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Abstract— Website Fingerprinting (WF) is a type of traffic
analysis attack that enables a local passive eavesdropper to infer
the victim’s activity, even when the traffic is protected by a VPN
or an anonymity system like Tor. Leveraging a deep-learning
classifier, a WF attacker can gain over 98% accuracy on Tor
traffic. In this paper, we explore a novel defense, Mockingbird,
based on the idea of adversarial examples that have been shown to
undermine machine-learning classifiers in other domains. Since
the attacker gets to design and train his attack classifier based
on the defense, we first demonstrate that at a straightforward
technique for generating adversarial-example based traces fails
to protect against an attacker using adversarial training for robust
classification. We then propose Mockingbird, a technique for
generating traces that resists adversarial training by moving
randomly in the space of viable traces and not following more
predictable gradients. The technique drops the accuracy of the
state-of-the-art attack hardened with adversarial training from
98% to 42–58% while incurring only 58% bandwidth overhead.
The attack accuracy is generally lower than state-of-the-art
defenses, and much lower when considering Top-2 accuracy,
while incurring lower bandwidth overheads.

Index Terms— Anonymity system, defense, privacy, adversarial
machine learning, deep learning.

I. INTRODUCTION

DEEP learning has had tremendous success in solving
complex problems such as image recognition [1],

speech recognition [2], and object tracking [3]. Deep learning
models are vulnerable, however, to adversarial examples
– inputs carefully crafted to fool the model [4]. Despite a
large body of research attempting to overcome this issue,
no methods have been found to reliably classify these inputs.
In fact, researchers have found that adversarial examples are
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Fig. 1. Website fingerprinting attack model.

another side of the coin of how deep learning models are so
successful in the first place [5].

In this paper, we investigate whether the exploitability
of deep learning models can be used for good, defending
against an attacker who uses deep learning to subvert privacy
protections. In particular, we seek to undermine an attacker
using deep learning to perform Website Fingerprinting (WF)
attacks on the Tor anonymity system.

WF is a class of traffic analysis attack that enables an
eavesdropper between the client and the first Tor node on her
path to identify which websites the client is visiting. Figure 1
shows the WF attack model. This local passive adversary could
be sniffing the client’s wireless connection, have compromised
her cable/DSL modem, or gotten access to the client’s ISP or
workplace network.

The WF attack can be modeled as a supervised classification
problem, in which the website domain names are labels and
each traffic trace is an instance to be classified or used
for training. Recently proposed WF attacks [6]–[10] have
used deep learning classifiers to great success because of the
superior inference capability of deep learning models over
traditional machine learning models. The state-of-the-art WF
attacks, Deep Fingerprinting (DF) [9] and Var-CNN [8], utilize
convolutional neural networks (CNN) to identify patterns in
traffic data. These attacks can achieve above 98% accuracy
to identify sites using undefended traffic in a closed-world
setting [8], [9], and both attacks achieve high precision and
recall in the more realistic open-world setting.

In response to the threat of WF attacks, numerous defenses
have been proposed [11]–[13]. WF defenses perturb the traffic
so as to hide patterns and confound the classifier. While some
defenses have unacceptably high overheads, two relatively
lightweight defenses for Tor have recently been proposed:
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WTF-PAD [14] and Walkie-Talkie (W-T) [15]. State-of-the-art
DL attacks, however, have proven effective against both of
them [6], [8], [9] and illustrate the need for defenses that can
withstand improvements in the attacker’s capabilities.

This motivates us to investigate a WF defense that can be
effective not only against current DL-based attacks but also
against possible attack methods that we can foresee. Adversar-
ial examples are a natural method to turn to for confusing a DL
model, so we explore how to create adversarial examples for
network traffic. We find that adversarial examples have three
attributes that are valuable for defending against WF: i) high
misclassification rates, ii) small perturbations, which ensure
a low overhead, and iii) transferability. The transferability
property [4], in which some adversarial examples can be
made to reliably work on multiple models [16], [17], makes
it possible to defend against unknown attacks and potentially
even ones with more advanced capabilities.

In this paper, we introduce Mockingbird,1 a defense strategy
using adversarial examples for network traffic traces, which we
call adversarial traces. In the WF context, we cannot simply
perform a straightforward mapping of adversarial examples to
network traffic. As it is the reverse of when the adversary
is applying the adversarial examples, the WF attacker gets
to know what the WF defender is doing to generate the
examples. In particular, he can use the defense as implemented
in open-source Tor code to generate his own adversarial traces
and then use them to train a more robust classifier. This
adversarial training approach has been shown to be effective
when the classifier knows how the adversarial traces are being
generated [18].

To address this, we propose a novel technique to generate
adversarial traces that seeks to limit the effectiveness of
adversarial training. In particular, we increase the randomness
of the search process and reduce the influence of the design
and training of the targeted deep learning model in finding
a good adversarial example. To this end, as we search for
the new trace, we select a random target trace and gradually
reduce the distance from the modified trace to the target.
We also change to other randomly selected targets multiple
times during the search. The deep learning model is only
used to give a confidence value on whether the current trace
fools the classifier, and we do not access the loss function,
the logits, or any other aspect of the model. The resulting
adversarial traces can go in many different directions from
the original source traces instead of consistently following
the same paths that result from, e.g., following the gradient
of the loss function. In this way, the technique selects paths
that are hard to find through adversarial training. Further, each
new trace generated from the same source typically ends near
a different target each time, helping to reduce the attacker’s
Top-k accuracy.

Extensive evaluation shows that Mockingbird2 reliably
causes misclassification in a deep learning classifier hardened
with adversarial training using moderate amounts of band-

1The Northern mockingbird imitates the calls of a wide range of other birds,
and one of its call types is known as a chatburst that it uses for territorial
defense: https://en.wikipedia.org/wiki/Northern_mockingbird

2This work is an extended version of a short paper [19].

width overhead. Our results hold even when the attacker uses a
significantly more powerful classifier than the target classifier
used by Mockingbird to produce the adversarial examples.

Contributions: In summary, the key contributions of this
work are as follows:
• We propose Mockingbird, the first WF defense to leverage

the concept of adversarial examples.
• We show how algorithms for generating adversarial

examples in computer vision fail as a defense in the WF
setting, motivating more robust techniques.

• Our evaluation shows that Mockingbird significantly
reduces accuracy of the state-of-the-art WF attacks hard-
ened with adversarial training from 98% to 38%-58%
attack accuracy, depending on the scenario. The band-
width overhead is 58% for full-duplex traffic, which is
better than both W-T and WTF-PAD.

• We show that Mockingbird makes it difficult for an
attacker to narrow the user’s possible sites to a small
set. The best attack can get at most 72% Top-2 accuracy
against Mockingbird, while its Top-2 accuracy on W-T
and WTF-PAD is 97% and 95%, respectively.

• Using the WeFDE framework [20], we measure the
information leakage of Mockingbird, and find that it has
less leakage for many types of features than either W-T
or WTF-PAD.

Our investigation of this approach provides a promising first
step towards leveraging adversarial examples to undermine
WF attacks and protect user privacy online.

II. THREAT & DEFENSE MODEL

A. Threat Model

We assume that the client browses the Internet through
the Tor network to hide her activities (see Figure 1). The
adversary of interest is local, which means the attacker is
positioned somewhere in the network between the client and
Tor guard node. The attacker is assumed to already know the
identity of the client. His goal is to detect the websites that the
client is visiting. A local adversary can be an eavesdropper on
the user’s local network, local system administrators, Internet
service provider, any networks between the user and the entry
node, or the operator of the entry node. The attacker is passive,
meaning that the he only observes and records the traffic traces
that pass through the network. He does not have the ability to
drop, delay, or modify real packets in the traffic stream.

In a website fingerprinting (WF) attack, the attacker feeds
the collected network traffic into a trained machine-learning
or deep-learning classifier. For the purpose of training, the WF
attacker first needs to collect traffic of various sites by oper-
ating a Tor client. Since is not feasible to collect traffic for all
the sites on the web, the attacker identifies a set of monitored
sites that he wants to track. The attacker limits the scope of
his attack to the identification of any website visits that are
within the monitored set. The set of all other sites is known
as the unmonitored set.

