
IEEE CONTROL SYSTEMS LETTERS, VOL. 5, NO. 2, APRIL 2021 559

Separable Control Lyapunov Functions With
Application to Prostheses

Rachel Gehlhar and Aaron D. Ames , Senior Member, IEEE

Abstract—This letter extends bipedal trajectory tracking
methods to prostheses to enable construction of a class
of model-dependent prosthesis controllers using locally
available sensor information. The rapidly exponentially sta-
bilizing control Lyapunov functions (RES-CLFs) developed
for bipedal robots guarantee stability of the hybrid zero
dynamics in the presence of impacts that occur in walking.
These methods cannot be directly applied to prostheses
because of the unknown human dynamics. We overcome
this challenge with two RES-CLFs, one for the prosthesis
subsystem and another for the remaining human system.
Further, we outline a method to construct these RES-CLFs
for this type of separable system by first constructing sepa-
rable CLFs for partially feedback linearizable systems. This
letter develops a class of separable subsystem controllers
that rely only on local information but provide formal guar-
antees of stability for the full hybrid system with zero
dynamics.

Index Terms—Lyapunov methods, nonlinear systems,
prosthetics.

I. INTRODUCTION

POWERED prostheses commonly use impedance con-
trol [1] which is highly heuristic in requiring hand tuning

and yields no formal guarantees of stability or optimal-
ity. Inspired by bipedal control methods, researchers applied
bipedal trajectory generation methods to prostheses [2], [3],
but cannot translate bipedal model-based trajectory tracking
methods due to unknown human dynamics. Inclusion of the
model in the control problem allows inputs to be chosen
to satisfy constraints on the physical system [4] and lowers
dependence on high-gain PD control by using a feedforward
term. Also, through consideration of the nonlinear dynamics,
controllers can establish formal guarantees on the stability of
the system [5], [6]. Researchers [7], [8] constructed feedback
linearizing controllers for prostheses in simulation using the
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Fig. 1. Human-prosthesis separable system (left) with separable pros-
thesis subsystem (red) and remaining human system (blue). Equivalent
prosthesis subsystem (right) with base coordinates and interaction force
inputs. The composite CLF of the remaining system RES-CLF (blue) and
equivalent subsystem RES-CLF (red) yields a RES-CLF for the whole
system (purple).

interaction force between the human and prosthesis, demon-
strating how to treat subsystems separately for one specific
controller. We extend upon this work by developing a class of
separable model-dependent controllers.

In developing a class of controllers for bipedal robots,
researchers looked to establish stability given the impacts and
zero dynamics present in walking. Using a RES-CLF, they
extended the stability of periodic orbits in the hybrid zero
dynamics to the full-order dynamics [9]. This method was
applied in experiment to establish stable walking of an under-
actuated five-link robot subject to impact dynamics at foot
strike. CLFs also proved useful for robotic walking on hard-
ware when formulated as quadratic programs (QPs) [4], [10].
To apply this powerful nonlinear control technique to powered
prostheses, we view the human-prosthesis system as a sepa-
rable system [8], where a subsystem, namely the prosthesis,
is separable from the system since it is not a function of the
control input of the remaining system, the human. We exam-
ine separating RES-CLFs for separable systems to construct a
RES-CLF based on the prosthesis alone with the same stability
guarantees established in [9]. Separable Lyapunov functions
were termed in [11] to describe stability analysis methods for
interconnected nonlinear systems, such as in [12]. Here we
construct separable RES-CLFs to define a class of controllers
to render provably stable hybrid periodic orbits of nonlinear
separable systems with zero dynamics.
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The main contributions of this letter are (i) establishing
stability guarantees of a hybrid dynamical system with zero
dynamics through a subsystem controller relying solely on
local information, and (ii) providing a method to construct
such controllers. This letter enables construction of a class of
model-dependent prosthesis controllers, bringing the human
in the loop of prosthesis control with strong formal guaran-
tees of stability. Section II provides an overview of hybrid
systems, RES-CLFs, and separable systems to establish that
a composite CLF for a separable system guarantees stability
of a hybrid periodic orbit. Section III outlines construction of
CLFs for partially feedback linearizable systems that yield a
separable form to construct RES-CLFs for separable systems.
Section IV describes the amputee-prosthesis model used to
demonstrate the results in simulation.

