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Guaranteed Obstacle Avoidance for Multi-Robot
Operations With Limited Actuation: A Control
Barrier Function Approach

Yuxiao Chen

Abstract—This letter considers the problem of obsta-
cle avoidance for multiple robotic agents moving in an
environment with obstacles. A decentralized supervisory
controller is synthesized based on control barrier func-
tions (CBF) that guarantees obstacle avoidance with limited
actuation capability. The proposed method is applicable to
general nonlinear robot dynamics and is scalable to an arbi-
trary number of agents. Agent-to-agent communication is
not required, yet a simple broadcasting scheme improves
the performance of the algorithm. The key idea is based
on a control barrier function constructed with a backup
controller, and we show that by assuming other agents
respecting the same CBF condition, the supervisory control
algorithm can be implemented decentrally and guarantees
obstacle avoidance for all agents.

Index Terms—Robotics, decentralized

autonomous vehicles.

control,

I. INTRODUCTION

BSTACLE avoidance is one of the core requirements for

robotic applications. There exist a plethora of methods in
the literature, such as the artificial potential field [1] and cell
decomposition method [2]. When the robot is subject to both
kinetic and dynamic constraint such as nonholonomic dynamic
constraint and limited actuation, the problem is referred
to as kinodynamic motion planning. In this case, roadmap
methods such as probabilistic roadmaps (PRM) [3], [4] and
rapidly-exploring random tree (RRT) [5], [6], and optimization
based method such as spline optimization [7], [8] and model
predictive control [9], [10] are among the popular methods.
In addition, approaches based on reachability analysis and set
invariance such as the Hamilton Jacobi Isaac PDE [11] and
control barrier functions [12], [13] were proposed which are
capable of keeping the state within the safe set for all time,
thus guaranteeing obstacle avoidance. However, these methods
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usually suffer from poor scalability and cannot be applied to
high dimensional systems. For decentralized control structure,
guaranteeing safety is particularly hard due to the lack of
information [14].

Based on [15], we propose a CBF approach for multi-agent
obstacle avoidance that

o 1. can guarantee 100% obstacle avoidance under limited
actuation for popular robotic systems.

o 2. is computed with simple forward simulation and thus
is applicable to general nonlinear dynamics.

e 3. can be implemented completely decentrally for
multiple agents and scales to an arbitrary number of
agents.

The core idea is to equip each agent with one or multiple
backup strategies that bring the agent to an equilibrium point
and check whether the corresponding backup trajectory satis-
fies the safety constraint. In fact, we will show later in this
letter that all initial conditions whose corresponding backup
trajectories satisfy the safety constraint constitute a control
invariant set. Then by enforcing the CBF supervisory con-
troller, if the backup trajectory associated with the initial
condition satisfies the safety constraint, the state can be kept
within the safe set indefinitely. Furthermore, we show that
the CBF condition can be implemented decentrally with no
communication between agents and can scale to an arbi-
trary number of agents. Nonetheless, communication between
agents is helpful, especially in the case with multiple backup
strategies, and we propose a simple broadcast scheme that to
guarantee compatibility between agents.

The proposed approach bears some similarity to motion
primitives [16] as the backup trajectory can be viewed as a
simple motion primitive. However, the key difference is that
the agent almost never execute the backup strategy. Instead,
the backup strategy is used as a feasibility check to make sure
that an equilibrium point can be always be reached safely.

For the remainder of this letter, Section II reviews the basics
of control barrier functions and the backup strategy approach
for generating control barrier functions. Sections III and IV
present the main result, using control barrier functions with
a single or multiple backup strategies to achieve obstacle
avoidance for multi-robot systems. The simulation and exper-
imental results are presented in Section V and finally we draw
conclusions in Section VI.

Nomenclature: For the remainder of this letter, given a
control strategy m, fr = f(x, w(x)) denotes the closed loop
dynamics under 7. @ : R" x [0, 0o) denotes the flow map

2475-1456 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on September 23,2020 at 20:50:19 UTC from IEEE Xplore. Restrictions apply.