WF attacks and defenses are evaluated in two different
settings: closed-world and open-world. In the closed-world
setting, we assume that the client is limited to visiting only
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the monitored sites. The training and testing set used by the
attacker only include samples from the monitored set. The
closed-world scenario models an ideal setting for the attacker
and is not indicative of the attack’s real-world performance.
From the perspective of developing a WF defense, demonstrat-
ing the ability to prevent closed-world attacks is thus sufficient
to show its effectiveness.

In contrast, the open-world scenario models a more realistic
setting in which the client may visit websites from both the
monitored and unmonitored sites. In this setting, the attacker
trains on the monitored sites and a representative (but not
comprehensive) sample of unmonitored sites. The open-world
classifier is then evaluated against both monitored and unmon-
itored sites, where the set of unmonitored sites used for testing
does not intersect with the training set.

B. Defense Model

The purpose of a WF defense is to prevent an attacker who
observes a traffic trace from determining accurately to which
site the trace belongs. To achieve this, the real traffic stream
must be manipulated in some way. Because traffic is bidirec-
tional, the deployment of a successful WF defense requires
participation from both the client and a cooperating node in
the Tor circuit. We call this node the bridge.3 To defend against
eavesdroppers performing WF attacks, the bridge could be any
node located between the adversary and the client’s destination
server, making it so that the adversary only has access to the
obfuscated traffic stream. Since the guard node knows the IP
address of the client and can thus act as as a WF adversary,
it is better to set up the bridge at the middle node, which
cannot directly identify the client.

III. BACKGROUND & RELATED WORK

A. WF Attacks

Website fingerprinting attacks have applied a variety of
classifiers. The three best attacks based on manual feature
engineering are k-NN [21], CUMUL [22], and k-FP [23],
which all reached over 90% accuracy in closed-world tests on
datasets with 100 samples per site. In the rest of this section,
we examine the more recent deep-learning-based WF attacks.

1) SDAE: The first to investigate using deep-learning tech-
niques for WF were Abe and Goto [24], who developed an
attack based on Stacked Denoising Autoencoders (SDAE).
Their model was trained on raw packet direction, represented
by a sequence of “+1” and“−1” values for outgoing and
incoming packets, respectively. Despite this innovation, their
attack achieved a lower accuracy rate than the previous state-
of-the-art attacks at only 88% in the closed-world setting.

2) Automated Website Fingerprinting (AWF): Rimmer
et al. [10] proposed using deep learning to bypass the
feature engineering phase of traditional WF attacks. To more
effectively utilize DL techniques, they collected a very large
dataset of 900 sites with 2,500 trace instances per site.
They applied several different DL architectures—SDAE,

3Tor bridges are usually used for evading censorship, but they can be used
for prototyping WF defenses such as used in WTF-PAD [14].

Convolutional Neural Network (CNN), and Long Short-Term
Memory (LSTM)—on the traffic traces. They found that their
CNN model outperforms the other DL models they developed,
obtaining 96% accuracy in the closed-world setting.

3) Deep Fingerprinting (DF): Sirinam et al. [9] developed
a deeper CNN model that reached up to 98% accuracy rate
in the closed-world setting using a dataset of 100 sites with
1,000 instances each. They also examined the effectiveness
of their model against WF defenses, where they showed
that their model can achieve concerningly high performance
against even some defended traffic. Most notably, their attack
achieved 90% accuracy against WTF-PAD [14] and 98% Top-
2 accuracy against Walkie-Talkie [15].

4) Var-CNN: Recently, Bhat et al. [8] developed a more
sophisticated WF attack based on the ResNet CNN architec-
ture and attained 98.8% closed-world accuracy.

We evaluated Mockingbird on both the DF model and
Var-CNN model in the black-box setting.

B. WF Defenses

To defeat WF attackers, researchers have explored various
defense designs that generate cover traffic to hide the features
present in website traffic. WF defenses are able to manipulate
the traffic stream with two operations: sending dummy packets
and delaying real packets. These manipulations, however,
come at a cost: sending dummy packets adds an additional
bandwidth overhead to the network, while delaying packets
adds latency overhead that directly impacts the time required
to load the page. Several studies have thus tried to balance
the trade-off between the WF defense’s overhead and efficacy
of the defense against WF attacks. In this section, we review
these WF defenses.

1) Constant-Rate Padding Defenses: This family of
defenses transmits traffic at a constant rate in order to normal-
ize trace characteristics. BuFLO [25] is the first defense of this
kind, and it sends the packets in the same constant rate in both
directions. The defense ends transmission after the page has
finished loading and a minimum amount of time has passed.
The overhead of the traffic is governed by both the transmis-
sion rate and the minimum time threshold for the stopping
condition. Moreover, although the defense covers fine-grained
features like burst information, course-grained features like the
volume and load time of the page still leak information about
the website. Tamaraw [13] and CS-BuFLO [12] extend the
BuFLO design with the goal of addressing these issues. To
provide better cover traffic, after the page is loaded, Tamaraw
keeps padding until the total number of transmitted bytes is
a multiple of a fixed parameter. Similarly, CS-BuFLO pads
the traffic to a power of two, or to a multiple of the power
of the amount of transmitted bytes. All of these defenses are
expensive, requiring two to three times as much time as Tor to
fetch a typical site and more than 100% bandwidth overhead.

2) Supersequence Defenses: This family of defenses
depends on finding a supersequence for traffic traces. To do
this, these defenses first cluster websites into anonymity sets
and then find a representative sequence for each cluster, such
that it contains all the traffic sequences. All the websites that
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belong to the same cluster are then molded to the representa-
tive supersequence. This family includes Supersequence [21],
Glove [11], and Walkie-Talkie [15]. Supersequence and Glove
use approximation algorithms to estimate the supersequence of
a set of sites. The traces are then padded in such a way so as
to be equivalent to its supersequence. However, applying the
molding directly to the cell sequences creates high bandwidth
and latency costs. Walkie-Talkie (WT) differs from the other
two defenses in that it uses anonymity sets of just two sites,
and traces are represented as burst sequences rather than
cell sequences. Even with anonymity sets of sizes of just
two, this produces a theoretical maximum accuracy of 50%.
Wang and Goldberg report just 31% bandwidth overhead for
their defense, but also 34% latency overhead due to the use
of half-duplex communication. Against WT, the DF attack
achieved 49.7% accuracy and 98.4% top-2 accuracy, meaning
that it could effectively identify the two sites that were molded
together but not distinguish between them [9].

3) WTF-PAD: Shmatikov and Wang [26] proposed Adap-
tive Padding (AP) as a countermeasure against end-to-end
traffic analysis. Juarez et al. [14] proposed the WTF-PAD
defense as an adaptation of AP to protect Tor traffic against
WF attacks. WTF-PAD tries to fill in large delays between
packets (inter-packet arrival times). Whenever there is a
large inter-packet arrival time (where “large” is determined
probabilistically), WTF-PAD sends a fake burst of dummy
packets. This approach does not add any artificial delays to
the traffic. Juarez et al. show that WTF-PAD can drop the
accuracy of the k-NN attack from 92% to 17% with a cost
of 60% bandwidth overhead. Sirinam et al. [9], however, show
that their DF attack can achieve up to 90% accuracy against
WTF-PAD in the closed-world setting.

4) Application-Level Defenses: Cherubin et al. [27] propose
the first WF defenses designed to work at the application layer.
They proposed two defenses in their work. The first of these
defenses, ALPaCA, operates on the webserver of destination
websites. ALPaCA works by altering the size distribution
for each content type, e.g. PNG, HTML, CSS, to match the
profile for an average onion site. In the best case, this defense
has 41% latency overhead and 44% bandwidth overhead and
reduces the accuracy of the CUMUL attack from 56% to 33%.
Their second defense, LLaMA, operates exclusively on the
client. It adds random delays to HTTP requests in an effort to
affect the order of the packets by manipulating HTTP request
and responses patterns. LLaMA drops the accuracy of the
CUMUL attack on Onion Sites from 56% to 34% at cost of 9%
latency overhead and 7% bandwidth overhead.