II. HYBRID SEPARABLE SYSTEMS AND ZERO DYNAMICS

In this section we extend exponential stability of a hybrid
periodic orbit in the zero dynamics to the full-order dynamics
with two RES-CLFs for a separable system, the form of the
human-prosthesis system, shown in Fig. 1. We can construct
an equivalent prosthesis subsystem, independent of the human,
using inputs available from a force sensor and IMU in practice.
A RES-CLF for this equivalent subsystem, allows independent
construction of the separable subsystem control law relying
only on local information and stabilizes the full-order system
when the remaining system is known to stabilize itself. To
begin, we briefly introduce hybrid systems.

Hybrid Systems: Consider a hybrid control system:

HC =

⎧⎪⎨
⎪⎩

ẋ = f (x, z) + g(x, z)u
ż = q(x, z) if (x, z) ∈ D\S
x+ = �X(x−, z−)

z+ = �Z(x−, z−) if (x−, z−) ∈ S

(1)

where x ∈ X ⊂ R
n are controlled (output) states, z ∈ Z ⊂ R

nz

uncontrolled states, U ⊂ R
m is a set of admissible con-

trol inputs for u. The functions f , g, q, �X, �Z are locally
Lipschitz in their arguments. The domain D is a closed sub-
set of X × Z, the guard or switching surface S ⊂ D is a
co-dimension one submanifold of D, defined by,

D = {(x, z) ∈ X × Z : h(x, z) ≥ 0}, (2)

S = {(x, z) ∈ X × Z : h(x, z) = 0 and ḣ(x, z) < 0}, (3)

where the continuously differentiable function h:X × Z → R

yields Lgh = 0. Here we assume f (0, z) = 0 and �X(0, z) = 0
yielding the surface Z defined by x = 0 with dynamics ż =
q(0, z) as invariant for the continuous and discrete dynamics.
This yields the hybrid system for the hybrid zero dynamics:

H |Z =
{

ż = q(0, z) if z ∈ Z\(S ∩ Z)

z+ = �Z(0, z−) if z− ∈ S ∩ Z.

RES-CLF: To later evaluate the stability of a periodic orbit
for this hybrid system, let us review RES-CLFs, an idea intro-
duced in [9]. A RES-CLF for the continuous dynamics of (1)
is a function with positive constants c1, c2, c3 > 0 such that
for all 0 < ε < 1 and (x, z) ∈ X × Z,

c1‖x‖2 ≤ Vε(x) ≤ c2

ε2
‖x‖2 (i)

inf
u∈U

[Lf Vε(x, z) + LgVε(x, z)u + c3

ε
Vε(x)] ≤ 0, (ii)

where Lf Vε and LgVε denote the Lie derivatives [13]. The
following set consists of control values that yield V̇ε(x, z, u) <

− c3
ε

Vε(x), i.e., satisfy (ii):

Kε(x, z) = {u ∈ U : Lf Vε(x, z) + LgVε(x, z)u + c3

ε
Vε(x) ≤ 0}.

With uε(x, z) ∈ Kε(x, z) for all x ∈ X × Z the closed-loop
system of the continuous dynamics of (1) becomes:

H ε =

⎧⎪⎨
⎪⎩

ẋ = f (x, z) + g(x, z)uε(x, z)
ż = q(x, z) if (x, z) ∈ D\S
x+ = �X(x−, z−)

z+ = �Z(x−, z−) if (x−, z−) ∈ S.

(4)

For the continuous dynamics of (4), let φt(x, z) be its peri-
odic flow and O its corresponding periodic orbit. For the zero
dynamics ż = q(0, z) with periodic flow φz

t , let O Z be its
corresponding periodic orbit. Because of the invariance of the
zero dynamics surface Z assumption, a periodic orbit for the
zero dynamics O Z corresponds to a periodic orbit for the full-
order dynamics, O = ι0(O Z), where ι0 : Z → X × Z is the
canonical embedding ι0(z) = (0, z). We saw in [9] how the
existence of a RES-CLF guaranteed for an exponentially sta-
ble periodic orbit O Z for the zero dynamics H |Z transverse
to S ∩ Z, the corresponding periodic orbit of the full-order
dynamics O = ι0(O Z) is exponentially stable.

