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A Control Barrier Perspective on Episodic
Learning via Projection-to-State Safety

Andrew J. Taylor
Yisong Yue

Abstract—In this letter we seek to quantify the abil-
ity of learning to improve safety guarantees endowed by
Control Barrier Functions (CBFs). In particular, we investi-
gate how model uncertainty in the time derivative of a CBF
can be reduced via learning, and how this leads to stronger
statements on the safe behavior of a system. To this end,
we build upon the idea of Input-to-State Safety (ISSf) to
define Projection-to-State Safety (PSSf), which character-
izes degradation in safety in terms of a projected distur-
bance. This enables the direct quantification of both how
learning can improve safety guarantees, and how bounds
on learning error translate to bounds on degradation in
safety. We demonstrate that a practical episodic learning
approach can use PSSf to reduce uncertainty and improve
safety guarantees in simulation and experimentally.

Index Terms—NMachine learning, Lyapunov methods,
uncertain systems.

. INTRODUCTION

NSURING safety is of significant importance in
the design of many modern control systems, from
autonomous driving to industrial robotics. In practice, the
models used in the control design process are imperfect, with
model uncertainty arising due to parametric error and unmod-
eled dynamics. This uncertainty can cause the controller to
render the system unsafe. As such, it is necessary to quantify
how the desired safety properties degrade with uncertainty.
Control Barrier Functions (CBFs) have become increasingly
popular [2], [15], [22] as a tool for synthesizing controllers
that provide safety via set invariance [5]. Safety guarantees
endowed by a controller synthesized via CBFs rely on an
accurate model of a system’s dynamics, and may degrade
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in the presence of model uncertainty. The recently proposed
definition of Input-to-State Safety (ISSf) provides a tool for
quantifying the impact on safety guarantees of such uncer-
tainty or disturbances in the dynamics [13] by describing
changes in the set kept invariant.

Due to its flexibility, it is increasingly popular to incorporate
learning into safe controller synthesis [7], [8], [16], [23]. Many
of these approaches seek to provide statistical guarantees on
the safety via assumptions made on learning performance. In
practice however, limitations on learning performance arise
due to factors such as covariate shift [6], [14], limitations on
model capacity, and optimization error. Thus, it is critical to
understand the relationship between learning error and what
safety guarantees can be ensured.

In this letter, we study how introducing learning models
into safe controller synthesis done via CBFs can improve
safety guarantees, and what safety guarantees can be made
in the presence of learning error. In particular, we consider
the episodic learning approach proposed in [21], with learning
done directly on the time derivative of a CBF. We integrate this
approach with Input-to-State Safety to show how learning can
lead to improved safety guarantees and provide a relationship
between learning error and degradation of safety guarantees.

The methods in this letter play a distinct role in the context
of safe control in the presence of uncertainty. Unlike previous
work using learning with Control Lyapunov Functions (CLFs)
for stability [19], [20], CBFs are less conservative as they
endow safety. This allows them to augment other potentially
unsafe controller designs pursuing specific objectives and ren-
der them safe [10]. Additionally, these learning methods are
complementary to existing methods for CBF synthesis [18],
allowing them to quantify the impact of uncertainty on the
product of these methods. Adaptive methods for safe control
are restricted to structured, parametric uncertainty [4], but can
be integrated with the results of this letter to understand how
unstructured uncertainty impacts the safety of the system.

We make two main contributions in this letter. First, inspired
by the idea of Projection-to-State Stability proposed in [19],
we formulate general definitions of projections and projection
compatible functions. Care must be taken to ensure these def-
initions preserve important topological properties for safety
such as safe set membership. These definitions not only cap-
ture the definitions established in [19] as a special case, but
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allow us to define the notion of Projection-to-State Safety
(PSSf), which is a variant of the Input-to-State Safety prop-
erty. Like ISSf, PSSf provides a tool for characterizing the
degradation of safety in the presence of disturbances. Unlike
ISSt, PSSt considers disturbances in a projected environment,
allowing stronger guarantees on safe behavior. Second, we
demonstrate the utility of PSSf by characterizing how data-
driven learning models can improve safety guarantees, and
how learning error leads to degradation in safety guarantees.

[1. PRELIMINARIES

This section provides a review of Control Barrier Functions
(CBFs) and Input-to-State Safe Control Barrier Functions
(ISSt-CBFs). These tools will be used in Section III to define
the notion of Projection-to-State Safety.

