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Abstract—Attention mechanisms have shown great success in
computer vision. However, the commonly used global average
pooling in some implementations aggregates a three-dimensional
feature map to a one-dimensional attention map, leading a
significant loss of structural information in the attention learning.
In this article, we present a novel Spatial Pyramid Attention
Network (SPANet), which exploits the structural information and
channel relationships for better feature representation. SPANet
enhances a base network by adding Spatial Pyramid Attention
(SPA) blocks laterally. By rethinking the self-attention mechanism
design, we further present three topology structures of attention
path connection for our SPANet. They can be flexibly applied
to various CNN architectures. SPANet is conceptually simple
but practically powerful. It uses both structural regularization
and structural information to achieve better learning capability.
We have comprehensively evaluated the performance of SPANet
on four benchmark datasets for different visual tasks. The
experimental results show that SPANet significantly improves
the recognition accuracy without adding much computation
overhead. Using SPANet, we achieve an improvement of 1.6%
top-1 classification accuracy on the ImageNet 2012 benchmark
based on ResNet50, and SPANet outperforms SENet and other
attention methods. SPANet also significantly improves the ob-
ject detection performance by a clear margin with negligible
additional computation overhead. When applying SPANet to
RetinaNet based on the ResNet50 backbone, we improve the
performance of the baseline model by 2.3 mAP and the enhanced
model outperforms SENet and GCNet by 1.1 mAP and 1.7 mAP
respectively. The code of SPANet is made publicly available'.

Index Terms—Convolutional neural network, Attention mecha-
nism, Spatial pyramid structure, Structural regularization, struc-
tural information, Image classification, Object detection.

I. INTRODUCTION

N the last few years, we have witnessed a flourish of
convolutional neural networks (CNNs) in computer vision
research and applications. To improve the performance of
CNNEs, recent works add more convolutional layers to the CNN
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architectures. For instance, from 8-layer AlexNet [1] to 1000-
layer ResNet [2], [3], in order to achieve higher accuracy for
image recognition. However, more learnable layers introduce
more parameters and prolong inference time.

Besides making the neural network deeper, there are recent
efforts on developing attention mechanisms [4] for CNNs. An
attention mechanism informs a CNN model where to look and
what to pay attention to, making attention networks achieve
better performance using fewer layers. SENet [5], for example,
introduces Squeeze-and-Excitation (SE) blocks to consider
channel dependencies in CNN. Non-local operations [6] de-
scribe the global context in a feature map.

Attention-based CNNs, such as SENet, CBAM, and RANet
[5], [71, [8], employ the global average pooling (GAP) on fea-
ture maps. However, GAP aggregates a three-dimensional fea-
ture map into a one-dimensional attention map, which causes a
loss of structural information in the intermediate feature maps.
Moreover, applying GAP to every feature map emphasizes
the effect of global structural regularization, but overlooks
the detailed feature representation and structural information,
especially when a feature map is large. For example, when we
only apply the SE block to the first stage of ResNet (with a
resolution of 56 x 56), the classification accuracy decreases,
which indicates that an over-strong structural regularization is
introduced while the detailed structural information is ignored.
To mitigate the problem, the convolutional block attention
module (CBAM) [7] explores channel-wise attention and
spatial attention, which considers channel dependencies and
structural information independently. However, simultaneously
dealing with channel dependencies and structural information
using multiple fully-connected layers and convolutional layers
inevitably introduces more computation and latency. Further-
more, merely employing a large kernel convolutional layer
for structural information extraction is inefficient and cannot
capture long-range mutual correlation.

The issues caused by GAP make the shallow layers which
output large-size feature maps unable to fully exploit the
benefits from channel attention mechanisms [8]. To efficiently
capture the structural information and channel relationship
in attention modules, we creatively incorporate structural
information in channel-wise attention blocks. In this article,
we present a Spatial Pyramid Attention Network (SPANet),
which introduces a spatial pyramid structure to encode the
intermediate features and two point-wise convolutional layers
to extract channel relationships. Our proposed SPANet has two
major components: 1) a spatial pyramid structure which aggre-
gates the feature contexts of three scales to combine the fine,
coarse and global feature regularization, and 2) a combination
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Fig. 1. The architecture of the spatial pyramid attention network (SPANet).
We explore three variants of SPANet. SPANet-A learns attention from the
current feature maps. SPANet-B learns from the previous feature maps.
SPANet-C contains an optional channel matcher in the attention path.

of two point-wise convolutional layers and a sigmoid-based
activation layer which encode and decode attention weights.
Both components are designed to be lightweight.

Our spatial pyramid structure can be considered to bear
certain similarities with SPPNet [9] and Region of Interesting
Pooling [10] with regard to the pooling schema. The difference
is that the spatial pyramid structure encodes a feature map
with more structural information, while SPPNet and Region
of Interesting Pooling produce a fixed-length feature vector.
In addition to the capability of retaining spatial information
in each channel, an intriguing property of our spatial pyra-
mid structure is that it only introduces three parameters to
reweigh the values of the scales which are then aggregated
by summation. We call this operation weighted summation.
The plugged SPA module in each block adaptively adjusts
the importance of three scales of structural information. All
structural information in the spatial pyramid structure is not
learnable (achieved by pooling operations), making them al-
most cost-free. This small computation overhead contributes
to SPANet’s improved performance.