Hybrid Separable Systems: Now let us consider this idea in
the context of separable systems by considering the continuous
dynamics of (1) to be a separable system as defined in [8] with
the addition of zero dynamics:[

ẋr
ẋs

]
=

[
f r(x, z)
f s(x, z)

]
+

[
gr

1(x, z) gr
2(x, z)

0 gs(x, z)

][
ur
us

]
,

ż = q(x, z),

xr ∈ R
nr , xs ∈ R

ns , ur ∈ R
mr , us ∈ R

ms , (5)

where nr + ns = n and mr + ms = m. We define the separable
subsystem and remaining system respectively as:

ẋs = f s(x, z) + gs(x, z)us, (6)

ẋr = f r(x, z) + gr
1(x, z)ur + gr

2(x, z)us, (7)

where (6) is a function of us, and (7) of both ur and us.
To obtain a RES-CLF for the subsystem that only requires

local information, we reintroduce an idea from [8], an equiv-
alent subsystem, this time with zero dynamic coordinates:

˙̄xs = f̄ s(X ) + ḡs(X )us,

X = (x̄T
r , xT

s , z̄T
s , FT)T ∈ R

n̄. (8)

Here x̄s = xs, x̄r ∈ R
n̄r are measurable states, and X is

the state vector x̄ = (x̄T
r , xT

s )T augmented with uncontrollable
states z̄s ∈ R

n̄z and input F ∈ R
nf . For this subsystem to

equate to the separable subsystem (6), we assume there exists
a transformation T : X × Z → R

n̄ such that T(x, z) = X
and the following conditions hold: f s(x, z) = f̄ s(X ) and
gs(x, z) = ḡs(X ). In the next section, we show the exis-
tence of individual RES-CLFs for the equivalent subsystem
and remaining system yields a RES-CLF for the full-order
system implying [9, Th. 2] applies to guarantee exponential
stability of the hybrid periodic orbit O = ι0(O Z).
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Composite RES-CLF for Separable Systems: Assume there
exists a RES-CLF V̄s

ε(xs) for the equivalent subsystem,

c̄s
1‖xs‖2 ≤ V̄s

ε(xs) ≤ c̄s
2

ε2
‖xs‖2

inf
us∈Rms

[Lf̄ s V̄s
ε(X ) + Lḡs V̄s

ε(X )us] ≤ − c̄s
3

ε
V̄s

ε(xs), (9)

where c̄s
1, c̄s

2, and c̄s
3 are positive constants. Here V̄s

ε(xs) is
only a function of the separable subsystem states xs and its
derivative ˙̄Vs

ε(X , us) is based solely on local information. The
following set consists of all control values us that satisfy
˙̄Vs
ε(X , us) ≤ − c̄s

3
ε

V̄s
ε(xs):

K̄s
ε(X ) = {us ∈ R

ms : Lf̄ s V̄s
ε(X ) + Lḡs V̄s

ε(X )us ≤ − c̄s
3

ε
V̄s

ε(xs)}.
Let us also assume there exists a RES-CLF Vr

ε(xr) for the
remaining system such that, given a us ∈ K̄s

ε(X ),

cr
1‖xr‖2 ≤ Vr

ε(xr) ≤ cr
2

ε2
‖xr‖2

inf
ur∈Rmr

[Lf r Vr
ε(x, z) + Lgr

1
Vr

ε(x, z)ur

+ Lgr
2
Vr

ε(x, z)us] ≤ −cr
3

ε
Vr

ε(xr), (10)

where cr
1, cr

2, and cr
3 are positive constants. Here Vr

ε(xr) is
only a function of the remaining states xr and its deriva-
tive V̇r

ε(x, z, u) depends on both control inputs (ur, us). The
following set consists of all control values ur that satisfy
V̇r

ε(x, z, u) ≤ − cr
3
ε

Vr
ε(xr) for us ∈ K̄s

ε(X ):

Kr
ε(x, z) = {ur ∈ R

mr : Lf r Vr
ε(x, z) + Lgr

1
Vr

ε(x, z)ur

+ Lgr
2
Vr

ε(x, z)us ≤ −cr
3

ε
Vr

ε(xr)}|us∈K̄s
ε(X ).

