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Abstract— Can we design motion primitives for complex
legged systems uniformly for different terrain types without
neglecting modeling details? This paper presents a method
for rapidly generating quadrupedal locomotion on sloped
terrains—from modeling to gait generation, to hardware
demonstration. At the core of this approach is the observation
that a quadrupedal robot can be exactly decomposed into
coupled bipedal robots. Formally, this is represented through
the framework of coupled control systems, wherein isolated
subsystems interact through coupling constraints. We demon-
strate this concept in the context of quadrupeds and use it to
reduce the gait planning problem for uneven terrains to bipedal
walking generation via hybrid zero dynamics. This reduction
method allows for the formulation of a nonlinear optimization
problem that leverages low-dimensional bipedal representations
to generate dynamic walking gaits on slopes for the full-order
quadrupedal robot dynamics. The result is the ability to rapidly
generate quadrupedal walking gaits on a variety of slopes.
We demonstrate these walking behaviors on the Vision 60
quadrupedal robot; in simulation, via walking on a range
of sloped terrains of 13◦, 15◦, 20◦, 25◦, and, experimentally,
through the successful locomotion of 13◦ and 20◦ ∼ 25◦ sloped
outdoor grasslands.

I. INTRODUCTION

Numerous examples of successful bipedal locomotion, in-

cluding but not limited to [1], [2], [3], have been witnessed in

the past decade. However, limited formal results have shown

the capability of these bipedal systems robustly traversing

outdoor environments such as stairs, slopes, stepping stones,

etc. Due to the benefits of the additional legs able to stabilize

the robot, quadrupedal robotic locomotion has demonstrated

prominent agility and robustness on rough terrains, such as

[4], [5], [6], [7], and, some of the works such as [8] has even

shown successful locomotion on sloped terrains. However,

state-of-the-art approaches for the control of quadrupeds

largely utilized reduced models to mitigate the complexity

of the full-body dynamics of quadrupedal robots. Such

reductions include the linear inverted pendulum model [9],

the virtual-leg principle [10], massless leg assumption [6],

planar model simplification [7], and neglecting the impacts

for the gait design. These methods have been demonstrated

to be effective in practice, but the simplified models come

with a tradeoff of scalability. A well tuned controller for a

specific robot on a definite terrain type might not be optimal

for another scenario. Often, when the terrain dynamics vary,

intensive parameter tuning could be needed. We are inter-

ested in generating agile quadrupedal locomotion efficiently
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Fig. 1: The Vision 60 quadrupedal robot (V3.9) standing on

a 20◦ ∼ 25◦ sloped lawn.

and consistently that can overcome outdoor sloped terrains

that requires little to no tuning.

At the theoretical level, the Hybrid Zero Dynamics (HZD)

framework that was built to provide stability guarantees to

bipedal locomotion (see [11]) has shown great scalability

spanning various dynamic behaviors and robotic platforms

such as: multi-contact walking [12], running [13], slippery

surface walking [14], and prosthesis locomotion [15]. Aimed

at bridging the gap between the formal analysis of bipedal

walking and practicality of quadrupedal locomotion, pre-

vious work [16] decomposes the full-body dynamics of a

quadrupedal robot into two coupled bipedal robots, and [17]

generalize it to periodic orbit generation for coupled control

systems (CCSs). By generating walking gaits for a bipedal

robot subject to coupling conditions, rapid gait generation

was achieved, and robust locomotion on flat ground was

obtained on a 26 kg robot, the Vision 60 v3.2 quadruped. A

related methodology was also used to produce collaboration

between quadrupedal robots, as demonstrated in [18].

Taking advantage of the benefits of the aforementioned

design methodology, in this paper we further scale the CCS

method to locomotion on slopped terrains with a heavier and

bigger quadrupedal platform. We achieve this by modifying

the terrain dynamics and feasibility conditions on the basis

of the CCS method in [17], which allows us to exactly

decompose the full-body dynamics of a quadrupedal robot

into the coupled dynamics of two bipedal robots. Hence,

model simplification is avoided while fast computational

speed is obtained. The result is the 44 kg quadrupedal robot

— Vision 60 v3.9, walking on a range of sloped terrains

of 13◦, 15◦, 20◦, 25◦ in a physics engine — RaiSim [19],
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and experimental walking in sloped grasslands at 13◦ and

20◦ ∼ 25◦. This is done with only one static parameter—the

slope of the terrain—that is specified by user. In addition,

the optimization setup and control law is consistent across

all tests in both simulation and experiment with no additional

gain tuning required by the user. This seamlessly transition

from gait design to implementation suggests a new approach

towards designing quadrupedal locomotion for outdoor en-

vironments.

