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Abstract

Dynamic walking on bipedal robots has evolved from an idea in science fic-
tion to a practical reality. This is due to continued progress in three key areas:
a mathematical understanding of locomotion, the computational ability to
encode this mathematics through optimization, and the hardware capable
of realizing this understanding in practice. In this context, this review out-
lines the end-to-end process of methods that have proven effective in the
literature for achieving dynamic walking on bipedal robots. We begin by in-
troducing mathematical models of locomotion, from reduced-order models
that capture essential walking behaviors to hybrid dynamical systems that
encode the full-order continuous dynamics along with discrete foot-strike
dynamics. These models form the basis for gait generation via (nonlinear)
optimization problems. Finally, models and their generated gaits merge in
the context of real-time control, wherein walking behaviors are translated
to hardware. The concepts presented are illustrated throughout in simu-
lation, and experimental instantiations on multiple walking platforms are
highlighted to demonstrate the ability to realize dynamic walking on bipedal
robots that is both agile and efficient.

535



Annu. Rev. Control Robot. Auton. Syst. 2021.4:535-572. Downloaded from www.annualreviews.org

Access provided by California Institute of Technology on 07/29/21. For personal use only.

536

1. INTRODUCTION

The realization of human-like capabilities on artificial machines has captured the imagination of
humanity for centuries. The earliest attempts were made through purely mechanical means. In
1495, Leonardo da Vinci detailed his Automa cavaliere, a primitive humanoid in a knight’s armor
that was operated by pulleys and cables. However, these mechanical automatons lacked the ability
to apply feedback control, and thus the field remained largely dormant until digital computers
became broadly available. In 1921, 40 years before microprocessors were introduced, the word
robot was coined by the Czech writer Karel Capek, and soon thereafter the field of legged robots
began to emerge.

Today, the field of robotic legged locomotion is of special interest to researchers, as humans
increasingly look to augment their natural environments with intelligent machines. In order for
these robots to navigate the unstructured environments of the world and perform tasks, they must
have the capability to reliably and efficiently locomote. The first control paradigms for robotic
walking used a notion of static stability, where the vertical projection of the center of mass (COM)
is contained within the support polygon of the feet, leading to the WABOT 1 robot in the early
1970s at Waseda University (1) and the first active exoskeletons by Vukobratovi¢ at the Mihajlo
Puppin Institute (2). This static stability criterion was very restrictive, leading to the develop-
ment of the zero moment point (ZMP) criterion (3, 4), which enabled a wider range of robotic
locomotion capabilities by generalizing from the COM to the center of pressure. Despite this
generalization, the ZMP criterion still restricts the motion of the robot to be relatively conser-
vative compared with the capabilities of biological walkers and does not allow for more dynamic
motions (5). Nevertheless, this methodology has been perhaps the most popular methodology to
date for realizing robotic locomotion and has been applied to various successful humanoid robots,
such as the Honda ASIMO robot (6), the HRP series (7-9), and HUBO (10).

As the field progressed into the 1980s, it became clear that achieving truly dynamic locomo-
tion would require further exploiting the natural nonlinear dynamics of these systems in a stable,
energy-efficient fashion. In stark contrast to the concept of fully actuated humanoid locomotion,
Marc Raibert and the MIT Leg Laboratory launched a series of hopping robots that demonstrated
running behaviors and flips (11, 12). To achieve these behaviors, there was a shift from the con-
servative walking models encoded by the ZMP to reduced-order models [e.g., the spring-loaded
inverted pendulum (SLIP)] that ensure dynamic locomotion through the creation of stable peri-
odic orbits (13). Building on this core idea, Tad McGeer began development of completely passive
walking machines, which would ultimately give rise to the field of passive dynamic walking (14).
The downside of this method is that the system has little to no actuation with which it can respond
to perturbations or perform other tasks. However, these breakthroughs were critical in demon-
strating that dynamic robotic locomotion was possible on systems that were not fully actuated,
and that this underactuation could actually be leveraged to improve their performance.

Despite the advances leading up to the turn of the century, there remained a growing gap be-
tween the physical capabilities of robotic systems and the development of controllers to exploit
them. This was particularly stark in the area of underactuated walking, where the lack of formal
approaches that leverage the intrinsically nonlinear dynamics of locomotion limited the ability
to fully exploit the robot’s actuation authority. In the early 2000s, a key contribution to this area
was introduced by Jessy Grizzle and colleagues (15), in which they developed the notion of virtual
constraints, or holonomic constraints enforced via control rather than a physical mechanism. En-
forcing these constraints leads to low-dimensional invariant surfaces (zero dynamics surfaces) in
the continuous phase of the model. These virtual constraints could then be designed such that this
surface is hybrid invariant (invariant under both the continuous and discrete dynamics), ultimately
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Figure 1

The interconnection of key components of dynamic walking. Dynamic walking is a complex behavior, requiring control designers and
roboticists to simultaneously consider robotic models, the transcription of locomotion into a motion planning problem, and the
coordination and actuation of the system via control laws. Some figure components adapted from Reference 21 with permission from

Springer.

leading to the concept of hybrid zero dynamics (HZD) (16). The end result is formal guarantees
on the generation and stabilization of periodic orbits (17), i.e., walking gaits. This paradigm for
control of dynamic underactuated locomotion has pushed the boundaries of what is achievable,
including fast running (18, 19) and efficient humanoid walking (20, 21).

As shown by this brief history of dynamic walking, each new methodology comes with a greater
understanding of how to model, plan, and execute increasingly complex behaviors on these robotic
systems. Due to the inherently difficult nature of dynamic walking, successes in the field have typ-
ically been achieved by considering all aspects of the problem, often with explicit consideration of
the interplay between modeling and feedback control (see Figure 1). Specifically, the robotic and
locomotive models that are used ultimately inform the planning problem and therefore the result-
ing behavior. Controllers that can actuate and coordinate the limbs must then be developed that,
ideally, provide tracking, convergence, and stability guarantees. In this review, we therefore exam-
ine how this interplay among modeling, motion planning, and trajectory regulation has shaped
dynamic walking on bipedal robots.

The remainder of this article is structured as follows. In Section 2, we present reduced-order
models that have provided canonical examples of dynamic locomotion, and in Section 3, we in-
troduce extensions to hybrid system models for dynamic walking. Section 4 discusses how these
models have been used to generate stable walking motions through various motion planning ap-
proaches and corresponding optimization problems. Finally, Section 5 provides several existing
methods for controlling a robot, as informed by the methods introduced in the earlier sections,
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with a view toward hardware realization. This interconnection can be seen in Figure 1, where
each section is informed by the prior one.

2. DYNAMIC MODELS OF BIPEDAL LOCOMOTION

In this section, we provide background on the modeling of dynamic bipedal robots and contex-
tualize several of the most popular approaches for encoding or approximating locomotion via
reduced-order models. A unifying theme among the broad spectrum of models used for legged
locomotion, in both this section and the next, is that the system must undergo intermittent contact
with the surrounding environment in order to move. This fact is inextricably tied to legged loco-
motion. How the overall walking system is ultimately modeled plays a critical role in the planning
and control approaches that realize locomotion.

2.1. Bipedal Robots: Floating-Base Systems with Contacts

Bipedal robotic platforms are conveniently modeled using a tree-like structure with an ordered
collection of rigid linkages. This structure lends itself well to generalization, and tools to facili-
tate the generation of symbolic (22) or algebraic (23) expressions for the kinematics and dynamics
of the robot are therefore commonly used. The robot itself must ambulate through a sequence
of contact conditions with the environment. Because interactions with the environment are al-
ways changing, a convenient method for modeling the system is to construct a representation of
the robot in a general position, and then enforce ground contacts through forces arising from
the associated holonomic constraints that are imposed at the feet. This is often referred to as the
floating-base model of the robot.

2.1.1. The configuration space. To represent the floating base, let Ry be a fixed inertial frame
attached to the world and let Ry, be a body reference frame rigidly attached to the pelvis of the
robot with the origin located at the center of the hip. Then the Cartesian position p;, € R* and
orientation ¥, € SO(3) compose the floating-base coordinates of frame R;, with respect to Ry.
The remaining coordinates that dictate the shape of the actual robot, ¢, € Q) C R™, are the lo-
cal coordinates representing rotational joint angles and prismatic joint displacements. Figure 24
shows an image of this floating-base coordinate system definition for a Cassie bipedal robot.
The combined set of coordinates is ¢ = (pl, ¢}, 71)" € Q =R’ x SO(3) x Q; with the states
=" ¢ eTQ=X.

