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Decentralized Task and Path Planning for
Multi-Robot Systems

Yuxiao Chen , Ugo Rosolia , and Aaron D. Ames

Abstract—We consider a multi-robot system with a team of
collaborative robots and multiple tasks that emerges over time.
We propose a fully decentralized task and path planning (DTPP)
framework consisting of a task allocation module and a localized
path planning module. Each task is modeled as a Markov Decision
Process (MDP) or a Mixed Observed Markov Decision Process
(MOMDP) depending on whether full states or partial states are
observable. The task allocation module then aims at maximizing
the expected pure reward (reward minus cost) of the robotic team.
We fuse the Markov model into a factor graph formulation so that
the task allocation can be decentrally solved using the max-sum
algorithm. Each robot agent follows the optimal policy synthesized
for the Markov model and we propose a localized forward dy-
namic programming scheme that resolves conflicts between agents
and avoids collisions. The proposed framework is demonstrated
with high fidelity ROS simulations and experiments with multiple
ground robots.

Index Terms—Autonomous systems, multi-robot systems, mobile
robots.

I. INTRODUCTION

THE planning and control of multi-robot systems is an
important problem in robotics [1], [2], and its applications

can be seen in transportation, logistics robots in manufacturing
and e-commerce, rescue missions post disasters, and multi-robot
exploration tasks. The planning and control of the robotic agents
is a core functionality of the multi-robot system, including the
high-level task planning and the low-level path planning and
control. Take the famous Kiva warehouse robot as an exam-
ple [3], the task planning layer determines which robot shall
pick up which package, then the path planning layer plans the
specific trajectory for each robot in a grid, and the control module
tracks the trajectory. Comparing to single robot operations, the
core challenges of multi-robot systems are task allocation among
multiple robot agents, and the trajectory planning that resolves
conflicts between the robot agents.

The problem of task allocation for multi-robot systems
has been studied extensively in the literature [4]–[6]. Exist-
ing task allocation methods include auction or market based
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methods [7]–[9], and optimization-based methods such as
mixed-integer programming [10] and generic optimization algo-
rithms [11], [12]. The drinking philosopher problem is utilized
for coordination of multiple agents in [13].

Another aspect of task allocation methods is whether they
are centralized or decentralized. In the Kiva case, both the task
assignment and the path planning are performed centrally, yet
this may not be available if the multi-robot system operates
in an environment without powerful sensing and computation
capabilities. In general, the market/auction-based methods can
be solved decentrally [14], but the problem structure needs to be
simple enough so that each agent can act as bidders and place
their bids on the tasks, which may be difficult when some tasks
require multiple agents to cooperate. The optimization-based
methods allow for more complicated problem structures, yet
may be difficult to solve in a decentralized manner. In [15],
the authors proposed the consensus-based bundle algorithm that
allows for tasks requiring two agents to complete. However, it
requires the agents to enumerate the possible bundles of task
allocation and then resolve the conflict to achieve consensus,
which does not scale as the number of agents grows. One
powerful algorithm is the max-sum algorithm, which is based on
the generalized distributive law (GDL) [16]. Other instances of
GDL algorithms include the max-product, the sum-product, and
the min-sum, and they have been widely used in problems such as
belief propagation and factor graph optimization. The distributed
nature of max-sum allows it to be used in decentralized optimiza-
tions, including task allocation [17], and coordination [18]. The
proposed approach DTPP is based on the max-sum algorithm,
and we shall show how max-sum is used to optimize the expected
team reward in a decentralized manner.

Motion planning is studied both in the continuous domain and
discrete domain. In the continuous domain, more emphasis is put
on feasibility and safety rather than optimality, such as the veloc-
ity space methods [19], [20], and control barrier functions [21].
The discrete multiagent motion planning problem deals with
multiple agents on a graph [22], and was shown in [23] to be
NP-hard.

The multi-robot system planning problem has been extended
to the case with temporal logic specifications. STAP [24] de-
composes linear temporal logic (LTL) formulae into sub-tasks
for a multi-robot system to perform simultaneous task allocation
and planning, and [25] focused on syntactically co-safe LTL.
Multi-agent planning is also considered under the stochastic
setup, such as Markov Decision Processes (MDP) and Partially
Observed Markov Decision Processes (POMDP) [26], [27].
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Fig. 1. Experiment with a multi-robot system consisting of Turtlebots in a grid
world with obstacles.