IV. PRELIMINARIES

A. Adversarial Examples

Szegedy et al. [4] were the first to discover that otherwise
accurate ML and DL image classification models could be
fooled by image inputs with slight perturbations that are
largely imperceptible to humans. These perturbed inputs are
called adversarial examples, and they call into question the
robustness of many of the advances being made in machine
learning. The state-of-the-art DL models can be fooled into

misclassifying adversarial examples with surprisingly high
confidence. For example, Papernot et al. [17] show that
adversarial images cause a targeted deep neural network to
misclassify 84% of the time.

The idea of creating adversarial examples is to modify
samples from one class to make them be misclassified to
another class, where the extent of the modification is limited.
More precisely, given an input sample x and target class t
that is different from actual class of x (t �= C∗(x)), the goal
is to find x ′ which is close to x according to some distance
metric and C(x ′) = t . In this case, x ′ is a targeted adversarial
example since it is misclassified to a particular target label t.
An untargeted adversarial example, on the other hand, may be
misclassified to any other class except the true class (C∗(x)).

In response to the threat of adversarial examples, many
defense techniques have been introduced to make classifiers
more robust against being fooled. Recent research [28], [29]
shows that almost none of these recent defense techniques are
effective. In particular, we can generate adversarial examples
that counter these defense techniques by including the defense
techniques directly into the optimization algorithm used to
create the adversarial examples. We can also overcome many
defense approaches by simply increasing the amount of per-
turbation used [30].

B. Properties of Adversarial Examples

Adversarial examples have three major properties that make
them intriguing for us in WF defense: i) robust misclassifica-
tion, ii) small perturbations, and iii) transferability. We now
explain the effect of each of these properties in a WF defense.

1) Robust Misclassification: An effective defense should be
able to fool a trained WF classifier consistently in real-world
conditions. Adversarial examples have been shown to work
reliably and robustly for images, including for cases in which
the viewpoint of the camera cannot be fully predicted, such
as fooling face recognition [31] and self-driving cars [32].

2) Small Perturbations: To fool the classifier, the defense
will add padding packets to the original network traffic.
Ideally, a WF defense should be lightweight, meaning that
the number of padding packets should be constrained to keep
bandwidth consumption low. By using small perturbations to
achieve misclassification, an effective WF defense based on
adversarial examples can also be lightweight.

3) Transferability: Recent research shows that defenses
such as WTF-PAD [14] and W-T [15], which defeated the
state-of-the-art attacks available at that time, are seriously
underminded by the more recent and advanced attacks [6],
[9]. Given that the attacker could use any classifier for WF,
the defense should extend beyond current attacks to other
possible attacks as well. Adversarial examples provide the
ability for this due the the transferability property, which
indicates that they can be designed to attack a given classifier
and at least sometimes also fool other classifiers [16]. Further,
there are techniques that work in a black-box setting, where the
classifier is completely unknown to the attacker [17], [33]. This
property is very important for WF defense, since we cannot
predict the attacker’s classifier in advance.
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Fig. 2. A visual representation of bursts.

C. Adversarial Training

Recent research shows that adversarial training increases the
robustness of a model by incorporating adversarial examples
in the training data [18], [34]. The idea is to train a network
with adversarial examples so that they can be classified cor-
rectly. This approach is limited, as it does not adapt well to
techniques for generating adversarial examples that haven’t
been trained on. In the WF setting, however, the classifier has
the advantage of knowing how the adversarial examples are
being generated, as they would be part of the open-source Tor
code. Thus, adversarial training is a significant concern for
our system.

D. Data Representation

Following the previous work [9], [14], [15], we model the
traffic trace as a sequence of incoming (server to client) and
outgoing (client to server) bursts. The incoming and outgoing
packets are represented as −1 and +1, respectively. We define
a burst as a sequence of consecutive packets in the same
direction. An example of the burst representation is shown
in Figure 2. Given this, we can increase the length of any burst
by sending padding packets in the direction of the burst. We
cannot, however, decrease the size of the bursts by dropping
real packets due to the retransmissions this would cause,
changing the traffic patterns and adding delays for the user.

V. Mockingbird DESIGN

We now motivate and describe the design of the Mocking-
bird defense in detail. We start by evaluating the performance
given by adapting existing adversarial-example techniques,
which are not effective against adversarial training, and then
examine the Mockingbird design in detail.

A. Applying Existing Methods in WF Defense

Several different algorithms have been proposed for gen-
erating adversarial examples within the field of computer
vision, including the Fast Gradient Sign Method (FGSM) [35],
the Iterative Fast Gradient Sign Method (IGSM) [36],
the Jacobian-Based Saliency Map Attack (JSMA) [37], and
optimization-based methods [29], [33]. For our initial explo-
ration of adversarial examples in WF defense, we examine the
technique proposed by Carlini and Wagner (C&W) [16].

This method is shown to defeat the defensive distilla-
tion approach of blocking adversarial examples [38]. The
algorithm is successful with 100% probability. We modified
their technique to suit our needs to generate adversarial
traces out of the burst sequences. This algorithm is designed

to work on images, which are 2D, so we modified it to work
on 1D traffic traces.

We evaluated the performance of this technique in two dif-
ferent WF attack scenarios: without-adversarial-training and
with-adversarial-training. The without-adversarial-training
scenario represents the scenario most typically seen in the
adversarial example literature, in which the classifier has not
been trained on any adversarial instances. In this scenario,
we generated the adversarial examples against a target model
and tested them against the different WF attacks trained on
the original traffic traces. We find that our adversarial traces
are highly effective against the WF attacks. The accuracy of
DF [9] is reduced from 98% to 3%, and the accuracy of
CUMUL [22] drops from 92% to 31%. The adversarial traces
generated using this method are highly transferable, as we
generated them against a target CNN model similar to the one
proposed by Rimmer et al. [10], and they are effective against
both DF and CUMUL.

Unfortunately, this scenario is not realistic, as it is likely
(and usually assumed) that the attacker can discern what type
of defense is in effect and train on representative samples. This
is represented by the with-adversarial-training scenario. In this
scenario, the C&W technique fails completely, with the DF
attack reaching 97% accuracy. In addition, we also investigated
a method that combines aspects of our Mockingbird system
with C&W, but this also proved to be ineffective as a WF
defense. We discuss the details of these evaluations in the
Supplemental Materials.

The results of this evaluation led to a very important insight:
the scenario in which the effectiveness of adversarial examples
are typically evaluated is notably different than that of a WF
defense. In particular, the attacker has the advantage of going
second, which means that the classifier can be designed and
trained after the technique is deployed in Tor. Thus, techniques
that excel at producing adversarial examples for traditional
attacks are poorly suited for our problem. In response to this
discovery, we focused our efforts on the development of a new
technique designed specifically for our needs. We discuss our
method in the following section.

B. Generating Adversarial Traces

We now introduce Mockingbird, a novel algorithm to gen-
erate adversarial traces that more reliably fool the classifier in
the adversarial training setting. The ultimate goal is to generate
untargeted adversarial traces that cause the classifier to label a
traffic trace as coming from some site other than the original
site, i.e. to generate an untargeted sample. We find, however,
that it is more effective to generate targeted samples, i.e.
to select specific other sites for the current sample to attempt
to mimic. Much like its namesake (the bird), Mockingbird uses
a variety of targets, without much importance on which target
it mimics at any given moment.

To defend a given trace, the source sample, Mocking-
bird first generates a set of potential target traces selected
randomly from the traces of various sites other than the source
site. It then randomly picks one of these traces as the target
sample and gradually changes the source sample to get closer
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Fig. 3. Mockingbird architecture.

to the target sample. The process stops when a trained classifier
called the detector determines that the class of the sample
has changed (see Figure 3). Note that it does not need to
have changed to the target sample’s class, as the goal is to
generate an untargeted adversarial trace. The amount of change
applied to the source sample governs the bandwidth overhead
of Mockingbird, and as such should be minimized.