2.1.2. Continuous dynamics. Traditional methods for modeling the dynamics of floating-base
systems typically result in the separation of the equations of motion into multiple parts (24)—
one arising from the multibody continuous dynamics, and the other imposed via constraints on
contacts with the environment. If we continue with the assumption that the robot structure is a
rigid collection of linkages, then we can consider the continuous dynamics of a bipedal robot in
the Lagrangian form (see 25):

D(¢)j + H(g,§) = Bu+Ja(g)" %, L.

where D(g) is the inertia matrix, H (g, §) contains the Coriolis and gravity terms, B is the actuation
matrix, # € U € R” is the control input, and the Jacobian of the holonomic constraints applied

to the robot is J,(g) = 2

5 (@ with the corresponding wrenches A € R”h. These dynamics can be
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Figure 2

A visual demonstration of the robotic configuration and contact constraints that are applied to the robot. (#) The floating-base
coordinate system for a Cassie bipedal robot, with a coordinate frame attached to the hip and rotational joints connecting rigid linkages
of the body. () The contact geometry of the constraints for an underactuated flat-foot contact and a point-foot contact.

expressed in a state-space representation as

dig|_ q + 0 u 2
dt|q| | D) (@) "2 = H(g,9) | " | D) 'B| ™ '
flx) g(x)

2.1.3. Contact forces. The fact that the robotic model is derived using a floating-base repre-
sentation means that as we manipulate the robot, the resulting ground force interaction through
the Lagrangian dynamics in Equation 1 is critical. The most popular method for modeling ground
interaction is to assume rigid contacts with nonpenetration; the resulting forces are then consid-
ered unilateral (24), meaning that they can push but not pull on the ground. The resulting normal
force cannot be negative, 1, > 0, and this implies that when this condition crosses zero, the contact
will leave the ground. A point of the robot in static contact with the ground will satisfy a closure
equation of the form

n(q) = [pc ", <¢>c(q)T]T = constant, 3.

where p.(g) is the Cartesian position of the contact point and ¢.(¢) is a rotation between contacting
bodies (26). Differentiating twice yields acceleration constraints on the robot,

Jn(9)j + Jh (4:9)4 =0, 4.

leading to a system of equations, with Equations 1 and 4 coupling the accelerations to the inputs
and resulting constraint forces. The geometry of robotic feet is often given as either a flat foot or
a single point of contact, as shown in Figure 2b. Assuming three noncollinear points of contact,
the foot can be modeled as a flat plane. The position and orientation of the plane with respect
to the ground will then create a six-degree-of-freedom closure constraint in Equation 3 (72, =
6). Alternatively, many underactuated robots have point feet. If the assumption is made that the
foot will not yaw while in contact, then this will form a four-degree-of-freedom constraint on the
Cartesian positions and rotation about the z axis (2, = 4).
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Finally, when designing motions for the robot, it is important to also model the real-world
limitations on the allowed tangential force before it will break a nonslip condition. The most
popular approach is to employ a classical Amontons—Coulomb model of (dry) friction (26). For a
friction coefficient u, the space of valid reaction forces is characterized by the friction cone:

C={(Ax,ky,AZ)ER3’AZEO; /xgﬂjgmz}. 5.

2.2. Linear Inverted Pendulums and the Zero Moment Point

In this section, we describe the basic aspects of the ZMP and how it has been used in linear in-
verted pendulum models (LIPMs) of locomotion. The concept of the ZMP is identical to the
center of pressure and was originally introduced through a series of observations on the stability
of anthropomorphic walkers by Vukobratovi¢ and colleagues (3, 27) in the early 1970s. The pri-
mary interpretation of the ZMP is that it represents the point on the ground at which the reaction
forces between the robot’s contacts and the ground produce no horizontal moment. Consider a
robot standing in single support, with a finite number of contact points (p;) that constrain the foot
to be flat. As shown in Figure 34, the resultant forces will consist of normal (1,) and tangential
(*¢) components. The ZMP is then computed as

Yo Pikin
Zz\:l Ain ’
This led to perhaps the most commonly used dynamic stability margin (28-32), referred to as
the ZMP criterion, which states that a movement is stable so long as the ZMP remains within the
convex hull of the contact points (also known as the support polygon). This notion is conservative,
and controlling these motions typically requires the robot to remain fully actuated, with position-
controlled joints and load cells in the feet.
The ZMP criterion has been tied extensively to the LIPM in order to considerably simplify
the trajectory design process, as the ZMP can be written explicitly in terms of the COM dynamics
(33). This has led many researchers to consider a Newton—Euler representation of the centroidal

Pzmp =
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dynamics, written as
mE+g) =Y h L= (-0 x 7.

where ¢ is the COM position; L = Y, (xx — ¢) X m5; + L, is the angular momentum; g is the
gravitational acceleration; ; is the contact forces; p; is each contact force position; x4 and w;, are
the linear and angular velocities on the kth linkage, respectively; 7z, and I, are the masses and
inertia tensors, respectively; and 7z is the total mass of the robot.

If we constrain the motion of a fully actuated inverted pendulum with a massless telescoping
leg such that the COM moves along a horizontal (x,y) plane, then we obtain a linear expression
for the robot dynamics. An example of the LIPM is visualized in Figure 35. The dynamics of the
LIPM at a given height, 2, is

i= Z%x—i— m—zcuy, y= Z%y—i— m—zcux, 8.
where 72 is the mass of the robot, g is the acceleration of gravity, and u, and u, are the torques
about the x and y axes, respectively, of the attachment to the ground (i.e., the ankle). The ZMP
location on the ground can also be directly written in terms of the LIPM dynamics as

2c .. Zc ..

Pzvp =% = Ex’ Pove =¥ — E}’- 9.
The LIPM can be viewed as a cart—table system (4), where the cart—table lies on a base with
a geometry corresponding the support polygon (34). Designing walking with the ZMP can be
essentially reduced to an inverse kinematics problem, where the primary planning is done on the
ZMP trajectory. Figure 3¢ shows an example ZMP trajectory for several forward steps, where the
trajectory for this walking is planned so that the ZMP always stays within the support polygon.
ZMP walking has been applied largely to humanoids, such as the WABIAN robots (1), the HRP
series (7, 9), Johnnie (35), and HUBO (10).

2.3. Capturability and Nonlinear Inverted Pendulum Models

Rather than characterize the stability of walking based on the ZMP, Pratt et al. (36) and Hof (37)
independently introduced the idea of a capture point, referred to by Hof as the extrapolated center
of mass. The capture point can be intuitively described as the point on the ground onto which the
robot has to step to come to a complete rest. In canonical examples of the capture-point methods,
the overall walking motions of the robot are planned and controlled based on the (instantaneous)
capture-point dynamics. In this case, the COM of the robot is constrained to move at a constant
height along a horizontal plane and thus uses a linear inverted pendulum representation of the

robotic system. Koolen et al. (38) showed that for the compound variable 7" = ¢ + =6 the

unstable portion of the resulting system dynamics (along the horizontal direction) can be written
in a constrained fashion as

5y 8 xy _ xy : wy x,

i = Z—(ric) ) subject to 7 € conv{p:”}, 10.

C
where 7;” is the horizontal location of the instantaneous capture point. The main consideration of
the locomotion process is then to ensure that feet are placed such that #;” lies within the support
polygon. Satisfying this condition means that the COM will converge to the capture point and
come to a rest.
Despite this intuitive representation of stability, the LIPM walking simplifications come with

a steep cost due to the stringent requirements on the motion and actuation of the robot. Yet

www.annualreviews.org o Dynamic Walking

541



Annu. Rev. Control Robot. Auton. Syst. 2021.4:535-572. Downloaded from www.annualreviews.org

Access provided by California Institute of Technology on 07/29/21. For personal use only.

Figure 4

(@) Several variations on inverted pendulum models, which attempt to expand the possible behaviors of the robot by accounting for
more of the body inertia or by releasing the constrained motion of the hip. (5) The capture point for a linear inverted pendulum

walking robot.
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it is precisely these characteristics that make the model most suitable for performing complex,
multi-objective tasks that include manipulation during intermittent conservative motions. The
maturity and reliability of the LIPM made it prevalent in the walking controllers used at the
DARPA Robotics Challenge (39-41).

In an attempt to overcome issues associated with the strict assumptions of the LIPM, re-
searchers have introduced more complex pendulum models (illustrated in Figure 44). The largest
constraint on LIPM walking is the assumption of constant COM height, leading to the develop-
ment of a nonlinear inverted pendulum with a variable mass height (42). To account for the inertia
of a swinging leg, Park & Kim (43) proposed the addition of a mass at the swing foot, which they
termed the gravity-compensated LIPM. One of the most commonly used models in the literature
to address nontrivial angular momenta from the limbs of large robots moving dynamically is to
add a flywheel to the hip, which can be used to represent the inertia of the robot body as it moves
(44). A flywheel model of the robot has gained recognition as a convenient representation of the
robotic system, particularly for capture-point control (36, 45). Various pendulum models have
been widely used in analysis of push recovery and balance (46-49). The capture-point approach
has also been used to demonstrate walking successfully on hardware (38, 50) and was famously
used on Honda’s ASIMO (51, 52).