Inspired by the connection design of self-attention and
recent works on cross-layer operations [11], [12], we present
three topology structures of the Spatial Pyramid Attention
module in our proposed SPANet, referred to as SPANet-A,
SPANet-B, and SPANet-C. SPANet-A learns attention from
current feature maps, which follows a traditional self-attention
path connection schema. SPANet-B learns from previous fea-
ture maps by a cross-layer pattern, which is independent of the
current features. SPANet-C adds an optional channel number
matcher to SPANet-B for channel number matching. Figure 1
depicts the three topology structures of SPANet.

We comprehensively evaluate the performance of SPANet
on four benchmark datasets, i.e., CIFAR-100 [13], down-
sampled ImageNet [14], ImageNet [15], and MS COCO [16].
Without bells and whistles, SPANet outperforms the state-of-
the-art works [2], [5], [17]-[19]. Experimental results show
that the structural information in the attention mechanism,
which this article focuses on, is crucial for models’ per-
formance. Applying our SPANet to the base ResNet50, we
achieves a 1.6% accuracy improvement on the ImageNet
benchmark. Similar improvement is also observed on the other
classification datasets, showing that SPANet’s effectiveness

is not confined to one particular dataset. Moreover, SPANet
is general and applicable to other vision tasks in addition
to image classification. When applied to object detection,
SPANet consistently achieves a significant mean Average
Precision (mAP) improvement over baseline models. More
specifically, we improve the detection performance by 2.3%
mAP over ResNet50 using the RetinaNet detector and improve
the performance of Cascaded R-CNN by 2.2% mAP, with only
negligible additional computation overhead.

The rest of the article is organized as follows. Section II
discusses the related work. Section III describes the design of
SPANet, including the SPA module, attention path connection,
and Spatial Pyramid Attention. The performance of SPANet
for image classification and object detection is evaluated in
Section IV. Section V concludes the article with remarks on
future research.

II. RELATED WORK

Deep Neural Networks. Convolutional neural networks
has shown promising results for many vision tasks, including
image recognition [2], [9], object detection [20], [21] and
instance segmentation [22]. In these years, various works have
demonstrated the benefits of increasing network depth, from
AlexNet [1] to DenseNet [17]. Most recently, some tentative
efforts have increased the network depth to over 10,000 lay-
ers [23]. Rather than focusing on the accuracy improvements
obtained from deeper architecture, some efforts have been
made towards lightweight networks that yield comparable ac-
curacy using fewer parameters and FLOPs [18], [24]-[27]. For
example, to investigate the balance among depth, width, and
resolution, EfficientNet [28] employs a compound coefficient
to scale network width, depth, and resolution uniformly. It
achieves state-of-the-art performances with minimal cost. In
this paper, we are in pursuit of a lightweight module that
can be seamlessly integrated with various deep or lightweight
models to improve networks’ representational ability further.

Multi-Path Connection. Multi-path connection scheme
was first used in Highway Networks [29], [30], if not earlier.
By allowing unimpeded information flowed across several
layers, a Highway Network can reuse the information from
previous layers, which facilities the training of deep networks.
Moreover, gating units are employed to regulate information
flow. Subsequently, He et al. proposed Residual Networks
(ResNet) [2], [3], which learn the residual functions by
adding skip-connections. The ResNet shows that an identity
mapping shortcut is crucial to ease the optimization [2], [3].
Hence, ResNet discards the gating units used in Highway
Networks and keeps the information passed through shortcuts.
The promising performance achieved by ResNet has made
shortcut connections attractive. As a more dense reformulation,
DenseNet [17] connects every convolutional layer in a deep
convolutional network. Without introducing more parameters,
it effectively alleviates the vanishing gradient problem and
improves feature reuse.

In addition to shortcut connections, there are works studying
the internal multi-path connections in convolutional blocks
[31]. The InceptionV4 Network [31] is one of this kind.
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Fig. 2. The architecture of our spatial pyramid attention module. It consists of three major components, i.e., channel matcher, spatial pyramid structure,
and channel communication. Channel matcher is mainly designed for SPANet-C to match the channel number and integrate channel information. The spatial
pyramid structure includes adaptive average pooling of three different sizes to integrate structural regularization and structural information in an attention path.
The channel communication component learns an attention map from the output of the spatial pyramid structure. In SPANet-A, the input feature map is the
current output of a block. In SPANet-B and SPANet-C, the input feature map is the previous output of a convolutional block.

Besides a shortcut connection, each inception block in Incep-
tionV4 contains 3-6 carefully designed paths. All these paths
are integrated using filter concatenation as input to the next
block. More recently, attention-based networks such as SENet
[5] and CBAM [7] provide an independent attention path to
learn the weight of each channel and achieve state-of-the-art
performance.