128

IEEE CONTROL SYSTEMS LETTERS, VOL. 5, NO. 1, JANUARY 2021

of fz, that is, @y, (xo, 7) is the state at time ¢ given the initial
state x(0) = xo and state evolution following x = f; (x). For a
fixed ¢, to simplify the notation, CI>/€;1 =&y (-, 1).

Il. PRELIMINARIES
A. Control Barrier Functions

Control barrier functions [17], [18] uses a supervisory con-
troller that keeps the system safe with minimum intervention.
Specifically, consider the dynamic system described as

x=f(x,u), xeR ueld CR", (1)

where f is assumed to be affine in u. Suppose there exists a
function # : R” — R that satisfies

Vxe X(),

Vxe Xd,

V x € {x|h(x) = 0},

h(x) >0
hix) <0
Jueldst. h+akh) =0, (2)

where Aj is the set of initial states and X is the danger set
that we want to keep the state away from. «(-) is a class-/C
function, i.e., a(-) is strictly increasing and satisfies «(0) = 0.
Then £ is called a control barrier function, and for any legacy
controller, the CBF controller is a supervisory controller that
enforces the state to stay inside {x|#(x) > 0} with the following
quadratic programming:

oll2
u* =argmin |u—u
ueld
s.t. Vh-f(x,u)+ah) >0, 3)

where 1 is the input of the legacy controller. To ensure that (3)
is always feasible when h(x) > 0, {x|h(x) > O} need to be a
control invariant set, which is defined as follows.

Definition 1: A set S is a control invariant set if there exists
a control law m : R" — U such that for all initial condition
x(0) € S, Vr >0, dD}H (x(0)) € S.

Depending on the dynamics, there exists numerous methods
to construct control invariant sets, such as polytopic opera-
tions [19], [20], linear programming [21], [22], and sum of
squares programming [23], [24]. In Section II-B we shall
generate a control invariant set from a backup strategy.

B. Control Barrier Function With Backup Controller

In this section, we review the backup strategy approach for
control invariant set generation [15]. The following problem
is considered. Given a dynamic system described by (1), the
following constraint is required to hold for all # > 0:

x|k (x) = 0},

where hC : R" — R is the function that defines the safe set C,
assumed to be smooth. Ideally, if a control invariant set S € C
is known, a control barrier function can be constructed and the
supervisory controller (3) guarantees that for any initial condi-
tion x(0) € S, the state will be kept within S, and thus within
C. However, such an & might be difficult to compute, espe-
cially when the state dimension is high and S is required to be
large. To resolve this problem, the backup strategy approach
was first discussed in [15] and [25] Suppose we obtain a small
initial control invariant set Sy = {x|h° (x) > 0} C C, where h°
is assumed to be smooth. This is a reasonable assumption since
it is often easier to obtain a small control invariant set, e.g., by

x(t) e C =

linearizing the dynamics. One extreme case is that any equi-
librium point of (1) inside C satisfies the requirement. Then,
for a given backup strategy 7:R"” — U/ and a fixed horizon T,
define

S = {(x|®f (x) € Sy AV €[0,T], ) (x) € C}, (4)

which is the set of all initial conditions from which the backup
strategy would bring the state to Sp at + = T while satisfying
the constraint Vz € [0, T, x(¢) € C. For the remainder of this
letter, t — CDt” (x) is denoted as the backup trajectory.

Since &y is a control invariant set, by Definition 1, there
exists a control law mo that keeps any state starting inside
Sp within Sp. Therefore, we fix 7|s, = mols,, i.e., any state
reaching Sp will be kept within Sp under 7. Then, S denotes
the initial condition that can reach Sy within [0, T'] (instead
of exactly at T') while satisfying the state constraint.

Lemma 1: S is a control invariant set and Sy € S C C.