2.4. The Spring-Loaded Inverted Pendulum

Classic work by Raibert and colleagues on hopping and running robots in the 1980s demonstrated
the efficacy of using compliant models in locomotion through the development of a planar hopper
that could bound at a speed of 1 m/s (11) and a 3D hopper that could achieve running without
a planarizing boom (12). These early successes drove researchers to investigate a SLIP repre-
sentation of bipedal robots (shown in Figure 5#). The SLIP model provides a low-dimensional
representation of locomotion that draws inspiration from biological studies of animal locomotion
(53, 54). The SLIP is particularly attractive due to its inherent efficiency and robustness to ground
height variations.

To use this model to synthesize controllers for actual robots, the control objectives are typically
decomposed into three components: achieving a particular foot-strike location to regulate forward
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speed, injecting energy through either passive compliance or motors to regulate the vertical height
of the COM, and regulating the posture of the robot. One then designs the walking and running
motions with SLIP models and compensates for model mismatch or disturbances with well-tuned
foot-placement-style controllers (55-59) (see Section 5.2). To this end, the dynamics of the SLIP
are derived by assuming that the mass of the robot is concentrated at the hip with virtual springy
legs:

0 = ml — ml6* + mgsin() + Fiip, 11.
0 = m[I*6 + 2116] 4 mgl sin(9),

where / is the stance leg length, 6 is the stance leg angle, and Fg, is the force arising from the
spring compression. One of the signature characteristics of this model is the double-hump profile
of the reaction forces (shown in Figure 5b), which is described by the force interactions observed
in biological walkers (54). A key contribution introduced by the SLIP community is the handling
of underactuated behaviors, with many of the corresponding robots having point-feet and flight
phases of motion. Finding a stable gait thereon does not rely on the quasi-static assumptions used
for the fully actuated pendulum walkers of the preceding sections, instead focusing on stable cyclic
locomotion. Dynamic stability is defined based on a constraint on the periodicity of the walking
(detailed in the sidebar titled Periodic Notions of Stability). To achieve forward walking, the initial
states of the robot and the angle of attack « for the swing leg are chosen to yield a periodic gait
(see Figure 5¢). Itis important to note that since the legs are massless, impacts are not considered,
and the resulting orbit will be closed with no instantaneous jumps in the velocity.

The SLIP representation of walking has been used primarily for legged robots that have springs
or series-elastic actuators. Some of the earliest inclusions of compliant hardware on bipedal robots
were with a spring flamingo and spring turkey (64). Later, the COMAN robot included passive
compliance to reduce energy consumption during walking (65), and the Valkyrie robot from
NASA was the first full-scale humanoid robot to heavily use series-elastic actuators (66). Using
inspiration from the SLIP morphology, Hurst and colleagues designed the planar humanoid robot
MABEL (67) and the 3D bipedal robot ATRIAS (68, 69) to include series-elastic actuation and thus
return energy through impacts and shield the motors from impact forces at foot strike. One of the
latest robots in this series, the Cassie biped (shown in Figure 24), also mechanically approximates
SLIP design principles (70). Several running robots have specifically considered SLIP model
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PERIODIC NOTIONS OF STABILITY

One can view steady-state walking as a periodic motion thatis not instantaneously stable but is stable from foot strike

to foot strike (60)—in other words, walking is controlled falling. Concretely, a solution ¢(z, ty, xy) to a dynamical
system x = f(x) is periodic if there exists a finite 7' > 0 such that ¢z + T, to, x0) = ¢(t, to, x0) for all € [zy, 00), and a
set O C X is a periodic orbit if O = {¢(t, 79, x0)|t > o} for some periodic solution ¢(z, #y, x¢). In a seminal paper on
passive dynamic walking, McGeer (14) popularized the method of Poincare to determine the existence and stability
of periodic orbits (61) for walking. In this approach, one step is considered to be a mapping from the walker’s state x

at a definite point within the motion of a stride (typically defined at foot strike) to the walker’s configuration at the

same point in the next step, x4 1. Let S define the Poincare section, for which we have a Poincar¢ map P : § — S
that maps one step to the next as x; ;| = P(x). The periodic orbit yields a fixed point +* = P(x*) with x* € O N S,
and the stability of the orbit is equivalent to the stability of the Poincaré map, which can be checked numerically

(62, 63).

544

principles in their mechanical design, such as the ARL Monopod II (71), Carnegie Mellon
University’s Bowleg Hopper (72), and the Keneken hopper (73).

3. HYBRID SYSTEM MODELS OF BIPEDAL LOCOMOTION

In the drive to obtain efficient legged locomotion and understand the stability thereof, researchers
have adopted more dynamic paradigms for robotic locomotion that consider nontrivial impacts
and periodic notions of stability. To formalize this perspective, it is necessary to consider hybrid
system models of walking, which include both continuous (leg swing) and discrete (foot strike)
dynamics. This section discusses two key paradigms that leverage this framework: passive dynamic
walking, which exploits the natural hybrid dynamics of the system to obtain efficient walking, and
HZD, which uses actuation to achieve model reduction and thereby synthesize stable walking
gaits.

3.1. Passive Dynamic Walking

Some of the first work to study hybrid systems for the purposes of synthesizing walking were
within the field of passive dynamic walking. McGeer (14, 74) introduced several passive walking
robots that could ambulate down small declines when started from a reasonable initial condition.
While these early bipeds were completely passive and relied on gravity, several bipeds were built
to demonstrate that simple actuators could substitute for gravitational power and compensate
for disturbances. Small electric actuators were used for the Cornell walkers (75-77) and the MIT
learning biped (78, 79), while the Delft biped instead used a pneumatic actuator at the hip (80, 81).
Controlled symmetries (82) and geometric reduction (83) have been used to extend these ideas to
actuated robots and 3D walking. Actuated environments have also been used to excite walking on
passive robots (84). Because of the care taken in mechanical design, these robots could all operate
without sophisticated real-time calculations—though at the cost of diminished control authority.

The governing equations of motion for passive dynamic robots are nonlinear and correspond
to the continuous dynamics derived in Equation 1 rather than using an approximate (or reduced-
order) model. They are also hybrid, meaning they consist of both continuous and discrete nonlin-
ear dynamics. A definition of the hybrid representation of the dynamics of walking is summarized
in the sidebar titled Hybrid Dynamical Systems, where the key element that determines the be-
havior is a directed cycle of continuous domains.
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HYBRID DYNAMICAL SYSTEMS
A hybrid dynamical system, which is used to model a walking robot (85), is defined as the tuple

A =(T,D,S,AF),

where the variables are as follows:

m [ = {I, E} is a directed cycle specific to the desired walking behavior, with I the set of vertices and E the set

of edges, e = (vy — v,) € E with v, v, € V] in the cycle.

B D = {D,},er is the set of domains of admissibility. Each domain D, can be interpreted as the set of physically

realistic states of the robot.

m S ={S.}). ez is the set of guards, with S, C D,,, that form the transition points from one domain, D,,, to the

next in the cycle, D,,.

B A ={A,, cpis the set of reset maps, A, : S, C D,, — D,,, from one domain to the next. The reset map gives

the postimpact state of the robot: x* = A,(x7).

m F = {f,}, e v is a set of dynamical systems where £ = f,(x) for coordinates x € D,, i.e., of the form given in

Equation 2 with z = 0.

3.1.1. Discrete dynamics: impacts and Poincaré maps. An inherent feature of dynamic walk-
ing is that the robot is moving quickly through the environment. Thus, the resulting motions can-
not be slow enough for the feet to approach the ground with negligible velocity, and impacts with
the ground become an important consideration. Formally accounting for impacts underlies the
basis for hybrid dynamical locomotion models (16, 26, 85). Impacts during walking occur when
the nonstance foot strikes the ground. Concretely, consider the vertical distance (height) of a con-
tact point (foot) above the ground, H,(x). Impacts occur when the system reaches the switching
surface of the guard:

S, ={re X |H(x) =0, H(x) <0}, 12.

where this surface is also a Poincare section that will be used to construct the Poincaré map. At
each transition, the new initial condition is determined through the reset map:

7| _ | Rqg o
[q*} - [RAq-(m'-} SR -

where R is a relabeling matrix (16, 86), which flips the stance and nonstance legs. Here, A, de-
scribes the change in velocity that occurs at impact and is typically calculated using the assumption
of a perfectly plastic impact (87, 88). Note that determining and utilizing more complex impact
models is an open problem. In real life, impacts are not truly instantaneous and do not always
achieve stiction (89). Situations with multiple impacts can arise (90), leading to Zeno behaviors
(91-93) or slippage (94, 95).

A canonical example of passive dynamic walking is an unactuated compass biped walking down
a slope of angle y (96) (see Figure 64). This robot consists of two kneeless legs, each with a point
mass, and a third mass at the hip. The directed cycle for the biped consists only of a single-support
domain, with transition occurring at foot strike (shown in Figure 65). The periodic nature of the
stable walking behavior is best summarized by the phase portrait in Figure 6c, where there are
discrete jumps occurring at impact. The stability of a cyclic gait is discussed in the sidebar titled
Periodic Notions of Stability. Once a fixed point &* has been found, we can examine a first-order
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A canonical example of passive dynamic walking: the compass biped. () The biped and its configuration on the slope. (4) A directed
graph of the corresponding hybrid dynamical system. (c) A closed limit cycle for the biped walking down a 5° slope, implying stable

walking.
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expansion of the Poincaré map:
aP .
Pl + éx) ~ 2™ + a—(x*)sz, with P(x*) = x%, x*eons, 14.
x

where the fixed point is exponentially stable if the magnitude of the eigenvalues of 2 (x*) is less
than one (61-63). This is straightforward to check numerically: One can construct a numerical
approximation of successive rows by applying small perturbations to each corresponding state and
then forward simulate one step to obtain P(x* + éx).

