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Abstract

We propose a method that simultaneously identifies a control-oriented model of a building’s temperature dynamics and a
transformed version of the unmeasured disturbance affecting the building. Our method uses `1-regularization to encourage
the identified disturbance to be approximately sparse, which is motivated by the slowly-varying nature of occupancy that
determines the disturbance. The proposed method involves solving a feasible convex optimization problem that guarantees
that the identified black-box model, a linear time-invariant system, possesses known properties of the plant, especially input-
output stability and positive DC gains. These features enable one to use the method as part of a self-learning control system
in which the model of the building is updated periodically without requiring human intervention. Results from the application
of the method on data from a simulated and real building are provided.
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1 Introduction

A dynamic model of a building’s temperature is useful
for model-based fault detection and control of its HVAC
(Heating Ventilation and Air Conditioning) system.
There is a long history of such modeling efforts [8]. Due
to the complexity of thermal dynamics, system identifi-
cation from data is considered advantageous and there
has been much work on it; see [8,10,6] and references
therein. A particular challenge for model identification
is that temperature is affected by large, unknown dis-
turbances, especially the cooling load induced by the
occupants. The occupant-induced load refers to the
heat gain directly due to the occupants’ body heat and
indirectly from lights and other equipments they use.
Another challenge comes from the need for automatic
updates, especially for the use in model-based control.
Due to changes in a building’s properties over time, the
model needs to be updated periodically with new data.
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A method designed to identify a control oriented model
should also guarantee certain properties of the model so
that it can be used as part of a self-learning control sys-
tem without the need for a human expert to check the
quality of the model. Most system identification meth-
ods for buildings ignore the unknown disturbances, but
doing so can produce erroneous results. Only a few re-
cent works have addressed the problem of unknown dis-
turbances [7,2]. None of the prior works however provide
any guarantees on the properties of the identified model,
such as stability.

In this paper we propose a method to estimate a lin-
ear dynamic model as well as a transformed version
of the unknown disturbances from easily measurable
input-output data. The method consists of solving a
feasible and convex optimization problem, and the re-
sulting model is guaranteed to possess properties that
are known from physical insight into thermal dynamics
of buildings, such as stability and positive DC gains
of certain input-output pairs. The proposed method,
which we call SPDIR (Simultaneous Plant and Distur-
bance Identification through Regularization), is based
on solving a constrained `1-regularized least-squares
problem. The `1-penalty encourages the transformed
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disturbance to be a sparse signal. Use of the `1-norm
penalty to encourage sparse solution is a widely used
heuristic [11]. In our problem the motivation comes from
the fact that the disturbance, which consists mostly of
internal load due to occupants, is often slowly varying.
For instance, large numbers of people enter and leave of-
fice buildings at approximately the same time. A slowly
varying disturbance can be further approximated as
piecewise-constant. We show that this feature makes
the transformed disturbance an approximately sparse
signal. The constraints ensure the identified model will
have desirable properties. Evaluation of the method
with simulation-generated data show that it can accu-
rately identify the transfer function in the presence of
large disturbances, even when the disturbance is not
piecewise-constant. Evaluation with data from a real
building are similarly promising, though accuracy is
difficult to establish due to lack of a ground truth.

A fewworks have partially addressed the challenge posed
by the presence of the unknown disturbance by using
a specialized test building to measure the occupant-
induced load [10,12], or by collecting data from unoccu-
pied times and setting the occupant-induced disturbance
during that time to 0 [3,6]. Knowing when a building
is unoccupied requires additional and expensive sens-
ing that most buildings currently lack. Even if occu-
pancy status can be measured, setting the disturbance
to be 0 during unoccupied hours is not advisable since
part of the disturbance is due to modeling error. Work
on model identification of building dynamics that han-
dles occupant-induced heat gains in a principled man-
ner, without requiring specially collected data or mak-
ing ad-hoc assumptions, is limited. To the best of our
knowledge, the only references that fall into this cate-
gory are [7,2,5].

