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Abstract—Flexible loads are a resource for the Balancing
Authority (BA) of the future to aid in the balance of power
supply and demand. In order to be used as a resource, the BA
must know the capacity of the flexible loads to vary their power
demand over a baseline without violating consumers’ quality
of service (QoS). Existing work on capacity characterization is
model-based: They need models relating power consumption to
variables that dictate QoS, such as temperature in the case of
an air conditioning system. However, in many cases the model
parameters are not known or are difficult to obtain. In this
work, we pose a data driven capacity characterization method
that does not require model information, it only needs access to
a simulator. The capacity is characterized as the set of feasible
spectral densities (SDs) of the demand deviation. The proposed
method is an extension of our recent work on SD-based capacity
characterization that was limited to the case where the loads
dynamic model is completely known. Numerical evaluation of
the method is provided, which compares our approach to the
model-based solution of our past work.

I. INTRODUCTION

The future of the power grid is green: an increased reliance
on renewable generation. This poses a challenge to Balancing
Authorities (BAs) to balance demand and supply. Most loads
have some flexibility in power demand: they can deviate
their power demand from a baseline value without violating
their quality of service (QoS). The baseline consumption is
then power consumption in absence of any requests from
the BA. Examples of flexible loads include pumps and water
heaters [1], residential air conditioners [2], and commercial
HVAC systems [3].

Many loads are needed to provide a meaningful service.
A BA would request a desired demand deviation from a
collection of loads, which we call the reference signal, to
help balance demand and supply, and the load ensemble is
expected to track this reference signal accurately. Tracking
the reference must not cause individual loads to violate their
QoS. From the viewpoint of the grid operator, poor reference
tracking makes the loads an unreliable resource. From the
viewpoint of a load, a reference signal that continually
requires it to violate its QoS provide incentive for it to
stop providing grid support. In either case, avoidance of the
above scenarios is paramount to the long term success of
grid support from flexible loads. In other words, reference
signals must be designed to respect the capacity of flexible
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loads, which informally represents limitations in the ability
to track a demand deviation reference signal by a collection
due to QoS requirements at the individual.

Prior work on capacity estimation of a collection of
flexible loads can be characterized into time domain and fre-
quency domain approaches. Within time domain approaches,
which include [4]-[12], a popular approach is to develop
ensemble level necessary conditions, e.g., [4], [6]. If a
reference signal does not satisfy these conditions, then at
least some loads will not be able to satisfy their individual
QoS in order for the ensemble to track that reference.

The frequency domain approaches seek to obtain con-
straints on the statistics of the reference signal, especially
spectral density (SD) of the reference signal, than the refer-
ence signal itself [13]-[15]. These methods aim to precisely
quantify the regions shown in Figure 1 based on the QoS of
the loads considered. One particular advantage of frequency
domain characterization is that it is better suited to answering
questions such as “how many flexible loads will a BA
require for the next year?”, which are useful for long term
resource planning. To answer such questions using time
domain approaches is challenging; the BA would have to
predict demand-supply imbalance many months in advance
to see if flexible loads can track the corresponding reference
signal. At this time scale, predicting statistics of demand-
supply imbalance is far more tractable.

Irrespective of statistical or time domain characterizations,
many of the listed works have one thing in common: they
are model-based. Meaning, they need a simple model that
relates demand deviation of the collection of flexible load(s)
to individuals’ QoS. The computed capacity of the load(s)
depend on the model/model parameters. These parameters of
the flexible load model are typically unknown or require es-
timation from experimental data or high-fidelity simulations.
In the spirit of model free control, one might wonder then, is
it possible to directly estimate a characterization of flexible
load capacity from data?

In this work, we develop a data-driven (model free)
frequency domain framework for capacity characterization
of a load collection. The proposed method does not need a
simple model of the collection; rather it needs data from a
simulator of individual loads or from large scale experiments.
This framework builds off of our past work [15], where we
characterize the capacity of flexible load(s) as constraints
on the SD of their power deviation. To obtain a SD we
set up an optimization problem: the BA projects its needs
(roughly, the SD of net demand, e.g., shown in Figure 1) onto
the constraint set of feasible of SDs’ of the load collection.
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Fig. 1: An example spectral allocation of resources to meet
the grids needs.

In [15], the models relating demand deviation to QoS vari-
ables were assumed LTI with known parameter values. In this
work we solve the projection problem without having access
to model information, but only from data from a simulator.
The key insight that allows for this model free construction
is the choice of approximation architecture when discretizing
the infinite dimensional optimization problem. The proposed
data driven framework is validated by comparing its capacity
estimate to the model based framework of our previous
work [15].