Proof: Simply take the backup strategy 7 as the control law,
any state x(0) € S is kept within S. Then by Definition 1, S
is a control invariant set. Sy € S follows from the fact that Sy
is a control invariant set, therefore x € S - x € S. S CC
follows from the fact that x ¢ C — x ¢ S. |

Next, we show that a control barrier function can be
constructed from the control invariant set S.

Lemma 2: S is the 0-level set of the following function

ho) = min{ min A (@F ). A% (@ D). ()

Proof: First notice that by the continuity of the flow function
@, and the min function, & is continuous. For all x € S, by
definition, under the backup strategy m, the state evolution
<I>’ (x) would satisfy the constraint and reach Sy at time T,
therefore h(x) > 0. On the other hand, for all x ¢ S, under
the backup strategy 7, the state evolution either violates the
state constraint at some ¢, i.e., 3t € [0, T], hc(d>’ x)) <0, or

does not reach Sy within the horizon 7, i.e., hS(CD]Z ) <0,
indicating that h(x) < 0. Therefore, S = {x|h(x) > 0}. [ |

In order to use & as a control barrier function, the derivative
(or subderivative) of & is needed. For any ¢ € [0, T, the total
derivative of hc(CD’ (x)) is computed as

dhC (@' (x)) do! P!
fr C I C t Jx
—r  =Vh —= =Vh" (VD ,u) — )

o o (VO (x)f (x, u) 5 )
where V@} is the sensitivity matrix, i.e., the Jacobian of the
future state x(¢) following the closed loop dynamics f; with
respect to the current state. For a fixed dynamics f; and initial
condition x, denote the sensitivity matrix at time 7 as Oy r, (1) =
:Cb}”. Since CID}” x) = fotf,, (x(1))dz, by the chain rule we
ave

Orf, (0) =1, Qv p, (1) = Vi - Qu, (1), (©6)

which is an ordinary differential equation and can be solved
efficiently. For more details, see [26]. Similar procedure is
used to compute V(S o CDT) With the gradient computed, to
avoid the nondlfferentlablhty of the min function, the follow-
ing supervisory controller is used, which enforces a sufficient
condition of the CBF condition:

u* = arg min Hu —u H
ueld
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dhC (@', (x)) c
st Ve [0, T), ——F—(xu) +ah™ (P () =0,
dhS (®F (x))
I ) + (@] (1)) 2 0, (7)

Proposition 1: For all x € {x|h(x) > 0}, (7) is always fea-
sible and (7) implies h(x u) + a(h(x)) > 0. Moreover, h is a
control barrier function that satisfies

e Vx¢C,h(x) <0,

e Vxe{xlh(x) >0}, Fucl,

s.t. h(x u) + a(h(x)) > 0.

Proof: Note that @ {” describes how the state flow devi-
ates from the backup trajectory given the change of current
state, thus by definition, it vanlshes when taklng u = m(x).
Therefore, when i > 0, K¢ (CD’ x) =0, h (CDT x) = 0,
which implies that o (h€ C (x))) > 0 and a(hS (ch (x))) > 0.
Therefore, u = 7 (x) is a feasible solution to (7). Furthermore
by the definition of A and the properties of the min func-
tion, (7) implies h+ a(h) > 0. For the second part of
the proposition, the first property comes from the fact that
Vx ¢ C, h(x) < hc(tbj? (x)) < 0. The second property follows
from the feasibility of (7). [ |

[1l. MULTIAGENT OBSTACLE AVOIDANCE WITH CBFs

In this section, we show how the control barrier function
based on backup strategies can be applied to multi-agent obsta-
cle avoidance. We consider a multi-agent system consisting
of N agents with state xi, ..., xy, respectively. The N states
evolve with potentially heterogeneous dynamics:

X = filxi, i), x; € R, u; € U;. (8)

For the whole system, let x = [x],x],...,x}]T denote the
aggregated state and the dynamics for x is the following

X =f0cu) = [fitxr, u)? S Cov, un)T]T.