This paper is organized as follows: Sec. II presents the de-

composed dynamics of the quadrupedal robot on sloped ter-

rains, and by using the notion of coupled control systems, we

isolate the bipedal dynamics from quadrupeds. Sec. III then

finds the periodic solution of the isolated bipedal dynamics

with an optimization algorithm, which is then reconstructed

to quadrupedal gaits on slopes. In Sec. IV, we validate the

dynamic stability of five optimal gaits and their controllers on

different sloped terrains of 0◦, 13◦, 15◦, 20◦, 25◦ in RaiSim

and outdoor sloped grasslands. We finish with conclusions

and future plans in Sec. V.

II. DECOMPOSED DYNAMICS ON SLOPED TERRAINS

In this section, we systematically decompose the dynamics

of a quadrupedal walking system on slopes into two coupled

bipedal robots. Following the general method of Coupled

Control System (CCS) in [17], we modify the model-based

controllers that render the zero dynamics manifold invari-

ant while eliminating the dependence on the other bipedal

subsystem through the coupling condition, in the context of

sloped walking and rigid-body connection.

A. Coupled Control Systems (CSS)

The dynamics of a coupled control system are given by

CC �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ẋi = fi(xi, zi) + gi(xi, zi)ui + ğe(xi, zi, zj)λe

żi = pi(xi, zi) + qi(xi, zi)ui + q̆e(xi, zi, zj)λe

s.t. ce(zi, zj) = zi − zj ≡ 0

λe = −λē

(1)

for all i ∈ N , where N = {1, 2} is a set of subsystem

indices and e � (i, j) ∈ E is a set of edges representing the

connection relation between two subsystems; X = X1×X2 is

a set of internal states, with coordinates x = (x1, x2) ∈ X ;

Z = Z1 × Z2 is a set of coupled states, with coordinates

z = (z1, z2) ∈ Z; U = U1×U2 is a set of admissible inputs,

with coordinates u = (u1, u2) ∈ U ; C = {ce}e=(i,j)∈E ≡ 0
is a coupling constraint between the two subsystems.

We now can design the control law uZ
j that renders the

zero dynamics manifold of the jth subsystem Zj � {(x, z) ∈
X × Z | xj ≡ 0} invariant, i.e., uZ

j satisfies

0 ≡ fZ
j (0, z) + gZj (0, z)u

Z
j + gj(0, zj)

(
uZ
j (0, z;ui)− ui

)
.

Following [17], given a coupling condition as

λZ
e (xi, z;ui) = AZ

e (xi, z)ui + bZe (xi, z), (2)

we can obtain the the ith control subsystem (CSub) associ-

ated with the CCS CC as:

CZ
i �

⎧⎪⎨
⎪⎩
ẋi = fZ

i (xi, z) + gZi (xi, z)ui

żi = pZi (xi, z) + qZi (xi, z)ui

żj = pZj (xi, z) + qZj (xi, z)ui

(3)

where,

fZ
i (xi, z) = fi(xi, zi) + ğe(xi, zi, zj)b

Z
e (xi, z),

gZi (xi, z) = gi(xi, zi) + ğe(xi, zi, zj)A
Z
e (xi, z),

pZi (xi, z) = pi(xi, zi) + q̆e(xi, zi, zj)b
Z
e (xi, z),

qZi (xi, z) = qi(xi, zi) + q̆e(xi, zi, zj)A
Z
e (xi, z).

As a special case of [17], we note the particular coupling

structure —rigid-body connection— of the problem of inter-

ests in this paper:

ce(zi, zj) = zi − zj ≡ 0,

i.e., all of the coupled states are shared through each sub-

system. Hence, pZj = pZi , q
Z
j = qZi further simplifying the

dynamics in (3). According to Theorem 1 of [17], when

applying a controller ui = ui(xi, z) to CZ
i , the solution to

the resultant dynamical system can be reconstructed to the

solution to CC . This allows us to exactly reduce the trajectory

optimization problem of (1) into that of (3).