There are many differences between our work and the
prior work on simultaneous identification of model and
disturbance for buildings, including [7,2,5]. We point out
two key differences. One, the proposed SPDIR method
can enforce properties of the system that are known from
the physics of the thermal processes, in particular, stabil-
ity and signs of DC gains for certain input-output pairs.
For instance, an increase in outdoor temperature will
lead to an increase in indoor temperature, but none of
the prior methods guarantees that the identified model
will predict this behavior. Second, while the proposed
SPDIR method requires solving a feasible convex opti-
mization problem, the methods in all prior work men-
tioned above require solving non-convex optimization
problems. The estimates obtained from such a method
can be quite poor due to a local minimum, requiring
a human expert to assess the quality of the estimate.
These two features of the proposed method enable it to
be used as part of a self-learning control system without
the need for a human expert in the loop.

The article makes three contributions over the prelimi-

nary version [16]: (1) we determine the value of the crit-
ical regularization parameter λmax that is used in tun-
ing the regularization parameter λ (Proposition 3.1.1);
(2) we provide evaluation of our method on data from
a real building, and (3) we compare performance of the
proposed method against the method in [7], and a Box-
Jenkins model of the building dynamics. The rest of
this paper is organized as follows. Section 2 formally de-
scribes the problem and establishes a few preliminaries.
Section 3 describes the proposed algorithm. Due to the
directive to reduce the paper to a brief paper format,
some proofs of the technical results presented in Sec-
tions 2 and 3 are omitted; they can be found in [15].
Section 4 provides evaluation results and Section 5 con-
cludes the paper.

2 Problem Formulation

The indoor zone temperature Tz is affected by three
known inputs: (1) the heat added to the zone by the
HVAC system, qhvac(kW), (2) the outside air tempera-
ture Toa (◦C), (3) the solar irradiance ηsol(kW/m2), and
the unknown disturbance qint (kW), which is the inter-
nal heat gain due to occupants, lights, and equipments
used by the occupants. The only measurable output is
the zone temperature Tz(

◦C).

Let u(t) := [qhvac(t), Toa(t), η
sol(t)]T ∈ R

3, w(t) :=
qint(t) ∈ R, and y(t) := Tz(t) ∈ R. We start with the
following second-order discrete-time transfer function
model of the system, with a sampling period ts:

y(z−1) =
1

D(z−1)

[

3
∑

j=1

[

2
∑

i=0

αijz
−i]uj(z

−1)

+ [

2
∑

i=0

βiz
−i]w(z−1)

]

,

(1)

whereD(z−1) = 1−θ1z
−1−θ2z

−2, for some parameters
θ1, θ2 and αij , βi’s, and u[k], w[k], y[k] are samples of
the continuous-time signals u(t), w(t), y(t). This model
is a discrete-time version of a physics-based continuous
time model that is described in Section 2.1.1. For future
convenience, we rewrite (1) as

y(z−1) =
1

D(z−1)

[

K(z−1)Tu(z−1) + w̄(z−1)
]

,

where K(z−1) :=









θ3z
−2 + θ4z

−1 + θ5

θ6z
−2 + θ7z

−1 + θ8

θ9z
−2 + θ10z

−1 + θ11









,

(2)

and w̄(z−1) is the Z-transform of the transformed dis-
turbance signal w̄[k] defined as

w̄[k] := β0w[k] + β1w[k − 1] + β2w[k − 2]. (3)
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An inverse Z-transform on (2) yields a difference equa-
tion, which leads to:

y[k] = φ[k]T θ, k = 3, . . . , kmax, (4)

where kmax is the number of samples, and θT :=
[θTp , w̄

T ], in which θp = [θ1, . . . , θ11]
T ∈ R

11, w̄ =

[w̄3, . . . , w̄kmax
]T ∈ R

kmax−2 and

φ[k]T :=
[

y[k − 1], y[k − 2], u1[k − 2], u1[k − 1], u1[k],

u2[k − 2], . . . , u2[k], u3[k − 2], . . . , u3[k], e
T
k−2

]

,

where ek is the k-th canonical basis vector of Rkmax−2

in which the 1 appears in the kth place. Eq. (4) can be
expressed as:

y = Φθ, (5)

where y := [y[3], . . . , y[kmax]]
T
∈ R

kmax−2 and

Φ :=









φ[3]T

. . .

