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Abstract—Optimizing lower-body exoskeleton walking gaits
for user comfort requires understanding users’ preferences over
a high-dimensional gait parameter space. However, existing
preference-based learning methods have only explored low-
dimensional domains due to computational limitations. To
learn user preferences in high dimensions, this work presents
LINECOSPAR, a human-in-the-loop preference-based frame-
work that enables optimization over many parameters by
iteratively exploring one-dimensional subspaces. Additionally,
this work identifies gait attributes that characterize broader
preferences across users. In simulations and human trials,
we empirically verify that LINECOSPAR is a sample-efficient
approach for high-dimensional preference optimization. Our
analysis of the experimental data reveals a correspondence
between human preferences and objective measures of dynam-
icity, while also highlighting differences in the utility functions
underlying individual users’ gait preferences. This result has
implications for exoskeleton gait synthesis, an active field with
applications to clinical use and patient rehabilitation.

I. INTRODUCTION

Human-in-the-loop online learning techniques have
demonstrated significant potential in human-robot interaction
tasks [1]-[3], such as improving the performance of robotic
assistive devices. In particular, online learning from human
feedback can help to optimize walking gaits for lower-body
exoskeletons [4]-[6], which are placed over existing limbs
to assist mobility-impaired individuals.

This work focuses on optimizing walking gaits for individ-
ual user comfort using the Atalante lower-body exoskeleton
developed by Wandercraft. We use a pre-computed gait
library, which generates gaits offline using optimization-
based techniques from nonlinear dynamics and control [7]-
[9]. Gaits are specified by parameters ranging from centers
of pressure to step dimensions (step length, width, etc.).

Optimizing gait parameters for each exoskeleton user
serves two purposes. First, it enables gait personalization
to maximize each user’s comfort. Second, the relationships
among different users’ preferences, in particular their optimal
gaits, may provide insight into the properties of universally-
preferred gaits. While some gait optimization approaches
rely on numeric metrics such as the user’s metabolic ex-
penditure [5], there are no metrics that have established
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Fig. 1. Atalante Exoskeleton. The exoskeleton has 12 actuated joints.
The experiments explore six exoskeleton gait parameters: step length, step
duration, step width, maximum step height, pelvis roll, and pelvis pitch.

correspondences with user comfort. For example, metabolic
expenditure is not an appropriate metric as the exoskeleton
does not require the user to expend effort towards walking. A
quantitative understanding of human preferences could help
generate new gait profiles to improve the existing gait library,
which represents a small fraction of the rich space of human
walking behaviors. This motivates optimizing over the high-
dimensional space of exoskeleton gaits to characterize the
utility functions governing users’ gait preferences.

We rely on users’ pairwise preferences to learn exoskeleton
gaits that optimize user comfort, as several studies have
shown that for subjective human feedback, preferences are
more reliable than numerical scores [10]-[12]. While in-
teractive preference learning methods have been applied to
robotics [4], [6], existing online preference learning methods
are restricted to low-dimensional domains due to computa-
tional limitations; for example, previous work on preference-
based exoskeleton gait optimization either learns over at most
two dimensions [4] or utilizes domain knowledge to narrow
the search space before performing online learning [6].

We present LINECOSPAR, a high-dimensional human
preference-based learning approach that integrates existing
techniques for preference learning [4] and high-dimensional
optimization [13] into a unified framework. LINECOSPAR re-
lies on preference feedback to iteratively explore one-
dimensional subspaces. We demonstrate in simulation that
LINECOSPAR exhibits sample-efficient convergence to user-
preferred actions in high-dimensional spaces. The algorithm
is then deployed experimentally to optimize exoskeleton
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walking over six gait parameters for six able-bodied subjects.

Using the preferred gaits identified by LINECOSPAR in
the human experiments, we examine the connections among
user-preferred gaits to understand what makes some gaits
preferable to others. An analysis using the Zero Moment
Point [14] reveals that users’ preferences correspond to quan-
titative metrics of dynamicity. We observe that while most
users’ preferences are consistent with a metric that prioritizes
dynamic stability, one user’s preferences are explained by
metrics that favor static stability. Based on this analysis,
we suggest metrics that should be considered in the gait
generation process, such that future exoskeleton gait designs
can draw from regions of the gait trajectory space that
prioritize user comfort.