Unlike most other algorithms used to generate adversarial
examples, Mockingbird does not focus on the loss function
(like FGSM and IGSM) or logits (like Carlini & Wagner)
of the detector network. Instead, it aims to move the source
sample towards the target sample and only uses the detector
network to estimate the confidence with which the trace is
misclassified. This lessens the reliance on the shape of the
detector network and helps to generate adversarial traces that
are more robust against adversarial training. As we demon-
strate in the Supplementary Materials, using an optimization
method to move towards the target sample results in a system
that is much less robust.

Mockingbird Algorithm: We assume that we have a set of
sensitive sites S that we want to protect. We train a detector
f (x) on a set of data from S. We discuss the design and
training of f (x) in Section VI. We consider traffic trace Is

as an instance of source class s ∈ S. Our goal is to alter Is

to become I ′s such that it is classified to any other class t ,
t = f (I ′s) and t �= s.

Is is a sequence of the bursts, Is =
[
bI

1, bI
2, . . . , bI

n

]
, where

n is the number of the bursts. Burst is defined as the sequence
of packets in a direction (i.e. incoming or outgoing) [8],
[9], [21]. The length of each burst (i.e. number of packets
in each burst), bI

i , makes the sequence of bursts. Usually,
the number of packets in each burst vary widely. The only
allowed operation on a burst bI

i is to add some positive values
δi >= 0 to that burst, bI

i = bI
i + δi . The reason for using

δi >= 0 is that we can only increase the size of a burst.
If δi < 0, that would mean we should drop some packets to
reduce the size of a burst, and dropping real packets means
losing data and requires re-transmission of the dropped packet.
To protect source sample Is , we first select τ potential target
samples from other classes ti �= s. We then select the target
t as the one nearest to the source sample based on the l2
norm distance.4 This helps to minimize overhead, as we will
move the source towards the target. More formally, we pick
a target pool Ps of p random samples from other classes,
Ps =

[
I 0

0, I 1
1, .., I p

m
]
, where I j

i is the j -th sample in the
target pool and belongs to target class ti �= s. The target sample

4We also performed some preliminary experiments with Manhattan dis-
tance and found no significant improvement.

It is selected as shown in Equation 1.

It = argmin
I∈Ps

D(Is , I ) (1)

D(x, y) = l2(x − y) (2)

To make the source sample leave the source class,
we change it with the minimum amount of perturbation in
the direction that makes it closer to the target (It ). We define
� as the perturbation vector that we add to the source sample
to generate its defended form I new

s .

� = [δ0, δ1, · · · , δn] (δi >= 0) (3)

I new
s = Is +� (4)

We need to find a � that adds the least amount of per-
turbation to the source sample while still making it closer
to the target sample. Therefore, we find � that minimizes
distance D(I new

s , IT ). To do so, we compute the gradient of
the distance with respect to the input. Note that most work in
adversarial example generation uses the gradient of the loss
function of the discriminator network rather than distance,
and this may make those techniques more sensitive to the
design and training of the classifier. The gradient points in
the direction of steepest ascent, which would maximize the
distance. Therefore, we compute the gradient of the negative
of the distance with respect to the input, and we modify the
source sample in that direction towards the target sample.
In particular:

∇(−D(I, IT )) = −∂ D(I, IT )

∂ I
=

[
−∂ D(I, IT )

∂bi

]
i∈[0,··· ,n]

(5)

where bi is the i-th burst in input I .
To modify the source sample, we change bursts such that

their corresponding values in ∇(−D(I, IT )) are positive. Our
perturbation vector � is:

δi =

⎧⎪⎨
⎪⎩
−α × ∂ D(I, IT )

∂bi
−∂ D(I, IT )

∂bi
> 0

0 −∂ D(I, IT )

∂bi
� 0

(6)

where α is the parameter that amplifies the output of the
gradient. The choice of α has an impact on the convergence
and the bandwidth overhead. If we pick a large value for
α, we will take bigger steps toward the target sample and
add more overhead, while small values of α require more
iterations to converge. We modify the source sample by
summing it with �, (I new

s = Is +�). We iterate this process,
computing � for Is and updating the source sample at each
iteration until we leave the source class, f (I new

s ) �= s or the
number of iterations passes the maximum allowed iterations.
Note that at the end of each iteration, we update the current
source sample with the modified one, Is = I new

s . Leaving
the source class means that we have less confidence on the
source class. So we fix a threshold value, τc, for measuring
the confidence. If the confidence of the detector on the
source class is less than the threshold ( fs(I new

s ) < τc),
Mockingbird will stop changing the source sample (Is).
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As we only increase the size of the bursts where
− ∂ D(I,IT )

∂bi
> 0, we may run into cases that after some

iterations ∇(−D(I, IT )) does not have any positive values
or all the positive values are extremely small such that they
do not make any significant changes to Is . In such cases,
if I new

s − Is is smaller than a threshold τD for λ consecutive
iterations (we used λ = 10), and we are still in the source class,
we select a new target. In particular, we effectively restart the
algorithm by picking a new pool of potential target samples,
selecting the nearest target from the pool, and continuing the
process. It is to note that, the source sample at this point is
already in the changed form I new

s and the algorithm starts
changing from I new

s . In this process, the confusion added by
Mockingbird in the final trace is proportional to the number of
targets changed to reach the final adversarial trace. The pseudo
code of Mockingbird algorithm is presented in Algorithm 1.

VI. EVALUATION

A. Datasets

We apply Mockingbird to generate adversarial examples on
the traffic traces at the burst level. We can get the burst
sequence of the traffic traces from both full-duplex (FD)
and half-duplex (HD) communication modes. Walkie-Talkie
(W-T) [15] works on HD communication, and it finds the
supersequences on the burst level. In our experiments, we use
burst sequences for both FD and HD datasets.

1) Data Source: We use both the closed-world (CW) and
open-world (OW) FD and HD traffic traces provided by
Sirinam et al. [9]. The websites classes from the monitored
set are from the top sites in Alexa [39].

2) Preprocessing Data: In our preprocessing phase, we fil-
ter the data by removing any instances with fewer than
50 packets and the instances that start with an incoming
packet, since the client should send the first packet to start
the connection.

3) Full-Duplex (FD): The CW dataset contains 95 classes
with 1000 instances each. After preprocessing, we end up
with 518 instances for each site. The OW dataset contains
40,716 different sites with 1 instance each.

4) Half-Duplex (HD): The CW dataset contains 100 sites
with 900 instances each. After preprocessing, we ended up
with 83 classes with 720 instances per class. The OW data
contains 40,000 sites with 1 instance each.

An additional consideration is that we must use a fixed
size input to our model [9]. To find the appropriate size,
we consider the distribution of burst sequence lengths within
our datasets. Figure 4 shows the CDF of the burst sequence
lengths for both the HD and FD datasets. More than 80% of
traces have fewer than 750 bursts for the HD CW dataset,
and more than 80% of the traces for the CW FD dataset
have fewer than 500 bursts. We found that using 1500 bursts
on both HD and FD datasets provides just 1% improvement
on accuracy for the DF attack compared to using 750 bursts.
To decrease the computational cost for generating adversarial
examples, we use an input size of 750 bursts for both the FD
and HD datasets. Note that the attacker in our evaluations uses
10,000 packets rather than bursts.

