
They Might NOT Be Giants
Crafting Black-Box Adversarial Examples Using Particle

Swarm Optimization

Rayan Mosli1,2, Matthew Wright1, Bo Yuan1, and Yin Pan1

1 Golisano College of Computing and Information Sciences, Rochester Institute of
Technology, Rochester, New York 14623 {rhm6501, matthew.wright, bo.yuan,

yin.pan}@rit.edu
2 Faculty of Computing and Information Technology
King Abdul-Aziz University, Jeddah, Saudi Arabia

Abstract. As machine learning is deployed in more settings, including
in security-sensitive applications such as malware detection, the risks
posed by adversarial examples that fool machine-learning classifiers have
become magnified. Black-box attacks are especially dangerous, as they
only require the attacker to have the ability to query the target model
and observe the labels it returns, without knowing anything else about
the model. Current black-box attacks either have low success rates, re-
quire a high number of queries, produce adversarial images that are easily
distinguishable from their sources, or are not flexible in controlling the
outcome of the attack. In this paper, we present AdversarialPSO,3 a
black-box attack that uses few queries to create adversarial examples
with high success rates. AdversarialPSO is based on Particle Swarm Op-
timization, a gradient-free evolutionary search algorithm, with special
adaptations to make it effective for the black-box setting. It is flexi-
ble in balancing the number of queries submitted to the target against
the quality of the adversarial examples. We evaluated AdversarialPSO
on CIFAR-10, MNIST, and Imagenet, achieving success rates of 94.9%,
98.5%, and 96.9%, respectively, while submitting numbers of queries com-
parable to prior work. Our results show that black-box attacks can be
adapted to favor fewer queries or higher quality adversarial images, while
still maintaining high success rates.

1 Introduction

Deep learning (DL) is being used to solve a wide variety of problems in many
different domains, such as image classification [?], malware detection [?], speech
recognition [?], and medical imaging based diagnosis [?]. Despite state-of-the-
art performance, DL models have been shown to suffer from a general flaw that
makes them vulnerable to external attack. Adversaries can manipulate models
to misclassify inputs by applying small perturbations to samples at test time [?].
These adversarial examples have also been successfully demonstrated against

3 Code available: https://github.com/rhm6501/AdversarialPSOImages

https://github.com/rhm6501/AdversarialPSOImages

real-world black-box targets, where adversaries would perform remote queries
on a classifier to develop and verify their attack samples [?]. The possibility of
such attacks poses a significant risk to any ML application, especially in security-
critical settings or life-threatening environments.

Early adversarial attacks relied on model gradients to create examples [?,?,?],
which requires internal knowledge of the target model. Since some adversarial
examples transfer from one model to another [?], limited black-box attacks are
possible using model gradients, but with low success rates [?]. More recent ap-
proaches either estimate the model’s gradients [?,?,?,?] or iteratively apply per-
turbations to the input [?,?,?]. As demonstrated by Moon et al., however, the
success rate of gradient-estimation approaches depends heavily on the choice of
hyperparameters [?]. Consequently, attack methods with fewer hyperparameters
to set or potentially tune would be less sensitive to hyperparameter values and
thus more practical in a black-box setting where tuning might be impossible.

In practice, the feasibility of a black-box attack also depends greatly on the
number of required queries submitted to the model. Against machine-learning-as-
a-service (MLaaS) platforms like Google Vision, each query has a monetary cost.
Too many queries make the attack costly. Perhaps more importantly, needing too
many queries could trigger a monitor to detect an attack underway by observing
many subtly modified versions of the same image submitted to the system in a
short period. To evade such a monitor, one could conduct the attack very slowly
or use a large number of accounts that all have different credit cards attached and
different IP addresses. Either approach would significantly add to the real-world
costs of conducting the attack.

In this paper, we examine how an adversary could generate adversarial ex-
amples with a controllable trade-off between the number of queries and the
quality of the adversarial examples. In particular, we propose the use of Particle
Swarm Optimization (PSO)—a gradient-free optimization technique—to craft
adversarial examples. PSO maintains a population of candidate solutions called
particles. Each particle moves in the search space to find better solutions based
on a fitness function that we have designed for finding adversarial examples.

In our attack, called AdversarialPSO, we specify that particles move by mak-
ing small perturbations to the input image that are virtually imperceptible to a
human observer. PSO has been shown to quickly converge on good (though not
globally optimal) solutions [?], making it very suitable for finding adversarial ex-
amples in a black-box setting, as it can identify sufficiently good examples with
few queries. In AdversarialPSO, we also propose numerous adaptations to fit the
black-box setting, including a novel method to minimize redundancy among the
particles that greatly reduces the number of queries. We test the effectiveness of
this approach on three image classification datasets—MNIST, CIFAR-10, and
Imagenet—and find that AdversarialPSO attains high success rates with queries
comparable to state-of-the-art attacks.

In a real attack, the adversary may be constrained to making fewer queries
or, alternatively, be able to make more queries and want to improve the quality
of the images further. AdversarialPSO allows the attacker to tune the number of

2

queries against the quality of images by simply changing the number of particles
in the swarm. By using bigger swarms, more queries would be submitted to the
model in exchange for higher-quality adversarial examples.