Fig. 2. Overview of system structure.

Dec-POMDP focuses on multiagent decentralized decision-
making modelled as POMDP [28], yet its worst-case complexity
is NEXP-complete. Existing works aiming for better scalability
include online tree search [29] and Monte-Carlo methods [30].

Contribution. We propose the DTPP framework that aims at
maximizing the expected pure reward of a multi-robot system,
where each robot’s transition is modeled as an MOMDP. The
overall system structure is shown in Fig. 2. The task allocation
module takes in the set of robot agents and multi-robot tasks
and determines which task each robot agent commits to. Each
robot agent then picks its action based on the MOMDP policy
of the task it commits to, which may be modified by the local
resolution module if there is a potential conflict with other robot
agents. The agents share a common belief over the unobserved
states by communicating their observations.

The contributions are threefold.
� in Section II we introduce the multi-robot tasks which

are capable of describing tasks for multiple robot agents,
potentially requiring coordination.

� Section III presents the task allocation module that solves
the task allocation with the highest expected pure reward
for the multi-robot system, defined as the expected reward
minus the expected cost. The algorithm is based on the
max-sum algorithm, which is fully decentralized.

� Section IV presents a local resolution module that resolves
potential conflicts between agents using a forward dynamic
programming (DP) approach.

Simulation and experiment results are shown in Section V.

II. MULTI-ROBOT SYSTEM AGENTS AND TASKS

We consider the problem of multi-robot operations consisting
of multiple robot agents and multiple tasks that appear over
time. The tasks are confined within an environment and can be
accomplished within a finite time horizon, such as surveillance
over a region, pickup and place, and collecting objects. Tasks
that requires infinite time to complete, such as visit two points
infinitely often, are not in the scope of this letter. We focus
on the high-level task and path planning for the robotic agents,
which contains two subproblems to solve: (1) task assignment of
multiple tasks among the multiple robot agents (2) path planning
for the robot agents.

Robot agent modeling. The key idea is to extend the planning
methods developed for a single robot to a multi-robot system. We
use Mixed Observable Markov Decision Processes (MOMDP)
to model a single robot planning problem, which is a tuple
(S, E ,A,O, Ts, Te, O, J), where
� S = {1, . . . , |S|} is a set of fully observable states;
� E = {1, . . . , |E|} is a set of partially observable states;
� A = {1, . . . , |A|} is a set of actions;
� O = {1, . . . , |O|} is the set of observations for the partially

observable state e ∈ E ;
� Ts : S ×A× E × S → [0, 1] is the observable state tran-

sition probability function where Ts(s, a, e, s
′) is the prob-

ability of the transition from s to s′ under action a and
partially observable state e.

� Te : S × E ×A× E → [0, 1] is the partially observable
state transition probability function where Te(s, e, a, e

′) is
the probability of the transition from e to e′ given the action
a and the current observable state s

� O : S × E ×A×O → [0, 1] is the observation function
where O(s, e, a, o) describes the probability of observing
the measurement o ∈ O, given the current state of the
system (s, e) and the action a applied at the previous time
step

� J : S ×A× S ×O → R is the cost function where
J(s, a, s,′ o) is the cost associated with the transition from
s to s′ under action a with observation o.

It is assumed that there exists an idle action, denoted as
IDLE ∈ A, which keeps the robot agent at the current state and
incurs no cost.

Remark 1: Note that the MOMDP is only given a cost func-
tion, this is because all the robot agents incur the same cost as
they move in the environment, but the rewards for accomplishing
the tasks differ in different tasks, and the same MOMDP is used
to describe all tasks.

Remark 2: When all states are observable, the MOMDP is
reduced to a Markov Decision Process (MDP).

The MOMDP is shared by all agents in the multi-robot
system where each robot agent selects an action at each time
step, and the actions are executed simultaneously. A multi-
robot system is then abstracted as a tuple (I,MOMDP), where
I = [1, 2, . . ., N ] is the indices of the robot agents. The overall
cost for the multi-robot system is then the summation of the
individual costs based on J . A collision happens when two robot
agents are at the same state the same time, and we shall use
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Fig. 3. High-fidelity ROS simulation of 3 segway robots with 3 uncertain
regions, the green regions represents the goal regions of the multi-robot tasks.

the local resolution scheme presented in Section IV to prevent
collisions.