Algorithm 1 Generate Adversarial Traces
Input : S – set of sensitive sites

D– detector f (x)
α – amplifier
δ – iterations before selecting a new target
τc – confidence threshold
τD – perturbation threshold
N – maximum number of iterations
p – number of targets to pick for the pool
Is – instance of site s to protect
b j – bursts in Is , j ∈ [1, . . . , n]

Output: I ′s – altered (adversarial) trace of Is

1 Ys ← D(Is) ; // label of Is

2 Ps ← random(p, S − {s}) ; // target pool

3 IT ← argmin
I∈Ps

D(Is , I ) ; // target sample;

4 I ′s ← Is

5 for iter in [1, . . . , N] do

6 ∇(−D(I ′s , IT ))←
[
− ∂ D(I ′S,IT )

∂b j

]
j∈[1,··· ,n]

7 �← α × ∇(−D(I ′s , IT )), where − ∂ D(I ′s ,IT )
∂b j

> 0

8 I ′s ← I ′s +�

; /* Compute the label and confidence
for I ′s */

9 Y ′s , P(I ′s )← D(I ′s)
; /* End if the source class
confidence is low */

10 if Y ′s �= Ys and P(I ′s ) < τc then
11 break;

; /* Pick a new target after δ
iterations */

12 if i mod δ = 0 and Y ′s = Ys and I ′s − Is < τD then
13 Ps ← random(p, S − {s}) ; // new target

pool
14 IT ← argmin

I∈Ps

D(Is , I ) ; // new target

sample

15 return I ′s

Fig. 4. CDF of the number of bursts in the full-duplex and half-duplex
traces.

In our evaluation, we need to address the needs of both
Mockingbird and the adversary to have training data. We thus
break each dataset (full-duplex (FD) and half-duplex (HD))
into two non-overlapping sets: Adv Set A and Detector Set
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TABLE I

DATASET SPLIT: Adv Set (A) & Detector Set (D). FD: FULL-DUPLEX, HD:
HALF-DUPLEX, C: CLASS, I: INSTANCE, CW:CLOSED-WORLD,

OW: OPEN-WORLD

D (see Table I). A and D each contain half of the instances
of each class. This means, in both A and D, 259 instances
for each of 95 classes for FD data and 360 instances for each
of 83 classes for HD data.

B. Experimental Method

Mockingbird needs to train a detector f (x) with instances
of a variety of sites to generate adversarial traces. We use
both Rimmer et al.’s CNN model [10], which we refer to
as AWF, and Sirinam et al.’s more powerful DF model [9]
for detector models. We train these models on the traces of
the Detector Set. Sirinam et al. suggest using an input size
of 5,000 packets, but our padded traces have more traffic,
so we use an input size of 10,000 packets, which is the
80th percentile of packet sequence lengths in our defended
traces. Sample from the Detector Set are only used to train the
detector. The source samples from Adv Set (Is ∈ A) are used
to generate adversarial traces for the training, validation, and
testing of the adversary’s classifier. To evaluate the defended
traffic, we reform the defended traces from the burst level
representation to the direction level representation where “+1”
and “−1” indicate outgoing and incoming packets, respec-
tively, following the previous research.

1) Attack Settings: We test with two different settings,
white-box and black-box. In all of the evaluations, the clas-
sifier is trained using adversarial training, where the attacker
has full access to the defense and uses it to generate defended
samples for each class in the monitored set.
• White-box: In the white-box setting, we assume that that

defense uses the same network architecture for the detec-
tor as the attacker uses to perform WF attacks. We use
this overly optimistic scenario only for parameter search
to identify values for α and number of iterations, where
we use DF as both the detector and the attack classifier.

• Black-box: In the black-box setting, the defender and
the attacker use two different neural networks, i.e. the
defender uses one model for the detector, while the
attacker uses another model for performing WF attacks.
We evaluate Mockingbird in the black-box setting by
using the AWF CNN model [10] as the detector and
both the DF model [9] and Var-CNN [8] as attacker
models. Since DF and Var-CNN are more powerful
than the simple AWF model [8], [9], this tests the
case that the attacker has greater capabilities than are
known to the defender. These evaluations show the
extent to which adversarial examples generated by
Mockingbird transfer to other classifiers.

• Traditional ML Attack: We also evaluate
Mockingbird against tradition machine-learning (ML)

TABLE II

HYPERPARAMETER TUNING ON DF AND VAR-CNN ATTACK MODELS
FOR BLACK-BOX ATTACKS

attacks such as CUMUL [22], k-FP [23], and k-NN [21],
all of which reach over 90% accuracy on undefended Tor
using closed-world datasets with 100 samples per class.

2) Training and Hyperparameter Tuning: To perform the
attacks, we use 80% of the data for training, 10% for val-
idation, and the remaining 10% for testing for each of the
settings. To represent the data in the attack models, we follow
the prior work [8], [9], [21]–[23] and represent the data as an
1-D vector of +1 and −1 for outgoing and incoming packets,
respectively. We use a fixed length of 5000 for each instance of
the class following the prior work. Instances that do not have
5,000 packets are padded with zero, and the instances that have
length more than 5,000 are truncated to that particular length.

As black-box setting is the most realistic attack setting
to evaluate a defense, we perform hyperparameter tuning on
the two deep-learning based attack models: DF [9] and Var-
CNN [8]. However, we exclude the hyperparameters choices
that have been explored in prior work and did not provide
any improvement in the attack accuracy. Such hyperparameters
include the SGD and RMSPros optimization functions, and the
tanh activation function.

We start our search with the default model and continue
tuning each hyperparameter one by one. First, we perform
several sets of experiments with different training epochs
for both full-duplex (FD) and half-duplex (HD) with both
DF [9] and Var-CNN [8] models. Then, the best training epoch
number is used for the experiments to search for the next set of
hyperparameters. Table II shows the hyperparameters and the
choices of our hyperparameter tuning process. In our tuning
process, we found that the tuned DF and Var-CNN models
work better for the FD traces defended by Mockingbird and
default DF and Var-CNN models work better for the HD traces
defended by Mockingbird.

3) Top-k Accuracy: Most prior works have focused their
analysis on Top-1 accuracy, which is normally referred to
simply as the accuracy of the attack. We argue that Top-
1 accuracy does not provide a full picture of the effectiveness
of a defense, as an attacker may use additional insights about
their target (language, locale, interests, etc.) to further deduce
what website their target is likely to visit.

As such, it is desirable to examine the accuracy of Top-k
predictions, where k is the number of top-ranked classes in the
prediction. In evaluations of WF, we are particularly interested
in the Top-2 accuracy. A high Top-2 accuracy indicates that
the classifier is able to reliably determine the identity of a
trace to just two candidate websites. This is a threat to a user
even when the attacker is unable to use additional information
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Fig. 5. Full-duplex: the attacker’s accuracy and the bandwidth overhead (BWO) of the generated samples as we vary the probability threshold value (Figure 5a)
and perturbation threshold value (Figure 5b).

to predict the true site. The knowledge that the target may
be visiting a sensitive site is actionable and can encourage the
attacker to expend additional resources to further analyze their
target.

4) Target Pool: Mockingbird changes the source sample
toward a target sample drawn randomly from our target pool.
The detector determines whether the perturbed source sample
is still in the source class. We are interested to know how the
algorithm performs if we fill the target pool with instances of
sites that the detector has been trained on and has not been
trained on. We examine the bandwidth overhead and reduction
in the attack accuracy of traces protected by Mockingbird in
these two scenarios.

• Case I : We fill the target pool with instances from the
Adv Set. Therefore, both source samples (Is ∈ A) and
target samples (I j

i ∈ A which Ti �= s) are from the
Adv Set. In this case, we assume that the detector has
been trained on the target classes, which makes it more
effective at identifying when the sample has left one class
for another. This may be less effective, however, if the
adversary trains on the source class but none of the other
target classes used in detection.

• Case II : We fill the target pool with instances from
unmonitored sites that are not in the Adv Set. We select
the target samples (I j

i ) from the open-world dataset.
The source samples (Is ) are from Adv Set, and we
generate their defended forms. In this case, we assume
the detector has not been trained on the target samples,
so it may be less effective in identifying when the
sample leaves the class. That may make it more robust
when the attacker also trains on a different set of classes
in his monitored set.

Case I may be realistic when the defender and the attacker
are both concerned with the same set of sites, such as protect-
ing against a government-level censor with known patterns
of blocking, e.g. based on sites it blocks for connections not
protected by Tor. Case II is a more conservative estimate of
the security of Mockingbird and thus more appropriate for our
overall assessment.