In addition to the flexibility offered by AdversarialPSO, due the gradient-
free nature of the attack, no hyperparameters require tuning for the attack to
be successful. As shown in Section 3.2, the attack only requires the number of
particles and the initial block-size used in the attack. The two hyperparameters
affect the quality vs number of queries trade-off and can be roughly estimated
based on the dimensions of the input.

Contributions. In summary, we have made the following contributions:

– We present AdversarialPSO, a gradient-free black-box attack with control-
lable trade-offs between the number of queries and the quality of adversarial
examples.

– We demonstrate the effectiveness of AdversarialPSO on both low-dimensional
and high-dimensional datasets by empirically evaluating the attack on the
MNIST, CIFAR-10, and Imagenet datasets. We show that AdversarialPSO
produces adversarial examples comparable to the state-of-the-art.

– We show how AdversarialPSO can be adjusted to trade-off the number of
queries against the quality of the images.

2 Related Work

In this section, we discuss related work in both the white-box and black-box
settings.

2.1 White-box Attacks

Szegedy et al. were the first to discuss the properties of neural networks that
make adversarial attacks possible [?]. They show that imperceptible non-random
perturbations of an image can cause an otherwise accurate DL model to mis-
classify it. The authors also discuss the transferability of adversarial examples
from one model to another, including scenarios where models may have different
architectures or are trained using different subsets of training data.

Goodfellow et al. [?] presented an explanation as to why DL models are
susceptible to adversarial examples. They argue that the linearity of neural net-
works is what leads to their sensitivity to small and directed changes in input.
They also present the Fast Gradient Sign Method (FGSM), which calculates the
perturbations needed to transform inputs to adversarial examples. FGSM deter-
mines the direction of perturbations according to model gradients with respect
to input and adds minuscule values in that direction. Kurakin et al. [?] extend
this approach by introducing IGSM, an iterative variant of FGSM that takes
several smaller steps instead of one relatively large step. The authors printed
the images of the adversarial examples and fed them to a model through a cam-
era. The results demonstrate that adversarial examples can work in the physical
world, and that these types of attacks are practical.

3

Papernot et al. take a different approach to find adversarial examples [?].
Instead of taking multiple small steps, they construct a saliency map that main-
tains relevant input features with a high impact on model outputs. They utilize
the saliency map to perturb specific features and create adversarial examples.
This approach allows an adversarial example constructed towards a target label
specified by the attacker. In a later paper, Papernot et al. extended the tech-
niques of both Goodfellow et al. and Papernot et al. to launch black-box attacks
against remotely hosted targets [?]. As both attacks require knowledge of model
internals—information that is not available in a black-box setting—the authors
used a local white-box surrogate that approximates the black-box target. The
surrogate is trained using the Jacobian-based Dataset Augmentation method,
which expands the training set used to train the surrogate with data points that
allow the surrogate to approximate the target’s decision boundary closely.

Another approach was employed by Carlini and Wagner [?], who search for
adversarial examples by iteratively performing minimizeD(x, x+δ), where D is
either an L0, L2, or L 8 distance metric. The attack finds the minimum distance
required to generate an adversarial example according to the distance metric be-
ing minimized. To use it as a black-box attack, it can be launched on a surrogate
model, where only examples with high confidence are likely to transfer to the
target model.

2.2 Black-box Attacks

In a black-box attack, the attacker does not know the internals of a target model.
Instead, the attacker can query the target with specially crafted inputs meant
to help estimate the gradient or lead gradually to misclassified samples. Target
models are typically assumed to return confidence scores along with each classi-
fication, and these are used in constructing the inputs for subsequent queries.

Gradient-Estimation Attacks. To launch black-box attacks, Chen et al. pro-
pose ZOO [?], a method to estimate model gradients using only the model inputs
and the corresponding confidence scores provided by the model. The approach
employs a finite difference method that evaluates image coordinates after adding
a small perturbation to estimate the direction of the gradient for each coordi-
nate. Since examining every coordinate requires a huge number of queries to
the model, the authors applied the stochastic coordinate descent algorithm and
attack-space dimension reduction to reduce the number of queries needed to
approximate gradients. Moderate perturbations in the direction of the gradient
are, as shown in the FGSM attack, sufficient to obtain an adversarial exam-
ple from the input. Although ZOO can successfully create adversarial examples
indistinguishable from the inputs, it requires up to a million queries for high-
dimensional samples, such as from Imagenet. With so many queries, the attack
could be easily detectable, and the cost could be prohibitive and impractical in
a real-world setting for a single image.

