Simultaneous identification of linear building dynamic model

and disturbance using sparsity-promoting optimization

*

Tingting Zeng, Jonathan Brooks, Prabir Barooah*

Mechanical and Aerospace Engineering, University of Florida,
Gainesville, Florida USA

*Corresponding Author

Abstract

We propose a method that simultaneously identifies a control-oriented model of a building’s temperature dynamics and a
transformed version of the unmeasured disturbance affecting the building. Our method uses ¢;-regularization to encourage
the identified disturbance to be approximately sparse, which is motivated by the slowly-varying nature of occupancy that
determines the disturbance. The proposed method involves solving a feasible convex optimization problem that guarantees
that the identified black-box model, a linear time-invariant system, possesses known properties of the plant, especially input-
output stability and positive DC gains. These features enable one to use the method as part of a self-learning control system
in which the model of the building is updated periodically without requiring human intervention. Results from the application
of the method on data from a simulated and real building are provided.
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1 Introduction

A dynamic model of a building’s temperature is useful
for model-based fault detection and control of its HVAC
(Heating Ventilation and Air Conditioning) system.
There is a long history of such modeling efforts [8]. Due
to the complexity of thermal dynamics, system identifi-
cation from data is considered advantageous and there
has been much work on it; see [8,10,6] and references
therein. A particular challenge for model identification
is that temperature is affected by large, unknown dis-
turbances, especially the cooling load induced by the
occupants. The occupant-induced load refers to the
heat gain directly due to the occupants’ body heat and
indirectly from lights and other equipments they use.
Another challenge comes from the need for automatic
updates, especially for the use in model-based control.
Due to changes in a building’s properties over time, the
model needs to be updated periodically with new data.
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A method designed to identify a control oriented model
should also guarantee certain properties of the model so
that it can be used as part of a self-learning control sys-
tem without the need for a human expert to check the
quality of the model. Most system identification meth-
ods for buildings ignore the unknown disturbances, but
doing so can produce erroneous results. Only a few re-
cent works have addressed the problem of unknown dis-
turbances [7,2]. None of the prior works however provide
any guarantees on the properties of the identified model,
such as stability.

In this paper we propose a method to estimate a lin-
ear dynamic model as well as a transformed version
of the unknown disturbances from easily measurable
input-output data. The method consists of solving a
feasible and convex optimization problem, and the re-
sulting model is guaranteed to possess properties that
are known from physical insight into thermal dynamics
of buildings, such as stability and positive DC gains
of certain input-output pairs. The proposed method,
which we call SPDIR (Simultaneous Plant and Distur-
bance Identification through Regularization), is based
on solving a constrained ¢;-regularized least-squares
problem. The ¢;-penalty encourages the transformed
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disturbance to be a sparse signal. Use of the ¢;-norm
penalty to encourage sparse solution is a widely used
heuristic [11]. In our problem the motivation comes from
the fact that the disturbance, which consists mostly of
internal load due to occupants, is often slowly varying.
For instance, large numbers of people enter and leave of-
fice buildings at approximately the same time. A slowly
varying disturbance can be further approximated as
piecewise-constant. We show that this feature makes
the transformed disturbance an approximately sparse
signal. The constraints ensure the identified model will
have desirable properties. Evaluation of the method
with simulation-generated data show that it can accu-
rately identify the transfer function in the presence of
large disturbances, even when the disturbance is not
piecewise-constant. Evaluation with data from a real
building are similarly promising, though accuracy is
difficult to establish due to lack of a ground truth.

A few works have partially addressed the challenge posed
by the presence of the unknown disturbance by using
a specialized test building to measure the occupant-
induced load [10,12], or by collecting data from unoccu-
pied times and setting the occupant-induced disturbance
during that time to 0 [3,6]. Knowing when a building
is unoccupied requires additional and expensive sens-
ing that most buildings currently lack. Even if occu-
pancy status can be measured, setting the disturbance
to be 0 during unoccupied hours is not advisable since
part of the disturbance is due to modeling error. Work
on model identification of building dynamics that han-
dles occupant-induced heat gains in a principled man-
ner, without requiring specially collected data or mak-
ing ad-hoc assumptions, is limited. To the best of our
knowledge, the only references that fall into this cate-
gory are [7,2,5].

