
xaSLIP
k is not known as a priori, the desired step size is constantly

calculated based on the current horizontal state xaSLIP(t) in the
SSP.

VI. RESULTS

The control procedure with the chosen parameters is presented
in Algorithm 1. The stepping gainK is chosen to be the deadbeat
gain [25] for all the walking for consistency, i.e., (A+BK)2 =
0. The QP-based controller is solved at 1 kHz. The aSLIP starts
from an initial static configuration and walks to a desired pre-
impact velocity v∗. The aSLIP parameters are chosen to match
with the robot Cassie.3 A video of the results can be seen in [35].

A. Flat Ground and Slopes

We first evaluate the approach for walking on flat ground and
slopes, for which, the desired vertical trajectory is parallel to
the terrain. Under this circumstance, the aSLIP best matches the
original assumption of the H-LIP walking.

Fig. 5 shows the results of walking on flat ground. The aSLIP
converges closely to the desired walking of the H-LIP. The
leg forces behave as expected. Fig. 5(c) shows the trajectories
of the horizontal velocity, which are not constant in the DSP
and then contribute to the error w in the S2S dynamics. We

3m = 33 kg, and K = 8000 N/m, D = 100 Ns/m, which are the nonlinear
leg spring parameters of Cassie [5] at L ≈ 1 m. The spring is chosen to be linear
for generality.
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Fig. 5. Walking on flat ground: (a) the phase portrait of the horizontal state
trajectory (blue) in SSP for walking with v∗ = 0.5 m/s, and the black is the
corresponding orbit of the H-LIP (green lines are the orbital lines [24], (b) the
leg forces during walking with the gray region being the admissible region in
DSP; (c) the walking velocity and (d) the trajectories of the discrete error state
ek = [ex, eẋ]

T of walking with different v∗ = 0.2, 0.5, 0.8 m/s (indicated by
dashed lines in (c)).

Fig. 6. Walking on slopes with v∗ = 0.5m/s: (a) an illustration of the walking
on an incline; (b) the velocity trajectories, (c) the vertical trajectories, and (d)
the error state trajectories for walking on different slopes (the red plots indicate
the inclines, the blue plots indicates the declines and the black plots represent
the flat ground).

numerically calculate all w for different walking simulations
and inner approximate W by a square. Since (A+BK)2 = 0,
E = W ⊕ (A+BK)W ; we get an inner approximation of E
(shown in Fig. 5(d)), and all the error states e are inside E.

Fig. 6 shows the walking on slopes up to ±30◦: (b) the
converged velocities are still close to the desired one, (c) the
vertical trajectories are controlled closely to the desired ones,
and (d) the error states are inside E. The walking performance
does not vary significantly on different slopes due to the trivial
impact from the compliant spring.

B. Sin Waves, Stairs and Rough Terrains

We then evaluate the walking on sin waves, stairs, and gen-
eral rough terrains, as shown in Fig. 7. The desired vertical

Fig. 7. Walking with v∗ = 0.5 m/s on (a) sinusoidal terrain, (b) stairs, (c), (d)
rough terrains; (e) the velocity trajectories and (f) the error state trajectories.

trajectories zd are not necessarily piece-wise linear and do
not directly match the local slope assumption of the H-LIP,
which presumably creates a larger w and thus a looser tracking
performance on the horizontal state.

On sine waves, zd = z0 + zterrain. For walking on stairs, we
apply a moving averaging filter on zterrain to generate a smooth
zd. For walking on general rough terrains, we assume the terrain
height is not exactly known. The terrain is generated with a
combination of slopes, stairs, and sine waves plus a uniformly
distributed noise with a maximum magnitude δz. We apply the
moving averaging on the noise-free profile to get zd. The noises
are viewed as measurement errors from sensors on physical
robots. We tested the cases with δz = 0, 5, 10cm. For even larger
(unrealistic) noises, kinematic violation starts to happen, i.e., leg
collides on the edges of the terrains.

The results are shown in Fig. 7: the vertical trajectories are
well-tracked, and the horizontal velocities (compared with the
walking on flat ground) are tracked approximately. As expected,
the walking on the rough terrains generated larger oscillations
(larger δz → larger oscillations). This is in part because the
noise creates variations on TS, which contributes to w. Despite
the velocity oscillations, the error states (blue dots in Fig. 7(f))
are all inside E.

VII. DISCUSSION

The proposed approach is successfully realized on the aSLIP
for controlling stable walking on various non-flat terrains. The
performance of the walking and its robustness to the ground
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variation are encapsulated by the error invariant set. Despite the
walking is presented in a plane, the approach can be readily
applied to 3D walking of the aSLIP [21] with two orthogonal
planar stepping stabilizations via the H-LIP.

The application of the H-LIP stepping relies on the condition
that the aSLIP dynamics is close to that of the H-LIP. This is
mainly ensured by three components of the control synthesis.
The first is the direct control of the vertical state of the mass,
so the vertical trajectory is not distant from that of the H-LIP.
The second is the time-based component of the vertical swing
foot trajectory, which makes sure that the duration of the SSP
does not vary unless the terrain noise δz is too large. The third
is the control barrier function in DSP that guides one leg force
to cross 0 at an appropriate timing, thus the DSP duration does
not significantly vary.

The assumption of constant velocity in DSP of the H-LIP is
not problematic for walking with dominating SSP (TS > TD), as
the integrated error over the DSP is small. The assumption can
be improved for preciseness, e.g., by learning from the walking
data. The horizontal state could be included in the BBF-QP as
it is controllable when the leg is not vertical. However, it then
becomes a balance or conflict of the control between the vertical
and horizontal states.

VIII. CONCLUSION AND FUTURE WORK

We present a highly efficient control approach to enable
actuated Spring Loaded Inverted Pendulum (aSLIP) to walk-
ing on rough terrains with large height variations. The verti-
cal state is controlled via Backstepping-Barrier function based
quadratic programs (BBF-QPs); the horizontal state is stabilized
via Hybrid-LIP based stepping. In the future, we will extend the
approach to the aSLIP-like robots, e.g., Cassie and Digit, for
walking over rough and challenging terrains.
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