To reduce the number of queries, Bhagoji et al. estimate the gradient of
groups of features or coordinates instead of estimating one coordinate at a

4

time [?]. Although the attack was not evaluated on a high-dimensional dataset, it
outperformed ZOO on low-dimensional datasets such as CIFAR-10 and MNIST.
The proposed Gradient Estimation (GE) approach by the authors still requires
up to 10,000 queries to generate an adversarial example. The authors considered
PSO as a possible approach for searching adversarial examples but found it to
be slow and not as useful as GE. As we show in Section 4.2, however, our mod-
ifications to the basic PSO algorithm enable it to outperform GE. Our version
of PSO does not require a swarm of 100 particles to be effective, which would
be slow as per Bhagoji et al.’s experience. Instead, it can search for adversarial
examples with high success rates using swarms with as few as five particles.

Ilyas et al. propose Natural Evolutionary Strategies (NES) to estimate gra-
dients of the model, and then use projected gradient descent on the estimated
gradients to craft adversarial examples [?]. They also extend the approach in [?]
to utilize the bandit optimization method to exploit prior information when es-
timating the gradients. Specifically, they incorporate a data-dependent prior,
which exploits the similarity in gradient information exhibited by adjacent pix-
els. Furthermore, they also incorporate a time-dependent prior that utilizes the
high correlation between gradients estimated in successive steps. Although the
attack can generate high-quality adversarial examples with few queries, the ap-
proach has been shown to be very sensitive to changes in hyperparameter values.
Moon et al. [?] have shown that having too many hyperparameters could lead
to significant variability in attack performance, creating dependability on the
values chosen for those hyperparameters. Gradient-estimation based approaches
commonly have multiple hyperparameters that are necessary for the execution
of attacks, such as the learning rate, search variance, decay rate, and update
rules – in a real-world black-box setting, tuning these hyperparameters would
either incur additional queries or might not be possible at all in many cases. In
our approach, there are only two hyperparameters with predictable effects on
the outcome of the attack.

Gradient-Free Attacks. Moon et al. formulate the problem of crafting ad-
versarial examples as a set maximization problem that searches for the set of
positive and negative perturbations that maximizes an objective function [?].
Similar to [?], the authors exploit the spatial regularity exhibited by adjacent
pixels by searching for perturbations in blocks instead of individual pixels. They
increase the granularity of the blocks as the search progresses. Our Adversari-
alPSO attack searches for perturbations in blocks as well and yields comparable
results as Moon et al.’s approach. However, our approach is capable of adjusting
hyperparameter values effectively for the trade-off between L2 and queries as we
show in Section 4.6.

Guo et al. explore a simple attack that crafts adversarial examples by ran-
domly sampling a set of orthonormal vectors and adding or subtracting them
from the input [?]. The attack is shown to be successful in crafting adversarial
examples despite its simplicity. However, the success of the attack diminishes as
dimensionality increases, as shown when targeting InceptionV3, which expects

5

inputs (299x299) with higher dimensionality than that of ResNet and DenseNet
(224x224). As the perturbations are applied randomly, many queries are wasted
by the approach until a solution is found.

By utilizing Differential Evolution (DE), Su et al. show that some test sam-
ples can be misclassified by changing a single pixel [?]. Similar to the PSO algo-
rithm used in this paper, DE is a population-based algorithm that maintains and
manipulates a set of candidate solutions until an acceptable outcome is found.
The objective of this one-pixel attack is to better understand the geometry of
adversarial space and proximity of adversarial examples to their corresponding
inputs. The attack does not achieve high success rates due to the tight constraints
used in the study.

Another population-based black-box attack is GenAttack [?], which uses a
Genetic Algorithm (GA) to find adversarial examples. This attack iteratively
performs the three genetic functions–selection, crossover, and mutation–where
selection extracts the fittest candidates in a population, crossover produces a
child from two parents, and mutation encodes diversity to the population by
applying small random perturbations. The authors propose two heuristics to re-
duce the number of queries used by GenAttack, namely dimensionality reduction
and adaptive parameter scaling. Although the authors propose two heuristics to
reduce the numbers of queries used by their approach, GenAttack uses a higher
number of queries compared to our approach.

3 Particle Swarm Optimization

In this section, we provide an overview of the PSO algorithm and describe how
we adapt it to generate adversarial examples against image classification models.

3.1 Conventional PSO

Kennedy and Eberhart first proposed PSO as a model to simulate how flocks
of birds forage for food [?]. It has since been adapted to address a multitude of
problems, such as text feature selection [?], grid job scheduling [?], and optimiz-
ing the generation of electricity [?]. The algorithm works by dispersing particles
in a search space and moving them until a solution is found. The search space
is assumed to be d-dimensional, where the position of each particle i is a d-
dimensional vector Xi = (xi,1, xi,2, xi,3, . . . , xi,d). The position of each particle is
updated according to a velocity vector Vi where Vi = (vi,1, vi,2, vi,3, . . . , vi,d). In
each time-step or iteration, denoted as t, the velocity vector is used to update
the particle’s next position, calculated as:

xi(t+ 1) = xi(t) + vi(t+ 1) (1)

vi(t+ 1) = wvi(t) + c1R1(pg − xi(t)) + c2R2(pi − xi(t)) (2)

Equation 2 contains three terms. The first term controls how much influence
the current velocity has when calculating the next velocity and is constrained