There are many differences between our work and the
prior work on simultaneous identification of model and
disturbance for buildings, including [7,2,5]. We point out
two key differences. One, the proposed SPDIR method
can enforce properties of the system that are known from
the physics of the thermal processes, in particular, stabil-
ity and signs of DC gains for certain input-output pairs.
For instance, an increase in outdoor temperature will
lead to an increase in indoor temperature, but none of
the prior methods guarantees that the identified model
will predict this behavior. Second, while the proposed
SPDIR method requires solving a feasible convex opti-
mization problem, the methods in all prior work men-
tioned above require solving non-convex optimization
problems. The estimates obtained from such a method
can be quite poor due to a local minimum, requiring
a human expert to assess the quality of the estimate.
These two features of the proposed method enable it to
be used as part of a self-learning control system without
the need for a human expert in the loop.

The article makes three contributions over the prelimi-

nary version [16]: (1) we determine the value of the crit-
ical regularization parameter \,,,; that is used in tun-
ing the regularization parameter A (Proposition 3.1.1);
(2) we provide evaluation of our method on data from
a real building, and (3) we compare performance of the
proposed method against the method in [7], and a Box-
Jenkins model of the building dynamics. The rest of
this paper is organized as follows. Section 2 formally de-
scribes the problem and establishes a few preliminaries.
Section 3 describes the proposed algorithm. Due to the
directive to reduce the paper to a brief paper format,
some proofs of the technical results presented in Sec-
tions 2 and 3 are omitted; they can be found in [15].
Section 4 provides evaluation results and Section 5 con-
cludes the paper.

2 Problem Formulation

The indoor zone temperature T, is affected by three
known inputs: (1) the heat added to the zone by the
HVAC system, gpyac(kW), (2) the outside air tempera-
ture T,,, (°C), (3) the solar irradiance *°! (kW /m?), and
the unknown disturbance giny (kW), which is the inter-
nal heat gain due to occupants, lights, and equipments
used by the occupants. The only measurable output is
the zone temperature 7, (°C).

Let u(t) = [gnvac(t), Toa(t), 77*'(H)]" € R?, w(t) =
gint(t) € R, and y(t) := T.(t) € R. We start with the
following second-order discrete-time transfer function
model of the system, with a sampling period ts:
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where D(27 1) = 1—6,271 — 6,272, for some parameters
01,02 and oj, B;’s, and ulk], w(k], y[k] are samples of
the continuous-time signals u(t), w(t), y(¢). This model
is a discrete-time version of a physics-based continuous
time model that is described in Section 2.1.1. For future
convenience, we rewrite (1) as

1
-1y _ “INT, =1y 4 -1
v =gy [KETD G+,
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where  K(271):= | 05272+ 07271 + 05 |
992_2 + 9102_1 + 611
and w(z7') is the Z-transform of the transformed dis-

turbance signal w[k] defined as

wlk] = Bowlk] + frwlk — 1] + Bowlk —2].  (3)



An inverse Z-transform on (2) yields a difference equa-
tion, which leads to:

L) kmam (4)

where kmax is the number of samples, and 67 :=
[GE,JJT}, in which 6, = [01,...,011]7 € RY, w =
[W3, ..., W, T € RFmax=2 and

max]

OlK|T = [ylk = 1) ylk — 2], wr ke — 2], e[k — 1], s [,

walk — 2, ..., ua[k], uslk — 2},...,u3[k],e£_2},

where ey, is the k-th canonical basis vector of RFmax—2
in which the 1 appears in the k' place. Eq. (4) can be
expressed as:

y = @0, (5)

where Y= [y[3]7 s 7y[kmax]]T S RFmax—2 and

¢[3]"

P = € RFmax=2xFmaxt9,
d)[kmax]T

The problem we seek to address is: given time traces of
inputs and outputs, {ulk], y[k]}¥=>, determine the un-
known parameter vector 8, € R'* and the unknown trans-

formed disturbance vector w = [W3, ..., W i.€.,
determine 6.

max] ’

The matrix ® is not full column-rank, so there will be
an infinite number of solutions to (5). We will therefore
use physical insights to impose additional constraints on
6 for the rest of this section.

2.1 Parameter constraints from physical insights

The constraints described below are straightforward to
derive, but involve - in a few cases - extensive algebra.
We therefore omit the details here; they can be found in
the expanded version [15].