Consider the nonlinear control affine system given by:

x = f(x) + gx)u, (D

where x e R", u € R”, and f: R” — R" and g : R" — R"*""
are locally Lipschitz continuous on R”". Given a Lipschitz
continuous state-feedback controller k : R* — R™, the
closed-loop system dynamics are:

x = fa(x) = f(x) + gOkXx). 2

The assumption on local Lipschitz continuity of f, g, and k
implies that f; is locally Lipschitz continuous. Thus for any
initial condition x¢ := x(0) € R” there exists a time interval
I(xg) = [0, tmax) such that x(#) is the unique solution to (2) on
1(x) [17]. In the case that f is forward complete, f;yax = 0.

A continuous function « : [0, a) — Ry, with a > 0, is said
to belong to class K (e € K) if «(0) = 0 and « is strictly
monotonically increasing. If ¢ = 0o and lim,_, o a(r) = o0,
then « is said to belong to class Ko (¢ € Koo). A continuous
function « : (—b,a) — R, with a,b > 0, is said to belong
to extended class K (a € K.) if «(0) = 0 and « is strictly
monotonically increasing. If a,b = oo, lim,_. a(r) = 00,
and lim,_, _o a(r) = —o00, then « is said to belong to extended
class Koo (@ € Koo.e)

The notion of safety that we consider is formalized by spec-
ifying a safe set in the state space that the system must remain
in to be considered safe. In particular, consider a set C C R"
defined as the O-superlevel set of a continuously differentiable
function & : R" — R, yielding:

= {XGR" :h(X)EO}, 3)
IC £ {x e R" : h(x) =0}, 4)
Int(C) £ {x e R" : h(x) > 0}. ®)

We assume that C is nonempty and has no isolated points,
that is, Int(C) # ¥ and Int(C) = C. We refer to C as the safe
set. This construction motivates the following definitions of
forward invariant and safety:

Definition 1 (Forward Invariant & Safety): A set C C R" is
Sforward invariant if for every x¢ € C, the solution x(7) to (2)
satisfies x(7) € C for all ¢t € I(xg). The system (2) is safe on
the set C if the set C is forward invariant.

Certifying the safety of the closed-loop system (2) with
respect to a set C may be impossible if the controller k

was not chosen to enforce the safety of C. Control Barrier
Functions can serve as a synthesis tool for attaining the
forward invariance, and thus the safety of a set:

Definition 2 (Control Barrier Function (CBF), [3]): Let
C C R" be the 0-superlevel set of a continuously differentiable
function & : R" — R with 0 a regular value. The function # is
a Control Barrier Function (CBF) for (1) on C if there exists
o € Koo, such that for all x € R™:

sup h(x,u) £ %(X)(f(X) +g®u) > —a(h(x)).  (6)
e 4 ox

We note that this definition can be relaxed such that the
inequality only holds for all x € E where E is an open set
satisfying C € E C R". Given a CBF # for (1) and a corre-
sponding « € K ., we can consider the point-wise set of all
control values that satisfy (6):

Kepf(x) = {u e R" | h(x,u) > —a(h(x)) }.

One of the main results in [1], [24] relates controllers taking
values in K¢pe(X) to the safety of (1) on C.

Theorem 1: Given a set C C R” defined as the 0-superlevel
set of a continuously differentiable function 4 : R" — R, if &
is a CBF for (1) on C, then any Lipschitz continuous controller
k : R" — R™, such that k(x) € Kcpe(x) for all x € R”, renders
the system (1) safe with respect to the set C.

Assuming g—ﬁ and « are Lipschitz continuous, the follow-
ing optimization-based controller is Lipschitz continuous and
enforces k(x) € Kcpe(x) for all x € R” [1], [11]:

1
k(x) = argmin 5||u||%

ucR™

oh
s.t. 8—X(x)(f(x) +g(x)u) > —a(h(x))
(CBF-QP)

To accommodate disturbances or model uncertainties, we
consider a disturbance space D € R” and a disturbed system:

x =f(x) + gx)u+d. (7

with d € D. The disturbance may be time-varying, state
and/or input dependent. Viewing d as a signal, d(7), we
assume it is essentially bounded in time, and define ||d|co £
esssup,~g [ld(#)||. A Lipschitz continuous state-feedback con-
troller k yields the closed-loop dynamics:

x = fq(x, d) £ f(x) + gX)k(x) + d. (8)

In the presence of disturbances, a controller k synthesized to
render the set C safe for the undisturbed dynamics (2) may fail
to render C safe for the disturbed dynamics (8). To quantify
how safety degrades, we consider input-to-state safety [13].