In the example used in this letter, the observed state is the
position of the robot agent, the partially observable state is
whether some regions of the environment are blocked with
obstacles or free to pass, such as the half transparent obstacles
in Fig. 3. The robot agent can get stochastic observations of the
uncertain state, which gets more deterministic as the robot gets
closer to the region.

Multi-robot tasks. A multi-robot task is a tuple
(G,J , t0, tf ,R), where G is the goal set of the task, J ⊆ I is
the set of robot agents involved in this task, which is understood
as the candidates for completing the task. t0 is the starting time
of the task and tf is the ending time of the task. By tf , the
reward shall be collected based on the arrival of robot agents to
the goal set of the task. The reward function R : {0, 1}|J | → R
maps the arrival status of the robot agents to reward value. In
the homogeneous case, R is simply a function of the number
of robot agents arriving at the goal set before tf , while in the
heterogeneous case, different robot agents can incur different
reward. For simplicity, we focus on the homogeneous case for
the remainder of this letter. Let (r0, r1, r2. . .) be the compact
form of R, where ri denotes the reward with i agents arriving.
Albeit simple, the reward function R can be quite expressive,
here are a few examples.

Example 1: (r0 = 0, r1 = 5, r2 = 5) can represent a surveil-
lance task, one robot arriving at the goal set is sufficient, addi-
tional robots arriving would not incur additional reward.

Example 2: (r0 = 0, r1 = 5, r2 = 8) can represent the task
of moving a pile of sand with the total weight of 8 kg, yet one
robot can only carry 5 kg. Therefore, r1 = 5 and r2 = 8.

Example 3: (r0 = 0, r1 = 0, r2 = 8) can represent the task
of moving a box that weighs 8 kg, yet one robot can only carry
5 kg. Therefore, one robot arriving cannot move the box, and
two robots arriving shall collect the full reward.

We shall show in Section III how the reward function is
combined with the MOMDP to maximize the expected pure
reward. The tasks are broadcast to the robot agents when they
appear and the agents have no information about the tasks in
advance. This letter is concerned with the problem of optimally
assigning tasks to the robot agents and planning their actions to
achieve the highest cumulative reward.

III. DYNAMIC TASK ALLOCATION WITH MAX-SUM

The pure reward of a multi-robot system. Given the
MOMDP that describes the robot transition dynamics and

a multi-robot task, ideally, one would construct the product
MDP/MOMDP for the whole multi-robot system and plan the
joint action, yet this is usually not implementable due to the
doubly exponential complexity [31]. Instead, we use one single
MDP/MOMDP for a task assuming the agents’ evolution is
independent of each other and let all agents committed to the
task run the same policy in parallel. Obviously, the assumption
is not true in practice as we use the local resolution scheme to
prevent collisions between agents. However, when the multi-
robot system is scattered with a relatively low density, i.e., the
interactions between agents are not frequent, this assumption
can be quite close to reality.

Remark 3: To reflect the potential influence of the local
resolution, a higher probability of staying at the current state
is assigned to the MOMDP introduced in Section II.

MOMDP policy synthesis. We use an optimal quantitative
approach to synthesize the policy for the MOMDP where the
policy optimizes the cost function over all policies that maximize
the probability of satisfying the specification, which is to reach
the goal set before the terminal time. Given a MOMDP, a goal
set G, and a horizon tf (t0 is set to 0 for notational simplicity),
the optimal quantitative synthesis problem is the following:

π� = argmax
π

Eπ

⎡
⎣tf−1∑

t=0

−J(st, at, st+1, ot+1)

⎤
⎦

subject to π ∈ argmaxκPκ

[ tf∨
t=0

st ∈ G
]
, (1)

which solves for the policy that minimizes the expected cost
among all policies that maximize the probability of reaching the
goal set G before tf . Problem (1) is using a point-based strategy
as in [32], [33], see Appendix A for more detail. π : S × BE →
A is a policy for the MOMDP that maps the current state and the
belief vector b to an action, where b ∈ BE

.
= {b ∈ R

|E|
≥0 | 1ᵀb =

1}. The solution of (1) consists of two value functions VJ and
VG , and the optimal policy π�. The two value functions have
clear physical meanings:

VJ(t, s, b) = Eπ�
[∑tf

τ=t
−J(sτ , aτ , sτ+1, oτ+1)|et ∼ b

]
VG(t, s, b) = Pπ�

[∨tf

τ=t
sτ ∈ G|et ∼ b

]
, (2)

that is, given the time, state, and belief vector, VJ represents the
expected negative cost-to-go, and VG represents the probability
of reaching the goal set before tf . in the MDP case, VJ and VG
would be functions of only t and s.