6

with the inertia weight w. The second term, with weight c1, is referred to as
exploration, as it allows particles to explore further regions in the search space
in the direction of the best position found by the swarm, denoted by pg. The
third term, with weight c2, is referred to as exploitation, and it is based on the
best position found by this particle, denoted by pi. R1 and R2 are d-dimensional
vectors containing uniformly distributed random numbers that are calculated
for each iteration to encode randomness in the search process. Early implemen-
tations of PSO assigned a fixed value to w. Shi and Eberhart, however, found
that linearly decreasing the inertia weight w improved PSO performance [?]. In
each iteration, fixed values wstart and wend together with a maximum number of
iterations tmax were used to calculate the inertia as:

w(t) = wend + (wstart − wend)
tmax − t
tmax

(3)

In the case of black-box adversarial attacks, however, the number of queries
is a more appropriate measure for how much the attack has progressed. We thus
modify Equation 3 to compute w with respect to the number of queries instead
of number of iterations as:

w(t) = wend + (wstart − wend)
qmax − q
qmax

, (4)

where qmax is the query budget used in the attack and q is the number of queries
submitted to the model. We set wstart = 1 and wend = 0.

3.2 Adversarial PSO

Among the many applications of PSO, we show in this paper that it can also be
used to craft adversarial examples for images. Shi and Eberhart [?] found that
PSO is quick to converge on a solution and scales well to large dimensions, at the
cost of slower convergence to global optima. This makes PSO an excellent fit for
finding adversarial examples in the black-box setting, as it suggests that it can
identify sufficiently good examples with few queries, even for high-dimensional
image data.

In this section, we first describe the key adaptations we used to make PSO
effective and query-efficient for black-box attacks, and especially highlight our
technique for minimizing redundancy in the query process. We then lay out the
overall algorithm.

PSO Adaptations. Our PSO includes several key adaptations for our problem:

Fitness Function. To adapt PSO to the problem of creating adversarial exam-
ples, we define a fitness function that measures the change in model output when
perturbations are added to the input. In both targeted and untargeted attacks,
the fitness function measures how much the model’s confidence in the target la-
bel rises or drops, respectively. When performing untargeted attacks, the fitness

7

for each candidate solution is the confidence drop in the original class predicted
by the model. Given the original image x, the perturbed image x0, the model
parameters θ, and the original label y we compute confidence f(x, y, θ). We then
calculate the fitness using fitness = f(x, y, θ) − f(x0, y, θ). In targeted attacks,
fitness is given by the increase in confidence in the desired class. For the target
label y0, we compute confidence f(x, y0, θ) and fitness = f(x0, y0, θ)− f(x, y0, θ).

Constraints. To further control the perturbations added to the input image,
we define an upper bound value B of maximum change to limit the L∞ dis-
tance between the adversarial image and the original image. L∞ measures the
maximum change to any of the coordinates, where L∞ = max(|x1 − x01|, |x2 −
x02|, . . . , |xd − x0d|). To ensure the upper bound, we use the clip operator to get

x
0

= clip(xi + vi, xi − B, xi + B). Additionally, we apply box constraints to
maintain valid image values when adding perturbations. These constraints are
applied to Equation 1 to yield:

xi(t+ 1) = clip(clip(xi(t) + vi(t+ 1), xi −B, xi +B), 0, 1) (5)

Block-Based Perturbation. Similar to related work [?,?,?], we exploit the spatial
regularity of adjacent pixels by splitting the input into blocks and perturbing all
the pixels in each block en masse. Perturbing pixels in blocks utilizes the gradient
similarities that are shared between adjacent pixels. Essentially, as such pixels
would have similar effects on the outcome of the prediction, perturbing them
as a group would have a larger impact on the rise (or drop) on the model’s
confidence, which translates to requiring fewer queries to generate adversarial
examples.

Reversals. Since we have a relatively small number of blocks, and thus a limited
number of perturbations, we can examine the results of each modification sep-
arately. We take advantage of this by reversing all the perturbations that have
caused a negative impact on the fitness with the goal of finding improvements.
Note that instead of just undoing the perturbation, we actually move the particle
in the opposite direction. In essence, this is similar to inferring the gradient, as
we assume that the opposite of a bad direction will be a good direction. We note
that this is different from the approach of Moon et al. of alternating between
adding perturbations and removing perturbations [?], which just undoes some
of the prior steps. In our tests, we find that our reversals do indeed lead to a
better position in many cases.

Following the Edge of the L∞ Ball. As observed by Moon et al. [?], the optimal
solution when crafting adversarial examples often reside at the edges of the L∞
ball. Based on this observation, when initializing and randomizing particles, we
set their positions at the edge of the L∞ ball to observe the highest (or lowest)
fitness for each dimension. Particles are then moved inwards using Equations 2
and 5. Moving inwards from the edge ensures that particles get enough velocity
to reach the other end quickly if the opposite position was found to have better
fitness. Otherwise, particles would waste queries moving around the center of

8

the ball until they eventually build enough velocity towards the position with
the highest fitness.