The paper proceeds as follows. In Section II we intro-
duce the method from our prior work. In Section III we
introduce our data-driven method. Numerical experiments are
conducted in Section IV and we conclude in Section V

II. SPECTRAL CHARACTERIZATION OF QOS
CONSTRAINTS

The symbol ¢ is used to denote the continuous time while k
is used to denote a discrete time index. The sampling interval
is At. Additionally we define |m| £ {1,...,m} form € N.

A. Deterministic QoS constraints

Denote by P[k] the power consumption of a flexible load
at time index k, and let PY[k] its baseline demand. The
demand deviation is P[k] := P[k]— P"[k]. The load provides
grid support service by controlling the deviation P[k] to
track a desired deviation signal, called a reference, while
maintaining its own QoS. The first QoS constraint is simply
an actuator constraint:

QoS-1: ‘P[k]‘ <e, Yk (1)

where the constant c;, the maximum possible deviation
of power consumption, depends on the rated power and
the baseline demand. Second, define the demand increment
Ps[k] := P[k] — P[k — ], where § > 0 is a predetermined

(small) integer time interval. The second constraint is a
ramping rate constraint:

QoS-2: ‘ﬁg[k]‘ <o V. )

Third, define the additional energy use during any integer
time interval of length 7"

k
> Pl (3)

o=k—T+1
The third QoS constraint is that

Elk] =

Qos-3:  [BM| <es, vk )

The parameter 7' in (3) can represent the length of a billing
period. Ensuring (4) ensures that the energy consumed during
a billing period is close to the nominal energy consumed.

To define the fourth and last QoS constraint, we associate
with the VES system a storage variable Z[k] that is related
to the demand deviation, and impose the constraint

QoS-4: |E[k]| <4, VE. (5)

1) Understanding QoS-4: To understand the storage vari-
able, imagine a flexible HVAC system providing VES. We
first present a model of the HVAC systems internal tempera-
ture 7T, in continuous time, as it is more naturally presented
in this setting. This model is:

) 2 0t) ~ 1) + D) + Q). ©
t R

where C and R are thermal capacitance and resistance,
T,(t) is the ambient temperature, and gin(¢) is an exogenous
disturbance. The quantity Q(t) is the rate of heat delivered
to the building by the HVAC system (negative if cooling).

We use a linear model for relating the electrical power
deviation to the indoor temperature. The temperature devia-
tion will play the role of the storage variable Z[k]. Suppose
Q(t) = —moP(t) where 19 is the coefficient of performance
(COP) under design conditions. In general, the baseline
power consumption for a HVAC system is the value P(t)
that keeps the internal temperature of the load at a fixed value

T, which for (6) is

To(t)y—T Jint (

nR 10
Since we are concerned with the flexibility in the load, we
linearize (6) about the thermal setpoint # and the baseline

power P°(t) yielding,

1
Y= RC,
where T, £ T,(t) — T is the internal temperature deviation
and P is as defined at the beginning of this Section. The

corresponding discrete-time dynamic model relating P [k] to
T.[K] is

T.(t) = —vT4(6) + BP(), B=T. ®

T.[k + 1] = aT.[k] + bP[k], )

(where a = e A% and b = B.[;)At e~ 7"dr), which is also a
first order linear time invariant (LTI) model.



B. Mathematical Preliminaries

In our prior work [15], we had developed a methodology
that characterizes the capacity of a flexible load in the
frequency domain. We briefly discuss this prior work here.
Denote the power consumption of a flexible load as P[k],
where we model P as a stochastic process. The mean and
autocorrelation function for P are,

[
[

where E[| denotes mathematical expectation. In the past
work, we made the following assumption about the stochastic
process P.

[I>
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Assumption 1. The stochastic process P is wide sense
stationary (WSS) with mean function pplk] = 0 for all k.

Under this assumption we have that the autocorrelation
function will solely be a function of 7 = s — k. In this
case, the autocorrelation function is an asymmetric Fourier
transform pair with the Spectral Density:

Rp(T) = % /j Sp(Q)ejQTdQ, and (12)
Sp(Q) = > Rplrle 7, (13)

T=—00

where S;(Q2) is the (power) Spectral Density (SD) of P,
w € [—m, 7| is the frequency variable, and j is the imaginary
unit. The above is based on the general definition of the SD
of the signal ]5,

2
} (14)

the equivalence of definitions (14) and (13) for a WSS
process is the Wiener-Khinchin theorem. Since the mean
function of P is zero for all time we have

0% = Rp(0) 1/7r S5(Q)dQ, (15)

= ﬂ .
that is, the variance o2 of P is the integral of the (power)
SD. To illustrate our method from prior work we will also
make use of the Chebyshev inequality for a r.v. X:

2
P(1X —px|>0) < ZX

S vVC >0,

(16)
where P(-) denotes probability. Another useful relation is the
following:

Proposition 1. If the input x[k] to a linear time invariant
system with frequency response H(e’St) is WSS and has SD
O, then the output ylk] is also WSS and its SD ®,, is given
by ©,(Q) = @, (Q)[H (/).