With VJ and VG , the expected pure reward of a task can then
be approximated given the robot agents committed to the task.
In the homogeneous agent case, this is simply

E[R] =
∑|J |

i=0
riPc[i] +

∑
j∈J

VJ(t, s
j
t , b), (3)

where J ⊆ I is the set of robot agents committed to the task,
Pc[i] is the cumulative probability of exactly i agents arriving at
the goal set by tf , and is calculated as

pi =
∑

cj∈B,j∈J |,∑
j

cj=i
VG(t, s

j
t , b)

cj (1− VG(t, s
j
t , b))

1−cj .
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Fig. 4. Factor graph of 4 robot agents and 3 tasks.

For example, suppose J = {1, 2} and pj = VG(t, s
j
t , b), j =

1, 2 are the probabilities of the two agents reaching the goal
set by tf from their current state and time, respectively, which
are directly obtained from VG . Then Pc is calculated as

Pc[0] = (1− p1)(1− p2)

Pc[1] = p1(1− p2) + (1− p1)p2,

Pc[2] = p1p2.

Given a multi-robot system with a set K of multiple tasks, let
M i(t) be the set of all tasks that involve robot agent i at time t
plus ∅, mi ∈ M i(t) be the commitment variable where mi = k
indicates that robot agent i is committed to task k, and mi = ∅
indicates that robot agent i is not committed to any task. When
mi = ∅, it is assumed that the robot agent would stay still and
incurs zero cost. The expected pure reward for each task then can
be computed with (3). We let Fk({mi}Jk

) denote the expected
pure reward of task k as a function of the commitment of the
robot agents in the candidate set Jk. Note that each Jk ⊆ I and
they may have overlaps, i.e., one agent can be included in the
candidate set of multiple tasks. The simplest choice is to take
Jk = I for all k ∈ K, but in practice, one can exclude some
robot agents with little chance of completing the task (e.g. agents
that are too far away), which accelerates the computation.

Factor graph and the max-sum algorithm. It can
be easily verified that the total expected pure reward is∑

k∈K Fk({mi}Jk
), which is a function of {mi}I . Note that

the expected reward for each task is calculated based on the
commitment of the robot agents, and the expected cost of each
agent is summed up except the ones that are not committed to
any tasks, which incurs zero cost. The dynamic task assignment
problem solves for the commitment of the robot agents that leads
to the largest expected pure reward:

max
{mi}I

∑
k∈K

Fk({mi}Jk
). (4)

The task assignment is “dynamic” because (4) changes over
time, and is solved in every time step.

To this point, (4) is in the form of a factor graph, which is
a bipartite graph representing the factorization of a function. It
contains two types of nodes, variable nodes and factor nodes. In
our case, the variable nodes are the commitment mi of the robot
agents, and the factor nodes are the expected pure reward Fk of
each tasks. As an example, Fig. 4 shows the factor graph with 4
robot agents and 3 multi-robot tasks, where J1 = {1, 4}, J2 =
{1, 2}, J3 = {1, 3, 4}.

We then use the max-sum algorithm to solve the task assign-
ment problem, similar to [17]. The max-sum algorithm seeks

Algorithm 1: Task Allocation With Max-Sum.

1: Procedure Task_allocation{sit}I , K, bt, Maxiter
2: for k ∈ K do
3: for {mi}J k in {M i}J k do
4: Calculate value table entry Fk({mi}J k)
5: end for
6: end for
7: iter← 0
8: while iter < Maxiter do
9: for i ∈ I do