Stability The open loop dynamics of a building are
bounded input bounded output (BIBO) stable; it will be
a strange building indeed in which the temperature can
become unbounded in response to bounded changes in
the inputs. BIBO stability of the discrete-time model (1)
is equivalent to:
—0y <1, O340, <1, 6,—6; <1. (6)
Positive DC-gain In case of a real building, a steady
state increase in the outdoor temperature will lead to

a steady state increase in the indoor temperature, and
the same pattern holds for each of the three inputs
Ghvacs Toa, n*°'. In other words, the corresponding DC
gains must be positive. It can be shown that positive
DC gains are equivalent to:

0; +0;41+0,40>0, i€{3,6,9}. (7)

2.1.1 Physicalinsights from an RC network ODE model

RC networks are widely used gray-box models for build-
ings [8,3]. Additional constraints can be imposed if we as-
sume that the discrete-time transfer function model (1)
is obtained by discretizing the following continuous-time
resistance-capacitance (RC) network model:

T, T, .
Csz = ——— +t Qquvac + Aen ol + Gint,

R,
Toa - Tw Tz - Tw (8)

CwTw - )
R, R,

where C,, Cy,, R, R, are the thermal capacitances and
resistances of the zone and wall, respectively, and A,
is the effective area of the building for incident solar
radiation. All five parameters are positive. Defining the
state vector as z := [T}, T,,]T € R?, (8) can be written as

&z =Fz+ Gu+ Huw, y=Jz, (9)

where u, w, and y are defined at the beginning of Sec-
tion 2, and F' € R**2. G € R**3, H € R**! and J €
R'*2 are appropriate matrices that are functions of the
parameters C,, C\,, R,, R, Ae. In Laplace domain,

1
y(s) = Do) (s = f22) (gr1u1(s) + g1zus(s)) (10)

+ f12922u2(s) + (s — fzz)hnw(s)} :

where fi;, gij, hij’s are the ¢, j-th entry of the matrices
F,G, H (respectively) in (9), and

D(s) = s + dys + dy, with (11)
1 1 1 1 1
di= b (ot ), dym
corta mtR) T oonn

We now assume that the discrete-time system (1) was
obtained by discretizing the continuous-time system
(10) using Tustin transform. It can be shown through
straightforward calculations that the parameters of the
discrete-time model — the 6;’s — are related to those of



the continuous-time model (10) as follows:
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where Dy = dat? + 2dts + 4. Similarly,

ts[(2+ €0), 20, (=24 €0)]

[ﬂ(ﬁﬂlaﬂQ] = CZDO 5 (13)
here €g = — fasts = t—s(i + i) (14)
W €0 = 225*01” R, Rz'

Sign of parameters By using the positivity of the pa-
rameters Ry, R,,C\,,C., A, the following holds:

9i>O,
92<0,

i€{1,4,5,6,7,8,10,11},

03 < 0, Ay < 0, (15)

whose proof is provided in [15].

Sparse disturbance We need a few definitions to talk
about approzimately sparse vectors, and infrequently
changing vectors.

Definition 2.1.1 (1) A vector x € R™ is (e, f)-sparse
if at most f fraction of entries of x are not in [—¢, €|.

(2) The change frequency cf(x) of avectorx € R" is the
fraction of entries that are distinct from their pre-
vious neighbor: cy(z) = 2= |{k > 1|z # zp_1}],
where |A| denotes the cardinality of the set A. We
say a vector x changes infrequently if cf(z) < 1.

The following proposition shows that if the disturbance
is slowly varying (e.g., if it is piecewise-constant), the
transformed disturbance is approximately sparse.

Proposition 2.1.1 Suppose the disturbance w(k] is uni-
formly bounded |w[k]| < wy in k, it changes infrequently
with change frequency c¢(w), and eg < 1 where € is
defined in (14). Then, w(k] is (€ 2cy(w))-sparse, where

_ 4
€= &.Dy tswpeg.

Proof of Proposition 2.1.1 It can be shown from (3)

and (13) that

ts
= (2(wlk] k- 2)

— eo(w[k] + 2wlk — 1] + w[k — 2])).

wlk]

Since w is bounded, Jwy > 0 s.t. wlk] € [—wp, wy]. Since
cr(w) < 1 from the hypothesis, for at least 1 — 2¢5(w)
fraction of k’s, w[k] — w[k — 2] = 0, and for those ks,

Dlk] = —eo =2 (wlk] + 2wlk — 1] + wlk — 2))

C.Dg
—degtswy 4eotswp,
<, e, T

which proves the result. O

Since the product RC is large for large buildings, of the
order of few hours [7], €y is small for such buildings. In
addition, both €y and € can be made as small as possible
by choosing t, sufficiently small. Therefore the assump-
tion in Proposition 2.1.1, that € is small, is not a strong
one.