Theorem 1: Let O Z be an exponentially stable periodic
orbit of the hybrid zero dynamics H |Z transverse to S∩Z and
assume there exists RES-CLFs V̄s

ε(xs) and Vr
ε(xr) for the equiv-

alent subsystem (8) and remaining system (7), respectively, of
the continuous dynamics of HC (1). Then there exists an ε̄ >

0 such that for all 0 < ε < ε̄ and for all Lipschitz continuous
uε

s (X ) ∈ K̄s
ε(X ) and respective uε

r (x, z) ∈ Kr
ε(x, z)|us∈K̄s

ε(X ),
O = ι0(O Z) is an exponentially stable hybrid periodic orbit
of H ε with uε(X , x, z) = (uεT

r (x, z), uεT
s (X ))T .

Proof: We show the conditions listed above are within the
conditions of [9, Th. 2], so the same result holds. First we
show that given a RES-CLF for the equivalent subsystem
and remaining system, there exists a RES-CLF for the whole
system. Consider the composite Lyapunov function:

V̄ε(x) = V̄s
ε(xs) + Vr

ε(xr) ≤ max{c̄s
2, cr

2}
ε2

‖x‖2,

Similarly V̄ε(x) ≥ min{c̄s
1, cr

1}‖x‖2, satisfying (i). For (ii),

˙̄Vε(X , x, z, ur, us) = ˙̄Vs
ε(X , us) + V̇r

ε(x, z, ur)

≤ −min{c̄s
3, cr

3}
ε

V̄ε(x),

establishing V̄ε(x) as a RES-CLF of the continuous dynam-
ics of (1). Dropping the arguments (X , us) and (x, z, ur)

for simplicity’s sake, we next show for ūε = (uεT
r , uεT

s )T ,
where uε

r ∈ Kr
ε and uε

s ∈ K̄s
ε, that ūε ∈ Kε by ensuring

˙̄Vε ≤ −min{c̄s
3,c

r
3}

ε
V̄ε(x). Using this uε

r and uε
s and building on

what was shown above,

˙̄Vε = ˙̄Vs
ε + V̇r

ε

= (Lf̄ s V̄s
ε + Lḡs V̄s

εuε
s ) + (Lf r Vr

ε + Lgr
1
Vr

εuε
r + Lgr

2
Vr

εuε
s )

≤ (− c̄s
3

ε
V̄s

ε(xs)) + (−cr
3

ε
Vr

ε(xr))

≤ −min{c̄s
3, cr

3}
ε

V̄ε(x),

hence ūε = (uεT
r , uεT

s )T ∈ Kε(x, z). Since these conditions fit
within the conditions of [9, Th. 2], the same result applies:
O = ι0(O Z) is exponentially stable for H ε.

Remark: In Section IV, we prescribe limit cycle motion
matching human data to the human model with a RES-
CLF controller. Research on central pattern generators suggest
biological walkers such as humans exhibit stable rhythmic
behavior, meaning they have limit cycles [14]. Thus we do not
make biomechanical claims of the human’s control method,
but instead prescribe a stable limit cycle to approximate human
walking. Our class of RES-CLF controllers encompasses all
controllers that stabilize these hybrid limit cycles; for con-
trol purposes we find it reasonable to assume the human’s
effective control input is within our class of control laws for
the remaining system. Then by Theorem 1, a RES-CLF pros-
thesis subsystem controller with only local information will
guarantee the entire system is stable.

III. SEPARABLE CLF CONSTRUCTION

To obtain RES-CLFs for separable systems, we begin with
constructing CLFs for partially feedback linearizable systems,
an idea introduced in [13, pp. 160–172]. Our construction
yields a separable form that allows us to independently stabi-
lize each output while guaranteeing full-order system stability.
This method also provides a basis to construct separable
RES-CLFs for separable systems.