10: Update q messages with (5)
11: end for
12: for k ∈ K do
13: Update r messages with (5)
14: end for
15: if r and q messages do not change then
16: Break
17: end if
18: iter++
19: end while
20: for i ∈ I do
21: Calculate mi� with (6)
22: end for
23: return {mi}I
24: end procedure

to maximize the sum of all factors via exchanging messages
between the factor nodes and the variable nodes. To be specific,
two types of messages are exchanged: the q messages from
variables to factors, and the r messages from factors to variables:

qi→k(m
i) = αik +

∑
n∈Mi\k

rn→i

rk→i(m
i) = max

Jk\i
[Fk({mi}Jk

) +
∑

n∈Jk\i
qn→k(m

n)].
(5)

where αik is for normalization. All the messages are exchanged
locally and no central coordination is needed. Once the messages
converge, the optimal solution can be solved as

mi� = argmax
∑
k∈Mi

rk→i(m
i). (6)

The max-sum algorithm is guaranteed to converge for acyclic
graphs. Although there is no convergence guarantee on cyclic
graphs, multiple empirical studies show that the solution quality
is decent without convergence. Moreover, there exist variations
of max-sum that return suboptimal solutions with a bounded
optimality gap [34].

IV. LOCAL PATH PLANNING

One key assumption we made is that the evolution of the
robot agents is independent of each other, which decomposes the
multi-robot system planning problem into multiple single-agent
planning problems. As pointed out in previous sections, this is
not true in practice due to the collision avoidance constraint. We
shall present a local resolution scheme to coordinate adjacent
robot agents and avoid a collision. The first step is to construct
the adjacency graph for the multi-robot system.
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Algorithm 2: Forward DP for Local Resolution.

1: Procedure Loc_res{sit, δRi, V i
J , V

i
G }Ī , bt

2: Initialize the search tree T with {sit}Ī
3: for τ = t, . . .t+ T − 1 do
4: Expand T with all action combinations
5: Trim collision nodes and dominated nodes from T
6: end for
7: Add terminal reward to the leaf nodes
8: return {ait}Ī associated with the optimal leaf node
9: end procedure

Definition 1: Given an MOMDP, two states s, s′ are adja-
cent if ∃a, a′ ∈ A, e ∈ E , s′′ ∈ S such that Ts(s, a, e, s

′′) > 0,
Ts(s,

′ a,′ e, s′′) > 0, that is, two states are adjacent if there exist
actions for the two states under which their possible successor
states intersect.

Forward dynamic programming for local conflict reso-
lution. Given the multi-robot system, two agents i, j ∈ I are
adjacent if their current state sit, s

j
t are adjacent. Let G be the

adjacency graph with the nodes being the robot agents I, and
two nodes are connected if they are adjacent. G is divided into
connected subgraphs, and for each subgraph, if it only contains
one node, the robot agent simply follows the policy of the task
it committed to; if it contains more than one node, the local
resolution scheme is used to resolve the conflict.

Note that any subgraph only needs to consider the nodes
within the subgraph since, by construction, the nodes will not
collide with nodes outside the subgraph. Let Ī be the robot agents
within one connected subgraph, the local resolution problem at
time t is the following:

max
{ai

t:t+T }Ī

∑
i∈Ī

E

[ ∑t+T−1
τ=t −J(siτ , a

i
τ , s

i
τ+1, o

i
τ+1)

+V i
J(t+ T, sit+T , bt) + δRiV i

G (t+ T, sit+T , bt)

]

s.t. ∀i ∈ Ī, t ≤ τ ≤ t+ T − 1, siτ+1 ∼
∑
e

Ts(s
i
τ , a

i
τ , e)bt(e)

∀i, j ∈ Ī, i 
= j,∀τ ∈ {t, . . ., t+ T},P (siτ = sjτ ) = 0,
(7)

where T is the look-ahead horizon of the forward dynamic
programming (DP), b is the belief vector at time t. Since we don’t
have access to future observations, bt is assumed to be constant
over the horizon. δRi is the discrete derivative of the task reward
that agent i is committed to, i.e., the reward difference agent i
would make if it arrives at the goal set, which can be computed
given the reward function R of the task. V i

J and V i
G are the two

value functions associated with the task that agent i commits
to. (7) is a sequential decision making problem with running
reward −J and terminal reward

∑
i∈Ī R

iV i
G + V i

J , which is the
expected reward at the terminal state.

Algorithms. The forward DP algorithm is summarized in
Algorithm 2, where the search tree consists of nodes that store
the collective state distribution of all agents in Ī and the cur-
rent cumulated reward and edges that store the joint actions.
The trimming procedure removes nodes that contain possible
collisions and nodes whose cumulated reward is smaller than
another node sharing the same state distribution. Compared to

Algorithm 3: Multi-Robot System Planning.