B. CCS formulation for quadrupeds

We now instantiate this idea to quadrupedal walking on

slopes. The robot of interests — Vision 60 v3.9 as shown in

Fig. 1 — is composed of 13 links: a body link and four limb
links, each of which has three sublinks — the hip, thigh and

calf. As given by (1), we write the full-body dynamics of a

quadruped as coupled control system of two bipeds. A set

of semi-explicit differential algebraic equations are given by⎧⎪⎨
⎪⎩
Diq̈i +Hi = J�

i Fi +Biui + J�
e λe

Jiq̈i + J̇iq̇i = 0

s.t. ce(ξi, ξj) = ξi − ξj ≡ 0, λe = −λē

(4)

defined for all i ∈ N , with the following notations: N =
{f, r} is a set of nodes labeling the front and rear bipeds

and E = {e = (f, r), ē = (r, f)} labels their edges; the

configuration coordinates are qf = (ξ�f , θ�L2
, θ�L0

)� ∈ Qf ,

qr = (ξ�r , θ�L1
, θ�L3

)� ∈ Qr; the “base” coordinates ξi ∈ R
3×

SO(3) represents the Cartesian position and orientation of

the body link; the “shape” coordinates θL∗ ∈ R
3 represents

the three joint angles on the leg L∗. Therefore, we have

Qi ⊂ R
3 × SO(3) × R

6, and the total degrees of freedom

for each biped is n = 3 + 3 + 6 = 12. Since all of the

shape coordinates are actuated by motors, the inputs are

ui ∈ U ⊂ R
6; Finally, Di(qi) ∈ R

n×n is the inertia-

mass matrix, Hi(qi) ∈ R
n is the drift vector containing

the Coriolis, centrifugal, and gravity terms. The contact

condition is represented by a holonomic constraints hi(q)
with Jacobian matrix Ji � ∂hi(qi)/∂qi, with a ground

reaction force Fi ∈ R
3.

To simplify notations, we remark that the first two equa-

tions of (4), which represents the bipedal dynamics subject
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Fig. 2: (a) the configuration coordinates of the full-body dynamics of a quadruped; (b) the decomposed dynamics of quadruped

into two coupled bipedal robots; (c) the cyclic directed graph for the multi-domain hybrid dynamics on sloped terrain; (d)

friction cone (pyramid) condition on some sloped terrain.

to some holonomic constraints hi(qi) ≡ 0, can be folded

into a shorter form by solving Fi, which yields{
Diq̈i + H̄i = B̄iui + J̄�

e λe

s.t. ce(ξi, ξj) = ξi − ξj ≡ 0, λe = −λē.
(5)

The control target is to drive the following outputs:

yi(qi, αi, t) � θi − ydi (τ(t), αi) (6)

to zero, where θi represents all of the shape coordinates

of the ith biped, τ(t) ∈ [0, 1] is the parameterized time,

and αi ∈ R
6×6 parameterizes the desired outputs ydi that is

designed by a CCS-optimization method in Sec. III. Note

that (y�, ẏ�)� are the internal states x as appeared in (3).

Since we wish to design a symmetric ambling motion on

sloped terrains, αr = Mαf is implied, with the matrix M
representing a mirroring relation between the front and rear

bipedal subsystems. Specifically, the desired behaviors of leg

1 and 3 mirrors those of leg 2 and 0, correspondingly.

Coupling Relations for Robotic Systems. Following the

previous construction, we can have the explicit form of

the controller uZ
j that renders zero dynamics manifold Zj

invariant and the coupling condition in (2) as[
uZ
j (xi, z;ui; t)

λZ
e (xi, z;ui; t)

]
=

[
JyjD

−1
j B̄j −JyjD

−1
j J̄�̄

e

JξjD
−1
j B̄j −JξjD

−1
j J̄�̄

e − JξiD
−1
i J̄�

e

]−1

([
ÿd − J̇yj q̇j − JyjD

−1
i H̄j

−JξiD
−1
i H̄i + JξjD

−1
j H̄j

]
+

[
0

JξiD
−1
i B̄i

]
ui

)
(7)

where Jyi
= ∂yi/∂qi, Jξi = ∂qi/∂ξi. Note that we sup-

pressed the the dependence on xi, z, t for notation simplicity.

From this, we can obtain the CSub CZ
i , as in (3).