Output Dynamics and Feedback Linearization: Any par-
tially feedback linearizable system can be converted to normal
form per methods introduced in [6, pp. 407–411]. We assume
our system (1) is in normal form for the linearly indepen-
dent outputs y : Rn → R

k, where k = m to obtain a square
system [6, p. 407]. These outputs are of vector relative degree

γ = (γ1, γ2, . . . , γk), and yield output dynamics of the dimen-
sion of our system states, i.e.,

∑k
i=1 γi = n. We write the

output dynamics as the continuous dynamics of (1):⎧⎨
⎩

x1
i = yi(x, z)

xj+1
i = ẋj

i
ẋγi

i = ai(x, z) + bi(x, z)u
⇒

{
ẋ 
γ = (xγ1T

1 , xγ2T
2 , . . . , xγkT

k )T

ẋ 
γ = â(x, z) + b̂(x, z)u,

∀ i ∈ {1 · · · m}, j ∈ {1 · · · γi − 1} (11)

from which we construct the feedback linearizing controller:

u = −b̂−1(x, z)(â(x, z) − μ), (12)

with the auxiliary control input μ. Here b̂−1(x, z) is invertible
because the outputs are linearly independent and the system
is square. Applying this controller results in ẋ 
γ = μ and we
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rewrite our output dynamics:

ẋi =
[

0 Iγi−1×γi−1
0 0

]
︸ ︷︷ ︸

Fi

xi +
[

0γi−1×1
1

]
︸ ︷︷ ︸

Gi

μi

ẋ = Fx + Gμ, (13)

where x = (xT
1 , xT

2 , . . . , xT
k )T , μ = (μT

1 , μT
2 , . . . , μT

k )T , and

F = diag(F1, . . . , Fk) ∈ R
n×n,

G = diag(G1, . . . , Gk) ∈ R
n×k, (14)

where diag() notates a block diagonal matrix of listed ele-
ments. This F and G yields a full rank controllability matrix
enabling CLF construction with the continuous-time Algebraic
Riccati equation (CARE).

Separable CLFs: To enable independent controller construc-
tion for the human and prosthesis subsystems, we construct a
CLF we can separate for each output xi, starting with a lemma
on the structure of the CARE solution.

Lemma 1: For any F and G of the form (14) and weight
matrix Q = diag(Q1, . . . , Qk), where Qi ∈ R

γi×γi , a solution
to the CARE equation,

FTP + PF + PGGTP + Q = 0, (15)

is a block diagonal positive definite matrix P =
diag(P1, . . . , Pk) with elements {Pi ∈ R

γi×γi}i=1,...,k.
Proof: Let us assume P is of the given form, this would

yield the left side of (15) to be a block diagonal matrix of the
following set of components:

{FT
i Pi + PiFi + PiGiG

T
i Pi + Qi}i=1...k,

where the right side of (15) equates each of these components
to 0. This takes the form of CARE and since Fi and Gi of the
form (14) yield a full rank controllability matrix, there exists a
solution Pi for i = 1 . . . k. Hence this block diagonal structure
of P satisfies (15) and is therefore a solution.

We know from [9] that for a P from CARE, V(x) = xTPx
is a CLF satisfying

inf
μ

[LFV(x) + LGV(x)μ] ≤ −λmin(Q)

λmax(P)
V(x), (16)

where LFV(x) = x(FTP + PF)x and LGV(x) = 2xT PG. Based
on this construction, we can separate our CLF such that for
each output xi we can define a CLF Vi(xi), or sub-CLF, with
sub-components from our separable CLF V(x).

Definition 1 (A separable CLF): is a CLF Vsep(x) = xTPx
with P of the form in Lemma 1, satisfying (15) for F and G
of (14) and Q of the form in Lemma 1, where k ≥ 2.

Definition 2 (A sub-CLF): is a function Vsub(xsub):

Vsub(xsub):=Vi(xi) = xT
i Pixi

inf
μ∈R [LFVi(xi) + LGVi(xi)μi] ≤ −λmin(Qi)

λmax(Pi)
Vi(xi), (17)

where LFVi(xi) = xi(FT
i Pi + PiFi)x and LGVi(xi) = 2xT PiGi.

for i ∈ {1 · · · k} for a separable CLF Vsep(x).
Based on these definitions, we now establish constructing

the auxiliary control inputs μi to satisfy their sub-CLF condi-
tions will yield a μ satisfying the separable CLF condition.

Theorem 2: Given a separable CLF Vsep(x), if for all i ∈
{1 . . . k}, μi satisfies its sub-CLF condition (17), then μ =[
μT

1 , μT
2 , . . . , μT

k

]T
satisfies (16) for Vsep(x).