For agent i, let m; : R" — U; be its backup strategy and
let fr;(x) = fi(x;, mi(x)) be the closed loop dynamics under
7;. The overall backup strategy given my, 7o, ..., my is then
denoted as w, where u = 7 (x) = [m ()T, ..., an()T]T.

As introduced in Section II-B, the control barrier function
constructed from a backup strategy requires an invariant set Sp
to begin with. Although control invariant set can be difficult
to compute, one control invariant set is almost free to obtain
for most of the commonly seen robotic systems.

Definition 2: A point x;. € R" is a stable equilibrium point
for a given backup strategy 7 if f(x%, 7 (x%)) = 0 and x% is
stable in the sense of Lyapunov under f;.

We let X7 denote the set of all equilibrium points under
7. For example, if the backup strategy 7 stabilizes the steady
hovering maneuver of a drone, then any steady hovering state
is an equilibrium point under 7. Obviously, any subset of X’¢
is a control invariant set, and Sy is taken as X¢ NC.

Given a multi-agent system as described previously, if all
agents are controlled by a centralized controller, the CBF
scheme should work with any backup strategy m that result
in a nonempty Sp. However, as mentioned previously, central-
ized control is usually not realizable due to the communication
and scalability limitations. Therefore, the focus of this letter
is on a decentralized implementation of a CBF-based super-
visory controller. We assume that each agent can measure
the states of other agents but independently select the con-
trol input. For the proposed decentralized scheme to work, the
following assumption is needed.

Assumption 1: The state constraint C is pairwise decompos-
able, i.e.,

= {i°(x) = 0} = {(/\ K () = 0) A (J\ B (xi. x)) = 0)},
i#]

where hf: : R" — R is a constraint of only x;, hg RUEXRY —
R is a constraint of x; and x;.

This is a reasonable assumption since for static obstacles,
the obstacle avoidance constraint is on each agent; for agent-
to-agent collision avoidance, the constraint is defined pairwise.
Under Assumption 1, since Sp is taken as A N C, and the
equilibrium point is defined on the state of each agent, Sy is
also pairwise decomposable:

So = {h%(x) = 0} = {(/\h‘g(xl) > 0) A (/\ 15 (xi, %)) = 0)).
i#]

Next, we show how the CBF QP can be implemented in a
decentralized structure. In a decentralized setting, the backup
strategy for each agent is restricted to be a function that only
depends on the agent itself, i.e., ; only depends on x;. Under
Assumption 1, the original CBF QP in (7) becomes

w* = argmin |lu — u°|?
ueld
st. Vtel0,T), Vi#je{l,2,...,N},

VI (V@) filxi, w) — 0P, /o1)
+ a(hf ©f () = 0,
Vi (Vi @, fiCxi, ) — 9 /d1)

+ Vh (Y @, fiCx;. 1)) = 9®}_/00)
+ a(hg-@}m (), @ () = 0.

VIS (V3 ®f filxi, w) — (09), /00)|i=r)
+ a(hf @ () = 0,
Vi hi; (Vi @ fiCsi, ui) — (9DF /00)]i—1)

+ Vil (Vy QfTﬁjﬁ(xjv uj) — (3q>},,j/3f)|z=T)
+ @B (Df (x), ®f () = 0. ©)

By an argument similar to the proof of Proposition 1, if all
agents follow their backup strategies, (9) is feasible whenever
h(x) > 0. However, due to the coupling constraints between
agents, this CBF QP cannot be solved decentrally. In partic-
ular, for each hc and h‘S the derivatives contain two parts,
one determined éy Xi and one by x;. To resolve this problem,
notice that the terms containing #; and u; are summed together.
Therefore, with a decomposition of the CBF derivative, the
CBF QP with a sufficient condition of (9) can be solved
decentrally. For the agent i, the following CBF QP is solved:

w* = argmin |ju; — ud?
u,-el/{,-

s.t. Vi €[0,T), VA (V ®f fiCxi, u) — 9 /d1)
+ a(hf @} (xi)) = 0,
Vj # i Vih§ (Vo @, filxi, ) — 99 /00)
+ 050 (@}, (). @, () = 0.
VIS (Vi @] filxi, ui) — 0P}, /00i=r)
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+ a(h @] (x1)) = 0,
Vi (Vi ] fiCxi, u) = @DF /90)]i=7)
+ 050 (h (Df (). ©f (7)) > 0. (10)

where u? is the desired input for agent i from the legacy

controller. Note that this optimization only depends on
information of agent i and <I>§[j (xj), i.e., the backup trajectories
of other agents. Since we assume that each agent can measure
the state of other agents, if 7r; is known a priori, @, (xj) can
be solved by agent i by a simple integration scheme

Theorem 1: For all x € {x|h(x) > 0}, (10) is always feasible
for every agent; and when each agent implement the supervi-
sory controller in (10), the solution [u}; - - - uy] is a feasible
solution to (9) (not necessarily the optimal solution).

Proof: The feasibility comes from the fact that u; = m;(x;) is
a feasible solution. Given [u}; - - - uy] as the solutions to (10)
for each agent, for each i # j, Vr € [0, T], we have

dhc (@ (xi), @ (x,)) .
dt = Vy hlj (Vy; CD_;‘ﬂifi(xi, ui) —
+ Vighi; (Vi ®f_fi(xj, u) 0], /00)

—0.5a (@] (x), D] () x 2
= —a(hf(®} (), ¥ () = 0.

99, /i1

v

The same is true for the constraints on h;lg-, therefore
[u}; - - - up] is a feasible solution to (9). |

To conclude, the proposed decentralized CBF supervisory
controller begins by selecting a backup strategy for each agent
in the system that brings the agent to a stable equilibrium
point under the backup strategy. The backup strategies for all
agents are known a priori to every agent as part of the cen-
tralized design. Then each agent measures the state of the
adjacent agents (agents that are far away do not pose any dan-
ger of collision) and makes sure that if other agents execute
the backup strategy, its own backup strategy would avoid col-
lision with both the static and other agents. This is achieved by
every agent solving (10) decentrally. We show that the decen-
tralized CBF QP is always feasible when the CBF /A(x) > 0.
Furthermore, since the computation only depends on the states
of adjacent agents, whose number is bounded (due to the
clearance requirement), the algorithm can scale to an arbitrary
number of agents.

IV. CBF WITH MULTIPLE BACKUP STRATEGIES

The strategy in Section III guarantees obstacle avoidance for
a multi-agent system, but the mobility of the system may be
compromised for safety. Since the CBF intervention is based
on the backup strategy, one natural way to increase mobil-
ity is to equip the agents with multiple backup strategies and
the CBF condition only need to hold for one of the backup
strategies. However, we show that this is not always imple-
mentable, especially in the cases without communication. We
present a simple broadcast scheme that enables the implemen-
tation of CBF controllers with multiple backup strategies for
each agent.

Let m; denote the number of backup strategies for agent i
and let nl-k denote the k-th backup strategy for agent i. Given
x; and x;, we say that rrik and JT]-Z are two compatible backup

Fig. 1. Compatibility of multiple backup strategies.

strategies for agent i and j if Vr € [0, T,
hf (@ (1) 2 0, hf (@' () 2 0, hG(®! £ (30, P! P (9) 2 0,
h$<<I>Tk(x,)) >0, h5(¢T,(x,>> >0, h <<I>Tk(x,) <I>T,(x,)) > 0,

that is, if the backup trajectories of agent i and j under ni and
7! satisfy the state constraint and terminal constraint.

With multiple backup strategies for each agent, a choice of
backup strategies for the whole multi-agent system {nik "}ﬁvz | 1s
a feasible backup strategy if for each agent pair i and j, 7

kj .
and .’ are compatible.

Unfortunately, decentralized CBF with multiple backup
strategies without communication between agents is in general
not implementable. Consider the situation depicted in Fig. 1
consisting of 3 agents with 3, 2, and 3 backup strategies. Each
line indicates that the two backup strategies it links are com-
patible. For the whole system, (nl , 712, ) and (”1 , 712, )
are the two feasible backup strategies. However agent | Would
not be able to tell that 7112 is not a valid choice without
the information about the compatibility between the backup
strategies of agent 2 and 3.