Some redundant constraints from (6)-(7) and (15) can
be removed without changing the feasible set; see [15]
for the details. The remaining, linearly independent con-
straints can be written as G.0 + g. < 0, where

T
ge = {0 0-1-1 lell} ,Ge = {Gg7015><k

maz —2

IR AR
u _ g 0 1 - -
Gy = diag {01}[001}{0—10}[0 0 -1

1 1 -1 -1-1

3 Proposed SPDIR Algorithm

Since we expect w to be piecewise-constant and infre-
quently changing, w should be approximately sparse. Let
S = [0g,.—2x11| Lk —2] SO that SO = @. We there-
fore seek a solution to y = ®6 so that S6 is sparse, by
posing the following optimization problem:

A 1
0 = argmin 5”2/ — @03 + AlS6]lx
s. t. Gce"‘gc S 0,

(16)

where A > 0 is a user-defined weighting factor. The ¢;-
norm penalty is to encourage sparsity of the solution; see
the discussion in Section 1. Problem (16) is called the
“linearly constrained generalized lasso problem”, or lcg-
lasso for short. The estimated plant parameters ép and
estimated transformed disturbance w can be recovered
from 6 since 7 = [95, wt].

The next result establishes a few properties of the opti-
mization problem (16), whose proof can be found in [15].



We call a point 0 physically meaningful if none of the
three SISO transfer functions in (2) is identically zero.

Proposition 3.0.1 The optimization problem (16) is
feasible, convex, and every physically meaningful feasible
0 is a regular point of the constraints.

3.1 Regularization Parameter Selection

The selection of A determines the solution to lcg-lasso
problem (16). At one extreme, A = 0 will lead to a least-
squares solution to (16) that will suffer from over-fitting.
A larger A will make the resulting S sparser. We there-
fore propose a heuristic to select A by searching in a range
[0, Amax]. The following proposition provides both the
value of A\,ax and the rationale for stopping the search
at that value.

Proposition 3.1.1 Every solution 6 to (16) satisfies
SO = 0=w if and only if X\ > Anaz = ||Yl]oo-

Proof of Proposition 3.1.1 Since all inequalities are
affine, and 0 = 0 is feasible, a weaker form of Slater’s
condition is satisfied which means strong duality holds [1,
eq. (5.27)]. Let B := ®0, x := S0, =z := G.0. The
augmented Lagrangian function of (16) is:

1
+ut (x = S0) + " (8 — 20) + (T (2 — Geb),
where v > 0. The dual function is

9(v: G pom) = inf L
,2,X:B
= inf —(T® + pTS + (TG0 + inf(¢T +47)z

. ot
+inf(Allxl [y + u"x) + inf (5 ly - B3 +078) + 17 ge.

Since a linear function is bounded below only when it is
identically zero, thus

0

—00

Ty =—-5Tu—-GI¢
inf — T(I) T T . 0 = c
Hel (7 @+ p7 S+ Ge) otherwise
. 0 C+~v=0,v>0
f T T — )
% (¢ +7)z { otherwise ’
k7naw_2

ilgcf()\HX\h +1"x) i)?}cf(/\\Xk\ + prXk)

0

—00

tlloe < A
otherwise

k=1

The corresponding minimizers for ||il|co < A satisfy:

if i = =\, Xk = any non-negative number
if|ﬂk|<)‘7 Xt =10
if up = N, Xk = any non-positive number

(17)

Finally the infimum over 8 is
S| 1 1
it (5 lly = B8l +n"8) = 51yl = 3lly = nlz.

which is derived by setting % = 0 and substituting the

resulting minimizer B = y — n. Therefore the dual func-
tion can be simplified as

1 2 1 2 T
_ sz =5lly—nl3 ++"g. C1
907, 1,1,€) {_OO o/’
(18)
where C'1 stands for the following:
@t =—8Tu—Gi¢
C1: (+7v=0,v>0 (19)

[lplloe < A.

The dual variables «y, p, m, ¢ are dual feasible because (19)
has a trivial solution. The first equation from (19) has
the form:

l\l’rﬂx(kmazz)] n=— [011X(kmaz—2)1 - (Gg)ﬂxw 1 ¢,
T —2 Tiae—2 Ok man—2)x15
T, _ _ u\T
n=—p

which has infinite number of solutions (n, u,¢) since T
and (G both have full row rank. Eliminating n and ¢
from (18) using (19)-(20), the dual problem is

SN 1 1
(%, 1) = max = |y[l5 — S lly + ull5 + 7" ge
Yo 2 2
st =0T = (GH)Ty,v >0,

l[i]]oo < A

(21)

For a given A > 0, two scenarios arise when solving (21).