Attention Mechanisms. Attention mechanisms [4] have
been prevailed in computer vision for years [32]. By adopting a
gating function (such as softmax and sigmoid) or adding com-
plementary information, attention mechanism can selectively
emphasize salient features and suppress insignificant features.
Thus, visual features could be better captured and exploited.
In [5], a Squeeze-and-Extraction block was proposed to learn
the channel-wise attention for each convolutional layer, which
provides an end-to-end training paradigm for the channel
attention learning. Inspired by SENet, Competitive-SENet [33]
studies attention from both the residual path and the shortcut
path. Although Competitive-SENet achieves promising per-
formance, it is tailored particularly for Residual Networks
[2], limiting its generalization to other models. Without being
limited to channel attention, Sanghyun Woo et al. [7] exploited
the relation between channel-wise attention and spatial atten-
tion and proposed a Convolutional Block Attention Module
(CBAM). CBAM is composed of two parts, i.e., a channel-
wise attention block and a spatial attention block. The two
attention blocks in CBAM can tell what (channel) to look
and where (spatial) to focus on. Unlike CBAM that learns
channel-wise attention and spatial attention separately, our
proposed SPANet learns channel-wise and spatial attention in
an integrated fashion and requires much fewer computations
and parameters.

Multi-Scale Feature Fusion. Multi-scale feature fusion
holds prevalence for a long time. One of the most typical
examples is the spatial pyramid pooling method [9]. To address
the limitation of fixed input size of earlier CNNs, He et al.
[9] proposed a spatial pyramid pooling strategy that adaptively
pools the feature maps to three scales and feeds them to the
finial fully-connected layers. The simple but effective strategy
dramatically improves the CNN capability for image classifi-
cation and object detection. Similar to [9], Feature Pyramid
Network [34], Cascaded R-CNN [20] and Res2Net [35] also
consider the use of multi-scale intermediate feature maps for
low-level/high-level feature semantics fusion and feature map
resolution compensation. Most recently, HRNet [36] provides
a new scheme for multi-scale feature fusion by concatenating
feature maps of different resolutions. In this article, we learn
from these works and leverage the multi-scale aggregation for
our local and global context fusion.

III. SPATIAL PYRAMID ATTENTION (SPANET)

In this section, we present the design details of spatial pyra-
mid attention (SPANet), a plug-in module that is compatible
with various base CNN networks. SPANet models the global
context and local context of different scales using a pyramid
structure. Then two point-wise convolutional layers are em-
ployed to explore the channel relationships. The attention map
is then up-sampled to the sample size of the original feature
map. We adopt the dot-product self-attention formulation to
refine the original feature map. Fig. 2 depicts the design of
our method.

The SPA module can be applied after each convolutional
layer. For efficiency, we add the SPA module after each
block in a backbone network. As an example, we add 8
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SPA modules in ResNetl8 and 16 modules in ResNet50.
We keep the pyramid scales the same for all the modules.
Such a dynamic pipeline of scale combinations can lead to
a better performance. Meanwhile, the pipeline structure also
requires more hand-crafted design (or network architecture
searching), which makes the network more complex. As a
result, we investigate the effectiveness of our SPA module.
In the following sections, we elaborate the design of each
component in SPANet.

A. Design of SPA Module

We investigate three different scales to explore different
extent of structural regularization. They are then integrated
by a weighted summation. We then use two point-wise con-
volutional layers to explore the channel relationship for each
pixel. The generated attention map is then up-sampled and
considered as the activation of the original feature map. Our
design is generic in that the SPA module can be applied to a
variety of base models.

Assume a CNN architecture has L layers and each layer
generates a feature map x. The output of the [-th layer could
be denoted by z;. The index of a layer, [, is within [1, L]. We
use p (-) to represent an adaptive average pooling layer, 7 (-)
is for a point-wise convolutional layer, and o (+) is a sigmoid
activation function.

For an intermediate feature map z; € RE*W*H 3 CNN
model with an attention mechanism takes x; as input, learns
an attention map, and generates the output by combining
the attention map and the original feature map. The output
generated by our Spatial Pyramid Structure component can be
expressed as follows.

S = wT [pfine(xl)a pcoarse(-rl)a pglobal(xl)] ; (])

where w € R3 is a learnable parameter vector used for the
weighted summation.

Inspired by [9], we design 3-level pyramid features: fine,
coarse, and global, which is achieved by average pooling
operations. Hence, no learnable parameter is introduced in
feature extraction. Remarkably, the three scales represent three
different structural regularization terms.

For ease of our discussion and a focus on the design of
SPANet, we take away the batch normalization and activation
layer for now. The transformation T made by the SPA module
can be described as follows.

T=U(c(7(7(S)))), (2

where function U(+) is employed to upsample the attention
map to match with the shape of the original feature map. The
output of SPANet T is then combined with the original feature
map by element-wise multiplication.

Note that Equation (2) only showcases the fundamental
transformation conducted by the SPA module. The other
components, e.g., the batch normalization layer and activation
layers, are included in our implementation whose performance
is evaluated in Section IV.

B. Attention Connection Scheme

A typical design pattern of self-attention based networks is
that an attention map is learned from the current feature map
and then applied to the feature map itself [5], [37]. That design
pattern, however, limits the exploration of attention path con-
nections. To tackle this problem, we investigate the topology
of attention path connections and then design three spatial
pyramid structures for SPANet, i.e., SPANet-A, SPANet-B,
and SPANet-C, which are depicted in Figure 1. Next, we will
describe these three structures in detail.

In SPANet-A, the current feature map x; goes through the
attention path, from which an attention map is created. The
transformation performed by SPANet-A is as follows.

x) :T(Il)@)l‘l, 3)

where ® represents element-wise multiplication. From Equa-
tion (3), we can see the self-attention path connection in
SPANet-A is similar to the traditional schema.