Isolating Bipeds from Quadrupeds. The framework of

CCS allows for the isolation of a subsystem. However, the

matrix inversion in (7) can compromise the computational

performance. Hence, we take these ideas one step further to

obtain bipeds that are the isolated subsystems associated with

quadrupeds and include slack variables that are beneficial

for gait generation. Operating on the forward invariant zero

dynamics manifold Zj yields yj ≡ 0 ⇒ θZj ≡ yd(t, αj), and

qZj ≡ (
ξ�j , (yd(t, αj))

�)�,
⇒ q̇Zj =

(
ξ̇�j , (ẏd(t, αj))

�)�,
⇒ q̈Zj =

(
ξ̈�j , (ÿd(t, αj))

�)�.
In another word, if uZ,λ

j exists and is applied, the bipedal

dynamics subject to the coupling wrench are equivalent to:{
Dj q̈

Z
j +Hj = J�

j Fj +Bju
Z
j + J�

ē λē (8)

Jj q̈
Z
j + J̇j q̇

Z
j = 0 (9)

where for simplicity we have suppressed the arguments of

Dj(q
Z
j ), Jj(q

Z
j ), and Hj(q

Z
j , q̇

Z
j ). We now leverage a specific

structure of rigid-body dynamics using the floating base

convention [20]: Bjuj + J�
ē λē = (λ�

ē , u
�
j )

�. Utilizing this,

the first 6 rows of (8) and (9) yields the following:

RZj

B �
{
D̂j q̈

Z
j + Ĥj = Ĵ�

j Fj + λē

Jj q̈
Z
j + J̇j q̇

Z
j = 0

(10)

where, �̂ are the first 6 rows of a variable. Hence, RZj

B
represents the dynamics of the jth subsystem on Zj with a

slack variable Fj , which can be uniquely determined.

C. Hybrid dynamics on slopes

We consider the quadrupedal locomotion as a hybrid

dynamical system, which is an alternating sequence of

continuous- and discrete-time dynamics. The directed graph

is illustrated in Fig. 2 (d). More details of hybrid modeling

for bipedal and quadrupedal locomotion can be found in [20],

[21]. Here, we elaborate the problem formulation for walking

on slopes using the isolated bipedal dynamics in (10). Note

that we only consider sloped terrains with a pitch angle of

φ ∈ R in the world’s frame in this paper.

Guard condition and discrete dynamics on slopes. For

the symmetric ambling motion, the diagonal toes of the

quadrupedal robot stay on the ground while the other two

toes are swing in the air. This means each bipedal robot

has one toe-foot in contact with the ground. Concretely,

the Cartesian position of the stance toe remains zero, i.e.

hs(qi) ≡ 0. This contact constraint is enforced by a ground

reaction force Fi ∈ R
3, where i ∈ {f, r}. We additionally

denote the Cartesian position of the nonstance toe along

x, z directions as hx
ns(qf), h

z
ns(qf) ∈ R. The nonstance foot’s

height on the slope is then given by

ĥns(qi) = hz
ns(qi) sinφ− hx

ns(qi) cosφ.

Hence we can define the single-support domain for bipedal

dynamics (10) as:

Di � {(qi, q̇i) ∈ Qi×TQi | hs(qi) = 0, ĥns(qi) ≥ 0}.
The guard is then defined on the edge of the domain Di

as Si � {(qi, q̇i) ∈ Qi × TQi | hs(qi) = ĥns(qi) =

0,
˙̂
hns(qi, q̇i) < 0}, on which we define the discrete dynam-

ics that represents plastic impacts (see equation (20) in [16])

at the event that nonstance toe touches down.

The friction cone condition on slopes. The feasibility con-

ditions Ai(Fi) ≥ 0 are enforced to guarantee the solutions to
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the dynamics is physically realizable. In particular, we have

the friction pyramid condition on sloped terrains as:

Ai(Fi) �

⎧⎪⎨
⎪⎩
F z
i cosφ− F x

i sinφ

μ(F z
i sinφ+ F x

i cosφ)− |F z
i cosφ− F x

i sinφ|
μ(F z

i sinφ+ F x
i cosφ)− |F y

i | (11)

where μ is the coefficient of dynamic friction of the ground.

It is worth noting the feasibility formulation (11) is more

restrictive for walking on sloped terrains than walking on

stairs or level ground.