C. Probabilistic QoS Constraints and SD-based Capacity
Characterization

Each QoS constraint potentially involves a distinct signal.
In QoS-1, the signal is the power deviation P[k] itself. In
QoS-4, it is the storage variable Z[k]. We denote by Z;[k]
the signal relevant for the {-th QoS constraint. In each QoS,
the relevant signal is related to the power deviation P[k], and
we denote by G, the (potentially dynamic) linear system that
relates the input P to the output Zj.

Next we illustrate how to pose the QoS constraints as
constraints on SDs. We start by considering the /-th QoS,
which we re-formulate as

P(|Ze[k]| = o) < er, VEk (17)

where £y < 1 is the tolerance. From the Chebyshev inequal-
ity (16) and the equation (15) we have:

1 ™
9 Sz,(82)d2 < 0356 = P (|Z[K]| = ¢) < ey

2w
(18)

—T

Thus, the probabilistic constraint (17) can be assured by
asking for the following constraint involving SD of Z, to
be satisfied:

1 T
— Sz,(Q)dQ < by =: C?&g.

2 (19)

—T

Since the dynamic system G, relating the input P and
output Z, is a linear time invariant system, then (19) can
be translated to a constraint on the power deviation SD:

1 T

),

Sp(Q)|Ge(e’?)|2dQ < by (20)
where G(e’?) is the frequency response of the dynamic
system Gy. In the general case with m constraints, the
constraint set for the SD S5 is

S4 {s,5 ! S5(Q)|Ge(e?)]2dQ < by, (€ Lmj} .

2 ),
@1

As long as the SD of the demand deviation P[k] belong to
the set S, each of the ¢ probabilistic QoS constraints - such
as QoS 1-4 described in Section II-A - holds. Thus, the set S
also represents the demand deviation capacity of the flexible
load.

Now, denote by H the set of SDs defined over [—m, ),
and define the function B, : H — R™* as

_ 1 4

Bi(Sp) S5(Q)|Ge(e7%)2d2 (22)

and the array B(Sz) = [B1(Sp),...,Bn(Sp)|T € R™.
By denoting b = [e1¢3,...,&,c2]T € R™ the constraint
Sp € S can be represented as

B(Sp) <b. (23)



Now consider the following optimization problem:

: " BA 2
min o » (S() — SPA(Q))" d 24)

st. B(Sp)<b and S(Q) >0 VQe€[-mn),

where SBA(Q) is the spectral density of the stochastic process
that generates the reference signals from the BA. How to
determine SBA(Q) is discussed in the next section. We define
the capacity of the flexible load as the solution S}"S of the
optimization problem (24).

1) BA’s spectral needs: The total needs of the BA is
encapsulated by the SD of the net demand signal, an example
of which is shown in Figure 1. With historical data, a BA
can estimate the SD of the net demand signal, which we
denote as SNP (). Any well posed estimation technique can
be applied. All controllable resources, including generators,
flywheels, batteries, and flexible loads, together have to
supply SNP(Q). To determine solely the portion of SNP(Q)
that flexible loads should contribute to we “filter” SNP(Q).
That is, with F(e/?) an appropriate filter we have

SBAQ) = [F(e/)|* SN°(Q).

The quantity SBA is the frequency domain analog of the
reference signal r[k] that will be asked from the loads, and
will be referred to as the reference SD in the sequel.

(25)

D. Model based approach: prior work

The constraints in Problem (24) are all linear in the
decision variable S(2) with a quadratic objective function.
Hence the problem is a quadratic problem, although infinite
dimensional.