1: Input: (I,MOMDP) K0, b0, {si0}I , Maxiter
2: t ← 0, K ← K0

3: while Not Terminate do
4: {mi}I=TASK_ALLOCATION{sit}I , K, bt, Maxiter
5: {Ij}=OBTAIN_PARTITION({sit}I , MOMDP)
6: for Ij ∈ {Ij} do
7: if |Ij | == 1 then
8: i ← Ij [1] the robot agent index in
9: if mi == ∅ then

10: ait ← IDLE
11: else
12: ait ← POLICY(t,mi, sit, bt)
13: end if
14: else
15: for i ∈ Ij do
16: Obtain δRi, V i

J , V
i
G from task set K

17: end for
18: {ait}Ij ← LOC_RES({sit, δRi, V i

J , V
i
G }Ij , bt)

19: end if
20: end for
21: for i ∈ I do
22: oit+1, s

i
t+1 ← EXECUTE(i, ait)

23: bt ← UPDATE_BELIEF(sit, a
i
t, s

i
t+1, o

i
t+1, bt)

24: end for
25: bt+1 ← bt, t ← t+ 1
26: K ← UPDATE_TASK(K, t)
27: end while

backward DP, since the DP horizon, T is typically chosen to be
small, forward DP saves computation time because not all states
in the state space are explored. Algorithm 2 runs in a receding
horizon fashion, i.e., only the first step of the action sequence is
executed, and the algorithm replans in every time step.

To implement Algorithm 2 in a decentralized setting, one
can simply select a node within the subgraph as the host and
perform Algorithm 2 and share the result with other nodes in the
subgraph.

Algorithm 3 summarizes all the modules of the DTPP, where
Ij [1] is the only element in Ij when |Ij | = 1. Besides the
procedures introduced in Algorithm 1 and 2, other procedures
involved are
� OBTAIN_PARTITION takes the current state of all agents and

calculates the adjacency graph, then returns node sets in all
connected subgraphs, denoted as {Ij}

� POLICY evaluates the optimal policy of the task that the
agent commits to

� EXECUTE executes the action and obtain the next state and
observation

� UPDATE_BELIEF updates the belief with the new state and
observation obtained from executing the action

� UPDATE_TASK updates the task set, removing expired tasks
and adding new tasks should there be any.

Note that the belief gets updated sequentially by all the agents
after executing their actions, and this piece of information is
shared among the whole multi-robot system.
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Fig. 5. Simulation with two agents and one task.

V. RESULTS

We demonstrate the proposed DTPP framework with a grid
world example both in simulation and in experiments.

Multi-robot system setup. The MOMDP is setup as a grid
world. Each robot agent can choose from 5 actions: A =
{N,S,W,E, IDLE}, which make the robot move north, south,
west, east, and stay still. The observable state is the agents’
position within the grid world, and the partially observable state
is the obstacle status of several uncertain cells, which may be
clear or occupied by an obstacle. E = BNu , where Nu is the
number of uncertain cells, and |E| = 2Nu . The state transition
is assumed to be deterministic, i.e., for any state s and action a,
there is only one possible successor state.

Remark 4: The state transition is deterministic when execut-
ing the actions, however, the agent is assumed to have 10%
chance of staying still with a ∈ {N,S,W,E} when solving for
the quantitative optimal policy. This is to account for the possible
influence of the local resolution and is particularly important for
VG , the probability of reaching the goal set. Without the change
of probability, the agent might think that it has 100% chance
of reaching the goal yet fail to do so due to the local resolution
preventing it from executing the action according to the policy.
Under this change, the agent will be more certain that it can
reach the goal as it gets closer to the goal.

The observation O space is the same as E , and for each of the
uncertain cells, we have

∀i ∈ {1, . . ., Nu},P (oi = ei) =

⎧⎨
⎩

1 d ≤ 1
0.8 d = 2
0.5 d > 2

,

where oi and ei are the ith entry of o and e, the observed state and
actual state of the uncertain cells, d is the Manhattan distance
from s to the ith uncertain cell. Te is set so that each uncertain
cell has a 0.05 chance of changing its current state (from obstacle
to free or the other way) when no agents are 2 steps or closer to
it. The cost function J gives penalty 1 to all actions but IDLE.