The Particle Explosion Problem. For long running attacks, the velocity would
eventually become so large that it would overpower the exploration and exploita-
tion terms in Equation 2. This would cause particles to get stuck at the edges
of the L∞ ball as the ever-increasing velocity would continuously push them to
locations outside the search space. This is a well known problem in PSO, and
although the inertia weight is meant to mitigate it, it does not completely solve
the problem. Therefore, in addition to the inertia weight, we perform velocity
clamping to limit the growth of the velocity vector, again leveraging the clip

operator:

vi(t) = clip(vi(t),−B,B). (6)

This is performed in every iteration for each particle before updating the particle
positions.

Redundancy Minimization. Beyond these other adaptations to PSO, we
found it very effective to minimize the redundancy across particles, which helps
to minimize the number of particles and the number of queries to find good
examples. The key insight of this approach is that relatively few of the possible
changes to the image are going to be especially valuable to changing the classi-
fication result. If one of the particles includes one of these useful changes, then
that benefit is likely to be seen in the query result. Having found that effec-
tive change in one particle, other particles can take advantage of this through
the exploration attribute in the PSO algorithm, which moves particles towards
the best position in the swarm. We thus aim to limit the possibility of redun-
dant checks on already perturbed blocks. Essentially, if one of the particles has
modified one of the blocks in a given way, e.g. it increased the red channel on
all pixels in that block, then we prevent other particles from making the same
modification. To do this, we first define a set β with all available blocks (which
are still eligible to be modified), β = (b1, b2, b3, . . . , bn). Then, for each block
in the set, we create a list of all possible directions containing the positive and
negative directions for each channel in the block. For grayscale images, which
contain only a single channel, the list of possible channel directions cd is given
by cd = {(1), (−1)}. For RGB images, it is

cd = {(1, 0, 0), (−1, 0, 0),

(0, 1, 0), (0,−1, 0),

(0, 0, 1), (0, 0,−1)}.

In other words, any single channel could be increased or decreased.
When a direction in a block is assigned to a particle, that direction is then

removed from the list to avoid multiple particles perturbing the same block in
the same direction. When all the directions in a block are assigned to particles,
we remove that block from the set β. When there are no more blocks in the set,

9

we increase the granularity of the blocks by dividing the block-size by half and
recreate the block set to contain the smaller blocks.

For each particle, we maintain a list of all the blocks and directions assigned
to it. This list is used to avoid assigning an opposite direction to the particle
which would cancel out a direction that it was previously assigned. Section 3.2
discusses how this list is used.

PSO Algorithm. The threat model we assume for this attack consists of an at-
tacker with exploratory capabilities that permits submissions to a remote black-
box model, which returns confidence scores with each prediction. The attacker
has no influence on the training process and has no access to internal model
information. The attack is based solely on the confidence scores returned by the
model.

The search for adversarial examples is performed in two stages: initialization
and optimization. The initialization stage disperses the particles in the search
space and tests the initial fitness for the starting point of each particle. The
optimization stage moves the particles according to Equations 1 and 2, and tests
the fitness for each new position until either an adversarial example is found
or the query budget is exhausted, whichever comes first. The overall process of
AdversarialPSO (Algorithm 1), and all other algorithms discussed in this section,
can be seen in the appendix.

Initialization. For each image, the search process starts with initializing the par-
ticles by randomizing their positions in the search space (Algorithm 2). Particles
are initialized by randomly assigning an equal number of blocks to each particle,
without replacement to minimize redundancy (see Section 3.2). In large swarms,
each particle is assigned relatively few blocks, resulting in a more fine-grained
search for adversarial examples.

Two hyperparameters control how the swarm is initialized: the number of
particles in the swarm P and the initial block-size b, which determines the num-
ber of initial blocks created and the number of blocks assigned to each particle.
Each particle begins with the input image x and the set of blocks β with a sin-
gle direction for each block. Particles are then dispersed in the search space by
perturbing all the blocks assigned to them to the edge of the L∞ ball according
to the directions they were given. Once the particles are created and dispersed,
their fitness is calculated and subsequently used in the optimization step.

Optimization. The optimization step of AdversarialPSO (Algorithm 3) is an
iterative process that moves the particles in search of better fitness. Particle
positions are updated using the velocity vector, which is calculated for each
particle in every iteration. After moving the particles, their fitness is calculated
and compared against the particle’s best fitness to determine which particle
position will be used to calculate future particle movements. The particle’s fitness
is also compared against the best fitness achieved in the swarm as a whole (i.e,
best swarm fitness), and if the particle fitness was found to be better, the swarm
is updated to account for the position with the highest fitness. The process is

10

repeated until an adversarial example is found or when the process exhausts the
allowed number of queries.

In every iteration, in addition to particle movements, each particle is assigned
the next set of blocks and directions as was done in the initialization stage.
Again, the assignment is designed to minimize redundancy (see Section 3.2).
This randomization is performed after the particles are moved according to their
calculated velocity vectors to allow the exploration of additional regions of the
search space (Algorithm 4).