III. CCS OPTIMIZATION ON SLOPES

Having established the isolated dynamics as bipedal robots

from the full-body dynamics of a quadrupedal robot, we

use optimization to find a periodic solution to the robotic

dynamics, representing a quadrupedal behavior — ambling.

The goal is to design trajectories of the front bipeds that

are subject to the coupling constraints ce(z) ≡ 0. The

quadrupedal ambling behavior on sloped terrains is then

reconstructed from the bipedal trajectories.

Dynamic collocation constraints. In this paper, we uti-

lize a direct collocation based method and the toolbox

FROST [22] to mitigate the computational complexity find-

ing the solutions. Direct collocation (see [23]) is an im-

plicit Runge–Kutta method for numerically approximating

the exact solution of a dynamical system. Given the evenly

discretized time {tκ} with indices κ = 0, 1, ...K, we pose

the dynamic equations as a set of equality constraints on

every node κ, and then use Hermite-Simpson method to

interpolate the states in the middle of every two nodes. If

the interpolated state also satisfies the dynamical equations,

i.e., the collocation constraints are satisfied, the numerical

solution has been found for all t ∈ [0, T ]. Here, the dynamic

constraints are given by (4) for i ∈ N and (10) for j ∈
N �= i, which is then posed correspondingly as equality

constraints on nodes κ ∈ (0, 1, . . . ,K), referred as the

dynamic collocation constraints. More details can be found

in [17].

Periodic constraints. A stable periodic motion can be ex-

panded to the infinite time horizon. Hence, our goal is to find

a periodic solution to the dynamical system. To accomplish

this, we use an equality constraint in the form of

b(q0i , q̇
0
i , q

K
i , q̇

K
i ) �

[
Δ(qKi ) q̇

K
i − q̇0i

qK
i − q0i

]
= 0 (12)

to represent the states continuity through impact dynamics

on the edge Si, where Δ(·) maps the pre-impact velocity q̇Ki
to its post-impact term. According to Corollary 1 in [17],

and the mapping αr = Mαf , we can then obtain periodic

solutions to the quadrupedal dynamics.

Path constraints. In practice, path constraints (inequality

constraints) are often used to “fine-tune” the optimal results

according to human intuition and physical limitations. Eval-

uating the optimality of an optimization solution based on

experimental performance is rather empirical, and intensive

constraint tuning is often needed for field testing. The

ultimate target of this paper is to present a method that can

be seamlessly used to produce periodic gaits for hardware

experiments on sloped terrains. Hence, we explicitly list our

path constraints as follows:

• Joint angles do not exceed physical limits;

• Absolute joint velocities below 4 rad/s;

• Absolute acceleration less than 120 rad/s2;

• Absolute joint torque less than 50 N·m;

• Stepping period tK ∈ [0.29, 0.37];
• Nonstance toe’s height ĥi(q

κ
i ) ≥ 0.1 at κ = K/2;

• Nonstance toe’s absolute velocities (parallel to the

sloped ground) slower than 1.3 m/s;

• Ground impact velocity
˙̂
hns(qi, q̇i) ∈ [−2,−0.2].

Remark that these constraints setup are not modified through-

out the optimization for all of the gaits that are experimen-

tally tested in Sec. IV.

Trajectory optimization. Denote the decision variables as

ϑκ = {xκ
i , ẋ

κ
i , z

κ
i , ż

κ
i , z

κ
j , ż

κ
j , u

κ
i , u

Z,κ
j } on the node κ. The

optimization problem is given as:

min
{ϑκ}κ=0,...K

∑
κ

∥∥∥ξ̇κf
∥∥∥2
2

κ = 0, 1 . . .K (13)

s.t. (C.1) dynamic collocation constraints

(C.2) periodic constraints

(C.3) path constraints

(C.4) feasibility constraints

where K = 5, and the constrains are described above.

Optimal gaits on slopes. By only changing the slope angles

to φ = 0◦, 13◦, 15◦, 20◦, 25◦ in the optimization problem

(13), we were able to generated periodic solutions efficiently.

These solutions are further used to obtain quadrupedal gaits

for experiments. We hereby report the average computational

time for all five gaits are 9.7 seconds and 271 searching

iterations on a Ubuntu 16.04 machine with Intel Core i7-6820
HQ CPU @ 2.7 GHz with 16 GB RAM. The phase portrait

of the gaits on the 13◦ and 20◦ ∼ 25◦ sloped terrains are

shown in solid lines in Fig. 3.