Proof: Since P in Vsep(x) is the specified block diagonal
structure in Lemma 1 and satisfies (15), each Pi must satisfy:

FT
i Pi + PiFi + PiGiG

T
i Pi + Qi = 0,

and hence forms a CLF satisfying the sub-CLF condi-
tions (17). We write Vsep(x) as a composite CLF of sub-CLFs:

Vsep(x) = xT
1 P1x1 + xT

2 P2x2 + · · · + xT
k Pkxk =

k∑
i=1

Vi(xi),

where Vi(xi) = xT
i Pixi. Taking the infimum of the derivative,

we bound the separable CLF in terms of the sub-CLFs:

inf
μ∈Rk

[LFVsep(x) + LGVsep(x)μ] =
k∑

i=1

inf[LFVi(xi) + LGVi(xi)μi]

≤
k∑

i=1

−λmin(Qi)

λmax(Pi)
Vi(xi).

Comparing the elements in this bound to the separable CLF
bound in (16), we note Vsep(x) = ∑k

i=1 Vi(xi), λmin(Qi) ≥
λmin(Q), and λmax(Pi) ≤ λmax(P) for all i = 1, . . . , k. Hence:

k∑
i=1

−λmin(Qi)

λmax(Pi)
Vi(xi) ≤ −λmin(Q)

λmax(P)
Vsep(x).

Therefore any set {μi ∈ R}i=1,...,k that satisfies each respective
sub-CLF condition (17), will also satisfy the CLF condi-
tion (16) for the separable CLF.

This CLF construction allows us to develop μi with only
knowledge of xi to stabilize each output while guarantee-
ing stability of the whole system. For the human-prosthesis
system, we can construct these inputs separately for the human
and prosthesis. To apply Theorem 1, we now extend this
method to develop RES-CLFs for separable systems.

Separable RES-CLFs for Separable Systems: For a system
with k relative degree 2 outputs, common in mechanical
systems, we can transform each sub-CLF to a sub-RES-CLF
following the method in [9] with 0 < ε < 1:

Vi
ε(x) = xT

i

[
1
ε
I 0

0 I

]
Pi

[
1
ε
I 0

0 I

]
xi =: xT

i Pε
i xi. (18)

By Theorem 1’s proof constructions, we conclude the sum-
mation of sub-RES-CLFs yields a RES-CLF for the whole
system. Repeating Theorem 2’s proof would establish the
same result for this separable RES-CLF. By summing the sub-
RES-CLFs for the separable subsystem outputs we attain a
RES-CLF V̄s

ε(xs) = xT
s Pε

s xs for the equivalent subsystem (8)
and with the remaining outputs a RES-CLF Vr

ε(xr) = xT
r Pε

r xr
for the remaining system (7), where Pε

r and Pε
s are diagonal

matrices of elements Pε
i for their respective outputs.

To find a subsystem control law in K̄s
ε(X ), we need the

subsystem output dynamics. Due to a separable system’s struc-
ture (5), we know ẋ 
γ s

s is independent of us yielding (11) of
the form,[

ẋ 
γ r

r

ẋ 
γ s

s

]
=

[
âr(x, z)
âs(x, z)

]
+

[
b̂r

1(x, z) b̂r
2(x, z)

0 b̂s(x, z)

][
ur
us

]
, (19)
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where 
γ s and 
γ r are the vector relative degrees of the separa-
ble subsystem and remaining system outputs, respectively, as
defined in [8]. As stated in [8], having an equivalent subsys-
tem enables construction of feedback linearizing terms, ˆ̄as(X )

and ˆ̄bs(X ), of separable outputs in terms of the equivalent
subsystem, such that for all x and z,

ˆ̄as(X ) = âs(x, z) and ˆ̄bs(X ) = b̂s(x, z).

Using these terms, we formulate a QP for the subsystem
control law us without knowledge of the rest of the system:

u�
s = argmin

us∈Rms
uT

s
ˆ̄bs(X )T ˆ̄bs(X )us + ˆ̄as(X )us

s.t. LFs V̄
s
ε(xs) + LGs V̄

s
ε(xs)(

ˆ̄bs(X )us

+ ˆ̄as(X )) ≤ − λmin(Qs)

ελmax(Ps)
V̄s

ε(xs), (20)

where again Fs, Gs, Qs, and Ps are diagonal matrices of the
elements Fi, Gi, Qi, and Pi, respectively, for the subsystem
outputs. These constructions work for any separable system
with separable outputs, since its normal form is also separable.
Inherently F and G of (14) comply with separable form and
the feedback linearizing terms of (11) are separable, as shown
in the proof of [8, Th. 1].