3.2. Hybrid Zero Dynamics

The HZD method leverages nonlinear feedback control design to induce stable locomotion on
underactuated robots. Grizzle and colleagues (15, 97, 98) introduced the concept and developed
a set of tools that are grounded in nonlinear control theory to deal formally with the nonlin-
ear and hybrid nature of dynamic walking [see the textbook by Westervelt et al. (16)]. The ba-
sis of the HZD approach is the restriction of the full-order dynamics of the robot to a lower-
dimensional attractive and invariant subset of its state space, the zero dynamics surface, via outputs
that characterize this surface. If these outputs are driven to zero, then the closed-loop dynamics
of the robot are described by a lower-dimensional dynamical system that can be shaped to obtain
stability.

As was the case for uncontrolled hybrid models generalizing hybrid dynamical systems, a hy-
brid control system (see the sidebar titled Hybrid Control Systems) describes an actuated walking
robot, leading to the notion of HZD. The primary consideration that governs the overall loco-
motion problem is the specification of a directed cycle for the underlying hybrid (control) system.
Because HZD incorporates feedback control, significantly more complex motions are possible.
Figure 7 shows examples of directed cycles for dynamic walking behaviors, illustrating how do-
main specification is governed largely by the evolution of the contacts through the course of a
step. Figure 8 presents the controlled compass walker (96) to provide a comparison with passive
dynamic walking. In this example, torques applied at the hip are used to control the motion, while
the robot walks with a stable limit cycle on flat ground.
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HYBRID CONTROL SYSTEMS

Rather than describing a passive hybrid system (as in the Hybrid Dynamical Systems sidebar), the incorporation of

a feedback control allows for the realization of more advanced behaviors on complex actuated bipedal robots. We

therefore define a hybrid control system (85, 99) to be the tuple
HE = (T, D,U,S, A, FG),
where the variables are as follows:

m I, D, S, and A are defined as in the Hybrid Dynamical Systems sidebar.
B U = {U,},ep is the set of admissible control inputs.
B FG = (f,,8,)0er Is the set of control systems, ¥ = f,(x) + g, (x)u, as in Equation 2.

3.2.1. Virtual constraints and stabilization. Dynamic walking that leverages the full-body
dynamics must necessarily include specifications on how the robot should coordinate its limbs
in a holistic fashion. To this end, and analogous to holonomic constraints, virtual constraints are
defined as a set of functions that regulate the motion of the robot to achieve a desired behavior
(16). The term virtual comes from the fact that these constraints are enforced through feedback
controllers instead of through physical constraints. Let y*(¢) be functions of the generalized coor-
dinates that are to be controlled (i.e., encoding the actual behavior of the robot) and y!(t, &) be the
desired behavior, where « is a matrix of real coefficients that parameterize this behavior. A Bézier
polynomial is the most typical choice of representation for the desired outputs (16) for computa-
tional reasons, though humans appear to follow a spring-mass-damper-type behavior (86). Given
actual y* and desired y! outputs, a virtual constraint is their difference:

¥(@q) =y"(g) — ¥ (x(q), ), 15.

where 7(¢) : @ — Risaparameterization of time thatis strictly increasing along periodic motions.
Driving y — 0 results in convergence of the actual outputs to the desired outputs.

a b

Toe strike

Foot lift

Foot strike

Figure 7

Toe lift

Heel lift

Examples of directed cycles for hybrid representations of (#) two-domain walking with compliance and (») four-domain human-like

robotic walking. Panel # adapted from Reference 100 with permission from IEEE.
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Figure 8

An example of HZD-based control for a compass biped on flat ground. (#) The robotic configuration. (b) Joint trajectories and torques
over three steps of stable walking. () A stable limit cycle during the walking, with discrete jumps occurring at impact. Abbreviation:
HZD, hybrid zero dynamics.

To synthesize controllers, note that differentiating y(g) along solutions to the control system
in Equation 2 yields the Lie derivatives:

where y(g) has vector relative degree 2 (101) if the matrix L,L ry(¢, ¢) is invertible. From this, one
obtains the following feedback linearizing controller:

@ =[LLp@] " (- By@+n) = e =m 17,

where p is the auxiliary feedback component of the controller that can be chosen to stabilize the
system. In particular, one common choice is 1 = E%pr(x) + LK4L py(x), with K, and Ky feedback
gains chosen so that the linear dynamics are stable, and € > 0 a parameter used to amplify con-
vergence to the desired motion, rendering the output dynamics exponentially stable. Applying
Equation 17 with u results in the closed-loop system

&= falr) = f(x) + ga)u* (x), 18.

where for this system y — 0 exponentially fast.

3.2.2. Hybrid invariance. The feedback control law of Equation 17 can be synthesized for vir-
tual constraints y,(7) = y*(¢) — y}(z (g, ), @,) associated with each domain D,, v € ¥, and control
system: & = f,(x) + g, (). This renders the zero dynamics manifold (102),

Zv = {(q, q) € Dv |yv(q) = 0, yv(qy q) = O}a 19.

forward invariant and attractive. Thus, the continuous dynamics in Equation 18 will evolve on Z,
given an initial condition in this surface. However, because the surface in Equation 19 has been
designed without taking into account the hybrid transition maps of Equation 13, the resulting
walking cycle may not be invariant to impact. To enforce impact invariance, the desired outputs
can be shaped through the parameters «, in y¢ such that the walking satisfies the HZD condition

A(Zy, N Sy,) C Zy,, Ve=(vs, 1) € E, 20.
imposed as a constraint on the states through impact (Equation 13).
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Key concepts related to HZD: continuous convergence to a zero dynamics surface Z, coupled with a hybrid invariance condition
A(Z N S) C Z, to obtain stable periodic walking. Abbreviation: HZD, hybrid zero dynamics.

The overarching goal of these constructions is to provide a framework for the synthesis of
dynamic walking gaits. In this context, for simplicity (and without loss of generality) assume a
single domain " = {v}, wherein we will drop the subscript v. For the full-order dynamics, let

,f “(x9) be the (unique) solution at time # > 0 with initial condition x. For a point x* € S, we
say that qbtf“‘ is hybrid periodic if there exists a 7' > 0 such that ¢§°‘ (A(x*)) = «*. Furthermore,
the stability of the resulting hybrid periodic orbit, O = {qﬁ,ﬁl (A(@*)) : 0 <t < T}, can be found by
analyzing the stability of the Poincaré map, where x* is a fixed point, as presented in Equation 14.
The main idea behind the HZD framework is that, due to the hybrid invariance of Z, if there
exists a stable hybrid periodic orbit, Oz, for the reduced-order zero dynamics evolving on Z (i.e.,
the restriction of fi to Z), then Oy is a stable hybrid periodic orbit for the full-order dynamics in
Equation 19 (16). Figure 9 presents a visualization of the components of HZD walking design.

In the case of robots that have feet, as is the case for many humanoid robots, one can extend
the concept of HZD to modulate the forward velocity of the robot (103). In particular, one
can generalize HZD through a velocity-modulating output: y;(g,4) = ¥3(g, ) — v¢, where v¢
is the desired forward velocity. One can augment the original virtual constraints y(g) with this
new (relative 1 degree) output. The partial HZD surface PZ is again given as in Equation 19,
where the term partial is used since this surface does not require the output y; to be zero. Partial
HZD is the condition A,(PZ N S) C PZ. In the case of full actuation, the existence of a hybrid
periodic orbit, Opz in PZ, is guaranteed, implying the existence of a hybrid periodic orbit for the
full-order dynamics. Thus, partial HZD implies the existence of a stable gait for fully actuated
robots.