In SPANet-B, an attention map is learned from x;_;, where
z_q € ROXWXH s the input of z; in SPANet-A. The
output of SPANet-B can be described as

r="T(x_1) @ 4)

SPANet-B enables the attention path to learn more generalized
weights, as the attention path and the original convolutional
block path are independent of each other. On the other hand,
the two paths are not entirely irrelevant. They are trained
jointly.

When the channel number in x;_; is different from the
channel number in z;, the attention path might not produce
the most accurate weights for x;. So, an optional channel
matcher is added to the beginning of the attention path in
SPANet-C, if C’ # C. The channel matcher consists of two
point-wise convolutional layers, a batch normalization layer,
and the ReL.U function. Thus, the output of SPANet-C can be
expressed as

2 =T @ (x-1) @, 5)

where 1 (-) represents the channel matcher component. The
purpose of adding the matcher is to integrate channel infor-
mation and match channel numbers of the output feature maps.
It makes the attention path further independent of x;.

The three variants of SPANet can be applied to a variety
of CNN architectures. In this section, we present the topology
structure of attention path connections. Next, we will describe
how these attention mechanisms are implemented.

C. Major Components of SPANet

Global average pooling (GAP) has been used to aggregate
an input feature map into a one-dimensional vector in many
attention networks [5], [7], [7], [33]. While the application
of GAP achieves structural regularization [38], the detailed
structural information is missing. SPANet aims to achieve
structural regularization and explore structural information at
the same time. To this end, we develop the spatial pyramid
structure, which performs the average pooling with three
different sizes. Figure 2 presents the architecture of the spatial
pyramid attention module.
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1) Spatial Pyramid Structure: Global average pooling
(GAP) aggregates the global information in each channel. It
has been widely used in computer vision: image recognition
[2], object detection [39], semantic segmentation [40], etc.
Attention-based CNNs, such as [5], [7], [8], use GAP on
each feature map. In terms of the functionality, GAP is like
a structural regularizer and can prevent overfitting [38]. On
the other hand, applying GAP to every feature map overem-
phasizes the effect of regularization and overlooks the feature
representation and structural information, especially when a
feature map is large. For instance, if a 56 x 56 feature map is
aggregated into a mean value, we lose features’ representation
capability, affecting the performance of feature learning.

To tackle this problem, we design a spatial pyramid structure
that is used in attention blocks. Our proposed spatial pyramid
structure adaptively pools an input feature map to three differ-
ent scales: A fine average pooling is to capture more feature
representation and structural information. A coarse average
pooling aims at a trade-off between the structural information
and structural regularization. A 1 X 1 average pooling is the
traditional GAP providing a strong structural regularization.
The three outputs are then upsampled to a spatial resolution
as the fine representation, and combined using a weighted
summation. Such a small learnable combination makes the
network adaptively adjusts the importance of these three
constituents in each attention block. With our designed spatial
pyramid structure, we aggregate the local context and the
global context in an integrated manner and improve the feature
representation ability significantly.

2) Channel Relation: The spatial pyramid structure pro-
duces an attention map (denoted by S), which is a combination
of the outputs from three pooling layers. However, it could
not directly be employed for the exploration of channel
dependency.

To solve these problems, we explore the channel rela-
tionship [5], which encodes S and produces a transformed
attention map. Specifically, the transformation block has two
point-wise convolutional layers, and a sigmoid function is
employed to re-scale the output into a range of (0,1). We
set the intermediate output channel number as C/r, where r
is the reduction rate with a default value of 16.

Note that the resolution of the attention map obtained here
is not identical to that of the original feature map. To match
the resolution, we upsample the attention map to the same
resolution as the original feature map. Hence, SPANet could
be considered as a regional-aware attention design.

3) Channel Matcher: The attention path in SPANet-B (Sec-
tion III-B) learns from the input of the convolutional block
with a channel number of C’. However, it is used to activate
the feature map with a channel number of C'. The mismatch of
the number of channels may lead to a discrepancy in attention
learning, affecting the performance of SPANet.

We solve this problem in SPANet-C (Section I1I-B) where a
channel matcher is used when the input channel number is not
equal to the output channel number. Particularly, our channel
matcher consists of two point-wise convolutional layers, which
are lightweight. The intermediate channel number is set to
max (C',C) /r.

D. Efficiency

All the learnable layers introduced in our SPA module
are point-wise convolutional layers (operated on small feature
maps) and the Batch-Normalization layer. Besides, a learnable
vector w € R? is employed to aggregate the feature pyramid.
Hence, SPANet only introduces a small amount of extra
computation overhead and parameters to the base model.
When applying SPA to ResNet50, we only add 0.14G Flops
and 2.51M parameters. This additional overhead is negligible
compared with the Flops and parameters in ResNet50 (4.122G
and 25.557M respectively).

In the next section, we will show and discuss the perfor-
mance of SPANet from our comprehensive experimentation
on four benchmark datasets and two vision tasks, i.e., image
recognition and object detection.