This subsystem control law relies solely on local
information and guarantees stability of a hybrid periodic
orbit of the zero dynamics in the full-order dynamics when
the remaining system is stable. This QP formulation allows
torque bounds and model-based constraints to be added, as
in [4], [10].

IV. AMPUTEE-PROSTHESIS APPLICATION

In this section we apply the controller (20) to a planar
amputee-prosthesis model to demonstrate the results of the
theorems. The model is comprised of 6 links: torso, 2 human
thighs and calf, and prosthesis calf and partial thigh. The con-
nection between the prosthesis partial thigh and human right
thigh is modeled as a 3 DOF fixed joint (x, z Cartesian posi-
tion and pitch). This model yields a separable system. Any
open-chain robotic system can be modeled as such by divid-
ing the original model into two subsystems and constraining
them to each other through a holonomic constraint. The human
parameters are estimated with a subject’s height and weight
and the parameters in [15], [16], for details see [8]. The
prosthesis parameters are based on a powered transfemoral
prosthesis platform AMPRO3 [17]. We consider 4 actuators:
3 at the human’s hips and knee that constitute ur, and 1 at
the prosthesis knee that constitutes us. The torso is not actu-
ated, introducing zero dynamics into the system. The feet are
modeled as point contacts. In practice, we can emulate a point
foot model on a transfemoral prosthesis by treating the ankle
as a passive spring-damper.

Human-Prosthesis Dynamics: The generalized coordinates
for the system are θ = (θB, θh, θf , θpk), where the extended
coordinates θB ∈ SE(2) represent the position and rotation of
the robot’s base frame; θh = (θlh, θlk, θrh) are the human’s left
hip, left knee, and right hip, respectively; θf are the fixed joint
coordinates; and θpk is the prosthesis knee. See Fig. 1. With

these coordinates, the full-order system constrained dynamics
are given by the Euler-Lagrange equation [18],

D(θ)θ̈ + H(θ, θ̇ ) = Bu + JT(θ)F

J̇(θ, θ̇ )θ̇ + J(θ)θ̈ = 0,

where J(θ) is the Jacobian of the holonomic constraints
modeling the foot contact and the fixed joints. We focus on
the prosthesis as our separable subsystem and rearrange the
dynamics per the methods of [8] to be a separable system (5),
where xr = (θB, θh, θf , θ̇B, θ̇h, θ̇f ) and xs = (θpk, θ̇pk).

Prosthesis Subsystem Dynamics: The generalized coordi-
nates for the prosthesis are θ̄ = (θ̄B, θpk). Here θ̄B ∈ SE(2) are
the base coordinates of the prosthesis located at its attachment
point. Its constrained dynamics are

D̄(θ̄) ¨̄θ + H̄(θ̄ , ˙̄θ) = B̄us + J̄T(θ̄)F̄(θ̄ , ˙̄θ) + J̄T
f (θ̄)Ff ,

˙̄J(θ̄ , ˙̄θ) ˙̄θ + J̄(θ̄) ¨̄θ = 0,

where J̄(θ̄) is the Jacobian of the holonomic constraint for the
foot contact and J̄f is the projection of the measured socket
force Ff onto the attachment point. We use the transforma-
tion T(x, z) = X from [8] and rearrange the dynamics as
in [8] to be an equivalent subsystem (8). Here the measurable
states x̄r = (θ̄T

B , ˙̄θT
B )T can be obtained with an IMU and the

input F = Ff with a force sensor, see Fig. 1. There are no
uncontrollable states z̄s for the prosthesis.