Definition 3 (Input-to-State Safety (1SSf)): The closed-loop
system (8) is input-to-state safe (ISSf) on a set C C R" with
respect to disturbances d if there exists d > 0 and y € Koo
such that the set Cq D C defined as:

Ca2 {xeR": 1) +y(ldllo) 20}, (9)
0Ca 2 {x € R": h(x) + y(ldllo) =0}, (10)
Int(Ca) £ {x € R" : h(x®) + y(ldlloo) > 0}, (11)

is forward invariant for all d satisfying ||d|/s < d.
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We refer to C as an input-to-state safe set (ISSf set) if such
a set Cq exists. This definition implies that though the set C
may not be safe, a larger set Cq, depending on d, is safe. C
can be certified as an ISSf set for the closed-loop system (8)
with the following definition:

Definition 4 (Input-to-State Safe Barrier Function (ISSf-
BF)): Let C C R”" be the O-superlevel set of a continuously
differentiable function i : R" — R with 0 a regular value.
The function & : R" — R is an Input-to-State Safe Barrier
Function (ISSf-BF) for (8) on C if there exists d > O,
o € Kooe, and ¢ € Ko such that:

oh
&(X)(f(X) +gkX) +d) = —a(h(x)) —(Idl), (12)

for all x € R” and d € R” such that ||d| < d.

As shown in [13], the existence of an ISSf-BF for (8) on
C implies C is an ISSf set. Similarly to the undisturbed case,
we can introduce the notion of a Control Barrier Function for
synthesizing controllers that ensure input-to-state safety.

Definition 5 (ISSf Control Barrier Function (ISSf-CBF)):
Let C C R” be the O-superlevel set of a continuously dif-
ferentiable function 7 : R” — R with 0 a regular value. The
function 4 is an Input-to-State Safe Control Barrier Function
(ISSf-CBF) for (7) on C if there exists d > 0, « € Koo,e, and
t € Koo such that:

[I>

oh

I x)(f(x) + g(x)u +d)
X

—a(h(x)) — «(lld]]),

for all x € R” and d € R” satisfying ||d| < d.

We note that this definition is a more general definition of
an ISSf-CBF compared to [13], where disturbances enter the
system with the inputs. We define the pointwise set:

sup h(x, u,d)

ucR™

\

13)

Kigst(x) 2 {u e R" | h(x,u,d) > —a(h(x)) — c(ld]) },

noting that for a fixed input the inequality must hold for all
d € R” satisfying ||d|| < d. Given this result, we have the
following theorem.

Theorem 2: Given a set C C R” defined as the 0-superlevel
set of a continuously differentiable function & : R" — R, if
h is an ISSf-CBF for (7) on C, then any Lipschitz continuous
controller k : R" — R™, such that k(x) € Kjs(x) for all
x € R", renders the set C ISSf for (8).

This theorem follows from the fact that under the controller

k, i serves an ISSf-BF for (8) on C.

[1l. PROJECTION-TO-STATE SAFETY

Input-to-State Safety describes how the safe set C changes
in terms of the disturbance as it appears in the state dynamics
(see Definition 3 in Section II). This description does not per-
mit analysis of how safety degrades when the disturbance is
more easily characterized in a Barrier Function derivative. This
limitation motivates Projection-to-State Safety (PSSf), which
characterizes safety in terms of a projected disturbance.

We refer to a continuously differentiable function IT : R" —
R¥ as a projection, and denote y = II(x). Considering the

system governed by (7), the associated projected system is
governed by the dynamics:

y = Dn®)(f(x) + gx)u) + D (x)d,

where Dy : R" — R¥*" denotes the Jacobian of II. As will
be seen when quantifying the impact of model uncertainty in
Section IV, if the disturbance can be partially characterized
in terms of the state and input, we may rewrite the projected
dynamics as:

(14)

y= y(X) + gy(xu + g,

where fy : R” — RF and g, : R" — R are Lipschitz
continuous on R”, and § € R¥ is referred to as the projected
disturbance. We note it is not explicitly necessary that the
relationships fy(x) = D (x)f(x), gy(x) = Dp(x)g(x), and § =
Dp (x)d hold, but are one possible relationship between (14)
and (15). For the following results, we assume that § is essen-
tially bounded in time and define ||§]joc = esssup,- [|8(2)]|.
We relate behavior of the projected system to the original
system via the following definition.

