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Abstract—Flexible loads are a resource for the Balancing
Authority (BA) of the future to aid in the balance of power
supply and demand. In order to be used as a resource, the BA
must know the capacity of the flexible loads to vary their power
demand over a baseline without violating consumers’ quality
of service (QoS). Existing work on capacity characterization is
model-based: They need models relating power consumption to
variables that dictate QoS, such as temperature in the case of
an air conditioning system. However, in many cases the model
parameters are not known or are difficult to obtain. In this
work, we pose a data driven capacity characterization method
that does not require model information, it only needs access to
a simulator. The capacity is characterized as the set of feasible
spectral densities (SDs) of the demand deviation. The proposed
method is an extension of our recent work on SD-based capacity
characterization that was limited to the case where the loads
dynamic model is completely known. Numerical evaluation of
the method is provided, which compares our approach to the
model-based solution of our past work.

I. INTRODUCTION

The future of the power grid is green: an increased reliance

on renewable generation. This poses a challenge to Balancing

Authorities (BAs) to balance demand and supply. Most loads

have some flexibility in power demand: they can deviate

their power demand from a baseline value without violating

their quality of service (QoS). The baseline consumption is

then power consumption in absence of any requests from

the BA. Examples of flexible loads include pumps and water

heaters [1], residential air conditioners [2], and commercial

HVAC systems [3].

Many loads are needed to provide a meaningful service.

A BA would request a desired demand deviation from a

collection of loads, which we call the reference signal, to

help balance demand and supply, and the load ensemble is

expected to track this reference signal accurately. Tracking

the reference must not cause individual loads to violate their

QoS. From the viewpoint of the grid operator, poor reference

tracking makes the loads an unreliable resource. From the

viewpoint of a load, a reference signal that continually

requires it to violate its QoS provide incentive for it to

stop providing grid support. In either case, avoidance of the

above scenarios is paramount to the long term success of

grid support from flexible loads. In other words, reference

signals must be designed to respect the capacity of flexible
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loads, which informally represents limitations in the ability

to track a demand deviation reference signal by a collection

due to QoS requirements at the individual.

Prior work on capacity estimation of a collection of

flexible loads can be characterized into time domain and fre-

quency domain approaches. Within time domain approaches,

which include [4]–[12], a popular approach is to develop

ensemble level necessary conditions, e.g., [4], [6]. If a

reference signal does not satisfy these conditions, then at

least some loads will not be able to satisfy their individual

QoS in order for the ensemble to track that reference.

The frequency domain approaches seek to obtain con-

straints on the statistics of the reference signal, especially

spectral density (SD) of the reference signal, than the refer-

ence signal itself [13]–[15]. These methods aim to precisely

quantify the regions shown in Figure 1 based on the QoS of

the loads considered. One particular advantage of frequency

domain characterization is that it is better suited to answering

questions such as “how many flexible loads will a BA

require for the next year?”, which are useful for long term

resource planning. To answer such questions using time

domain approaches is challenging; the BA would have to

predict demand-supply imbalance many months in advance

to see if flexible loads can track the corresponding reference

signal. At this time scale, predicting statistics of demand-

supply imbalance is far more tractable.

Irrespective of statistical or time domain characterizations,

many of the listed works have one thing in common: they

are model-based. Meaning, they need a simple model that

relates demand deviation of the collection of flexible load(s)

to individuals’ QoS. The computed capacity of the load(s)

depend on the model/model parameters. These parameters of

the flexible load model are typically unknown or require es-

timation from experimental data or high-fidelity simulations.

In the spirit of model free control, one might wonder then, is

it possible to directly estimate a characterization of flexible

load capacity from data?

In this work, we develop a data-driven (model free)

frequency domain framework for capacity characterization

of a load collection. The proposed method does not need a

simple model of the collection; rather it needs data from a

simulator of individual loads or from large scale experiments.

This framework builds off of our past work [15], where we

characterize the capacity of flexible load(s) as constraints

on the SD of their power deviation. To obtain a SD we

set up an optimization problem: the BA projects its needs

(roughly, the SD of net demand, e.g., shown in Figure 1) onto

the constraint set of feasible of SDs’ of the load collection.





B. Mathematical Preliminaries

In our prior work [15], we had developed a methodology

that characterizes the capacity of a flexible load in the

frequency domain. We briefly discuss this prior work here.

Denote the power consumption of a flexible load as P̃ [k],
where we model P̃ as a stochastic process. The mean and

autocorrelation function for P̃ are,

µP̃ [k] , E[P̃ [k]], ∀ k, (10)

RP̃ [s, k] , E[P̃ [s]P̃ [k]], ∀ s, k, (11)

where E[·] denotes mathematical expectation. In the past

work, we made the following assumption about the stochastic

process P̃ .