Scenario 1: A < |lylloo: In this scenario, the k-th entry
of any solution fi to (21) will satisfy |fix] = min(A, |yx|)
and there is at least one entry that satisfies || = A
The corresponding solution X is non-unique according
to (17). Hence X is non-unique.

Scenario 2: A > ||y|leo: In this case the solution to (21)
satisfies i = —y, and therefore, ||fi]|co lylloo < A.



From (17), we have that x = 0. Since x = S0 = w, the
result is proved. O

Heuristic for selecting \: The heuristic we propose to
choose A is based on the L-curve method, and uses the
result from the previous proposition. First, plot both the
solution norm ||.S0|; and residual norm ||y—®60||2 against
A by repeatedly solving Problem (16) for various A in
[0, Anaz], where A4, is defined in Proposition 3.1.1.
An illustration of these two plots is shown in Figure 1.
Second, identify a value A; so that the solution norm is
smaller than a user-defined threshold for A > A, and
then identify Ay so that the residual norm is smaller than
a user-defined threshold for A < Ag. If Ay > Ay, choose
A to be Ap. If not, pick another threshold, and continue
until this condition is met. Figure 1 shows an example
of having these curves both lie in picture.

— [1S0ll1 6

— R S
g 50 5 E
= 0]
______________________________________ e.
] >

0] 4‘/1 )‘\2 )\max -

Fig. 1. Ilustration of regularization parameter selection

4 Evaluation of Proposed SPDIR algorithm

Numerical implementation of the proposed method is
performed by using the cvx package for solving convex
problems in MATLAB® [4].

Two experiments are conducted in order to test the pro-
posed method SPDIR, one using simulation data and the
other using real building data collected from Pugh Hall,
a commercial building in the University of Florida cam-
pus. The method proposed in [7] is also implemented as
a comparison, which is referred to as the LD (Lumped
Disturbance) method. We remark here the LD method
is non-convex, and the results from the LD method pre-
sented here are obtained with a multi-start approach
with random initial guesses.

Simulation data is generated by simulating the
continuous-time RC model (8). The parameters of the
model were taken from [2, Table 1], which uses a model
of the same structure. More details can be found in [15].

We remark here that the simulation experiment is de-
signed to put the proposed method to test: (i) data are
collected from a closed-loop simulation, and (ii) the dis-
turbance signal is not piecewise-constant.

For the real building, measurements of quyac and T, are
collected from a large zone (an auditorium) in Pugh Hall;
see Fig. 2. The ambient temperature and solar irradiance
data, collected from the same online source in [15] at
another week, are used.

Fig. 2. Pugh hall photograph (left) and floor plan (right),

with the zone from which building data are collected shown

enclosed in dashed lines. The “+” denotes the location from

where the photograph was taken and the arrow denotes di-
rection of the camera.

4.1 Algorithm evaluation with simulation data

Parameters Table 1 shows the true values of the plant
parameters, 8,, and the corresponding estimation er-
rors (in percentage). First, the two parameters, 01,65,
that determine the characteristic equation are estimated
highly accurately. Second, there is more error in the esti-
mate of numerators. While some are more accurate than
others, the numerator coefficients corresponding to the
input 7°°! have the most error. The reason for this large
error is not completely clear. A possible reason is the
lack of richness in the 1*°! data. Another possibility is
redundancy in the model. Parameter estimates by the
proposed method are slightly more accurate than those
by the LD method.

Table 1
Plant parameters and errors in their estimates.
6p=0p o7
0p Op input
LD SPDIR

01 1.97565 —0.061 | —0.042

02 —0.97573 —0.13 | —0.085

s | —4.35x 107 | 94.3 8.0

0, | 5.21x107° 16262 108.2 | ghvac
05 4.41 x107% | =100.0 6.4
O 1.86 x 10~° 67.9 48.9
07 3.72x 107° —15.3 | —22.3 Toa
s 1.86 x 107° | —100.0 68.4
0y | —3.05x 1072 | 430.5 232.1
60 | 3.65x107% | 44577 | 19324 | 7!
611 | 3.08x107%2 | —100.0 2.9
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Fig. 3. Algorithm evaluation on simulation data: Bode mag-
nitude plots of the true and identified systems.