We generate defended samples with various settings.
We vary α to evaluate its effect on the strength of the defended
traces and the overhead. We also vary the number of iterations
required to generate the adversarial traces. Each iteration
moves the sample closer to the target, improving the likelihood
it is misclassified, but also adds bandwidth overhead.

C. Tuning on Full-Duplex Data

The full-duplex version of Mockingbird is the easier to
deploy and leads to lower latency costs than the half-duplex
version [15], so we lead with the full-duplex results. We use
the white-box setting for simplicity.

1) Choice of Threshold Values: There are two thresholds
values in Mockingbird algorithm: i) a confidence threshold
value (τc) that limits the confidence on the generated trace
belonging to the correct class, and ii) a perturbation threshold
value (τD) that limits the amount of change in a generated
trace. Intuitively, the smaller the value of τc, the less likely it
is that the attacker could succeed, at the cost of higher aver-
age bandwidth overhead. By contrast, changing τD directly
manipulates the maximum bandwidth overhead, where lower
τD would reduce bandwidth cost but also typically result in
an improved chance of attack success.

While we experiment with different τc values, we fix the
τD = 0.0001, α = 5, and number of iterations to 500. We can
see from Figure 5a that lower values of τc lead to lower
accuracy and higher bandwidth. τc = 0.01 provides a good
tradeoff point, so we select it for our following experiments.

Following the same procedure, we perform experiments
with different τD values. As expected, and as shown
in Figure 5b, lower τD values lead to lower bandwidth but
higher attack accuracy. We choose τD = 0.0001 as a good
tradeoff for our following experiments.

2) Choice of α: Figure 6a shows the bandwidth overhead
and attack accuracy of full-duplex data with respect to α values
for both Case I (solid lines) and Case II (dashed lines) with
500 iterations. As expected, the bandwidth overhead increases
and the attack accuracy decreases as we increase α, with longer
steps towards the selected targets. For Case I, the adversary’s
accuracy against Mockingbird with α = 5 and α = 7 are both
35%, but the bandwidth overhead is lower for α = 5 at 56%
compared to 59% for α = 7. For Case II, the adversary’s
accuracy and the bandwidth overhead are both slightly lower
for α = 5 than that of α = 7. From these findings, we fix
α = 5 for our experiments.

We also observe that Case I leads to lower accuracy and
comparable bandwidth overhead to Case II. When α = 5 and
α = 7, the attack accuracies for Case I are at least 20% lower
than that of Case II. Therefore, as expected, picking target
samples from classes that the detector has been trained on
drops the attacker’s accuracy.

3) Number of Iterations: Figure 6 shows the trade-off
between the accuracy and bandwidth overhead with respect

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on July 29,2021 at 20:59:04 UTC from IEEE Xplore.  Restrictions apply. 



RAHMAN et al.: Mockingbird: DEFENDING AGAINST DEEP-LEARNING-BASED WF ATTACKS WITH ADVERSARIAL TRACES 1603

Fig. 6. Full-duplex: the attacker’s accuracy and the bandwidth overhead (BWO) of the generated samples as we vary the α value (Figure 6a) and number
of iterations (Figure 6b and 6c).

Fig. 7. Half-duplex: the attacker’s accuracy and the bandwidth overhead (BWO) of the generated samples as we vary the probability threshold value
(Figure 7a) and perturbation threshold value (Figure 7b).

to the number of iterations to generate the adversarial traces.
As mentioned earlier, increasing the number of iterations also
increases the number of packets (overhead) in the defended
traces. We vary the number of iterations from 100 to 500 for
both Case I (Figure 6b) and Case II (Figure 6c) to see their
impact on the overhead and the accuracy rate of the DF attack.

For Case I, we can see that the DF attack accuracy for
both 400 and 500 iterations is 35% when α = 5, while
the bandwidth overheads are 54% and 56%, respectively. For
α = 7, the attacker’s accuracy is higher and the bandwidth
costs are higher. For Case II, using α = 5 leads to 57%
accuracy with 53% bandwidth overhead for 400 iterations and
55% accuracy and 56% bandwidth overhead for 500 iterations.
From these findings, we fix the number of iterations to 500 for
our experiments.

D. Tuning on Half-Duplex Data

Using half-duplex communication increases the complexity
of deployment and adds latency overhead [15], but it offers
more precise control over burst patterns such that we can
achieve reduced attacker accuracy as shown in the following
white-box results.

1) Choice of Threshold Values: We can see from
Figure 7a and 7b that τc = 0.01 and τD = 0.0001 provide
better trade-off between attack accuracy and bandwidth over-
head for HD data as well. The attack accuracies are 35% and
29%, and bandwidth overheads are 73% and 63% for case
I and case II, respectively. Hence, we select τc = 0.01 and
τD = 0.0001 for our next set of experiments.

2) Choice of α: As seen in Figure 8 (all for 500 iterations),
the lowest accuracy rates are 35.5% and 28.8% for Case I
and Case II, respectively, when α = 7. The bandwidth

overheads are 62.7% and 73.5% for Case I and Case II,
respectively. When α = 5, the attack accuracy is 50% for
both Case I and Case II with bandwidth overheads of 57%
and 69%, respectively. As expected, higher α values mean
lower attacker accuracies at the cost of higher bandwidth.
Additionally, as in the full-duplex setting, both bandwidth
overhead and accuracies are lower in Case I than Case II.
From these findings, we set α = 7 for our experiments.

3) Number of Iterations: Figure 9 shows the trade-off
between attacker accuracy and bandwidth overhead with the
number of iterations for α = 7. We vary the number of
iterations from 100 to 500 for both Case I and Case II.
For Case I, the accuracy is 35.5% with 62.7% bandwidth
overhead with 500 iterations. With 400 iterations, the accuracy
is 37% with 59% bandwidth overhead. For Case II, with
500 iterations, we can get the lowest attack accuracy of 28.8%,
with a cost of 73.5% bandwidth overhead. From these findings,
we set the number of iterations to 500 for our experiments.

E. Results Analysis

We lead our analysis with bandwidth overhead followed
by the analysis of white-box setting, black-box setting,
and traditional ML attacks. We extend our analysis with a
discussion of Top-k accuracy. The analysis is based on the
best parameters (τc, τD , α and number of iterations) found in
Section VI-C and VI-D where τc = 0.01, τD = 0.0001, and
α = 5 and α = 7 for FD and HD datasets, respectively. The
number of iterations are 500 for both datasets. In addition,
we include the investigation of multiple-round attacks on
Mockingbird. To compare Mockingbird with other defenses,
we selected two state-of-the-art lightweight defenses: WTF-
PAD [14] and W-T [15]. To generate defended traffic,
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Fig. 8. Half-duplex: attacker accuracy and bandwidth overhead (BWO) as
α varies.

Fig. 9. Half-duplex: attacker accuracy and bandwidth overhead (BWO) as
the number of iterations varies.

we simulated WTF-PAD on our FD dataset, as it works
with full-duplex traffic, while we simulated W-T on our
HD datasets, since W-T uses half-duplex traffic. Thus,
in our experiments, the WTF-PAD dataset has 95 sites with
518 instances each and W-T has 82 sites with 360 instances–
note that we use just the Adv Set A from the HD dataset for
a fair comparison with Mockingbird.

For our W-T simulation, we used half-duplex data from
Sirinam et al. [9].5 There are modest differences between this
data and the data used by Wang and Goldberg [15]. Perhaps
most importantly, Sirinam et al.’s implementation uses a
newer version of Tor. Also, Sirinam et al.’s dataset is from
websites in 2016 rather than 2013, which we have observed
makes a significant difference in their distributions. These
differences likely account for the differences in reported
bandwidth in our findings and those of Wang and Goldberg.

1) Bandwidth Overhead: As described in Section V-B,
we designed Mockingbird to minimize packet addition, and
thus bandwidth overhead, by keeping the amount of change
in a trace under a threshold value of 0.0001. From Table IV,
we can see that for full-duplex (FD) network traffic, the band-
width overhead in Case I and Case II of Mockingbird are the
same at 58%, which is 6% and 14% lower than WTF-PAD
and W-T, respectively. For half-duplex (HD) Mockingbird,
the bandwidth overhead is 62% for Case I and 70% for Case II.