3.2.3. Application of hybrid zero dynamics. In the context of robotic implementations,
HZD has proven successful in realizing a wide variety of dynamic behaviors. Many of the early
uses of the method were on point-footed robots that were restricted to the sagittal plane. The
first robot used to study HZD was the Rabbit biped (104), followed later by MABEL (105) and
AMBER 1 (106). The ability of (partial) HZD to handle multidomain behaviors led to its use on
more complex planar bipedal robots, such as ATRIAS (107, 108), AMBER 2 (109), and AMBER
3M (110). New challenges appeared while extending the method of HZD from planarized robots
to 3D robots, which exhibit additional degrees of underactuation. Control of fully actuated
humanoids was demonstrated on a small-scale example with a NAO robot (111) via partial HZD,
while point-footed 3D walking with HZD was first shown at the University of Michigan with
the MARLO biped (112). At the DARPA Robotics Challenge, the humanoid DURUS (shown in
Figure 10a) was featured in an efficiency walk-off (20), where it demonstrated the first sustained
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() Human-like outputs (103) applied to DURUS and (4) how the physical morphology of Cassie follows principles from SLIP models.
Each robot then has passive dynamics, which can be embedded within the HZD framework via output selection. Abbreviations: HZD,
hybrid zero dynamics; SLIP, spring-loaded inverted pendulum. Photo in panel # adapted from Reference 21 with permission from
Springer; photo in panel » adapted from Reference 100 with permission from IEEE.

humanoid HZD walking—more than five hours continuously. DURUS went on to exhibit the
most efficient walking on a humanoid to date, while performing human-like multicontact behav-
iors and managing significant underactuation (21). The method has been extended to powered
prosthetic walking (113-115) and to exoskeletons that can walk for patients with paraplegia (116,
117). The use of springs in locomotion has also proven useful in the development of dynamic
walking behaviors, though it presents additional challenges both mathematically and in practice.
The notion of compliant HZD was introduced in the late 2000s (118) and was later expanded
upon to obtain compliant robotic running (18).

One of the latest robots to successfully demonstrate stable HZD walking is the Cassie biped
(shown in Figure 24), which exhibits underactuated feet and passive springs in the legs (see also
the sidebar titled Experimental Highlight: Hybrid Zero Dynamics). Dynamic walking on Cassie
has been successfully realized on hardware both by planning under the assumption of sufficient
rigidity in the legs to ignore compliant elements (119) and by considering the passive compliance
in the zero dynamics (100).

4. MOTION GENERATION FOR DYNAMIC BIPEDAL LOCOMOTION

Throughout the previous section, we outlined how the locomotion problem is fundamentally dif-
ferent from traditional approaches to modeling fixed-base robots. It is because of this inherent

EXPERIMENTAL HIGHLIGHT: HYBRID ZERO DYNAMICS

We highlight the application of HZD by considering its experimental realization on hardware. Leveraging partial
HZD on DURUS and HZD on Cassie results in stable periodic orbits (both in simulation and experimentally), as
illustrated in Figure 7. The evolution of the dynamic walking motion is tied to the morphology of the robot, with
the humanoid DURUS exhibiting human-like heel-toe walking (21, 103) and the Cassie biped leveraging a domain
structure and outputs that correspond to the SLIP-inspired mechanical design (100). In these specific examples,
the virtual constraints chosen are shown in Figure 10. This demonstrates one of the benefits of HZD: the ability
to choose virtual constraints to formally encoded reduced-order models for complex robots and correspondingly
shape the zero dynamics surface to render it stable.
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complexity that virtually all approaches to realizing dynamic walking must transcribe the locomo-
tion problem into a motion planner that can handle the various constraints naturally imposed on
the problem. While several of the more classical walking paradigms offer simple solutions to con-
servative walking, there has been a push over the last two decades toward leveraging optimization
to obtain increasingly dynamic maneuvers.

4.1. Step Planning with Linear and Reduced-Order Models

For the simplest models of walking, such as traditional ZMP and LIPM versions of the capture
point, the linear dynamics of the restricted system often yield straightforward approaches to plan-
ning the motion of the COM. The walking characterized by these linear models often implicitly
satisfies quasi-static stability assumptions, ultimately allowing a control designer to decouple the
high-level step planner and low-level balance controllers (120). In this vein, Kajita et al. (34) in-
troduced the jerk of the COM as an input controlled by a discrete linear quadratic regulator
controller with preview action (121) to plan ZMP trajectories for predefined footsteps. However,
predefining the motions of the ZMP or footholds is not always necessary or desirable.

If planners for these simple models could instead be performed online, then the robot may
be able to mitigate issues related to reactivity. Wieber (122) proposed using linear, trajectory-free
model predictive control as a method for explicitly handling the constraints imposed by the ZMP
approach of Section 2.2 while continuously reevaluating the walking path. Stephens & Atkeson
(123) presented the use of model predictive control for push recovery and stepping on the SAR-
COS humanoid, which could be extended to obtain walking behaviors. The example shown in
Figure 3¢ visualizes the result of this approach applied to LIPM robotic walking. Studies have also
shown how optimization and model predictive control can extend the notions of capture point to
viable regions on which the biped can step (124) and how push recovery can be planned over a
horizon of multiple steps (38). Despite the ability of these planners to adapt online, they cannot
handle the discrete dynamics associated with foot strike, and they demand near-zero impact forces
(125), which rules out the nontrivial impacts that are naturally associated with dynamic walking.
It is also difficult to provide a priori guarantees on whether any given reduced-order plan is fea-
sible to execute on the full-order dynamics. Such methods typically use inverse kinematics (126)
or inverse dynamics (127), sometimes in an operational-space formulation (128), to compute the
full-order control inputs at each instant. Solving such near-term inverse problems does not imply
that future inverse problems in the trajectory will be feasible, which requires additional planning
(129, 130).

4.2. Nonlinear Optimization for Gait Generation

As a result of the rapid developments within the trajectory optimization community, researchers
began to move toward utilizing nonlinear dynamic gait optimizations rather than relying on the
constraints imposed by linear modeling assumptions. The use of nonlinear optimization (i.e., nu-
merical approaches) to generate stable walking behaviors on bipeds is not a new concept (131,
132), though computational limitations were a considerable hindrance to generating motions on
3D robots. During the mid-2000s, computation power finally increased sufficiently to begin han-
dling 3D dynamic walking behaviors (133).

4.2.1. Open-loop optimization. Section 3.1 described the simplest application of nonlin-
ear optimization to walking, wherein passive dynamic walking relies on the generation of fixed

points associated with periodic orbits of a hybrid dynamical system. This naturally lends itself to
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numerical approaches for the optimization of open-loop stable periodic motions (134), since pas-
sive dynamic walkers do not have any actuators to consider. The use of open-loop optimization to
generate feasible motions for actuated robots is a natural extension of approaches used through-
out the field of trajectory optimization, where the planning problem is seen as decoupled from the
feedback control applied to the actual robot (135), and approximately optimal solutions are often
sufficient. Furthermore, in recent years, the application of advanced trajectory optimization meth-
ods such as direct collocation has made the optimization of the full-body dynamics of Equation 1
more computationally tractable, sparking a growing interest in considering the full-body dynam-
ics of the robot in the planning problem. For instance, in order to control the open-loop trajectory
that results from the direct collocation optimization, a classical linear quadratic regulator-based
feedback controller can be constructed to stabilize the resulting trajectory obtained for the con-
strained dynamical system (136). In this type of approach, the walking problem can be viewed as
generating sequences of footholds for the nonlinear centroidal dynamics given in Equation 7 (40,
137) or with respect to the full Lagrangian system given in Equation 1 (138). Complementary La-
grangian systems (139) formed the basis of the approach used by Posa et al. (138), which allowed
the optimizer to find walking behaviors without a priori enumeration of the type and order of con-
tact events. Open-loop trajectory optimization has also been used to satisfy ZMP conditions in a
nonlinear fashion (140), which considerably improved the dynamical nature of the conservative
walking presented in Section 2.2.

4.2.2. Closed-loop optimization. While the preceding nonlinear optimization approaches do
consider the full-body dynamics of the robot, it is not always desirable to apply feedback con-
trollers to stabilize an approximately optimal open-loop plan. Rather, itis often beneficial to couple
the gait generation and controller synthesis problems into a single framework: closed-loop opti-
mization. This framework allows, among other things, the generation of provably stable walking
behaviors that simultaneously satisfy the constraints on the system from admissible configurations
to torque bounds. This idea forms the basis of designing walking gaits with the HZD method in-
troduced in Section 3.2, where feedback control is used to generate provable stable periodic orbits.
A visual summary of this section is given in Figure 11 (see also the sidebar titled Experimen-
tal Highlight: Closed-Loop Optimization). Applying these closed-loop feedback strategies in the

Closed-loop plans
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Figure 11

A conceptual illustration of how locomotion models must first be transcribed into appropriate representations for use with nonlinear
programming approaches in order to yield dynamically stable closed-loop plans for bipedal robots. Some figure components adapted
from References 21 and 100 with permission from Springer and IEEE, respectively.
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EXPERIMENTAL HIGHLIGHT: CLOSED-LOOP OPTIMIZATION

The use of closed-loop optimization for HZD behaviors yields a set of outputs that coordinate the motion of
the robot. This is shown as the output of the process in Figure 11, where the nonlinear optimization problem has
provided outputs thatyield orbital stability for compliant HZD (100). The outputs in Figure 11 directly correspond
to the SLIP-like morphology of the robot, emphasized in Figure 10. Reference trajectories can be shaped by the
cost to yield desirable gait characteristics, such as efficiency on DURUS, or for minimizing torque and extraneous
movement on Cassie to obtain behaviors that leverage the compliance for propulsion.

optimization problem means that ambiguous contact sequences are no longer possible (141) and
must be prescribed according to the directed cycle that governs the underlying hybrid system (see
Figure 7). Doing so allows one to enforce physical feasibility constraints (e.g., unilateral contact)
in conjunction with the synthesis of controllers that guarantee stability.