IV. EXPERIMENTAL RESULTS AND EVALUATION

In our experiments, SPANet is applied to several state-of-
the-art convolutional neural networks. We compare its per-
formance with that of the existing attention modules, such
as SENet [5], GENet [19] and CBAM [7]. We use CIFAR-
100 [13], Downsampled ImageNet [14] and ImageNet [41]
benchmark datasets in image recognition experiments. The
performance of object detection using SPANet is also studied
on the MS COCO [16] dataset. To achieve a deep understand-
ing of SPANet, we have conducted extensive ablation studies
as well.

A. Datasets

We use four widely used datasets in our experiments:
CIFAR-1002, Downsampled ImageNet3, ImageNet 20124, and
MS COCO?, which are publicly available.

CIFAR-100 includes 60,000 colored images (32 x 32 pixels)
belonging to 100 classes. Each class contains 600 images. We
use 500 images in training, and 100 images in testing.

Downsampled ImageNet is a downsampled version of the
original ImageNet dataset. It contains all the images in Im-
ageNet and they are re-sized to 32 x 32 for computational
efficiency. Overall, it has 1,281,167 training images and 50,000
validation images in 1,000 classes.

ImageNet dataset is a large-scale labeled dataset organized
according to the WordNet architecture. It includes 1,281,167
training images, and 50,000 verification pictures, belonging to
1000 categories. The number of images in each class varies
and the resolution of the images is not the same. In recent
years, ImageNet serves as a benchmark dataset for the image
recognition task. In our experiments, we adopt the dataset
published in 2012.

MS COCO (Microsoft Common Objects in Context) origi-
nated from the Microsoft COCO dataset that Microsoft funded
and annotated in 2014. Similar to the ImageNet competition,
it is regarded as one of the most prevalent and authoritative

Zhttps://www.cs.toronto.edu/ kriz/cifar.html
3http://image-net.org/small/download.php
“http://www.image-net.org/challenges/LSVRC/2012/downloads
Shttps://cocodataset.org
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TABLE I
CLASSIFICATION ACCURACY ON CIFAR-100.

Module  MobileNetV2  DenseNet VGGI16
Base 74.97 74.72 72.99
SE 75.38 74.67 72.61
GE 75.93 73.63 73.01
SPA-A 75.73 74.71 72.97
SPA-B 76.11 75.43 72.88
SPA-C 75.85 75.87 73.14

competitions in the computer vision field. The COCO data set
is large and prosperous object detection, segmentation, and
captioning data set. This data set aims at scene understanding,
which is mainly intercepted from complex daily scenes. There
are 80 categories and more than 330,000 images, of which
200,000 are labeled. The number of individuals in the entire
dataset exceeds 1.5 million. We employ the MS COCO dataset
mainly to evaluate the performance of SPANet in object
detection.

B. Classification Performance on CIFAR-100

We have implemented SPANet using the PyTorch [42]
framework and evaluated its performance. A stochastic gra-
dient descent method is employed to train all models in the
experiments. We apply a 0.9 Nesterov momentum and a 5e~*
weight decay. In our experiments, we use the CIFAR-100
dataset with a batch size of 256. The initial learning rate is
set to 0.1, and the learning rate is decreased by a factor of
10 for every 70 epochs. The epoch size is 300. We exploit a
data augmentation approach used in [2], [3] in the training.
Specifically, an original image is padded with four pixels
of zeros on each side. After that, it is randomly cropped
to 32 x 32 pixels. Then, half of the generated images are
horizontally flipped in random. To facilitate model training,
we normalize the image data by using channels’ means and
standard deviations.

In our experiments, we compare the performance of SPANet
with that of SENet and GENet [19]. Three different base
networks are studied, including VGG16 [43], DenseNet [17],
and the light-weight model MobileNetV2 [18]. For the spatial
pyramid structure in SPANet, we employ the resolution of
4x4,2x2,and 1x1 for the fine, coarse, and global represen-
tation respectively since the original image’s resolution is low.
The image recognition results on CIFAR-100 are presented in
Table 1.

From the table, we observe that SPANet achieves the best
recognition accuracy in most (not all) scenarios. We improve
the performance of MobileNetV2 by 1.14% (SPA-B) and
enhance the performance of DenseNet by 1.15%. Compared
to the SE and GE counterparts, SPA outperforms them by a
clear margin.

However, SPANet does not achieve the best results on
VGG16. The results of SPA, SE, and GE do not display major
statistical difference from that of the baseline VGG16. As we
discuss before, GAP improves the structural regularization and
tackles over-fitting. The proposed spatial pyramid structure
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TABLE II
CLASSIFICATION ACCURACY ON THE DOWNSAMPLED IMAGENET.

Module MobileNetv2 ResNet18
top-1 acc.  top-5 acc.  top-1 acc.  top-5 acc.
Base 51.41 76.35 53.25 76.98
SE 51.60 76.31 53.54 77.32
SPA-A 52.06 76.62 53.64 77.62
SPA-B 51.77 76.63 53.30 77.32
SPA-C 52.02 76.67 53.47 77.39

leverages both structural regularization and structural informa-
tion for enhanced learning capability. This may also lead to
over-fitting on smaller datasets. Our experimental results show
the training loss from SPANet approaches zero on CIFAR-
100. Thus its performance becomes stable. This result infers
that a larger training set leads to better performance. When
applying SPANet and SENet to VGG16, we improve the
performance of vanilla VGG16 on the downsampled ImageNet
by 0.77% and 0.41%, top-1 accuracy reaching 53.04% and
52.71% respectively.