2) White-Box Setting: In the white-box setting, shown
in Table III, Mockingbird is highly effective at fooling the
attacker. In Case I, the attacker gets less than 40% accuracy
for both FD and HD traffic. For Case II, the attacker actually
has a lower accuracy of 29% in the HD setting, but reaches
55% in the FD setting.

5Tao Wang’s website (http://home.cse.ust.hk/~taow/wf/, accessed Sep. 10,
2020) mentions that Sirinam et al.’s W-T browser, which is designed to collect
half-duplex data, is a better implementation.

TABLE III

WHITE-BOX. EVALUATION OF Mockingbird AGAINST DF. BWO:

BANDWIDTH OVERHEAD, FD: FULL-DUPLEX, HD:

HALF-DUPLEX

Fig. 10. Black-Box Top-k Accuracy. DF accuracy for different values of k
against Mockingbird.

3) Black-Box Top-1 Accuracy: In the more realistic
black-box setting, our results as shown in Table IV indicate
that Mockingbird is an effective defense. For Case I and
Case II, the respective attack accuracies are at most 42% and
62%. In comparison, Var-CNN achieves 90% closed-world
accuracy against WTF-PAD and 44% against W-T. So the
effectiveness of Mockingbird in terms of Top-1 accuracy falls
between these two defenses.

4) Traditional ML Attacks: As shown in Table IV, the high-
est performance for any of CUMUL, k-FP, and k-NN against
Mockingbird was 32% (Case II, Full Duplex). Mockingbird is
competitive with or better than both WTF-PAD and W-T
for all three attacks. This shows that the effectiveness of
Mockingbird is not limited to protecting against DL models,
but also against traditional ML.

5) Top-k Accuracy: Our results in Table IV show that
Mockingbird is somewhat resistant to Top-2 identification, with
an accuracy of 72% in the worst case. On the other hand, W-T
struggles in this scenario with 97% Top-2 accuracy by DF,
as its defense design only seeks to provide confusion between
two classes. In addition, Var-CNN attains 95% Top-2 accuracy
against WTF-PAD. This Top-2 accuracy of Mockingbird indi-
cates a notably lower risk of de-anonymization for Tor users
than WTF-PAD or W-T.

In addition to Top-2, we analyzed the Top-10 accuracy
of DF against Mockingbird. Figure 10 shows that Mocking-
bird can limit the Top-10 accuracies of full-duplex (FD) data
to 87% and 92% for Case I and Case II, respectively. For
half-duplex (HD), Top-10 accuracies are 90% and 88% for
Case I and Case II. Overall, the worst-case Top-10 accuracy
is about the same as the Top-2 accuracy against WTF-PAD,
while the worst-case Top-10 accuracy is significantly better
than the Top-2 accuracy for W-T.

F. Intersection Attacks

In this section, we evaluate the effectiveness of Mocking-
bird in a scenario in which the adversary assumes that the user
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TABLE IV

Black-Box. AWF CNN AS DETECTOR. EVALUATION OF Mockingbird AGAINST DF, VAR-CNN, CUMUL, k-FP, AND k-NN ATTACKS & COMPARISON
AGAINST WTF-PAD AND W-T DEFENSES. BWO: BANDWIDTH OVERHEAD, FD: FULL-DUPLEX, HD: HALF-DUPLEX

is going to the same site regularly (e.g. every day), and that
the adversary is in a position to monitor the user’s connection
over multiple visits. Both of these assumptions are stronger
than in a typical WF attack, but they are common in the
literature on attacking anonymity systems, such as predecessor
attacks [40], [41] and statistical disclosure attacks [42], [43].
In this setting, the attacker can leverage weaker information
such as top-10 classification results to eventually deanonymize
a user who uses Tor to visit the same site every day.

While more sophisticated statistical methods could be
adopted [42], [43], we have limited data for this purpose
and instead use a simple intersection attack to shed light on
the information available to the attacker. In an intersection
attack, the adversary examines the top-k results of a WF attack
applied to each of the user’s Tor connections. Treating each
result as a set of k sites, he takes the intersection of the sets
to eliminate sites that do not appear every day. If the results
consistently identify a single site as being in the top-k results,
then one may speculate that this site is in fact where the user
is going online using Tor every day.

If the WF defense is very consistent, in that the same k
sites are in the top-k results every day, then this kind of
intersection attack will not reduce the security of the defense
over time. In that sense, W-T provides an assurance that the
top-2 accuracy holds for this stronger attack model.

For Mockingbird, however, there is no direct assurance.
We thus test the intersection attack over a period of five rounds
(i.e. five days). We model multiple rounds by randomly select-
ing a set of test instances with the same label from our dataset.
For each round, we compute the top-10 predicted labels (T10)
and take the intersection of that set with the intersected labels
(Lint ) computed in the previous round. Mathematically, this
attack process can be expressed as ∇Ln

int = T n
10 ∩ Ln−1

int for
each attack round n > 1.

The metrics we use for evaluating Mockingbird in this
scenario are: i) absolute success, ii) absolute failure, and iii)
mean intersection. After five rounds, if Lint consists of only
the correct class, we call this an absolute success. Absolute
failure is the case where Lint is empty, or the correct class
is not in Lint . Finally, for cases where Lint contains two or
more classes including the correct class, we take the average
size of Lint as the mean intersection.

We use the tuned DF model for Mockingbird FD data and
the default DF model for Mockingbird HD data for these

TABLE V

INTERSECTION ATTACK. EVALUATION OF Mockingbird AGAINST AN

INTERSECTION ATTACK OVER FIVE ROUNDS. FD:

FULL-DUPLEX, HD: HALF-DUPLEX

experiments. The results are shown in Table V. Absolute
successes for FD are 27% and 36% for case I and case II,
respectively; they are below 20% for both HD cases. The
absolute failure rates are slightly above 50% for FD case I
and both HD cases, though just 20% for FD case II. Mean
intersections for FD are 2.86 and 2.60 for case I and case II,
respectively, and 4.12 for both HD cases.

From this, we see that the intersection attack is only
moderately helpful for the attacker against Mockingbird. Even
when the attacker can assume that the user visits the same site
regularly, the top-10 labels do not include the real site in a
significant fraction of cases. Further, there are often multiple
sites in the intersection set. Thus, while Mockingbird does
not provide assurance against attacks over multiple rounds
of observation by a determined attacker, it is also not highly
vulnerable to such an attack.

G. Information Leakage Analysis

Recent works have argued that classification accuracy is not
a complete metric to evaluate the objective efficacy of a WF
defense [20], [44]. We thus adopted the WeFDE information
leakage estimation technique [20] to evaluate Mockingbird.
WeFDE allows us to determine how many bits of information
each feature leaks for a given defense. The authors of the
WeFDE paper made their code available to us; for speed
and memory requirements, we use the re-implemented version
of the code from Rahman et al. [6]. We perform informa-
tion leakage analysis on undefended full-duplex traffic and
defended traffic for 3043 manually defined features spread
across 14 categories. The defenses we examine are WTF-PAD,
W-T, and the full-duplex Case I variant of Mockingbird. The
leakage for each feature and defense is shown in Figure 11.
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Fig. 11. Individual feature information leakage.

Our Timing and Pkt. per Second categories do not include
W-T or Mockingbird measurements, as the simulations for
these defenses are unable to produce accurate timestamp
estimations.

In general, we find that the information leakage of Mock-
ingbird to be comparable to the other defenses. We find that
any given feature leaks at most 1.9 bits of information in
Mockingbird. W-T has similar maximum leakage, with at most
2.2 bits per feature, while WTF-PAD leaks at most 2.6 bits.
The maximum amount of leakage seen for the undefended
traffic was 3.4 bits, nearly twice that of Mockingbird. Mock-
ingbird seems to be most vulnerable to the N-gram class of
features, which is not surprising, as these features seem to be
effective for all traffic defenses we examined. On the other
hand, it is quite effective against packet count features, which
was previously the most significant class of features for the
undefended traffic and also useful against W-T. Additionally,
Mockingbird shows notable improvements over W-T in the
Transposition, First 30, Last 30, and Burst features, while W-T
is better than Mockingbird in the Pkt. Distribution feature.