In the context of HZD methods, with the formal constructions of the zero dynamics
(Equation 19) and hybrid invariance (Equation 20) defined, the problem of finding stable dy-
namic walking can be transcribed to a nonlinear programming problem of finding a fixed point
x* and set of parameters « = {&,}, ¢ » parameterizing the virtual constraints of Equation 15. The
optimization problem is performed over one step cycle (e.g., foot strike to foot strike), with a
constraint imposed such that when the discrete impact (Equation 13) is applied to the terminal
state, it satisfies the hybrid invariance condition of Equation 20. It is also critical that the motions
respect the limitations of the physical system, such as the friction cone (Equation 5), actuator
limits, and joint limits. These constraints can be directly placed into a nonlinear programming
problem that can be solved by a standard optimization solver:

w(a)* = argmin J(w(x)) 21.

w(a)
subject to  closed-loop dynamics (Equation 18),
HZD condition (Equation 20),

physical feasibility (e.g., Equation 5),

where w(a) € RN, with N,, being the total number of optimization variables, and here we made
the dependence on the parameters, o, that dictate the closed-loop dynamics explicit. With the goal
of achieving dynamic and efficient walking, a common objective is to minimize the mechanical
cost of transport of the walking gait through the cost (20, 141). In classical HZD implementations,
the candidate solutions were found via single-shooting formulations (15, 103), where the decision
variables are the fixed-point states x* and the output coefficients «. Because single-shooting
optimizations are notoriously sensitive to poor initial conditions, multiple shooting has also
been explored (142), with the eventual development of direct collocation formulations (143) that
would become the most successful to date. The FROST optimization package (22) was developed
based on these successes as an open-source package to transcribe HZD locomotion into a direct
collocation problem. While the HZD optimization problem determines one stable walking orbit,
one can expand the range of motions a robot can perform through systematic optimization
in order to build libraries of walking parameters (144). Reinforcement learning has also been
used to handle robust transitions for different speeds or unknown terrain height disturbances

(145).
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5. FEEDBACK CONTROL AND MOTION REGULATION

While the dynamic walking paradigms introduced throughout the previous sections generate sta-
ble walking motions in simulation, their actual implementation requires the deployment of real-
time feedback controllers capable of achieving the desired motions. As described in Section 2.1,
dynamic walking robots involve a high level of complexity in the form of nonlinearities and tightly
coupled equations of motion that must be considered. When locomotion has been planned using
a simplified model (Section 2.1), the spatial geometry of the robot must be translated into joint
angles that can be controlled. Even with a full-order hybrid model (Section 3) and closed-loop
optimization (Section 4), controllers must be synthesized in order to track these desired motions
in practice. This section describes feedback controllers and motion regulators that allow the trans-
lation of dynamic walking in simulation to be realized on real-world hardware platforms.

5.1. Controllers for Tracking Designed Motions

The simplest control scheme for determining motor torques is proportional-derivative (PD) con-
trol (146). The strongest argument for using this approach is the sheer simplicity of its implemen-
tation and its intuitive physical meaning with respect to tuning. Consider the desired positions
and velocities ¢¢ and ¢¢ (and possibly functions of time), obtained either from inverse kinematics
for reduced-order walking models or from the output of an optimization problem. A feedback
controller can be applied at the joint level:

u=—Ky(¢" — ¢*) — Ka(G" — §*), 22,

generating desired torques (or currents) that are tracked at the motor controller level at a fast
loop rate. In the case of underactuated robots and/or virtual constraints (see Section 3.2.1), one
can consider outputs of the form

¥ =y =y (@@, @)  or  yg,t)=y(g) —y'(x®),a),

where the time-based variant is often considered in practice, especially in the case of 3D walking
and running, due to imperfect sensing of 7(g), wherein it is replaced by the more robust signal ()
(19, 147). Let ¢, represent the joints with actuators; then the PD controller can be applied in the
Cartesian (or output) space:

u=-Y(@) ' Ky+Ky) or  u=-Y(g)" (Ky+Ky), 23.

where Y (¢) := %(q) is the Jacobian of the Cartesian task or output with respect to the actuated
joints, and K;, and Kj are the PD gain matrices. This style of feedback control has been used to
enforce the behaviors of every locomotion paradigm detailed in Sections 2 and 3 at some point in
time.

For underactuated dynamic walkers whose motions have been planned with virtual constraints,
simply tracking the outputs with a well-tuned PD controller is sometimes sufficient to achieve
walking (21, 100, 105, 144, 148) and even running (19) on hardware. This is because the trajecto-
ries (or outputs) implicitly encode the dynamic behavior and stability constraints, even if achieving
these behaviors requires different torques on the actual robot. In addition, because dynamic be-
haviors are often rendered stable through this behavioral encoding while satisfying appropriate
physical constraints, almost all passive dynamic and HZD walkers have not included load cells in
the feet, as feedback control of these quantities is not necessary for stability. Figure 12 shows an
example of PD controllers applied in experiment to two 3D bipedal robots; although the motions
do not track the designed motions perfectly, they do form a closed orbit, which implies stable
walking.
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Examples of HZD periodic orbits for dynamic walking on hardware with the (#¢) DURUS and (b) Cassie robots. The nominal periodic
walking motions resulting from the optimization (Equation 21) are shown as dashed lines and superimposed on traces of experimental

data. Abbreviation: HZD, hybrid zero dynamics. Panel # adapted from Reference 21 with permission from Springer; panel # adapted

from Reference 100 with permission from IEEE.

In the context of reduced-order models, plans for the ZMP and the capture point have typi-
cally considered a point-mass representation of the robot, under which whole-body momentum
and force regulation become important concerns when developing feedback controllers for imple-
mentation. This has led to a variety of approaches that concurrently regulate the COM movement
via some PD feedback element in combination with control of the whole-body momentum (149-
152) and tracking of desired force interactions (153, 154).

When the dynamics of the system are well known, it is often beneficial to leverage them in the
feedback control design. One of the classical methods used to explore this in the context of bipedal
robots is computed-torque control, which considers an inner nonlinear compensation loop and
the design of an auxiliary control feedback (43, 155):

u= D) (" = Kolg — 4" — Kol = i) + H(gs ), 24.

where §* is the nominal system acceleration. Note that this is mathematically equivalent to feed-
back linearization, as given in Equation 17 (see 156). Although both the standard PD controller
and computed-torque approach can overcome minor disturbances, they are often not sufficient to
formally ensure the stability or yield the performance that dynamic walking requires. This mo-
tivates the use of a controller that can provide good tracking performance while leveraging the
robotic model (see also the sidebar titled Experimental Highlight: Trajectory Tracking along with
Figure 13). The remainder of this section will explore several of the approaches that have been
successful in the feedback control of bipedal robots, and how these can be extended to provide
formal stability guarantees.

EXPERIMENTAL HIGHLIGHT: TRAJECTORY TRACKING

The trajectories found in Section 4.2 for HZD are well suited to feedback controllers for output-tracking prob-
lems. To demonstrate the simplest and yet effective implementations of PD controllers that have been successful in
realizing dynamic walking, we show experimental results on hardware for DURUS and Cassie in Figure 13. This
figure shows that for controllers in the joint space (Equation 22) and output space (Equation 23), dynamic walking

can be achieved by simply tracking the designed motion.
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Figure 13

Examples of experimental results for the use of PD control for tracking dynamic walking on hardware. (2) Joint tracking (Equation 22)
for DURUS during multicontact walking (21). (b) Leg length output tracking (Equation 23) on Cassie while walking with a compliant
HZD gait (100). Abbreviations: HZD, hybrid zero dynamics; PD, proportional-derivative.

5.1.1. Inverse dynamics. While PD control is sufficient for many applications, it fails to explic-
itly consider the model of the robot and the constraints under which it operates. Inverse dynamics
is a widely used approach to model-based controller design for achieving a variety of motions
and force interactions, typically in the form of task-space objectives. Given a target behavior, the
dynamics of the robotic system are inverted to obtain the desired torques. In most formulations,
the system dynamics are mapped onto a support-consistent manifold using methods such as the
dynamically consistent support null space (157), linear projection (158), and orthogonal projec-
tion (159). When prescribing behaviors in terms of purely task-space objectives, this method is
commonly referred to as task- or operational-space control (128). Recent work has shown that
variations of these approaches allow high-level tasks to be encoded with intuitive constraints and
costs in optimization-based controllers (e.g., 40, 152, 160-162).

A benefit of inverse dynamics approaches to feedback control on robotic systems is that low-
gain feedback control can be used, while feedforward terms that respect the constrained rigid-
body dynamics of the physical system are used to produce the majority of the control action. If
the walking is not significantly disturbed from the planned motion found in Section 4.2, then a
linear null-space projection operator Pg(g) can be used to eliminate the contact forces A from the
floating-base dynamics in Equation 1 (158), using QR decomposition (159) to obtain an orthog-
onal projection into the null space of J,(¢).