After some number of iterations, all the directions in all the blocks will have
been assigned to a particle. At that point, the granularity of the blocks is in-
creased, and the particles are re-initialized with the swarm best position as a
starting point. When re-initializing the particles, we also reset their best posi-
tions. We do this to prevent the particles from retracting to the previous gran-
ularity level.

After all the blocks are assigned to particles and before increasing the granu-
larity of the blocks, we perform the reversal operation (see Section 3.2 on Rever-
sals). The reversal is performed on the swarm best position by iterating through
the past positions of each particle and applying an opposite step for any move-
ment that caused a negative fitness for the particle (Algorithm 5).

4 Evaluation

4.1 Setup

To evaluate AdversarialPSO, we consider the the success rate (i.e., the ratio of
successfully generated adversarial examples over the total number of samples)
and the average number of queries needed to generate adversarial examples. We
compare our results against the Parsimonious Black-Box Adversarial Attack [?],
NES [?] and Bandits [?] using the benchmark dataset Imagenet. We use the
results reported in the Parsimonious attack paper [?] for our comparison, and
as L2 distances were not reported by the authors for all three attacks, we omit
this metric from our evaluation. Nonetheless, the same L∞ bound was used in
our experiments as the other three attacks. Furthermore, similar to the related
work, we evaluate the attack using InceptionV3. The Imagenet results for both
untargeted and targeted attacks are obtained from running AdversarialPSO on
1,000 correctly classified samples from the indices list provided in the Parsimo-
nious attack. The same target labels used in [?] and [?] are used for the targeted
experiment. Also, for related work that utilize block-based perturbations, we
use the same initial block-sizes as related work. If not, we use block-size that are
adequate to the dimensions of the input samples. The results for the untargeted
and targeted Imagenet attacks are reported in Sections 4.3 and 4.4, respectively.

We also test the attack on an adversarially trained CIFAR-10 ResNet classier
as was done in [?], by using the same pretrained network provided by MadryLab.4

The results for this test are reported in Section 4.5.

4 https://github.com/MadryLab/cifar10_challenge

11

https://github.com/MadryLab/cifar10_challenge

MNIST CIFAR-10

Attack Succ. Rate L2 Queries Succ. Rate L2 Queries

Finite Diff 92.9% 6.1 1568 86% 410.3 6144

GE 61.5% 6.0 196 66.8% 402.7 768

IFD 100% 2.1 62720 100% 65.7 61440

Iterative GE 98.4% 1.9 8000 99.0% 80.5 7680

Their PSO 84.1% 5.3 10000 89.2% 262.3 7700

SPSA 96.7% 3.9 8000 88.0% 44.4 7680

AdversarialPSO 98.52% 5.3 183 94.92% 338.2 129

Table 1. Results comparison: Untargeted attack on MNIST and CIFAR-10 against the
PSO and GE attacks of Bhagoji et al. [?]. The results we list for the Bhagoji attacks
are obtained from their paper

We compare the AdversatialPSO attack on MNIST and CIFAR-10 against
the approach used by Bhagoji et al. [?] to show the improvements attained from
our modifications to the PSO algorithm. Similar to the models used in [?], we
use ResNet-32 and a two-layer convolutional neural network for CIFAR-10 and
MNIST respectively. Furthermore, we use the same L∞ limits of L∞ = 0.3 for
MNIST L∞ = 8/255 for CIFAR-10.Unlike Bhagoji et al., who used 100 particles,
we only use 5 particles. Using fewer particles translates to fewer queries being
submitted to the model and a less resource intensive attack. As we show in
Section 4.2, we achieve higher success rates with much smaller swarms. For all
MNIST evaluations, due to the low dimensionality of the inputs, we use an
initial block-size of 2 without increasing the granularity. For CIFAR-10, we use
an initial block-size of 8.

Finally, we explore the effect of using different-sized swarms on ImageNet.
We report the average per-pixel L2 distance between input images and their ad-
versarial counterparts. As using more particles enables us to increase the gran-
ularity, we find that larger swarms produce better adversarial examples with a
lower L2 average. We show the results of this analysis in Section 4.6.

4.2 Untargeted MNIST and CIFAR-10

To demonstrate the effectiveness of AdversarialPSO, we compare our attack
against the approach used by Bhagoji et al. [?]. As shown in Table 1, Adver-
sarialPSO not only outperforms the standard PSO used by Bhagoji et al., it
also outperforms the GE approach used by the authors. For MNIST, the only
approach to have a higher success-rate is the Iterative Finite Difference (IFD)
attack at 100%, however the average number of queries was above 60K. In our
implementation, we set a maximum budget of 10K queries, which led to a handful
of failures.