φ[kmax]
T









∈ R
kmax−2×kmax+9.

The problem we seek to address is: given time traces of
inputs and outputs, {u[k], y[k]}kmax

1 , determine the un-
known parameter vector θp ∈ R

11 and the unknown trans-
formed disturbance vector w̄ := [w̄3, . . . , w̄kmax

]T , i.e.,
determine θ.

The matrix Φ is not full column-rank, so there will be
an infinite number of solutions to (5). We will therefore
use physical insights to impose additional constraints on
θ for the rest of this section.

2.1 Parameter constraints from physical insights

The constraints described below are straightforward to
derive, but involve - in a few cases - extensive algebra.
We therefore omit the details here; they can be found in
the expanded version [15].

Stability The open loop dynamics of a building are
bounded input bounded output (BIBO) stable; it will be
a strange building indeed in which the temperature can
become unbounded in response to bounded changes in
the inputs. BIBO stability of the discrete-time model (1)
is equivalent to:

−θ2 < 1, θ2 + θ1 < 1, θ2 − θ1 < 1. (6)

Positive DC-gain In case of a real building, a steady
state increase in the outdoor temperature will lead to

a steady state increase in the indoor temperature, and
the same pattern holds for each of the three inputs
qhvac, Toa, η

sol. In other words, the corresponding DC
gains must be positive. It can be shown that positive
DC gains are equivalent to:

θi + θi+1 + θi+2 > 0, i ∈ {3, 6, 9}. (7)

2.1.1 Physical insights from anRC network ODEmodel

RC networks are widely used gray-box models for build-
ings [8,3]. Additional constraints can be imposed if we as-
sume that the discrete-time transfer function model (1)
is obtained by discretizing the following continuous-time
resistance-capacitance (RC) network model:

CzṪz =
Tw − Tz

Rz

+ qhvac +Aeη
sol + qint,

CwṪw =
Toa − Tw

Rw

+
Tz − Tw

Rz

,

(8)

where Cz, Cw, Rz, Rw are the thermal capacitances and
resistances of the zone and wall, respectively, and Ae

is the effective area of the building for incident solar
radiation. All five parameters are positive. Defining the
state vector as x := [Tz, Tw]

T ∈ R
2, (8) can be written as

ẋ = Fx+Gu+Hw, y = Jx, (9)

where u, w, and y are defined at the beginning of Sec-
tion 2, and F ∈ R

2×2, G ∈ R
2×3, H ∈ R

2×1 and J ∈
R

1×2 are appropriate matrices that are functions of the
parameters Cz, Cw, Rz, Rw, Ae. In Laplace domain,

y(s) =
1

D(s)

[

(s− f22) (g11u1(s) + g13u3(s))

+ f12g22u2(s) + (s− f22)h11w(s)
]

,

(10)

where fij , gij , hij ’s are the i, j-th entry of the matrices
F,G,H (respectively) in (9), and

D(s) = s2 + d1s+ d2, with (11)

d1 =
1

CzRz

+
1

Cw

(
1

Rz

+
1

Rw

), d2 =
1

CzCwRzRw

.

We now assume that the discrete-time system (1) was
obtained by discretizing the continuous-time system
(10) using Tustin transform. It can be shown through
straightforward calculations that the parameters of the
discrete-time model – the θi’s – are related to those of
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the continuous-time model (10) as follows:

θ1 :=
8− 2d2t

2
s

D0
, θ2 := −

d2t
2
s − 2d1ts + 4

D0
,









θ3 θ9

θ4 θ10

θ5 θ11









:=
ts
D0









−2− f22ts

−2f22ts

2− f22ts









[

g11 g13

]

,









θ6

θ7

θ8









:=









1

2

1









f12g22t
2
s

D0
,

(12)

where D0 = d2t
2
s + 2d1ts + 4. Similarly,

[β0, β1, β2] =
ts
[

(2 + ε0), 2ε0, (−2 + ε0)
]

CzD0
, (13)

where ε0 = −f22ts =
ts
Cw

(
1

Rw

+
1

Rz

). (14)

Sign of parameters By using the positivity of the pa-
rameters Rw, Rz, Cw, Cz, Ae, the following holds:

θi > 0, i ∈ {1, 4, 5, 6, 7, 8, 10, 11},

θ2 < 0, θ3 < 0, θ9 < 0,
(15)

whose proof is provided in [15].