The inverse dynamics problem can also be posed using a quadratic program to exploit the fact
that the instantaneous dynamics and contact constraints can be expressed linearly with respect to
a certain choice of decision variables. Specifically, let us consider the set of optimization variables
X =[§T,u", AT]T € Xy :=R” x U x R, which are linear with respect to Equations 1 and 4,

D(g) =B —Jn(9)" H(g,q) | _
[Jh@ 0 0 }“[mw}‘o’ =

and a positional objective in the task space of the robot written as J,(¢)j + J,(¢, §)q — §; = 0, where
Jy(9) = 0y*/0¢, and j* = Kpy + Kpy is a PD control law that can be tuned to achieve convergence.
An additional benefit to using an optimization-based approach is the ability to include feasibility
constraints such as the friction cone (Equation 5). However, this constraint is nonlinear and cannot
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be implemented as a linear constraint. An alternative solution is to use a pyramidal friction cone
approximation (26),

w
P = {(Ax,xy,xz) € RS‘AZ > 0; Al I2y] < \—FZAZ}, 26.
which is a more conservative model than the friction cone but is advantageous in that it is a linear
inequality constraint. In its most basic case, we can combine these elements to pose this quadratic
program tracking problem as
X () = argmin  [11,(¢)7 + (g, ) = 5| + oW (X)

XeXex
subject to  Equation 25 (system dynamics),
Umin < U < Uy (torque limits),
Equation 26 (friction pyramid),

where I (X) is included as a regularization term with a small weight o such that the problem is
well posed. Although this kind of control satisfies the contact constraints of the system and yields
an approximately optimal solution to tracking task-based objectives, it does not provide formal
guarantees with respect to stability. In increasingly dynamic walking motions, this becomes an
important consideration, wherein impacts and foot strike can destabilize the system, requiring
more advanced nonlinear controllers.

5.1.2. Control Lyapunov functions for zeroing outputs. The methods presented thus far
demonstrate how feedback control can drive the dynamics of the robotic system to behave ac-
cording to the planned motions found in Section 4. However, these designs often intrinsically
ignore the natural dynamics of the system, which are a critical component in the realization of
efficient and dynamic walking. Thus, for practical systems, additional considerations for selecting
the control input are often required. Rapidly exponentially stabilizing control Lyapunov functions
(RES-CLFs) were introduced as methods for (rapidly) achieving exponential stability for walking
robots (17, 163). A function, 7, is a RES-CLF if it satisfies

ylel? < Vi) < gnxnz, 27,
. . . . al. y
inf [Vt ] = o | G 019+ G 0] = it 2
LyVe(x) LgVe (x)

fory,7,y > 0,where 0 < € < 1 isa control gain that allows one to control the exponential conver-
gence of the CLF and is the basis for the term rapid in RES-CLF. Importantly, if the robotic system
is feedback linearizable per Section 3.2, it automatically yields a Lyapunov function. In particular,
defining n(x) := (y(x)T,5(x)")T, we obtain the RES-CLF V. (x) = n(x)* Pcn(x), where P. = L. PL,
with I, := diag (:I,T) and P the solution to the continuous-time algebraic Riccati equations for
the linear system j = p obtained by feedback linearization in Equation 17.

The advantage of using CLFs for controller synthesis is that they yield an entire class of con-
trollers that provably stabilize periodic orbits for hybrid system models of walking robots and
can be realized in a pointwise optimal fashion via optimization-based controllers. In particular,
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consider the set of control inputs
K@) ={u e U: LV + LV < - 2V@), 29,
€

which is a set of stabilizing controllers. To see this, note that for #*(x) € K. (x),

Veu@) -1 s Ve s hreo) 30,
max P _r
5 IO = 1 7D F IO

Thus, this gives the set of control values that exponentially stabilize the outputs, and we can con-
trol the convergence rate via €. The selection of an appropriate choice for the best control value
possible leads to the notion of optimization-based control with CLFs.

The advantage of Equation 29 is that it gives a set of controllers that result in stable walking
on bipedal robots. That is, for any # € K(x), the hybrid system model of the walking robot, per the
HZD framework introduced in Section 3.2, has a stable periodic gait given a stable periodic orbit
in the zero dynamics (17). This suggests an optimization-based framework for nonlinear con-
troller synthesis, with specific application to dynamic locomotion. Specifically, the optimization
formulation of CLFs allows for additional constraints and objectives to be applied as a quadratic
program with the form (as first introduced in Reference 156)

#* = argmin u"H(x)u + ps*
ueUCR™

subject to LV (x) 4+ LVe(x)u < — KVE(x) + & (CLF convergence),
€

Upmin < U < U,y (torque limits),

Equation 26 (friction pyramid),

where H(x) is a user-specified positive-definite cost, § is a relaxation to the convergence constraint
that can be added if infeasibility of the solution is a concern, and p > 0is a large value that penalizes
violations of the CLF constraint. If the relaxation term is included, then the formal guarantees on
convergence are no longer satisfied in lieu of achieving pointwise optimal control actions that
satisfy the physical constraints of the robot. Ground reaction forces on the robot also appear in an
affine fashion in the dynamics; thus, one can also use the CLF-based quadratic program framework
in the context of force control (156).

The CLF-based controllers presented throughout this section have recently been explored for
application on hardware because, much like the optimization controllers of Section 5.1.1, they can
be solved in real time. Experimental results have been shown on MABEL (17, 164) and DURUS-
2D (165), with recent results indicating how robust formulations can be used (166) and how al-
ternative representations can make the problem more tractable for implementation on 3D robots
(167). Additionally, a CLF-based controller was implemented at over 5 kHz as an embedded-level
controller on series-elastic actuators (168), indicating possible future uses for explicitly controlling
compliant dynamic walking. CLFs have also been used to automatically generate stable walking
gaits through SLIP approximations (169), to enforce planned motions for reduced-order models
(170), and to realize 3D bipedal jumping experimentally on Cassie (171) (see also the sidebar ti-
tled Experimental Highlight: Real-Time Quadratic Program Control Using Control Lyapunov
Functions along with Figure 14).
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EXPERIMENTAL HIGHLIGHT: REAL-TIME QUADRATIC PROGRAM CONTROL
USING CONTROL LYAPUNOV FUNCTIONS

We highlight the application of CLF-based quadratic programs on hardware in real time in the context of dynamic
crouching maneuvers on Cassie, shown in Figure 14 (100). Because the CLF quadratic program can be run at a
sufficient control frequency (in this case, at 1 kHz), these experiments show how convergence properties combined
with inclusion of the model can lead to desirable tracking performance on complex bipedal robots. These methods
are directly extensible to tracking walking trajectories, where the constrained pointwise optimization can select
torques that satisfy the contact constraints governed by the discrete structure of the hybrid system model (see
Figure 7).

5.2. Stabilizing Walking with Trajectory Modification

The previous sections have detailed how dynamic walking behaviors are formulated, synthesized,
and tracked; however, these components alone are often not sufficient to realize sustained and
robust robotic walking on hardware. The final step in achieving robustness involves the artful
implementation of modifying the desired behavior to account for unknown and unmodified
disturbances—both specific to the hardware (e.g., unmodified compliance) and in the external
environment (e.g., rough terrain). Approaches such as model predictive control planners and
analytical expressions for the capture point, presented in Section 4.1, can be evaluated in real
time to adapt the motion of the robot to avoid falling or recover from large pushes (123). In these
cases, the planning and the real-time compensation are inherently tied (172), though they are still
replanning over an approximate model of the robot and can lead to constrained motions that are
prohibitive to truly dynamic walking. On the other hand, while the nominal trajectories of offline
plans that consider the full-body continuous and hybrid dynamics are generated with high-fidelity
models (such as the motions found via Section 4.2), it is evident in experimental trials that some
additional feedback is crucial to stabilizing the robot for sustained periods of walking. These
nominal trajectories are often superimposed with some form of regulator in order to overcome
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Figure 14

A CLF driving a Lyapunov function to zero, with data from an experimental implementation shown on the left and data from a walking
simulation shown on the right. Because CLFs consider the model to enforce convergence, outputs are closely tracked with minimal
error (left). The rapid exponential zeroing the outputs (Equation 30) is critical to achieve sufficient convergence before impact (right).
Abbreviation: CLE, control Lyapunov function. Walking tiles adapted from Reference 167 with permission from IEEE.
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Figure 15

How a regulator action is used to drive a perturbed zero dynamics surface back to the nominal motion. This
action (as shown in panel #) can take the form of direct joint changes or Cartesian foot placement (as shown
in panel 4), making a kinematic adjustment in response to torso lean or velocity. Panel  adapted from
Reference 21 with permission from Springer.

uncertainties due to model mismatch and tracking errors, typically in the form of adding
trajectory-level feedback (see Figure 15). The development of these regulators is a largely
heuristic task but has often proven critical to stability on hardware. A variety of different regu-
lators have proven useful, though the implementation depends largely on the robotic system and
desired behavior.