Definition 6 (Projection-to-State Safety): The closed-loop
system (8) is projection-to-state safe (PSSf) on C with respect
to the projection IT and projected disturbances § if there exists
8 >0 and y € Ko such that the set Cs O C,

15)

Cs 2 {xeR": h(x) +y(l8llc) =0},  (16)
9Cs 2 {x e R" : h(x) + ¥ (I8lloc) =0}, (17)
Int(Cs) £ {x € R" : h(x) + y(I8]lc) > 0}, (18)

is forward invariant for all & satisfying [|8]|o0 < 6.

In contrast to the definition of ISSf which enlarges the safe
set in terms of the disturbance d, PSSf quantifies how the safe
set enlarges in terms of the projected disturbance 8. To utilize
safety guarantees implied by ISSf-CBFs for analyzing PSSf
behavior, we require the following definition:

Definition 7 (Compatible  Projection): A function
hy : RF — R is said to be a compatible projection for
the function & : R* — R with respect to the projection
I : R" — RF if there exists 0,0 € K such that for all
x e R*%:

o (h(x)) < hn(I1(x)) < 7 (h(x)). 19)

Remark 1: If h and hp are norms on R” and R, respec-
tively, then IT reduces to a dynamic projection as introduced
in [19]. Whereas dynamic projections preserve the topological
notion of a point between the state and projected spaces, com-
patible projections can preserve topological structures such as
sets.

In the context of safety, if a set C C R” is defined via a
continuously differentiable function /4 as in (3)-(5), a compati-
ble projection Ay for the function # with respect to II defines
a corresponding set Cp C R¥:

Cn 2 |yeR i =0}, (20)
aCn 2 {y e R*: hn(y) = 0}, 1)
Int(Cry) 2 {y e R* - hn(y) > o}. 22)

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on September 23,2020 at 20:39:31 UTC from IEEE Xplore. Restrictions apply.



1022

IEEE CONTROL SYSTEMS LETTERS, VOL. 5, NO. 3, JULY 2021

The inequalities in (19) preserve the notion of what states are
considered safe between the state space and projected space,
such that x € C =— II(x) € Cq. The following theorem
allows us to extend ISSf properties of the projected system on
Cn to PSSf properties of the original system on C.

Theorem 3: Let C C R" be the O-superlevel set of a con-
tinuously differentiable function 4 : R” — R with 0 a regular
value. The disturbed system (7) can be rendered PSSf on C
with respect to the projection II and projected disturbances &
if there exists a compatible projection hp for i with respect
to IT and Lipschitz continuous controller k : R” — R™ such
that hp is an ISSf-CBF for the projected dynamics (15) on
Cn and K(x) € Kijssr(X) with:

hn(M(x), w) > }
—a(hn(TL(x))) — «(I8]) |’

Proof: As hy is an ISSf-CBF for (15) on Cyy and the
state-feedback controller satisfies k(x) € Kijsf(x), Theorem 2
implies that the controller k renders the set Cy input-to-state
safe for all § satisfying [|8]|oc < 8. In particular, there exists
y € K& such that the set:

Cns 2 |y € R* | n) + v (18l10) = 0},

is safe. Let xo € R” be such that yo = II(x0) € Crs. With
x(0) = xq (implying y(0) = yo), safety of Cp s implies:

hn (I(x(®))) + v ([18]loc) = 0,

for t € I(xp). As hpy is a compatible projection for 4 with
respect to II, we have:

o (h(x(1)) + v (II8llec) = O,

Multiplying by % and using that o € K ¢, it follows that:

Kisst(X) £ {ll e R"

(23)
(24)

(25)

1 1
7! <56<h(x(t>>) + 5y(||6||oo>> > 0, (26)

The triangle inequality for class /C functions [12] implies:

hx(®) +7 (v (I18lle)) = 0,
——— ——_—
v (I18]l00)

for all ¢+ € I(xg), implying the set Cs defined as in (16)-(18)
using y’ is forward invariant, and hence safe. Thus the
closed-loop system (7) is PSSf on C with respect to IT and
corresponding projected disturbances 8. |

Corollary 1: Let C C R" be the O-superlevel set of a con-
tinuously differentiable function 4 : R” — R with 0 a regular
value. Viewing h as a projection such that y = h(x), let the
projected dynamics be given by:

27)

y=H& +gXu+s (28)

with projected disturbances § € R. If there exists a Lipschitz
continuous feedback controller k : R” — R™ such that:

HX) + g k) = —a(y),

and there exists § > 0 satisfying |8| < &, then the disturbed
system (7) can be rendered PSSf on C with respect to the
projection 4 and projected disturbances §.