C. Classification performance on Downsampled ImageNet

SPANet is also evaluated on a down-sampled ImageNet
dataset (resolution: 32 x 32). We take the same data processing
scheme as that on the CIFAR-100 dataset. To evaluate the
generality of SPANet, we employ different base networks
for the downsampled ImageNet dataset: MobileNetv2 and
ResNet18. We show the top-1 and top-5 classification accuracy
in Table II.

From the table, we have the following findings.

o SPANet outperforms all the base models and the SE
counterparts. Moreover, all three types of SPANet achieve
higher accuracy than the base models, and 4 out of
the 6 SPA models outperform SENet. These results
indicate that SPANet is more effective. Therefore, using
both structural regularization and structural information
can significantly improve the performance of attention
mechanisms.

o The best performance is not achieved by one particular
type of SPANet in all the cases. For instance, SPANet-A
achieves the highest top-1 accuracy for MobileNetv2 and
ResNet18, while SPANet-C has the best top-5 accuracy
for MobileNetv2. Furthermore, all these three designs
achieve better results and possess different performance
gains. This indicates the necessity of improving the
topology structure of attention path connections.

D. Experimental Results on ImageNet

We further evaluate the performance of SPANet on the
full-scale ImageNet [15] benchmark. Following the common
practice [2], we perform random-size cropping of images
to 224 x 224, and horizontally randomly flip images with
a probability of 0.5. We train networks from scratch using
synchronous SGD with a weight decay of 0.0001 and a
momentum of 0.9. All experiments are conducted on a server
with 8 Tesla V100 GPUs. For ResNet [2] and its variants, we
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TABLE III
SINGLE CROP CLASSIFICATION ACCURACY (%) ON THE IMAGENET VALIDATION SET.

Model Top-1 Accuracy (%)  Top-5 Accuracy (%) FLOPs (G) Parameters (M)
ResNet50 [2] 75.8974 92.7224 4.122 25.557
SE-ResNet50 [5] 77.2877 93.6478 4.130 28.088
GE-ResNet50 [19] 76.2357 92.9847 4.127 25.557
CBAM-ResNet50 [7] 77.2840 93.6005 4.139 28.090
SPA-ResNet50(ours) 77.4880 93.6098 4.262 28.074
MobileNetV2 [2] 71.0320 90.0670 0.320 3.505
SE-MobileNetV?2 [5] 72.0482 90.5812 0.321 3.563
GE-MobileNetV2 [19] 72.2776 90.9120 0.322 3.555
CBAM-MobileNetV2 [7] 71.9069 90.5114 0.324 3.565
SPA-MobileNetV2(ours) 72.5438 91.1344 0.325 3.562
train the networks for 100 epochs with a batch size of 256 TABLE IV

(i.e., 32 images per GPU), stating at a learning rate of 0.1 and
decreasing it by ten every 30 epochs. For lightweight CNN
models such as MobileNetV2 [18], we train the networks for
150 epochs with a batch size of 512 (i.e., 64 images per GPU),
stating at a learning rate of 0.1 and adjusting it using a cosine
decay method [44].

We select two base CNN models: ResNet50 and Mo-
bileNetV2, as representatives of a normal model and a
lightweight model. For comparison, we select several state-
of-the-art self-attention modules, including SENet [5], GENet
[19], and CBAM [7]. The metrics that we measure are Top-
1 and Top-5 accuracy for evaluating the performance of the
aforementioned modules, and the numbers of FLOPs and
parameters for comparing the efficiency of the tested modules.
For convenience, we use the SPA-A variant in our experiments
and denote it as SPA. Considering the large resolution of the
ImageNet dataset, we employ the three scales of 7 x 7, 4 x 4,
and 1 x 1 in the spatial pyramid structure.

As shown in Table III, our SPANet outperforms the baseline
models by a large margin and consistently dominates the
top performance on ImageNet compared with other attention
methods. By applying our SPANet, we improve the perfor-
mance of ResNet50 by 1.6% and that of MobileNet by 1.5%.
Remarkably, our SPANet is lightweight, and only introduces
2.5M and 0.06M parameters, and negligible Flops to ResNet50
and MobileNetv2, respectively. Such a small additional com-
putation overhead from our SPA module is justified by the
significant improvement of model’s performance.

E. Ablation Studies

To better understand the inherent properties of our SPANet,
we have conducted comprehensive ablation studies. We exten-
sively study each component and provide a deep understanding
of the internal operations of SPANet.

1) Attention Connection: Unlike the traditional self-
attention mechanisms that learn from the input feature map and
activate the feature map, SPANet explores two more attention
connection schemes in SPANet-B and SPANet-C, respectively.
To analyze the effects from the cross-layer attention connec-
tion, we apply SPANet-B and SPANet-C to SENet, denoted
as SE+ and SE++. We employ ResNet as our base model
and carry out experiments on the CIFAR-100 dataset. The
experimental results are presented in Table IV.

IMPACT OF CONNECTION SCHEMES AND NETWORK DEPTH USING THE
CIFAR-100 DATASET.