Sparse disturbance We need a few definitions to talk
about approximately sparse vectors, and infrequently
changing vectors.

Definition 2.1.1 (1) A vector x ∈ R
n is (ε, f)-sparse

if at most f fraction of entries of x are not in [−ε, ε].
(2) The change frequency cf (x) of a vector x ∈ R

n is the
fraction of entries that are distinct from their pre-
vious neighbor: cf (x) = 1

n−1 |{k > 1|xk 6= xk−1}|,

where |A| denotes the cardinality of the set A. We
say a vector x changes infrequently if cf (x) � 1.

The following proposition shows that if the disturbance
is slowly varying (e.g., if it is piecewise-constant), the
transformed disturbance is approximately sparse.

Proposition 2.1.1 Suppose the disturbancew[k] is uni-
formly bounded |w[k]| ≤ wb in k, it changes infrequently
with change frequency cf (ω), and ε0 � 1 where ε0 is
defined in (14). Then, w̄[k] is (ε̄, 2cf (w))-sparse, where
ε̄ = 4

CzD0
tswbε0.

Proof of Proposition 2.1.1 It can be shown from (3)

and (13) that

w̄[k] =
ts

CzD0

(

2(w[k]− w[k − 2])

− ε0(w[k] + 2w[k − 1] + w[k − 2])
)

.

Since w is bounded, ∃wb ≥ 0 s.t. w[k] ∈ [−wb, wb]. Since
cf (w) � 1 from the hypothesis, for at least 1 − 2cf (w)
fraction of k’s, w[k]− w[k − 2] = 0, and for those k’s,

w̄[k] = −ε0
ts

CzD0

(

w[k] + 2w[k − 1] + w[k − 2]
)

∈ [
−4ε0tswb

CzD0
,
4ε0tswb

CzD0
] = [−ε̄, ε̄],

which proves the result. �

Since the product RC is large for large buildings, of the
order of few hours [7], ε0 is small for such buildings. In
addition, both ε0 and ε̄ can be made as small as possible
by choosing ts sufficiently small. Therefore the assump-
tion in Proposition 2.1.1, that ε0 is small, is not a strong
one.

Some redundant constraints from (6)-(7) and (15) can
be removed without changing the feasible set; see [15]
for the details. The remaining, linearly independent con-
straints can be written as Gcθ + gc ≤ 0, where

gc =
[

0 0 −1 −1 01×11

]T

, Gc =
[

Gu
c , 015×kmax−2

]

,

Gu
c = diag

(

[

−1 0
0 1
0 −1
1 1

] [

1 0 0
0 −1 0
0 0 −1
−1 −1 −1

]

[

−1 0 0
0 −1 0
0 0 −1

]

[

1 0 0
0 −1 0
0 0 −1
−1 −1 −1

]

)

.

3 Proposed SPDIR Algorithm

Since we expect w to be piecewise-constant and infre-
quently changing, w̄ should be approximately sparse. Let
S := [0kmax−2×11| Ikmax−2] so that Sθ = w̄. We there-
fore seek a solution to y = Φθ so that Sθ is sparse, by
posing the following optimization problem:

θ̂ = argmin
θ

1

2
‖y − Φθ‖22 + λ‖Sθ‖1

s. t. Gcθ + gc ≤ 0,
(16)

where λ ≥ 0 is a user-defined weighting factor. The `1-
norm penalty is to encourage sparsity of the solution; see
the discussion in Section 1. Problem (16) is called the
“linearly constrained generalized lasso problem”, or lcg-

lasso for short. The estimated plant parameters θ̂p and
estimated transformed disturbance ˆ̄w can be recovered
from θ̂ since θT = [θTp , w̄

T ].