Assumption 1. The stochastic process P̃ is wide sense

stationary (WSS) with mean function µP̃ [k] = 0 for all k.

Under this assumption we have that the autocorrelation

function will solely be a function of τ = s − k. In this

case, the autocorrelation function is an asymmetric Fourier

transform pair with the Spectral Density:

RP̃ (τ) =
1

2π

∫ π

−π

SP̃ (Ω)e
jΩτdΩ, and (12)

SP̃ (Ω) =

∞
∑

τ=−∞

RP̃ [τ ]e
−jΩτ , (13)

where SP̃ (Ω) is the (power) Spectral Density (SD) of P̃ ,

ω ∈ [−π, π] is the frequency variable, and j is the imaginary

unit. The above is based on the general definition of the SD

of the signal P̃ ,

SP̃ (Ω) , lim
N→∞
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(14)

the equivalence of definitions (14) and (13) for a WSS

process is the Wiener-Khinchin theorem. Since the mean

function of P̃ is zero for all time we have

σ2

P̃
= RP̃ (0) =

1

2π

∫ π

−π

SP̃ (Ω)dΩ, (15)

that is, the variance σ2

P̃
of P̃ is the integral of the (power)

SD. To illustrate our method from prior work we will also

make use of the Chebyshev inequality for a r.v. X:

P
(

|X − µX | ≥ C
)

≤
σ2
X

C2
, ∀ C > 0, (16)

where P(·) denotes probability. Another useful relation is the

following:

Proposition 1. If the input x[k] to a linear time invariant

system with frequency response H(ejΩ) is WSS and has SD

Φx, then the output y[k] is also WSS and its SD Φy is given

by Φy(Ω) = Φx(Ω)|H(ejΩ)|2.

C. Probabilistic QoS Constraints and SD-based Capacity

Characterization

Each QoS constraint potentially involves a distinct signal.

In QoS-1, the signal is the power deviation P̃ [k] itself. In

QoS-4, it is the storage variable x̃[k]. We denote by Z`[k]
the signal relevant for the `-th QoS constraint. In each QoS,

the relevant signal is related to the power deviation P̃ [k], and

we denote by G` the (potentially dynamic) linear system that

relates the input P̃ to the output Z`.

Next we illustrate how to pose the QoS constraints as

constraints on SDs. We start by considering the `-th QoS,

which we re-formulate as

P (|Z`[k]| ≥ c`) ≤ ε`, ∀k (17)

where ε` � 1 is the tolerance. From the Chebyshev inequal-

ity (16) and the equation (15) we have:

1

2π

∫ π

−π

SZ`
(Ω)dΩ ≤ c2`ε` =⇒ P (|Z`[k]| ≥ c`) ≤ ε`.

(18)

Thus, the probabilistic constraint (17) can be assured by

asking for the following constraint involving SD of Z` to

be satisfied:

1

2π

∫ π

−π

SZ`
(Ω)dΩ ≤ b` =: c2`ε`. (19)

Since the dynamic system G` relating the input P̃ and

output Z` is a linear time invariant system, then (19) can

be translated to a constraint on the power deviation SD:

1

2π

∫ π

−π

SP̃ (Ω)|G`(e
jΩ)|2dΩ ≤ b` (20)

where G`(e
jΩ) is the frequency response of the dynamic

system G`. In the general case with m constraints, the

constraint set for the SD SP̃ is

S ,

{

SP̃

∣

∣

∣

∣

1

2π

∫ π

−π

SP̃ (Ω)|G`(e
jΩ)|2dΩ ≤ b`, ` ∈ bmc

}

.

(21)

As long as the SD of the demand deviation P̃ [k] belong to

the set S , each of the ` probabilistic QoS constraints - such

as QoS 1-4 described in Section II-A - holds. Thus, the set S
also represents the demand deviation capacity of the flexible

load.

Now, denote by H the set of SDs defined over [−π, π),
and define the function B̄` : H → R

+ as

B̄`(SP̃ ) =
1

2π

∫ π

−π

SP̃ (Ω)|G`(e
jΩ)|2dΩ (22)

and the array B̄(SP̃ ) = [B̄1(SP̃ ), . . . , B̄m(SP̃ )]
T ∈ R

m.

By denoting b = [ε1c
2
1, . . . , εmc

2
m]T ∈ R

m the constraint

SP̃ ∈ S can be represented as

B̄(SP̃ ) ≤ b. (23)



Now consider the following optimization problem:

min
S

1

2π

∫ π

−π

(

S(Ω)− SBA(Ω)
)2
dΩ

s.t. B̄(SP̃ ) ≤ b and S(Ω) ≥ 0 ∀ Ω ∈ [−π, π),

(24)

where SBA(Ω) is the spectral density of the stochastic process

that generates the reference signals from the BA. How to

determine SBA(Ω) is discussed in the next section. We define

the capacity of the flexible load as the solution S∗

P̃
of the

optimization problem (24).