Remark 1. The problem (24) can be reduced to a tractable
finite dimensional optimization problem by discretizing the
continuous frequency S into N points on the unit circle. The
decision vector of the optimization problem becomes N. The
resulting problem is a finite dimensional quadratic program
(QP) that can be efficiently solved using readily available
solvers. In all such problems in the rest of the paper that
involve functions of continuous frequency Q over [—m, 7],
we assume that such a discretization is done to convert the
problem to a finite dimensional problem. (]

The finite dimensional QP alluded to in Remark 1 is the
problem posed and solved in our prior work [15]. Thus, the
optimization problem needed to characterize capacity is fairly
straightforward to solve, as long as the models G;’s are LTI
and the model parameters are known. There is, at least, one
weakness: obtaining the model parameters is not an easy
task. Take the LTI model (9) of temperature deviation in a
building. This equation alone is actually quite merited for
this particular application, and there is a plethora of work
spanning back to the 1980’s [16] on using ODEs of this
form to model the dynamics in certain flexible loads. These
works focus on estimating the parameters of the model such
as (9). These parameters are challenging to estimate. Still,
many current capacity characterizations explicitly depend on
the parameters such as R and C.

III. PROPOSED DATA DRIVEN METHOD

The goal of this section will be to develop an algorithm
that can solve the problem (24) using data that can come
from experiments or simulations, but without requiring any
knowledge of the models G,’s. Only a simulator that can
simulate G,’s for various inputs is needed.

To facilitate our algorithm, we first elect a function
approximation architecture for the decision variable S in
the optimization problem (24). With our form of function
approximation, we show how to obtain an estimate of all of
the ingredients needed to solve (24) with solely data.

A. Function approximation

We consider linear function approximations, that is, we
approximate the decision variable S in (24) through

d
SUQ) = 3 (@0 = v (Q)0, (26)
i=1
where each basis 1;(Q2) is a SD, and 6 > 0. The number of
basis functions, d, is a design choice. We use UTH to denote
the entire trajectory {7 (Q)6)}3=" .

We then transform the optimization problem (24) over
S to one over the finite dimensional vector § € R¢. The
problem (24) is transformed to a finite dimensional convex
program:

= i .t <
0 argrgnzlg f(0), st. BO<b, 27)

where f(0) is the transformation of the objective in (24), and
it is expressed as the quadratic form

() =60TA0 +CO +d, (28)

where
A= % i A(Q)dQ, with A(Q) = T(Q)UT(Q), (29)
C = % i C(Q)dQ, with C(Q) = ¥(Q)SPA(Q), (30)
i L[ d(Q)dQ, with d(Q) = (5**())°. 31

21

—T

The matrix B is constructed as follows, since Sp = UTH, it
follows from (22) that

Bl0) = BU¥T0) = o= [ G (@a0. (32

—T

Since 6 does not depend on ) we have from (32) that

_ 1 [7 .
By(6) = [2 / Ge(e)PUT(Q)dQ| 6. (33)
L
Stacking these B;(#)’s, we obtain
B(0) = B (34)
where B € R™*4 s
B = 2i G(QUT(Q)dQ, with (35)
a —T
G(Q) = (|G ()%, |G ()



Since ¥;(Q2) > 0 for each 4, requiring § > 0 in (27)
ensures that U7 (Q)0 satisfies the properties of SDs (non-
negativity and even) and so the search is limited to SDs, and
the solution obtained by solving the problem (27), ¥7(Q)6*,
is guaranteed to be a SD.

B. Estimating B from data

The (¢,i'") element of the matrix B is of the form
Bei = 5= |7 |Ge(e7)|?4;(Q2)dQ2. Hence, for each (£,i)
we estimate the quantity By ; independently. This is done in
two steps.

1) Generate samples of the ¢-th QoS signal, Z,[k], when
power deviation P[k] has SD 1/;(Q). This is done in
two steps:

a) Input generation: For each ¢ (: = 1,...,d) gen-
erate a colored noise sequence ;[k] with SD
U,;(Q). This can be done in many ways. One
possibility is to perform a spectral factorization of
U, to obtain a filter H(e’*?) so that |H (¢/?)|? =
W, (€2). Passing a zero mean unit variance white
noise through will generate a WSS process with
SD ¥,;(Q) due to Prop. 1.

b) Output generation: Use a simulator of the system
Gy to generate Zy;[k|, the output of the system
Gy by using the input @;[k], for each i and /.

2) Estimate the value By, from the samples Zy ;[k] by
utilizing the Wiener-Khinchin theorem. Namely,

1 2
415 2. co
k=1

|Ge(e??)[24i(Q)

1
0 = o

oy (37)

|Ge(e7)[?4hi(Q)dQ2
where E[] is a shorthand for an estimate of the
expectation E[-]. In particular, the estimate is obtained
by performing multiple simulations, computing the
quantity inside the square braces in the right hand side
of (36) in each simulatin, and averaging over those
simulations.
To completely specify the problem (27), the quantity SPA(£)
is required. As mentioned in section II-Cl, it can be esti-
mated using net load data.