To resolve this problem, we propose a broadcast scheme
in which each agent broadcast its currently selected backup
strategy and use the information about other agents’ selected
backup strategies to determine whether it can change its cur-
rent backup strategy. For example, in the situation depicted in
Fig. 1, if the circled backup strategies are selected and broad—
casted by the agents, agent 3 can switch from rr3 to 713 since
it is able to determine that 7r2 is also compatible with the
backup strategles selected by other agents.

Let 7} denote the selected backup strategy for agent i, and
based on the selected backup strategies of other agents, agent
i is able to determine the set of all backup strategies that is
compatible with other agents in the system, we denote this set
as I1{, the active backup strategy set for agent i.

The CBF QP is solved for every backup strategy in I1{ and
the one with the smallest intervention is selected and broad-
casted to other agents in the system. The input corresponding
to the selected backup strategy is then taken as the input u; of
agent i, shown in Algorithm 1.

V. SIMULATION AND EXPERIMENTAL RESULT

In this section, we present the application of the proposed
algorithm on a Dubin’s car example and a quadrotor example.

A. Dubin’s car

We consider a simple Dubin’s car example with the follow-
ing dynamics:

[X v v 6]"=[vcos(®) vsin®) a

)T, (1)

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on September 23,2020 at 20:50:19 UTC from IEEE Xplore. Restrictions apply.



CHEN et al.. GUARANTEED OBSTACLE AVOIDANCE FOR MULTI-ROBOT OPERATIONS WITH LIMITED ACTUATION: CONTROL BARRIER FUNCTION APPROACH131

Algorithm 1 CBF QP With Multiple Backup Strategies
1: procedure CBF-QP( 7%, u?, Uy)

2: Compute H?, set of all compatible backup strategies with
s
TN '
3: for 7 in T1{ do
4 Solve (10) with =¥ and u?, and obtain u*
i}
5: end for '
6: uj = min u*_,
rkem¢ b7
7: nis =argminu’
k a BT
7 ell;

8: end procedure

081

—robot 1
%67 —robot 2
04t robot 3
02
£
b
-02r
-04r
06
-0.8 L
15 1 0.5 0 0.5 1

Fig. 2. Robot traces of the Robotarium experiment with 3 robots.
Each robot is asked to patrol between 2 positions. The CBF controller
guarantees zero collision.

where X, Y, v, 0 are the longitudinal and lateral coordinates,
the velocity, and the heading angle. The inputs are accel-
eration a and yaw rate r, and are bounded by a&™** and
M This is a valid model for differentially driven ground
robots such as the ones in the Robotarium of Georgia Institute
of Technology [27]. We first consider the simple case with
only one backup strategy for each robot. In this case, the
backup strategy is simply to brake until full stop. In prac-
tice, the expression of the CBF in (10) is not implementable
since there are uncountably many ¢ in [0, T]. We replace
the continuous spectrum [0, 7] with a finite time sequence
0=t <t <,...,< tyy = T and enforce the CBF condi-
tion on these time instances instead. This finite sampling and
the finite update rate of the CBF controller call for additional
robustness of the control strategy. We proved robust safety
under time discretization and the finite sampling of the backup
trajectory in [28], check the result therein for detail. The
backup trajectory and the sensitivity matrices are computed
by solving the corresponding ODEs.

We conduct experiment in the Robotarium environment with
3 and 6 robots and the goal for each robot is to patrol between
two way points. The legacy controller #° is a simple greedy
linear controller that tries to bring the robot to the destination
without any knowledge of other robots. The CBF keeps the
robot within the boundary (static state constraints) and avoids
any collision with other robots in the system.