When performing dynamic maneuvers, it is inevitable that the actual linkages of humanoid
robots, which have large masses and inertias, can subject rotational joints to backlash and un-
sensed compliance. For these problems, using an experimentally measured stiffness coefficient to
augment commanded positions based on anticipated torque at the joint can be an effective com-
pensation strategy (21, 39). The combination of uncertainty in the kinematics and dynamics of
the robot can also lead to predictable issues with gait timing on periodic walking behaviors. For
dynamic walking that has been planned with a monotonic phase variable 7(g) that is dependent
on the state of the robot, there can be a large amount of uncertainty regarding the estimation of
the floating-base coordinates and therefore the phase (19, 147). In these cases, it can be beneficial
to employ a combination of time- and state-based progression of the variable (144).

Another type of regulation comes in the form of small modifications to the shape of the robot
(i-e., superimposed perturbations to virtual constraints) from stride to stride. How this can be
conceptually interpreted within the HZD framework is shown in Figure 15, where control de-
signers seek to shape a perturbed zero dynamics surface such that the hybrid system returns to an
orbit that satisfies hybrid invariance. In early developments for control of HZD walking, the re-
stricted Poincare map was viewed as a discrete-time control system (173). Through consideration
of the linearized map at the fixed point x* (see Equation 14), a discrete linear quadratic regulator
algorithm can be used to acquire a feedback gain to modify the configuration of the next foot
strike (108). This can be straightforward to design for 2D robots, but extensions to 3D become
more difficult. Perhaps the most common approach is to instead utilize foot-placement routines
inspired by Raibert et al. (11). This simple deadbeat step-to-step controller most often takes the
form of a discrete PD controller to augment the foot-strike locations in the sagittal and frontal
planes during locomotion:

Apnsf = Kp(l_)k - vrcf) + Ki(ﬁk - i)le—l)s 31.
where the average velocity of the current step 9, and previous step ¥;_; are computed directly

from an estimate of the floating-base velocity, and the reference velocity v is taken from the
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Figure 16

(@) Experimental data from walking on the DURUS humanoid (20), where the shaded region is 1 standard deviation of more than 200
steps. Trajectories are modified by a regulator proportional to torso lean. () An example of a motion transition (174) applied to an
output for the swing foot position. Panel # adapted from Reference 21 with permission from Springer.

nominal trajectory. In addition, because outputs for HZD walking are typically parameterized
by a Bézier polynomial, the update value Ap, can directly augment the last two parameters of
the corresponding output polynomials (174). This kind of smooth transition is demonstrated in
Figure 165, where the position has been smoothly modified but the velocity at impact will remain
the same.

This simple foot-placement regulator has been successfully implemented on several dynamic
walking robots (100, 144, 175). Rather than considering hand-tuned regulation, Griffin & Grizzle
(176) introduced the notion of nonholonomic virtual constraints, aiming to formalize a representa-
tion of virtual constraints that are insensitive to a predetermined and finite set of terrain variations
and velocity perturbations. Implementation of this approach required intensive optimizations, as
the walking was made to be stable amid a variety of perturbations in each step of the optimiza-
tion. This type of output-level feedback has also been successful in a more directly hand-tuned
fashion, as in work by Reher et al. (20, 21), where the position-level feedback of the outputs was
governed by a proportional gain with respect to the pitch and roll of the robot’s torso. The super-
imposed motion will then be zero if the walking is directly on the orbit but will smoothly apply
a superimposed positional command if necessary. One interpretation of this regulator feedback
is simply that y, has been made a function of the floating-base coordinates of the robot, with an
example shown on the DURUS humanoid in Figure 164 (see also the sidebar titled Experimental
Highlight: Dynamic Walking along with Figure 17).

6. CONCLUDING REMARKS

This review has outlined the general methodology for achieving dynamic walking on bipedal
robots. As outlined in the Summary Points below, we began by considering reduced-order models
that capture the essentials of locomotion, although they are not sufficient for handling the full
complexity of walking robots. This led to full-order models that include impacts, as represented
by hybrid systems, wherein we considered HZD. We then discussed the role of optimization in
using these models to generate walking gaits and corresponding dynamically feasible trajecto-
ries. Finally, connecting models with walking gaits, we discussed real-time controllers that enable
hardware realization, ranging from simple control methods to advanced quadratic program—based
controllers, together with the modification of these nominal desired values due to uncertainty in
the system and environment. This end-to-end process was illustrated throughout on the bipedal
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EXPERIMENTAL HIGHLIGHT: DYNAMIC WALKING

The experimental highlights considered throughout this article culminate with efficient and agile locomotion on
DURUS and Cassie, as shown in Figure 17. The multicontact walking on DURUS demonstrated efficiency, as evi-
denced by an exceptionally low cost of transport (21), which was achieved by leveraging hybrid models, closed-loop
optimization, and real-time feedback controllers and regulators. The compliant walking on Cassie (100) demon-
strated agility through a wide range of walking speeds up to 1 m/s, along with the ability to walk on unplanned
rough terrain outdoors.

robots DURUS and Cassie, highlighting the translation to hardware and corresponding experi-
mental results.

The process of realizing efficient and agile dynamic walking is ripe with opportunities, some
of which are highlighted in the Future Issues box below. In essence, the challenges can be divided
into two categories: theoretical and practical. The overarching goal, theoretically, is to formally
and holistically extend the methodologies presented. The hope is to, as a result, develop a frame-
work that can realize aperiodic dynamic motions (177, 178) that are stable and safe (179), planned
in real time (180), and robust to uncertainties in the robot and environment. From a practical per-
spective, hardware is constantly improving and becoming more accessible, enabling approaches
for agile and efficient walking to be better tested in real-world scenarios. The goal is to finally
realize the promise of dynamic walking: imbuing legged robots with the locomotion capabilities
that will enable them to do everything from traversing everyday environments to exploring the
€OSmMos.

a Efficiency: human-like walking
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Figure 17

Experimental examples of dynamic walking on (#2) DURUS and (b) Cassie. Gait tiles are provided, showing the robots in various phases
of their natural strides, along with a plot of data detailing the walking efficiency for DURUS and a plot of the sagittal walking velocity
for Cassie. Panel # adapted from Reference 21 with permission from Springer; gait tiles in panel » adapted from Reference 100 with
permission from IEEE.
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SUMMARY POINTS
1. Reduced-order models: At the core of dynamic walking is the idea of reduced-order
models. These are either hierarchical (representing desired behavior on simple mod-

els, such as inverted pendula and compass gait bipeds) or formally determined (low-
dimensional systems rendered invariant by controllers, such as hybrid zero dynamics).

2. Full-order nonlinear dynamics: Bipedal robots are inherently nonlinear with hybrid dy-
namical behaviors. These full-order dynamics must be accounted for through assump-
tions that yield reduced-order models, through nonlinear controllers, or through opti-
mization algorithms.

3. Optimization for gait generation: Reduced-order models must be instantiated on the
full-order dynamics via optimization algorithms. This can leverage reduced-order mod-
els, exploit the full-order dynamics, or any combination thereof. Algorithms that allow
these optimization problems to be solved efficiently are essential in instantiating walking
gaits on hardware platforms.

4. Control laws for hardware realization: Control laws allow for the generated gaits to ul-
timately be realized on hardware. These can range from simple control laws to complex
nonlinear real-time optimization-based controllers and can be modulated via inspira-
tion from reduced-order models. These control algorithms are the final step in realizing
dynamic walking on bipedal robots.

FUTURE ISSUES

1. Generalized notions of stability and safety: The walking considered herein (and the no-
tions of stability) was largely periodic in nature. To better represent a wide variety of
behaviors, the idea of stability should be extended to include aperiodic walking motions.
More generally, safety as represented by set invariance could provide a powerful tool for
more generally understanding locomotion.

2. Real-time optimal gait planning: Nonlinear constraint optimization plays an essential
role in generating dynamic walking behaviors that leverage the full-body dynamics.
These methods have become highly efficient, even allowing for online calculation in
simple scenarios. Further improving computational efficiency will enable real-time im-
plementation, yielding new paradigms for gait generation.

3. Bridging the gap between theory and practice: As indicated by the methods discussed
in Section 5, there is often an artful-implementation step that translates model-based
controllers to a form that can actually be implemented on hardware. Ideally, methods
can be developed that allow the exact transcription of model-based methods to hardware
in a robust fashion and without heuristics.

4. Robustness, adaptation, and learning: Dynamic walking behaviors often work in isolated
instances and predefined environments. Translating these ideas to the real world will
require robustness to uncertainty, both in the internal dynamics and in the external en-
vironment. Adaptive and learning-based controllers can help mitigate model uncertainty
and unplanned interactions with the world, from uncertain contact conditions to walking
on surfaces with complex interactions (e.g., sand).
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5. Real-world deployment of bipedal robots: The ultimate challenge is the ability to de-
ploy bipedal robots in real-world scenarios, ranging from everyday activities, to aiding
humans, to venturing into dangerous environments. Examples include bipedal robotics
in healthcare settings (e.g., exoskeletons for restoring mobility) and humanoid robots
capable of exploring Mars.
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