Regarding the average L2, using a swarm with 5 particles produces adversar-
ial examples with comparable distances. However, by increasing the number of
particles in the swarm, better quality adversarial examples could be generated

12

Before After Before After Before After Before After

Deer Bird Airplane Automobile 1 2 8 2

Dog Cat Dog Horse 1 7 5 8

Frog Deer Horse Deer 7 2 2 0

Dog Cat Truck Automobile 6 2 4 8

Dog Ship Frog Ship 4 8 1 4

Fig. 1. Untargeted attack using AdversarialPSO on MNIST and CIFAR-10

Untargeted Targeted

Attack Success Rate Avg. Queries Success Rate Avg. Queries

NES 80.3% 1660 99.7% 16284

Bandits 94.9% 1030 92.3% 26421

Parsimonious attack 98.5% 722 99.9% 7485

AdversarialPSO 96.9% 837 98.6% 14959

Table 2. Untargeted and targeted attacks on Imagenet

at the expense of more queries. Repeating the same experiment but with 10
particles produces an average L2 of 4.9, but with an average of 296 queries.

Similarly for CIFAR-10, the only two approaches to have higher success rates
are Iterative GE and IFD. Both of these, however, require many more queries
on average (over 7500) than AdversarialPSO (under 200).

In examining the failed instances of the CIFAR-10 ResNet-32 model, we find
that samples that failed were resistant to small perturbations. Particle move-
ments had a low impact on the model’s confidence scores and as such, executed
for a large number of iterations until the the query budget was exhausted. For
a majority of the samples, the adversarial examples were crafted rather quickly
without using many queries. We speculate that the failed instances were far from
the decision boundary, thus requiring large changes to be misclassified. Figure 1
shows randomly chosen examples of our attack on both CIFAR-10 and MNIST.

13

Before After Before After

Anole Lacerta viridis Screw Dumbbell

Totem pole Pinwheel Admiral Argiope aurantia

Pirate ship Water tower Triumphal arch Footstall

Fig. 2. Untargeted attacks on InceptionV3 (randomly selected samples)

4.3 Untargeted Imagenet

To evaluate the attack on the Imagenet dataset, we use the InceptionV3 model
provided by Keras5. As per the Keras implementation, inputs are scaled to [-1,1],
so we set the L∞ bound to 0.1 (equivalent to the 0.05 L∞ used by prior work).
We choose the first 1000 samples from the indices list found in the Parsimonious
Black-Box Attack GitHub page6 and attack each sample with a query budget
of 10,000 queries. We also use 32 for an initial block-size, similar to Moon et
al. [?], and 5 particles in the swarm. Figure 2 shows randomly chosen examples
of images generated from the attack, which we find have similar quality to those
shown by Moon et al. [?]. As shown in Table 2, our attack achieves comparable
success rates and number of queries as the related work, but with the advantage
of providing controllable trade-offs between the number of queries and the quality
of the adversarial examples.

4.4 Targeted Imagenet

To evaluate AdversarialPSO in a targeted attack, we use samples from the Parsi-
monious Black-box Attack’s list of sample indices and we use the same labels as
in [?]. Furthermore, similar to [?], we use an initial block-size of 32 and a query
budget of 100,000 queries. Unlike the untargeted attack however, we use 10 par-
ticles to accommodate the more difficult attack setting. Table 2 summarizes our
results and Figure 3 shows randomly chosen examples of the attack. Similar to
the untargeted attack, we outperform both GE-based attacks. The Parsimonious
attack however, generates adversarial examples with fewer queries.

5 https://keras.io/applications/#inceptionv3
6 https://github.com/snu-mllab/parsimonious-blackbox-attack

14

https://keras.io/applications/#inceptionv3
https://github.com/snu-mllab/parsimonious-blackbox-attack

Before After Before After

Indian cobra Ring snake Hammer King snake

Panpipe Goldfish Soap dispenser Killer whale

Binder Desktop computer Stingray Anemone

Fig. 3. Targeted attacks on InceptionV3 (randomly selected samples)

Attack Success Rate Avg. Queries

NES 29.5% 2872

Bandits 38.6% 1877

Parsimonious attack 48% 1261

AdversarialPSO 45.4% 2341

Table 3. Untargeted attack on adversarially trained CIFAR-10 ResNet classier

4.5 AdversarialPSO on Adversarially Trained Models

To test the attack against defended models, we evaluate AdversarialPSO against
the adversarially trained CIFAR-10 model provided by MadryLabs. We use the
same samples, L∞ bound, and query budgets as used by Moon et al. [?]. As shown
in Table 3, AdversarialPSO outperforms both Bandits and NES. Although the
Parsimonious Black-box attack remains the highest in success rate, Adversari-
alPSO performs comparably with the added advantage of providing a trade-off
between queries and L2.

4.6 Swarm-size Analysis

By re-running the untargeted Imagenet attack using swarms with different sizes,
we show that increasing the number of particles lowers the average L2 at the
expense of more queries. The results are based on samples that were successfully
attacked by all swarm sizes. As shown in Figure 4, there is a 26% improvement
in adversarial example quality when increasing the number of particles from 5 to
50. With this trade-off, an attacker that favors adversarial example quality over
number of queries can use larger swarms. On the other hand, if fewer queries is
more important to the attacker, then smaller swarms would be more beneficial.