Fig. 2 shows the traces of the 3 robots where they meet
at the center of the state space and rotate to make ways for
each other until they can move towards their destinations. Note
that the seemingly coordinated behavior is actually the result

02
o odr T
£
>~

04 F

021

03 L L L L L L L |
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Fig. 3. Traces of 2 robots equipped with 3 backup strategies and broad-
casting their current backup strategy. Colors shows the selected backup
strategy in the CBF QP.

of a decentralized control structure. With the same setup, we
conducted experiment with 6 robots in the Robotarium, and
the result shows that the CBF is able to guarantee no col-
lision between the robots. The video of the experiments and
the simulations can be found at https://youtu.be/RqsCvHBjf88.
The differences between this experiment and the control bar-
rier function approach in [29] are (1) the CBF proposed in this
letter uses acceleration rather than speed as control input and
guarantees feasibility of the CBF QP under torque limit (2)
the proposed CBF approach is implemented decentrally where
each robot solves for the safe input without communication
with other robots.

We also tested the case in which each robot is equipped with
3 backup strategies, where 7! is to simply break, 772 is to break
and turn right, and 773 is to break and turn left. Fig. 3 shows the
state trajectories of 2 robots performing a similar surveillance
task controlled under the CBF with 3 backup strategies and
the broadcasting scheme as discussed in Section IV. Different
colors were used to mark the segments of the trajectory during
which different backup strategies were chosen. When the two
robots swerve and avoid each other, 72 and 77 are selected
so that the intervention needed is minimized.

B. Quadrotor

To showcase the scalability of this method, we now con-
sider a 17-dimensional quadrotor model. The state vector
x =[r,v,q,w, Q]T where r is the position [x, y, z]T in R3,vis
the velocity [vy, vy, v,]T in the world frame, q is the quaternion
[gw, qx. Gy, gz]T, w is the angular velocity vector [wy, wy, w,]T
in the body frame, and 2 is the vector of angular velocities
of the propellers, [21, 22, 23, Q4]T. The control input is the
voltages applied at the motors u = [V, V>, V3, V4]T.

The dynamics are derived from force-balance equations in a
rotating frame, as well as a first order motor model. The gradi-
ents of the dynamics w.r.t. the state are computed symbolically.
The resulting symbolic expressions for f(x) and W, and

P> are then exported to C++ using code generation from
MATLAB for the simulation environment.

The backup policy aims to simply stop the quadrotor and
set the pitch and roll angles to zero, which is achieved through
simple PD controllers around the linear velocities, angular
rates, and angles. The gradients of these dynamics with respect
to the state are also computed symbolically and exported to
C++. The corresponding backup set is a small ball around
linear velocity, pitch, and roll angles equal to O.

For each quadrotor, the barrier function A(x) seeks to avoid
a ball of radius » around the closest point on the other
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Fig. 4. Swerving maneuvers of the drones under the CBF controller
when commanded to fly at each other.

quadrotor’s backup trajectory ([xc, Ve, z¢]T), giving

h@) = (@ = x)% + (0= x)? + (0 —x)* = 72
The final expression needed is the gradient of this function
Vh, which can be derived trivially.

The simulation environment is based on ROS
and is written in C+4+. The code can be found
at https://github.com/DrewSingletary/uav_sim_ros, including
the MATLAB dynamics and C++ code generation. The
solver used was the OSQP solver [30], and the nominal
controller tracked linear velocity and yaw rate commands
using the same PD control strategy as the backup controller.
Fig. 4 shows a snapshot of the simulation, when the two
drones are sent directly at each other.

VI. CONCLUSION

We present a backup strategy-based control barrier func-
tion approach that is able to guarantee obstacle avoidance for
multiple agents with limited actuation capacity. The idea is to
let every agent share a centrally designed contract that can
be implemented decentrally and guarantees obstacle avoid-
ance with CBF QP. Furthermore, the single backup strategy
case can be easily extended to multiple backup strategy case
to improve mobility with a broadcasting scheme. We prove
collision avoidance with guarantee, which is validated with
experiments with wheeled robots and simulation with drones.
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