Output Functions: Because of the asymmetrical human-
prosthesis system, we use two domains to model the steps,
with subscript v denoting a domain and e the guard between
domains. For the guards (3), hv(x, z) is the height of the
non-stance foot. For details on multi-domain hybrid systems
see [19]. To construct the separable RES-CLF of Section III,
we design relative degree 2 separable outputs [8],

yv(x, αv) =
[

yr
v(x, αv)

ys
v(xs, αv)

]
=

[
ya,r(x) − yd,r

v (x, αv)

ya,s(xs) − yd,s
v (xs, αv)

]
,

such that the ks number of subsystem outputs is the prosthesis
knee angle, ya,s(xs) = θpk, and the kr number of remaining out-
puts are the human’s hips and knees, ya,r(x) = (θlh, θlk, θrh)

T .
For the desired outputs yd,r

v and yd,s
v , αv are coefficients for

Bézier polynomials chosen to match human walking data [20]
and such that the zero dynamics surface Z is invariant and
contains an exponentially stable periodic orbit O Z transverse
to the switching surface S ∩ Z, satisfying the assumption of
Theorem 1.

Results: To encode the human-like walking trajectories in
the human simulation, we use the feedback linearizing con-
troller (12) where μ = (μT

r , μT
s )T , with μs as the min-norm

controller satisfying the RES-CLF condition for V̄s
ε(xs), and

μr = − 1

ε2
yr

v(x) − 1

ε
ẏr

v(x),

which indeed yields a RES-CLF as shown in [9] for this
remaining system. The prosthesis tracks its trajectory with the
subsystem controller (20), which yields the same μs used for
the remaining system controller. Simulating this system for
20 steps starting at a perturbed initial condition the prosthesis
(subsystem) states settle into a stable periodic orbit, shown in
Fig. 2a, demonstrating the rapid convergence of this controller.
This figure also depicts the stable periodic orbit of the zero
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Fig. 2. (a) Phase portraits of subsystem states (left) and zero dynamics
coordinates (right) showing stability for 20 steps with perturbed initial
condition (triangle). (b) Actual output prosthesis trajectory ya,s

v tracking
desired trajectory yd,s

v , designed to match human data.

Fig. 3. (a) RES-CLF derivatives for remaining system (blue) and sub-
system (red) show convergence for prosthesis stance domain (left) and
prosthesis swing (right) and yield a RES-CLF for the full-order system
(purple) satisfying its RES-CLF bound (gray). (b) Prosthesis control
input from CLF-QP.

Fig. 4. Gait tiles of human-prosthesis system, prosthesis in red,
demonstrating human-like walking in simulation.

dynamics, demonstrating the exact result of Theorem 1: a sta-
ble hybrid periodic orbit of the zero dynamics is guaranteed
exponentially stable in the full-order dynamics for controllers
of their respective RES-CLF controller classes. Fig. 2b shows
the output tracking of the prosthesis controller and its relation
to human knee data with respect to a state-based parameter-
ization of time [8]. Fig. 3a depicts the RES-CLF derivatives
for the subsystems and full-order system, with the full-order
system’s bound. This demonstrates Theorem 2 by showing the
auxiliary control inputs for the remaining system and separa-
ble subsystem that satisfy their respective sub-CLF conditions
also satisfy the CLF condition for the full-order system. Fig. 3b
shows the prosthesis control input from (20) is smooth for each
domain and remains in a reasonable range. Fig. 4 shows gait
tiles of the human-prosthesis system walking in simulation.

V. CONCLUSION

This letter extended RES-CLFs to separable systems to
establish exponential stability of a hybrid periodic orbit of
the zero dynamics in the full-order dynamics with a sub-
system controller constructed solely with local information.
Following, we developed a method to construct such RES-
CLFs for separable systems. This method also outlined con-
structing CLFs for linearized systems to stabilize each output
independent of the rest of the system, while guaranteeing sta-
bility of the whole system. This letter is significant since it
enables construction of a class of model-dependent prosthe-
sis controllers using only locally available sensor information.
With the assumption the human can stabilize itself, these

controllers provide formal guarantees of exponential stability
for a hybrid human-prosthesis system with zero dynamics.
This class of controllers gives freedom to design controllers
with fast convergence in the presence of disturbances and
robustness to force sensor noise to be physically realizable.
An example is the robust CLF-QP in [20] which uses an esti-
mate of the range of interaction forces between the human and
prosthesis in place of a force sensor. This controller guaran-
tees stability of the prosthesis for any force within the range.
Future work includes implementing this class of controllers on
a prosthesis platform.
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