Network 18 layers 50 layers 101 layers
SE 75.34 79.4 79.52
SE+ 75.24 79.18 79.23

SE++ 75.41 79.45 79.44
SPA-A 75.96 80.32 79.3
SPA-B 75.68 79.95 79.12
SPA-C 75.33 79.717 79.33

As shown in Table IV, different connection schemes present
different properties. Experimental results show that SE++ out-
performs SE on both ResNetl8 and ResNet50. However, SE
surpasses SE++ when the network goes to 101 layers. In addi-
tion, we find that SE++ consistently achieves better results than
SE+. However, we does not observe a similar phenomenon
on SPANet, and SPA-B slightly outperforms SPANet-C. As
an example, SPA-B-ResNetl8 outperforms SPA-C-ResNet18
by 0.35% (75.68% vs. 75.33%). These findings indicate that
the topology structure of an attention path connection should
not be confined to only one schema, and exploration of the
topology structure helps achieve better performance.

2) Training and Testing Loss: We also present the training
loss and the testing loss of SPANet on different base networks
over multiple datasets.

Figure 3 plots the training loss and validation loss on the
ImageNet dataset. Clearly, our SPANet decreases the training
loss and validation loss of base ResNet50 by a clear mar-
gin. Compared to other state-of-the-art methods like SENet,
GENet, and CBAM, our SPANet consistently yields the lowest
training/validation loss. Moreover, the loss of our SPANet is
much more stable during the training.

The effects of our SPANet are not just akin to a particular
dataset. We also present the training loss of MobileNetv2 and
SPANet counterparts on the CIFAR-100 dataset in Figure 4.
Intuitively, even on the tiny dataset, CIFAR-100, all of the
three SPANet variants consistently yield lower loss than vanilla
MobileNetv2. Similar phenomena are also shown on the down-
sampled ImageNet dataset and other base models, suggesting
that SPANet is able to provide a better feature representation
for many CNN architectures.
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Fig. 3. Training loss (left) and validation loss (right) on the ImageNet dataset. Compared with other state-of-the-art methods, SPANet consistently achieves

the minimal loss on both the training set and validation set.
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Fig. 4. Training loss of MobileNetv2 and the corresponding variants on the
CIFAR-100 dataset. For better visualization, we present the loss starting at
the 100th epoch.

TABLE V
IMPACT OF THE SCALE USING THE IMAGENET DATASET.

Scales top-1 accuracy  top-5 accuracy
baseline 75.90 92.72
[1,2] 77.29 93.52
[1,2,4] 77.33 93.60
[1,4,7] 77.49 93.61
[1,2,4,7] 77.43 93.62

3) Spatial Pyramid Structure: The presented spatial pyra-
mid structure provides a substitute for GAP. In this ablation
study, we evaluate the performance of SPANet-A under dif-
ferent combinations of three feature scales. Table V presents
the numerical results.

As shown in Table V, the influence of different scale com-
binations is not significant, and they all surpass the baseline
by a clear margin. Specifically, the combination of 1 x 1, 4 x4
and 7 x 7 achieves the best result (77.49 top-1 classification
accuracy). When more scales, e.g., [1, 2, 4, 7], are used, the
performance improvement is not significant.

4) Heatmap Visualization: We visually investigate the SPA
module. We present the heatmap of the last convolutional

layers in a ResNet50 model and the corresponding variants
using Grad-CAM [45]. We compare our SPANet module with
SE-ResNet50 and the vanilla ResNet50. The results are plotted
in Fig. 5.

The experimental results show that all models correctly pay
attention to the target objects and ignore the trivial regions
on all the three input images. The models exhibit different
characteristics. We can see that vanilla ResNet50 pays atten-
tion to a big region that encompasses the target object, while
SE-ResNet50 pays attention to the center part of an object.
Different from them, our SPA-ResNet50 accurately focuses on
the most discriminative parts of an object. SPANet biases the
location of the most informative and discriminative features
and simultaneously suppresses the irrelevant regions. These
features and results of SPANet meet our design expectation.

From all these ablation studies, we can see SPANet con-
sistently outperforms the baseline and SENet based networks.
These results verify that it is imperative to combine the struc-
tural information and structural regularization with attention
paths in convolutional neural networks in order to achieve
accurate image recognition (as discussed in Section III-C).

F. Object Detection Performance on MS COCO

We have comprehensively evaluated the effectiveness of our
SPANet for image recognition in the preceding sections. Please
note that our SPANet is not confined to only one particular
task. Instead, it can serve as a plug-in module for various types
of computer vision tasks. Here, we evaluate the performance
of SPANet in object detection.

In this set of experiments, we use the MS COCO dataset.
We employ two state-of-the-art detection architectures, i.e.,
Cascade R-CNN [20] and RetinaNet [46]. All object detection
experiments are built on the open-source mmdetection frame-
work [48]. We also employ the Feature Pyramid Network [34]
to obtain a richer representation by extracting features from
different layers in the backbone. We measure the average
precision (AP) of bounding box detection under different
conditions on the challenging COCO validation dataset [16].
All input images are re-scaled to ensure the shorter side has
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Fig. 5. Heatmap visualization results. Top row: original images; Second row: heatmap of vanilla ResNet50 (The vanilla ResNet50 pays attention to a big
region that encompasses the target object.); Third row: heatmap of SE-ResNet50 (SE-ResNet50 pays attention to the center part of an object.); Bottom row:
heatmap of our SPA-ResNet50 (SPA-ResNet50 presents different attentions and focuses on the most discriminative parts of an object). Best viewed in color.