Remark 2. Key in our ability to remove dependence on
the model knowledge is the requirement that each basis
Sfunction U; is in fact a SD. Without this form of function
approximation it may be difficult to develop a truly model free
form of the problem (24). This model free dependence rids us
of the limitations of the past work discussed in Section II-D.

IV. NUMERICAL EXPERIMENTS

A numerical example of using the proposed data driven
method to determine the capacity is illustrated in this section.
The flexible loads considered are a collection of commercial
building HVAC systems. We consider a homogeneous col-
lection in this preliminary work. Each HVAC system in the

TABLE I: Simulation parameters

Par. Unit Value Par. Unit Value
R °C/kW 8 C kWh/°C 22
T hours 5 {e:}i, N/A 0.05
c1 kW 40 c2 kW 8
c3 °C 1 c4 kWh 8
70 N/A 35 Ta °C 30
) sec. 20 Gint kW 0
7
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Fig. 2: Empirical net demand SD, modeled SD for BPA’s
net demand, and the two reference SD’s for the high and
low frequency passband.

collection has QoS 1-4 listed in Section II-A. The parameters
are displayed in Table I, and are chosen so that the HVAC
systems are representative of those in large commercial
buildings (hence the large superscripts in Table I).

We validate the proposed method by comparing it to the
model based approach from our prior work [15]. All relevant
simulation parameters, if not specified otherwise, can be
found in Table I. Note that the method does not have access
to the R, C, and 7y parameter values.

A. BA’s spectral needs

The net demand data is collected from BPA (a BA in
the pacific northwest United States). The empirical SD of
the net demand is determined using the method described
in Section II-C1. We then fit an ARMA(2,1) model to the
empirically estimated SD. Since the estimate ®N° will cap
out at the Nyquist frequency 1/10min, we extrapolate the
net demand SD to the higher frequencies. The empirical SD
(denoted ®NP) and the extrapolated net demand SD (denoted
SNPy are shown in Figure 2.

We then choose two passbands to filter SNP: (i) a low pass-
band [1/6,1/2] (1/hour) and (ii) a high passband [1/30,1]
(1/min). The results of “filtering” (see eq. (25)) SNP are also
shown in Figure 2. The low passband SD is termed SP}, and
roughly corresponds to the region for TCLs in Figure 1. The
high passband SD is termed Sﬁgh and roughly corresponds
to the region for HVAC systems in Figure 1.
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Fig. 3: The two reference SDs and the corresponding capacity
SDs (boundary of the shaded regions) obtained from the
proposed method for a homogeneous collection of n = 2000
loads. Black dashed lines represent model based solution.

B. Method Evaluation

In this section we compare the data-driven method with
the quadratic program (27) to full model knowledge, both to
obtain #*. In both cases we use CVX [17] to solve the QP.
We use the following basis SD’s

1, if Qe Q1)
0, otherwise.

Vi(Q) = (38)

for 1 < i < d. The set of points {{;}%_, is a subset of the
linearly spaced discrete frequency points on the unit circle.
We consider n = 2000 large commercial buildings as one
large flexible load. The idea is to illustrate how much of the
grids needs can be met by the collection. To do this, the
two reference SDs obtained from the previous section are
projected onto the same ensemble constraint set.

The results of this are shown in Figure 3, where the black
dashed lines represent the model based solution. The two
SD’s are nearly identical. This provides confidence in the
method as it is able to reproduce results for the case of LTI
loads with known paramaters.

V. CONCLUSION

We presented a data driven method to estimate the capacity
of flexible load(s) as the optimal spectral density of demand
deviation. Optimal here refers to being close to what the
power grid needs while ensuring feasibility, that loads do
not have to violate their local quality of service constraints
in tracking such a reference. The method builds on our prior
work [15] which was model-based. The method proposed
here is does not need model knowledge. It only needs access
to a simulator (or experimental measurements of relevant
data). The core of the algorithm is a function approximation
architecture with basis functions that are chosen to be spectral
densities. In simulations, our proposed data-driven method is
validated against the scenario in which load models are linear
and models are known; the results are positive.

In future work we will leverage the proposed data driven
framework to: (i) estimate the capacity of heterogeneous en-
sembles of flexible loads (ii) estimate the capacity under time
varying weather conditions/disturbances, and (iii) estimate
the capacity of loads with non-linear dynamics. Verifying
that the resulting capacity characterization, the optimal SD,
provided by the method will require large scale Monte Carlo
simulations to check potential QoS violations.
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