Frequency response For prediction accuracy, fre-
quency response is more important than individual
parameters. Fig. 3 shows the Bode plots of the true and
identified models. For the transfer function from input
Qnvac t0 output T, the maximum absolute error in the
estimated frequency response is:

max ‘thvac%Tz (]w) — thvacHTz (]UJ)| — 024

w |Gapac 7. (W)

and occurs at w = 1/(10 weeks). The maximum errors
for the transfer functions from T}, and n*°! to T, occur at
the Nyquist frequency. Frequency responses of identified
models from the proposed SPDIR and the LD methods
are similar.

Disturbance The estimated transformed disturbance,
w, is shown in Fig. 4. The estimates capture the trend
of the true values, even when the true disturbance is
not piecewise-constant, in which case the transformed
disturbance may be neither approximately sparse nor
infrequently changing.

Zone temperature prediction The plant identified
with data from one week is used to predict temperatures
in another week. The disturbance data is the same be-
tween the training and validation data sets but the input
u and output y data sets are distinct. The rms value of
the prediction error of zone temperature is 1.2 °C for the
proposed SPDIR method, and 1.1 °C for the LD method.

The LD method performs comparably to the proposed
method in these tests because the initial guess for the
non-convex optimization problem in the LD method

0.04 True --—- SPDIR |

0.020 l | '! |

-0.02
Mon Tue Wed Thur Fri

T
0.005 A |
)

'\.:r‘v'«.'a\’\,"v

i

-0.005 \r
L W] L

8:00 12:00 16:00 20:00

Fig. 4. Algorithm evaluation on simulation data: comparison
of identified and actual transformed disturbance. Bottom
plot is zoomed version on Thursday of the top plot.

was chosen carefully. When initial guesses are not cho-
sen carefully, the proposed method outperforms the LD
method. Details of the comparison are available in [15];
they are omitted here due to lack of space.

4.2 Algorithm evaluation with building data

Evaluation with data from a real building is challenging
since there is no ground truth to compare with.

Frequency response Fig. 5 shows the Bode plots of the
identified model for the real building. Notice that the
Bode plots generated using both simulation data and
building data are similar. Since the simulation model’s
parameters are taken from [2], which were obtained by
applying the system identification method proposed in
that reference to the data from the same building (Pugh
Hall’s auditorium), this similarity provides confidence in
the results. Frequency responses of the model identified
by the LD method are similar in lower frequencies but
less so in higher frequencies.

B 100 = —
1 i
S .2 [—SPDIR ---LD ]
& 10 ‘ I \‘ \—
1/week 1/day 1/6h 1/2h  1/15min
T 100 pr——— ]
11072+ -1
g 4 .Y
510 AN
1/week 1/day 1/6h 1/2h  1/15min
T 100 T~ - ~
1/week 1/day 1/6h 1/2h  1/15min

Fig. 5. Algorithm evaluation on building data: Bode magni-
tude plots of identified systems.
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Fig. 6. Algorithm evaluation on building data: identified
transformed disturbance. Night time shaded in gray.

Disturbance The estimated transformed disturbance
w is shown in Fig. 6. The entries corresponding to night-
time are small in magnitude. This is consistent with
what we expect: this particular building is used mostly
as a classroom and is unoccupied at night. So the dis-
turbance - and the transformed disturbance - should be
small at night. The output disturbance estimated by
the LD method is not shown since it is not comparable
with the transformed input disturbance identified by the
SPDIR method.

Zone temperature fitting The temperature is pre-
dicted quite well by the identified plant and disturbance;
see Fig. 7. The rms error is 0.3°C for the proposed
method, and 0.1°C for the LD method.

)
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28 ‘ ‘ ‘
[~—True -—SPDIR ---LD
i
26 i 1
S i
2 A
e 24 Wwf ] ) l { 4
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Fig. 7. Algorithm evaluation on building data: comparison
of actual zone temperature and fitted zone temperatures.

Though not reported here due to lack of space, we also
tried identification of the Box-Jenkins model with a col-
ored Gaussian disturbance [9]. The proposed method
outperforms the Box Jenkins method for experiments
with both simulation and building data; see [15] for the
details.

5 Conclusion

The proposed method identifies a black box LTI model
and a non-parametric (transformed) disturbance using
{1-regularization. In contrast to existing methods, it can
be used as part of a self-learning control system without
human supervision due to convexity and guarantees on
stability and DC gains. Preliminary work on using the
method as part of a self-tuning control system are re-
ported in [14]. There are many avenues for future work,

including identification of the input disturbance rather
than its transformed version, and analysis of the quality
of data needed for the method to perform well. Model-
ing of multi-zone buildings is another area for extension.
Preliminary work in this direction are reported in [13].
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