Fig. 5 shows a sample simulation on a 7× 5 grid world. The
red blocks are the known obstacles and the green blocks are
the uncertain cells with the transparency equal to the belief of
it being an obstacle. The two yellow circles are the agents and
the yellow pentagon denotes the goal region of the task, with
the number showing the time left before tf . The task’s reward
function R has a compact form of (0,50,50), which means that

TABLE I
EVOLUTION OF THE VALUE FUNCTIONS IN THE EXAMPLE SHOWN IN FIG. 5

one agent reaching shall earn a reward of 50, and two agents
reaching will not increase the reward. The evolution of the value
functions is shown in Table I.

At t = 0, both agents are assigned to the task because neither
of them has 100% chance of reaching the goal in time. The
algorithm decides to put two agents on the task to increase the
probability that at least one of them reaches the goal, leading to
a higher expected pure reward. At t = 2, the agent on the top
figured out that the uncertain cell blocking its path to the goal
is clear, significantly increasing its probability of reaching the
goal from 80% to 99.9%, the algorithm then decided that the
lower agent stays idle to save the cost.

To demonstrate the applicability of DTPP on real robotic
systems, we ran high-fidelity simulations with multiple Segway
robots and performed experiments with Turtlebots.

Segway simulation. In the Segway simulation, each
Segway follows a nonlinear model with 7 states: x =
[X,Y, θ, θ̇, v, ψ, ψ̇]ᵀ, whereX,Y are the longitudinal and lateral
coordinates, θ and θ̇ are the yaw angle and yaw rate, ψ and ψ̇
are the pitch angle and pitch rate, and v is the forward velocity.
The input is the wheel torques.

The high-level planning follows Algorithm 3 which sends
high-level commands to the low-level controller, which runs
a Model Predictive Controller (MPC) that generates torque
command to the Segway. The high-level command consists of
three parts: the desired waypoint x�, the state constraint C, and
the terminal state constraint Cf . In the grid world case, C is
simply the union of the current grid box and the next grid box to
transition to, and Cf is the next grid box. The MPC then solves
the following optimization to obtain the torque input:

min
ut:t+T−1

t+T−1∑
τ=t

xᵀ
τQxτ + uᵀ

τRuτ + xᵀ
t+TQfxt+T

s.t. ∀τ = t, . . .t+ T − 1, xτ+1 = f(xτ , uτ ),

∀τ = t, . . .t+ T − 1, xτ ∈ C, uτ ∈ U , xt+T−1 ∈ Cf ,
(8)

where T is the horizon of the MPC, U is the set of available
input, and f is the robot dynamics. The MPC uses sequential
quadratic programming to accelerate the computation so that it
can be implemented in real-time.

Fig. 6 shows one scenario of the simulation. At the beginning,
Agent 2 was assigned to an existing task while the new task with
the goal region in the middle appears, and agent 3 committed
to the new task. Then in the second frame, the task that agent 2
committed to expires, and DTPP decided to let agent 2 commit
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Fig. 6. Simulation with three segway robots.

Fig. 7. Task assignment and expected pure reward in the Turtlebot experiment.

to the new task, and agent 3 turned idle. Then in the third frame,
the local resolution module made sure that agent 1 and agent 2
do not collide and let agent 1 enter the goal region first. In the
last frame, agent 1 did not stop after entering the goal region, but
kept moving to make room for agent 2, and agent 3 committed
to a new task out of the frame.

Turtlebot experiment. We conducted experiments using two
Turtlebots with differential driving capabilities. Since the model
is simply a Dubin’s car model with velocity and yaw rate inputs,
we use a simple PID controller as the low-level controller for the
Turtlebots. The experiment is performed on a 5× 5 grid with
3 uncertain cells, of which one is a free box, and the other two
are filled with obstacles. The two Turtlebots are presented with
randomly generated multi-robot tasks with random goal regions
and horizons ranging from 5 to 9 time steps. The high-level time
step would increase by 1 if all agents reach the desired grid box
planned by the high-level planner.

Fig. 1 shows a situation similar to that described by Fig. 5,
where the robot agents figured out that the uncertain region is free
of obstacle and the max-sum algorithm decides to let one robot
agent go IDLE to save cost. A video containing the experiment
and simulation result can be found in https://youtu.be/zzvD-
ukcsis link.