1) BA’s spectral needs: The total needs of the BA is

encapsulated by the SD of the net demand signal, an example

of which is shown in Figure 1. With historical data, a BA

can estimate the SD of the net demand signal, which we

denote as SND(Ω). Any well posed estimation technique can

be applied. All controllable resources, including generators,

flywheels, batteries, and flexible loads, together have to

supply SND(Ω). To determine solely the portion of SND(Ω)
that flexible loads should contribute to we “filter” SND(Ω).
That is, with F (ejΩ) an appropriate filter we have

SBA(Ω) =
∣

∣F (ejΩ)
∣

∣

2
SND(Ω). (25)

The quantity SBA is the frequency domain analog of the

reference signal r[k] that will be asked from the loads, and

will be referred to as the reference SD in the sequel.

D. Model based approach: prior work

The constraints in Problem (24) are all linear in the

decision variable SP̃ (Ω) with a quadratic objective function.

Hence the problem is a quadratic problem, although infinite

dimensional.

Remark 1. The problem (24) can be reduced to a tractable

finite dimensional optimization problem by discretizing the

continuous frequency Ω into N points on the unit circle. The

decision vector of the optimization problem becomes N . The

resulting problem is a finite dimensional quadratic program

(QP) that can be efficiently solved using readily available

solvers. In all such problems in the rest of the paper that

involve functions of continuous frequency Ω over [−π, π],
we assume that such a discretization is done to convert the

problem to a finite dimensional problem. �

The finite dimensional QP alluded to in Remark 1 is the

problem posed and solved in our prior work [15]. Thus, the

optimization problem needed to characterize capacity is fairly

straightforward to solve, as long as the models G`’s are LTI

and the model parameters are known. There is, at least, one

weakness: obtaining the model parameters is not an easy

task. Take the LTI model (9) of temperature deviation in a

building. This equation alone is actually quite merited for

this particular application, and there is a plethora of work

spanning back to the 1980’s [16] on using ODEs of this

form to model the dynamics in certain flexible loads. These

works focus on estimating the parameters of the model such

as (9). These parameters are challenging to estimate. Still,

many current capacity characterizations explicitly depend on

the parameters such as R and C.

III. PROPOSED DATA DRIVEN METHOD

The goal of this section will be to develop an algorithm

that can solve the problem (24) using data that can come

from experiments or simulations, but without requiring any

knowledge of the models G`’s. Only a simulator that can

simulate G`’s for various inputs is needed.

To facilitate our algorithm, we first elect a function

approximation architecture for the decision variable S in

the optimization problem (24). With our form of function

approximation, we show how to obtain an estimate of all of

the ingredients needed to solve (24) with solely data.

A. Function approximation

We consider linear function approximations, that is, we

approximate the decision variable S in (24) through

Sθ(Ω) =

d
∑

i=1

ψi(Ω)θi = ΨT (Ω)θ, (26)

where each basis ψi(Ω) is a SD, and θ ≥ 0. The number of

basis functions, d, is a design choice. We use ΨT θ to denote

the entire trajectory {ΨT (Ω)θ)}Ω=π
Ω=−π .

We then transform the optimization problem (24) over

S to one over the finite dimensional vector θ ∈ Rd. The

problem (24) is transformed to a finite dimensional convex

program:

θ∗ = argmin
θ≥0

f(θ), s.t. Bθ ≤ b, (27)

where f(θ) is the transformation of the objective in (24), and

it is expressed as the quadratic form

f(θ) = θTAθ + Cθ + d, (28)

where

A =
1

2π

∫ π

−π

A(Ω)dΩ, with A(Ω) = Ψ(Ω)ΨT (Ω), (29)

C =
1

2π

∫ π

−π

C(Ω)dΩ, with C(Ω) = Ψ(Ω)SBA(Ω), (30)

d =
1

2π

∫ π

−π

d(Ω)dΩ, with d(Ω) =
(

SBA(Ω)
)2
. (31)

The matrix B is constructed as follows, since SP̃ = ΨT θ, it

follows from (22) that

B̄`(θ) = B̄`(Ψ
T θ) =

1

2π

∫ π

−π

|G`(e
jΩ)|2ΨT (Ω)θdΩ. (32)

Since θ does not depend on Ω we have from (32) that

B̄`(θ) =

[

1

2π

∫ π

−π

|G`(e
jΩ)|2ΨT (Ω)dΩ

]

θ. (33)

Stacking these B̄`(θ)’s, we obtain

B̄(θ) = Bθ (34)

where B ∈ R
m×d is

B =
1

2π

∫ π

−π

G(Ω)ΨT (Ω)dΩ, with (35)

G(Ω) = [|G1(e
jΩ)|2, . . . , |Gm(ejΩ)|2]T .
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