(29)

Proof: We first note that the identity map I : R — R is a

compatible projection for h:
h(x) < I(h(x)) < h(x) (30)

with o(r) = o (r) = r. The inequality in (29) implies the
identity map is an ISSf-CBF for the projected dynamics (28):

sup 1(x,u,8) > I(x,k(x),8) > —a(I(y)) — 18],

ucR™

€1V

for all x € R” and § € R satisfying |§] < 8. Therefore the
system (7) can be rendered PSSf on C with respect to the
projection /& and projected disturbances § by Theorem 3. ®

IV. INTEGRATION WITH LEARNING

In this section we consider a structured form of uncertainty
in affine control systems. We discuss the impact of this uncer-
tainty on the PSSf behavior of the system, and demonstrate
how learning can be used to mitigate said impact on safety.

In practice, the system dynamics (1) are not known dur-
ing control design due to parametric error and unmodeled
dynamics. Instead, a nominal model of the system is utilized:

X =1x) + g, (32)

where T : R” — R" and 2 R" — R are assumed to be
Lipschitz continuous on R". By adding and subtracting (32)
to (1), the dynamics of the system can be expressed as:

d
x = f(x) + 8x)u + f(x) — f(x) + (g(x) — X)) u,
b(x)

(33)

AX)

where the unknown disturbance d = b(x) + A(xX)u explicitly
depends on the state and input to the system. If the function
h : R" — R is a CBF for the nominal model (32) on C, the
uncertainty directly manifests in the time derivative of h:

Z(X, u)

. oh
h(x,u) = a—X(X)(f(X) +gxu)

+ %(x)b(x) + %(X)A(X) u. (34)
0x ox

b(x) ax)T

Given that 4 is a CBF for (32) on C, let k : R" — R™ be a
Lipschitz continuous state-feedback controller such that:

sup Z(x, u) > Z(x, k(x)) > —a(h(x)). (35)
ueR”
Letting the projected disturbance be defined as:
§ = b(x) +ax) "k(x), (36)

Corollary 1 implies that if there exists a § > 0 such that
|b(x)+a(x) "k(x)| < § for all x € R”, the uncertain system (1)
can be rendered PSSf on C with respect to the projection &
and projected disturbances §.

__Asin [21], we may wish to reduce the error between h and

h by utilizing data-driven models to estimate the functions
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Simulation results with Segway platform demonstrating improvement in PSSf behavior. (Left) Robotic Segway platform model used in

simulation. (Center) Absolute value of the projected disturbance § along the trajectory without learning models ((36), red) and with learning models
((38), blue), with learning reducing the worse case projected disturbance (§/«). (Right) The value of the barrier satisfies the corresponding worst
case lower bound with and without learning being used to compute §. The worst case lower bound is raised with learning (the blue dashed line lies

above the red dashed line).

and a. In particular, given Lipschitz continuous estimators

b
:R" > Randa: R" — R™, (34) can be reformulated as:

;:l\(X,ll)

hx, w) = %(x) Fx) + 800w +5x) +30) Tu

oh -~ <8h . T)
+ —xX)bx) —b(x)+ | —xX)A(x) —a(x) |u.
0x 0x

b(x) ax)T

(37

Under the assumption that the introduction of the estimators
does not violate the CBF condition, such that there exists a
Lipschitz state-feedback controller k satisfying (35) with h
defined as in (37), we define the projected disturbance as:

8 = b(x) + a(x) "k(x) (38)

As before, if there exists 8 > 0 such that |b(x) +a(x) 'k(x)| <
§ for all x € R”, Corollary 1 can be used to certify (1)
as PSSf on C with respect to the projection & and projected
disturbances §. This statement is formalized as follows.

Theorem 4: Let C C R" be the O-superlevel set of a con-
tinuously differentiable function 4 : R* — R with 0 a regular
value, and let 7 : R" — R be defined as in (34) (or as
in (37)). If there exists a Lipschitz continuous state-feedback
controller k : R” — R™ satisfying (35), and § > 0 such that
the corresponding projected disturbance defined as in (36) (or
as in (38)) satisfies |8] < 8, then (7) is PSSf on C with respect
to the projection 4 and projected disturbances §.