IV. SIMULATION VALIDATION AND EXPERIMENTS

Before directly enabling these sloped walking gaits op-

timized by the CCS optimization framework on the actual

hardware — a 44 kg, 56 cm wide robot (Fig. 1) — we

first validate their physical feasibility and dynamic stability

under a feedback control law in a physics engine, RaiSim

[19]. The particular control law we chose is a time-based PD

approximation of the input-output linearizing controller that

track the optimized trajectories, namely the control inputs of

the rotational joints are given by

u(q, q̇, t) = kp(θ
a − yd(t, (αf , αr)) + kd(θ̇

a − ẏd(t, (αf , αr)) (14)

where θa = (θ�f , θ
�
r )

�, kp, kd ∈ R
12×12 are the PD

gains, respectively, and yd are the desired outputs for the

quadruped. The theoretical validity of this implementation

has been justified using input-to-state stability in [24].
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Fig. 3: Phase portraits of the designed gaits (solid lines) vs. experimental data (transparent overlay) for quadrupedal walking

on 13◦ (red) and 20◦ ∼ 25◦ (blue) slopes. HR, HP, K are short for hip roll, hip pitch and knee, accordingly.

Fig. 4: Full steps of gait tiles for the Vision 60 ambling in outdoor grasslands. The top two is comparison between simulation

and experiments for a 13◦ slope. The bottom two are for walking on a ramp with varying slopes of 20◦ ∼ 25◦.

The quadrupedal robot was first tested on a consistently

graded 13◦ grassy slope with minimal surface variation,

which was replicated in RaiSim by creating a plane of

constant incline. In order to truly test this methodology, the

quadruped was next asked to traverse a grassy slope just

after it had rained with inclination ranging from 20◦ to 25◦.

In order to emulate the varying slope in RaiSim, a terrain

was created with a sinusoidally oscillating height varying

between 20◦ and 25◦ with a frequency that approximated

that of the outdoor environment. As a baseline, both a

level-ground gait based controller and the stock controller

were tested on the 20◦ ∼ 25◦ slope – we report that
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neither of which were able to navigate on the sloped terrain

successfully. As can be seen in the gait tiles in Fig. 4,

our proposed method allows the robot to successfully amble

across both the 13◦ slope and the 20◦ and 25◦ slope despite

the unmodeled variation in slope and lowered friction effects.

See [25] for a video demonstration of the experimental

validation of the quadruped, in which we also showed all five

gaits walking on slopes of 0◦, 13◦, 15◦, 20◦, 25◦ in RaiSim.

This result demonstrates the necessity of designing optimal

trajectory and controllers based on the specific terrain types

using the full-body dynamics. Additionally, we remark that

the PD gains and ground friction coefficient are the same

across all simulation and experimental implementations.

In addition, we logged 20 seconds of experimental data,

and compared them with the desired ambling gait designed

by the optimization, as seen in Fig. 3 with phase portraits.

Note the difference in the desired behavior for the two

terrains. This diversity of behavior further motivates the use

of unique gaits conditioned on the terrain to ensure the sta-

bility of the robotic system. An important metric to quantify

control performance for locomotion is the mechanical cost of

transport (MCOT), which was calculated using equation (16)

of [14]. Unlike the traditional formulation where the distance

term only accounts for the horizontal displacement [1], we

used the averaged three-dimensional velocity on the sloped

terrain, which also considers the vertical displacement. We

report that in simulation, the MCOT for 13◦ and 20◦ ∼ 25◦

sloped ambling are 2.01 and 2.86, accordingly.

V. CONCLUDING REMARKS

In this paper, we extended the method of coupled control

systems to generate quadrupedal locomotion on sloped ter-

rains. We started from modelling, in order to theoretically

analyze the decoupled dynamics on slopes for the isolated

bipedal robots. Then we presented a detailed optimization

algorithm used to rapidly generate walking gaits on leve

ground and four slopes. The experiments of the Vision 60

robot walking on slopes of 13◦ and 20 ∼ 25◦ demonstrated

the scalability of the suggested method towards outdoor

locomotion. The future works includes justifying energy

efficiency for walking on sloped terrains, incorporating the

vision system into the feedback loop to automatically detect

the slope angle for on-board gait generation, navigation, and

achieving trotting gaits on sloped terrains.
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