Overall, the results of our information leakage analysis
are largely consistent with what we see in our accuracy
measurements.

VII. DISCUSSION

A. Comparison

Mockingbird has significant advantages over the state-of-
the-art defenses. Compared to WTF-PAD, the Top-1 accura-
cies of DF and Var-CNN are at least 28% lower, effectively
tripling the error rate for the attacker. Compared to W-T,
the Top-1 accuracies of DF and Var-CNN are relatively higher,
but the Top-2 accuracies are at least 27% and 22% lower,
respectively. We believe that the Top-2 accuracy of 97% for
W-T should be considered unacceptable given the costs of
deploying and running the defense.

One question that our findings raise is Why does Mock-
ingbird perform so well in Top-k accuracy? We hypothesize
that the random selection of targets during the search for an
adversarial example is helping to create unpredictable patterns
that not only move away from the original site class but
move towards a number of different possible classes. W-T
is explicitly designed to provide confusion only among a
limited number of sites, two by default. WTF-PAD has random
patterns, but these may only lead to confusion among sites
that are already similar. Mockingbird can find new sites that
confuse the attacker.

Note that our black-box models assume that we use a
detector model (AWF) that is weaker than state-of-the-art
models (DF and Var-CNN). Employing a more powerful
detector model could thus have the potential to make Mock-
ingbird robust against even more powerful models that may
be developed in the future.

Unlike W-T, Mockingbird can be deployed with full-duplex
communication and thus lower latency overhead [15]. Finally,
Mockingbird’s bandwidth overhead in full-duplex mode is
modestly better than both of these defenses.

B. Implementation & Deployment

To deploy Mockingbird in the real world, it is necessary to
address several outstanding issues.

1) Live Trace Generation: We have yet to find a solution
that allows for live packet-by-packet generation of adver-
sarial traces. Consequently, Mockingbird requires that the
full traffic burst sequence be known before generating an
associated adversarial example. This requirement is also in the
Walkie-Talkie defense [15], along with several more expensive
defenses. It means that the defense must maintain a database of
relatively recent reference burst sequences for sites of interest.
The responsibility for gathering and maintaining this data-
base would most appropriately be given to the Tor network.
In particular, special directory servers could be deployed to
maintain the database and distribute fresh reference sequences
periodically to clients. The servers could also be used to
distribute pre-trained detector models to clients. The clients
can then use this data to generate adversarial traces locally
before each site visit.
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Fig. 12. Time to generate adversarial traces in Mockingbird.

Research on adversarial patches shows that adversarial
examples can be generated that are agnostic to a particular
target distribution and yet cause the source class to be misclas-
sified by the model [45], [46]. We leave investigating applying
this idea to network traffic traces as potential future work.

2) Padding Mechanism: Padding mechanisms must be
designed so they can manipulate a trace sequence to match an
adversarial sequence. To address this problem, burst molding
must be performed by both the client and bridge, similar to
that of the W-T defense [15]. Burst molding is difficult to
achieve in a live setting, as padding must be added to the ends
of bursts, which are difficult to reliably identify. To address
this, we propose that a burst molding mechanism hold packets
in a queue for each burst. The burst of real packets is
forwarded normally until no additional packets are received for
transmission. After a timeout is triggered, the queue is dumped
onto the network. The size of the next burst can be easily
communicated from the client to the bridge by embedding this
information in the dummy packets of the prior burst. In this
way, bursts can be easily molded to their appropriate size at
the cost of a small additional delay. We leave the engineering
challenge of setting the timeout for minimal added delay to
future work.

3) Computational Requirements: The adversarial trace gen-
eration process currently requires hundreds of iterations of
perturbing the reference trace and checking the resulting trace
against the detector. For Mockingbird to be deployable, the full
generation process must take at most a few seconds before
each visit. We can see the generation time of FD and HD
data by Mockingbird from Figure 12. For most of the sites,
Mockingbird can generate the trace in around 0.5 second.
Some sites in HD data, however, take up to 3 seconds.

As previously noted, significant computational resources
(e.g. a dedicated GPU device) are currently necessary to
generate the trace within this time limitation. Fortunately, there
are possible solutions to this problem.

First, to save computation on the first visit to a site, we could
relax the bandwidth constraint and enable the client to select
a significantly different traffic pattern from the original with
a single step. For sites that the user has visited previously,
it would be possible to compute additional trace patterns in
the background and save them for future use.

Second, works in other domains have explored techniques
that allow models to be run efficiently by low-resource
entities such as mobile devices. Techniques such as model

pruning [47], [48] and data quantization [49], [50] have been
shown to provide significant speedups in resource-constrained
environments without requiring extensive changes to the
underlying model. In particular, Yu et al. [48] demonstrate
network quantization can achieve greater than 100% speedup
with only 2% accuracy degredation on a MobileNet classifier.
Similarly, Jacob et al. [50] achieved up to a 67% reduction in
model computations using their parameter pruning technique
on an AlexNet classifier. Additionally, techniques such as
knowledge distillation [51] can be used to train new, more
efficient student models with minimal reductions in accuracy.
Application of these techniques may achieve speedups in the
range of 100-300% for our detector model.

Finally, recent research by Chen et al. [52] proposes a
Sub-LInear Deep learning Engine (SLIDE) which enable
a deep-learning model to run in a CPU even faster than a
GPU, indicating that it is possible to deploy Mockingbird in
a realistic setting without requiring a dedicated GPU.

We leave further investigation of these techniques to future
work.

C. Server-Side Defense

Cherubin et al. [27] proposed to apply website fingerprinting
defenses at the application layer, which is especially bene-
ficial to onion services that are accessed only through Tor.
A server-side application of Mockingbird could be an effective
and practical way to defend a site from attacks. It would
involve the website operator running a tool to examine their
site trace from Tor, running Mockingbird to generate a set
of effective traces, and then adding dummy web objects and
padding existing web objects to specific sizes (following the
techniques of Cherubin et al. [27]) to modify the network trace
as needed. A web server can generate traces as needed during
down times. Also, depending on the threat model of the site,
it may only need to create a new trace periodically, such as
once per day or per hour. At that rate of change, the attacker
would need to download a new set of traces very frequently,
increasing the attack cost and potentially making the attack
less stealthy.

VIII. CONCLUSION

We propose Mockingbird, a WF defense that offers better
protection and lower bandwidth overhead than WTF-PAD
and Walkie-Talkie, the previous state-of-the-art lightweight
defenses. Mockingbird uses a novel mechanism to create
adversarial traces that are robust even against adversarial train-
ing. It drops the Top-1 accuracy of the best attack from over
98% to at most 62% and cuts the Top-2 accuracy to at most
72%, which is much better than the Top-2 accuracies against
WTF-PAD and Walkie-Talkie (95% and 97%, respectively).
Furthermore, Mockingbird’s full-duplex bandwidth overhead
is 58%, which is lower than either of the prior defenses. The
results of information leakage analysis are in line with our
previous conclusions when evaluating raw accuracy metrics.
We emphasize that our experiments are conducted in the
closed-world setting, where the attacker knows that the Tor
client is assumed to visit one of the monitored sites. In a

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on July 29,2021 at 20:59:04 UTC from IEEE Xplore.  Restrictions apply. 



1608 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

more realistic open-world setting, where the client could visit
any site on the Web, 58% accuracy is very likely to lead to
many false positives for the attacker.

Although Mockingbird has implementation challenges that
must be addressed before it could be practically deployed in
Tor, it shows the significant potential of an approach inspired
by adversarial examples. Furthermore, it may be possible
to leverage Mockingbird for server-side defense in the near
future.

Resources: The code and datasets of this paper are available
at: https://github.com/msrocean/mockingbird/.
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