We note that this theorem captures both the case without
estimators (using definitions (34) and (36)) and the case with
estimators (using definitions (37) and (38)). In the presence
of estimators, this theorem defines a quantitative relationship
between the prediction error of the estimators, lh(x, k(X)) —
iz(x, k(x))| = |§|, and the degradation of the safety of the
closed-loop system. As the prediction error is reduced (via
additional training data or more complex learning models),
the set kept safe more closely resembles C.

V. SIMULATION & EXPERIMENTAL VALIDATION

To demonstrate the ability of learning to improve safety
guarantees via Projection-to-State Safety, we deployed the

episodic learning framework with CBFs established in [21] on
a robotic Segway platform, seen in Figure | and 2, in simula-
tion and experimentally. The input to the system is specified as
torque about the wheels of the Segway. Each wheel is given the
same torque, constraining the system to the plane, and mak-
ing the states of interest the position, velocity, pitch angle, and
pitch angle rate. The dynamics for the system are given by the
unconstrained Euler-Lagrange equations.!

In both simulation and experiment a sequence of episodes
were ran to train estimators b and a, represented by 4-layer
neural networks with ReLu nonlinearities. In each episode the
Segway was set to track a desired trajectory in the pitch angle
space without violating a barrier function on a portion of its
state, using the controller (CBF-QP) and safety-critical con-
trol formulation in [10]. After the sequence of episodes, the
Segway was ran once more with a learning-informed con-
troller, and the projected disturbance & as defined in (36)
and (38) was computed. The worst case disturbance § was
found, and a lower bound on /4 for that trajectory was deter-
mined using the fact h < a ') = h > 0. In both
simulation and experiment, «(r) = kr with k£ > 0.

In simulation, the Segway was given a bound on its posi-
tion in space, constraining it to a one meter distance from
its starting location. The CBF was generated through the
backup controller method [9]. The value of the CBF is com-
puted at each time-step by integrating the system forward in
time under a backup control law. Sensitivity analysis along
the trajectory is used to compute the gradient of the CBF.
This simulation result highlights the ability of learning to
reduce worst case disturbances for complex CBFs that can-
not be expressed in closed-form. The simulation was done in
a Robot Operating System (ROS) based C++ environment sim-
ilar to [18]. The simulation environment accurately simulates
the physical system by adding input delay, sensor noise, and
state estimation. The code is identical to that on the robot for
the state estimator, controller, and CBF, apart from the ROS
functionality. Experimentally, a CBF was specified to limit the
pitch angle and pitch angle rate of the Segway to an ellipse
about the Segway’s equilibrium state. The desired pitch angle

I The simulation code (including an expression for the full system dynamics)
can be found at https://github.com/DrewSingletary/cyberpod_sim_ros.
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Fig. 2. Experimental results with Segway platform demonstrating improvement in PSSf behavior. (Left) Physical robotic Segway platform used in
experimentation. (Center) Absolute value of the projected disturbance § along the trajectory without learning models ((36), red) and with learning
models ((38), blue), with learning reducing the worse case projected disturbance (5/«). (Right) The value of the barrier satisfies the corresponding
worst case lower bound with and without learning being used to compute §. The worst case lower bound is raised with learning (the blue dashed

line lies above the red dashed line).

trajectory leads the Segway to tip quickly, leaving the safety
set in the absence of the CBF and safety-critical controller.

In both cases, we see that introducing learning estimators
into the computation of the projected disturbance decreases
the worse case disturbance (5 > §;). This leads to a greater
lower bound on 4, and thus a stronger guarantee on the PSSf
behavior of the system. We note that the conservative nature of
the lower bounds on % arise from the fact that the worst case
disturbance § along the trajectory is used. If the worst case
disturbance can be reduced (by data-aware control synthesis),
stronger guarantees on safety can be made.

V1. CONCLUSION

We presented a novel method for assessing the impact of
disturbances on safety in a project environment via Projection-
to-State Safety, and considered how it can be utilized with
learning to mitigate the impact of model uncertainty on safety.
We demonstrate the ability of learning to improve the guar-
antees endowed by PSSf in simulation and experimentally on
a Segway platform. Future work includes developing meth-
ods for quantifying the worst case projected disturbance and
synthesizing controllers that reduce the projected disturbance.
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