The next result establishes a few properties of the opti-
mization problem (16), whose proof can be found in [15].
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We call a point θ physically meaningful if none of the
three SISO transfer functions in (2) is identically zero.

Proposition 3.0.1 The optimization problem (16) is
feasible, convex, and every physically meaningful feasible
θ is a regular point of the constraints.

3.1 Regularization Parameter Selection

The selection of λ determines the solution to lcg-lasso
problem (16). At one extreme, λ = 0 will lead to a least-
squares solution to (16) that will suffer from over-fitting.
A larger λ will make the resulting Sθ sparser. We there-
fore propose a heuristic to select λ by searching in a range
[0, λmax]. The following proposition provides both the
value of λmax and the rationale for stopping the search
at that value.

Proposition 3.1.1 Every solution θ̂ to (16) satisfies

Sθ̂ = 0 = ˆ̄w if and only if λ > λmax := ||y||∞.

Proof of Proposition 3.1.1 Since all inequalities are
affine, and θ = 0 is feasible, a weaker form of Slater’s
condition is satisfied which means strong duality holds [1,
eq. (5.27)]. Let β := Φθ, χ := Sθ, z := Gcθ. The
augmented Lagrangian function of (16) is:

L(θ,z, χ, β; γ, ζ, µ, η) =
1

2
‖y − β‖22 + λ‖χ‖1 + γT (z + gc)

+ µT (χ− Sθ) + ηT (β − Φθ) + ζT (z −Gcθ),

where γ ≥ 0. The dual function is

g(γ, ζ, µ, η) = inf
θ,z,χ,β

L

= inf
θ
−(ηTΦ+ µTS + ζTGc)θ + inf

z
(ζT + γT )z

+ inf
χ
(λ||χ||1 + µTχ) + inf

β
(
1

2
‖y − β‖22 + ηTβ) + γT gc.

Since a linear function is bounded below only when it is
identically zero, thus

inf
θ
−(ηTΦ+ µTS + ζTGc)θ =

{

0 ΦT η = −STµ−GT
c ζ

−∞ otherwise
,

inf
z
(ζT + γT )z =

{

0 ζ + γ = 0, γ ≥ 0

−∞ otherwise
,

inf
χ
(λ||χ||1 + µTχ) =

kmax−2
∑

k=1

inf
χk

(λ|χk|+ µkχk)

=

{

0 ||µ||∞ ≤ λ

−∞ otherwise
.

The corresponding minimizers for ||µ||∞ ≤ λ satisfy:







if µk = −λ, χ̂k = any non-negative number

if |µk| < λ, χ̂k = 0

if µk = λ, χ̂k = any non-positive number

.

(17)

Finally the infimum over β is

inf
β
(
1

2
‖y − β‖22 + ηTβ) =

1

2
‖y‖22 −

1

2
‖y − η‖22,

which is derived by setting ∂L
∂β

= 0 and substituting the

resulting minimizer β = y − η. Therefore the dual func-
tion can be simplified as

g(γ, µ, η, ζ) =

{

1
2‖y‖

2
2 −

1
2‖y − η‖22 + γT gc C1

−∞ o/w
,

(18)

where C1 stands for the following:

C1 :







ΦT η = −STµ−GT
c ζ

ζ + γ = 0, γ ≥ 0

||µ||∞ ≤ λ.

(19)

The dual variables γ, µ, η, ζ are dual feasible because (19)
has a trivial solution. The first equation from (19) has
the form:

[

ΨT
11×(kmax−2)

Ikmax−2

]

η = −

[

011×(kmax−2)

Ikmax−2

]

µ−

[

(Gu
c )

T
11×15

0(kmax−2)×15

]

ζ,

=⇒
ΨT η = −(Gu

c )
T ζ,

η = −µ.
(20)

which has infinite number of solutions (η, µ, ζ) since ΨT

and (Gu
c )

T both have full row rank. Eliminating η and ζ
from (18) using (19)-(20), the dual problem is

(γ̂, µ̂) = max
γ,µ

1

2
‖y‖22 −

1

2
‖y + µ‖22 + γT gc

s. t. −ΨTµ = (Gu
c )

T γ, γ ≥ 0,

||µ||∞ ≤ λ.