TABLE VI
OBJECT DETECTION PERFORMANCE (%) WITH DIFFERENT BACKBONES ON THE MS-COCO VALIDATION DATASET. THE BEST PERFORMANCE IS
HIGHLIGHTED IN “BOLD”.

Detector Backbone APs0.05 APsg AP75 APgs  AP)s AP GMac  Parameters (M)
ResNet50 [2] 36.2 55.9 38.5 19.4 39.8 48.3  239.32 37.74

RetinaNet [46] SE-ResNet50 [5] 37.4 57.8 39.8 20.6 40.8 50.3 23943 40.25
SPA-ResNet50 (ours) 38.5 59.2 41.0 22.1 423 50.7 239.54 40.25
ResNet50 [2] 40.6 58.9 44.2 22.4 437 547 23471 69.17

Cascade R-CNN [20]  GC-ResNet50 [47] 41.1 59.7 44.6 23.6 44.1 543  234.82 71.69
SPA-ResNet50 (ours) 42.8 61.6 46.3 24.6 46.3 569 23493 71.67

Weight
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Block Index

Fig. 6. The absolute value of weight w in our spatial pyramid structure. We find that all three scales contribute to the spatial pyramid structure in our SPA
module.

800 pixels. We adopt the similar settings used in Faster R- select ResNet50 and its variants. Note that all the backbones
CNN [21] and train all models with a total of 16 images per are pre-trained on the ImageNet benchmark, using those listed
batch (i.e., two images per GPU). For the backbone model, we in Table III.
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We train all the detection models for 24 epochs using the
synchronized SGD optimizer with a weight decay of 0.0001
and a momentum of 0.9. The learning rate is set to 0.02 for
Cascade R-CNN and 0.01 for RetinaNet as used in [20], [46],
and decreased by a factor of 10 at the 18th and 22nd epochs
during the training. For clarity, We employ the SPANet-A
counterpart for comparison.

Table VI presents the object detection results. From the
table, we can find that SPANet improves the detection per-
formance of the baseline models by a clear margin for both
RetinaNet and Cascaded R-CNN. More specifically, SPANet
improves the average precision of RetinaNet by 2.3 mAP
and Cascaded R-CNN by 2.2 mAP. Surprisingly, SPANet
outperforms both SENet and GCNet significantly, i.e., 38.5
mAP vs. 37.4 mAP and 42.8 mAP vs. 41.1 mAP. Four
object detection examples are shown in Figure 7. Moreover,
SPANet consistently outperforms other methods in terms of
all evaluated metrics.

This encouraging improvement are attributed to the
regional-aware design in the spatial pyramid structure. By
dividing the feature map into n X n individual patches, where
each patch considers the local (fine), neighbor (coarse) and
global contexts simultaneously, SPANet intrinsically performs
a regional-aware activation for a detection backbone network.
To evaluate this aspect, we explicitly depict the absolute
value of the weights for the three scales in each block. In
Figure 6, we find that all of the three different scales of feature
representations contribute to the spatial pyramid structure in
our SPANet to generate a better result. Moreover, the global
representation contributes the most in all blocks except for
the last block, and the weight of fine representation keeps
increasing when the index of convolutional block increases.
This property leads us to rethink how to better bridge the gap
between the CNN backbone and detector head in a detection
framework in our future research.

In Fig. 6, we find that the weight of the 1x 1 scale in the last
block is very small, while the weights of the other two finer
scales in the first two blocks are small. This is caused by the
dynamic feature aggregation. Specifically, after receiving the
input feature maps, SPANet aggregates contextual data at mul-
tiple scales, including local (fine), neighbor (coarse) and global
contexts. In the first two stages, as the feature representations
are relatively shallow, aggregation mainly focuses on the local
(fine) context. The global context (e.g., the 1 x 1 pooling
representation) aggregated in later stages can help solve the
problem. In the last block, the resolution of feature maps is
greatly reduced and contexts at all of the three scales contain
sufficient global information. The 1 x 1 pooling representation
is suppressed in the last block.

V. CONCLUSIONS

In this article, we present the Spatial Pyramid Attention
Network (SPANet), a novel design to enhance the performance
of CNNs. SPANet incorporates the spatial pyramid struc-
ture which integrates the structural information and structural
regularization, and further explores the channel relationship.
Moreover, we investigate the topology structure of attention
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path connections and develop three types of SPANet with
different connection schemes. Experimental results on four
datasets (i.e., CIFAR-100, Downsampled ImageNet, ImageNet
2012, and MS COCO) show the efficiency and effectiveness
of SPANet for image classification and other vision tasks
(We present the results from object detection). The signifi-
cant performance improvement inspires us to investigate the
relationship between feature pyramid networks (for object
detection) and SPANet. In the current SPANet, the design
of spatial pyramid structure (i.e., fine, coarse and global
representations) is simple. How to design a more general and
dynamic spatial pyramid structure is an interesting problem.
As a future work, we will develop dynamic spatial pyramid
structures and further improve SPANet for better performance
by looking into the regional-aware activation.
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