Fig. 7 shows the task assignment result given by the max-sum
algorithm and the expected pure reward of the multi-robot
system consisting of two Turtlebots during the experiment.
We kept the number of tasks at every time instance to be 2,
and the task reward for most tasks (randomly generated except
the first 4 tasks) is (r0 = 0, r1 = 10, r2 = 18). The two robots
were usually assigned to different tasks to increase the expected
pure reward, yet there are instances when they were assigned

TABLE II
COMPUTATION TIME FOR MOMDP POLICY SYNTHESIS

TABLE III
COMPUTATION TIME FOR THE MAX-SUM AND THE FORWARD DP

to the same task. The magenta curve shows the expected pure
reward (up to the largest tf of the existing tasks), which would
change as new tasks emerged and the robot agents were assigned
to new tasks.

Computation time. The main benefit of DTPP is that it
avoids the product MOMDP. Table II shows the computation
time for the policy synthesis for the single agent MOMDP and
the product MOMDP with multiple agents, the horizon is fixed
to 8. Due to the double exponential complexity, the product
MOMDP does not scale.

We record the computation time for max-sum and forward
DP with randomly generated initial positions of the agents on a
15× 15 map, shown in Table III.

The computation time for max-sum roughly grows quadrati-
cally with the number of agents, which is due to the fact that all
agents are candidates for all tasks. Given a pre-screening process
that picks out the nearby agents for each task, the complexity
is O(1) with distributed computation and can be implemented
online. The forward DP scheme can also be implemented with
distributed computation, yet its complexity varies greatly with
the scenario. For example, when a large group of agents are close
to each other, the forward DP takes more time.

VI. CONCLUSION

We propose the decentralized task and path planning (DTPP)
framework that is capable of task allocation and high-level
path planning for a multi-robot system in a fully decentralized
manner. Each robot agent is modeled as a Mixed Observed
Markov Decision Process (MOMDP) assuming the independent
evolution of the robot states. The task allocation is solved by
representing the total pure reward as a factor graph and solved
with the max-sum algorithm, which allows for collaboration
between agents. Potential conflicts between robot agents are
resolved by a local forward dynamic programming scheme,
which guarantees no collision between agents.

APPENDIX A
OPTIMAL QUALITATIVE POLICY FOR MOMDP

Here we briefly describe the approximate solution to the
following cost optimal qualitative control problem

maximum
π

Eπ

[ tf∑
t=0

−J(st, at, st+1, ot+1)

]

subject to π ∈ argmaxκPκ

[ tf∨
t=0

st ∈ G
]
.

(9)
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Notice that the above qualitative constraint on the probability of
satisfying the specifications can be rewritten as

Pκ

[ tf∨
t=0

st ∈ G
]

= Pκ [∃k ∈ {0, . . . , tf} : sk ∈ G]

= Eκ

[ tf∑
t=0

(
t−1∏
τ=0

1S\G(sτ )

)
1G(st)

]
.

Furthermore, leveraging the result form [35, Lemma 4], we have
that the value function associated with the above reachability
problem is given by the following recursion

V κ
G (t, s, b) = 1G(s) + 1Q\G(s)E

κ[V κ
G (t+ 1, s,′ b′)]

=

{
1 =

∑|E|
i=1 b(i) If s ∈ G

Eκ[V κ
G (t+ 1, s,′ b′)] Else

(10)

with V κ
G (tf , s, ·) = 1 if s ∈ G and V κ

G (tf , s, ·) = 0 if s /∈ G.
Notice that V κ

G (tf , s, ·) is a linear function for all s ∈ S and,
consequently, V κ

G (t, s, ·) : BE → R is piecewise-affine by stan-
dard POMDP arguments [36, Theorem 7.4.1].

Finally, we have that as the value function (10) is piecewise-
affine we can rewrite the quantitative problem (9) as a con-
strained POMDP, which we approximated using modified ver-
sion of the algorithm presented [32]. We use another value
function VJ to keep track of the expected reward-to-go, which
is minimized among all policies that maximize VG . In particular,
compared to the algorithm presented in [32], we propagate only
a single belief point per constraint. This strategy, while being
sub-optimal, allows us to reduced the computational burden
associated with the algorithm presented in [32].
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