(21)

For a given λ ≥ 0, two scenarios arise when solving (21).

Scenario 1: λ ≤ ‖y‖∞: In this scenario, the k-th entry
of any solution µ̂ to (21) will satisfy |µ̂k| = min(λ, |yk|)
and there is at least one entry that satisfies |µ̂k| = λ.
The corresponding solution χ̂k is non-unique according
to (17). Hence χ̂ is non-unique.

Scenario 2: λ > ‖y‖∞: In this case the solution to (21)
satisfies µ̂ = −y, and therefore, ‖µ̂‖∞ = ‖y‖∞ < λ.
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True SPDIR LD

1/week 1/day 1/6h 1/2h 1/15min

10
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0
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-2
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0

Fig. 3. Algorithm evaluation on simulation data: Bode mag-
nitude plots of the true and identified systems.

Frequency response For prediction accuracy, fre-
quency response is more important than individual
parameters. Fig. 3 shows the Bode plots of the true and
identified models. For the transfer function from input
qhvac to output Tz, the maximum absolute error in the
estimated frequency response is:

max
ω

|Ĝqhvac→Tz
(jω)−Gqhvac→Tz

(jω)|

|Gqhvac→Tz
(jω)|

= 0.24

and occurs at ω = 1/(10 weeks). The maximum errors
for the transfer functions from Toa and ηsol to Tz occur at
the Nyquist frequency. Frequency responses of identified
models from the proposed SPDIR and the LD methods
are similar.

Disturbance The estimated transformed disturbance,
ˆ̄w, is shown in Fig. 4. The estimates capture the trend
of the true values, even when the true disturbance is
not piecewise-constant, in which case the transformed
disturbance may be neither approximately sparse nor
infrequently changing.

Zone temperature prediction The plant identified
with data from one week is used to predict temperatures
in another week. The disturbance data is the same be-
tween the training and validation data sets but the input
u and output y data sets are distinct. The rms value of
the prediction error of zone temperature is 1.2 ◦C for the
proposed SPDIRmethod, and 1.1 ◦C for the LDmethod.

The LD method performs comparably to the proposed
method in these tests because the initial guess for the
non-convex optimization problem in the LD method

Mon Tue Wed Thur Fri Sat Sun
-0.02

0

0.02

0.04

8:00 12:00 16:00 20:00

-0.005

0

0.005

True SPDIR

Fig. 4. Algorithm evaluation on simulation data: comparison
of identified and actual transformed disturbance. Bottom
plot is zoomed version on Thursday of the top plot.

was chosen carefully. When initial guesses are not cho-
sen carefully, the proposed method outperforms the LD
method. Details of the comparison are available in [15];
they are omitted here due to lack of space.

4.2 Algorithm evaluation with building data

Evaluation with data from a real building is challenging
since there is no ground truth to compare with.

Frequency response Fig. 5 shows the Bode plots of the
identified model for the real building. Notice that the
Bode plots generated using both simulation data and
building data are similar. Since the simulation model’s
parameters are taken from [2], which were obtained by
applying the system identification method proposed in
that reference to the data from the same building (Pugh
Hall’s auditorium), this similarity provides confidence in
the results. Frequency responses of the model identified
by the LD method are similar in lower frequencies but
less so in higher frequencies.

1/week 1/day 1/6h 1/2h 1/15min

10
-2

10
0

SPDIR LD

1/week 1/day 1/6h 1/2h 1/15min

10
-4

10
-2

10
0

1/week 1/day 1/6h 1/2h 1/15min

10
0

Fig. 5. Algorithm evaluation on building data: Bode magni-
tude plots of identified systems.
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