15

Fig. 4. The effect of swarm size on the average number of queries and per-pixel L2

distance. In the figure, the x-axis represents the number of queries, the y-axis represents
the per-pixel L2, and the number of particles are shown by the markers

5 Conclusions

This paper presented a black-box attack based on the evolutionary search algo-
rithm: Particle Swarm Optimization. The attack we call AdversarialPSO, adapts
the traditional PSO algorithm to produce adversarial examples from images. Our
experimental evaluations on the MNIST, CIFAR10, and Imagenet datasets sug-
gest that AdversarialPSO can effectively generate adversarial examples in prac-
tical black-box settings with a limited number of queries to the target model.
Furthermore, we demonstrate how the attack can be adjusted to control the
trade-off between the number of queries submitted to the model and the L2

distance between the original inputs and the generated adversarial examples.
The purpose of the attack is to help evaluate security-critical models against
black-box attacks and to promote the search for robust defenses.

Acknowledgment

We would like to thank the reviewers for their constructive comments that helped
clarify and improve this paper. This material is based upon work supported
by the National Science Foundation under Awards No. 1816851, 1433736, and
1922169.

A Appendix

As discussed in Section 3.2, the AdversarialPSO attack iteratively performs sev-
eral operations to generate adversarial examples from images. Algorithm 1 pro-
vides a high-level view of the main AdversarialPSO loop that is responsible for

16

initializing the swarm, moving the particles, randomizing the particles, increas-
ing the granularity of the search space, and reversing any movement with a
negative fitness:

Algorithm 1 AdversarialPSO

1: Input: maximum queries qmax,block-set B
2: Initialize swarm (See Algorithm 2)
3: while q < qmax do
4: if Success then
5: return bestPosition
6: end if
7: Move Particles (See Algorithm 3)
8: if B is empty then
9: performReversal (See Algorithm 5)

10: increaseGranularity
11: initializeParticles(bestPosition)
12: else
13: randomizeParticles (See Algorithm 4)
14: end if
15: end while
16: return bestPosition

In preparation for the attack, AdversarialPSO initializes the swarm by sep-
arating the image into blocks and assigning a different set of blocks to each
particle. The attack then moves the particles according to the blocks they were
assigned and evaluates the new position to calculate the fitness of each new
position. Algorithm 2 provides the steps for the initialization process:

Algorithm 2 Initializing the swarm

1: Input: input image x, particle array par, block-set B, and maximum change m.
2: n← int(length(B)/P) # blocks per particle
3: for p in par do
4: blocks← select random n elements from B
5: p.pos← x
6: for block in blocks do
7: direction← select random direction from B[block]
8: pop direction from B[block] and push direction to p.blockList[block]
9: for i in block do

10: p.posi ← p.posi + m ∗ direction
11: end for
12: end for
13: fitness← calculateF itness #includes update to q
14: Compare new fitness against particle best and swarm best
15: end for
16: return par, bestPosition, bestF itness

17

In each iteration, particles are moved using traditional PSO operations, which
consist of calculating the velocity of each particle and adding that velocity to
the particle’s current position. After each movement, the fitness for the new
position is calculated and compared against the particle’s best fitness and the
swarn-wide best fitness. Future particle movements depend on the outcome of
each fitness comparison. Algorithm 3 provides the steps for the velocity-based
particle movements:

Algorithm 3 Move Particles

1: Input: particle array par, swarm-wide best fitness bestF itness, and swarm-wide
best position bestPosition

2: for p in par do
3: v ← calculateV elocity
4: p.pos← updatePosition
5: fitness← calculateF itness #includes update to q
6: Compare new fitness against particle best and swarm best
7: end for
8: return bestPosition

In addition to velocity-based movements, in every iteration, each particles is
assigned new blocks with directions that are unique to that particle. Algorithm 4
shows the process of assigning blocks and directions to particles:

Algorithm 4 Randomize Particles

1: Input: particle list par, block-set B, change rate cr, and maximum change m.
2: for p in par do
3: blocks← select random cr elements from B
4: for block in blocks do
5: if block in p.blockList then
6: d← p.blockList[block]
7: direction←select direction from B[block] where direction ! = {d,−d}
8: else
9: push block to p.blockList

10: direction← select random direction from B[block]
11: end if
12: pop direction from B[block] and push direction to p.blockList[block]
13: for i in block do
14: p.posi ← p.posi + m ∗ direction
15: end for
16: end for
17: fitness← calculateF itness #includes update to q
18: Compare new fitness against particle best and swarm best
19: end for

18

If a given particle movement produced a negative fitness, we observed that
moving in the opposite direction would most likely produce a positive fitness.
Algorithm 5 provides the steps for these reversal operations:

Algorithm 5 Reverse movements with negative fitness

1: Input: best position bestPosition and Particle list par
2: for p in par do
3: for pastPos in p.pastPos do
4: if pastPos.fitness < 0 then
5: bestPosition← bestPosition− pastPos.pos
6: if Fitness did not improve then
7: Undo last changes
8: end if
9: pop pastPos from p.pastPos

10: end if
11: end for
12: end for
13: return bestPosition

19

	They Might NOT Be Giants Crafting Black-Box Adversarial Examples Using Particle Swarm Optimization