II. THE LEARNING ALGORITHM

The LINECOSPAR algorithm (Alg. 1) learns a Bayesian
model over the user’s preferences in a high-dimensional
space. To learn from preferences, we adopt the dueling bandit
setting [15]—[17], in which the algorithm selects actions and
receives relative preferences between them. The procedure,
based on Thompson sampling, iterates through: 1) updating
a Bayesian posterior over the actions’ utilities given the data,
2) sampling utility functions from the posterior, 3) executing
the actions that maximize the sampled utility functions, and
4) observing preferences among the executed actions.

Drawing inspiration from the LINEBO algorithm [13],
LINECOSPAR exploits low-dimensional structure in the
search space by sequentially considering one-dimensional
subspaces from which to sample actions. This allows the
algorithm to maintain its Bayesian preference relation func-
tion over a subset of the action space in each itera-
tion. LINECOSPAR builds upon COSPAR, which finds user-
preferred parameters across one and two dimensions [4].
Compared to COSPAR, LINECOSPAR learns the model
posterior much more efficiently and can be scaled to higher
dimensions.

This section provides background on existing approaches
and then describes the LINECOSPAR algorithm, including
1) defining the posterior updating procedure, 2) achieving
high-dimensional learning, and 3) incorporating Thompson
sampling and coactive feedback.

A. Background

Preference-Based Learning. We learn users’ preferred
exoskeleton gaits through their relative preferences, which are
more reliable than subjective numerical feedback [4], [10]-
[12]. To maximize sample efficiency, we adopt the mixed-
initiative approach of COSPAR [4], which learns from both
pairwise preference and coactive feedback. In coactive learn-
ing [18], [19], after each time the algorithm selects an action,
the user identifies an improved action. Under both feedback
types, the exoskeleton user tests various gaits to specify pref-
erences and suggest gait modifications. COSPAR effectively
identifies user-preferred gait parameters across one and two
dimensions. However, COSPAR is intractable in larger action
spaces, as it jointly maintains and samples from a posterior

Algorithm 1 LINECOSPAR

1: procedure LINECOSPAR(Utility prior parameters; m = granu-
larity of discretization)

2: D=0, W=10 > D: preference data, W: actions in D
3: Set p1, ao to uniformly-random actions

4: fort=1,2,...,7T do

5: L¢ = random line through p;, discretized via m

6: Vi = L, UW > Points over which to update posterior
7: (e, 3¢) = posterior over points in V;, given D

8: Sample utility function f; ~ N (e, 3¢)

9: Execute action a; = argmax, ., f(a)

10: Add pairwise preference between a; and a;—1 to D
11: Add coactive feedback a; to D

12: Set W=WuU{a:}U{a;} > Update actions in D
13: Set pi+1 = argmax,, .y, i (a)

14: end for
15: end procedure

over every action, causing the computational complexity to
increase exponentially in the action space dimension.

High-Dimensional Bayesian Optimization. Bayesian opti-
mization is a powerful approach for optimizing expensive-to-
evaluate black-box functions. It maintains a model posterior
over the unknown function, and cycles through a) using the
posterior to acquire actions at which to query the function,
b) querying the function, and c) updating the posterior using
the obtained data. This procedure is challenging in high-
dimensional search spaces due to the computational cost
of the acquisition step (a), which often requires solving
a non-convex optimization problem over the search space,
and maintaining the posterior in the update step (c¢), which
can require manipulating matrices that grow exponentially
with the action space’s dimension. Dimensionality reduction
techniques are therefore an area of active interest. Solu-
tions vary from optimizing variable subsets (DROPOUTBO)
[20] to projecting into lower-dimensional spaces (REMBO)
[21] to sequentially optimizing over one-dimensional sub-
spaces (LINEBO) [13]. We draw upon the approach of
LINEBO because of its state-of-the-art performance in high-
dimensional spaces. Furthermore, it is especially sample-
efficient in spaces with underlying low-dimensional structure.
In the case of exoskeleton walking, this low-dimensional
structure may appear as linear relationships between two gait
parameters in the user’s utility function, i.e., users who prefer
short step lengths also prefer short step durations.

B. The LINECOSPAR Algorithm

Modeling Utilities Using Pairwise Preference Data.
LINECOSPAR uses pairwise comparisons to learn a Bayesian
model posterior over the relative utilities of actions (i.e., gait
parameter combination) to the user based upon the Gaussian
process preference model in [22]. We use Gaussian process
learning, as it enables us to model a Bayesian posterior over
a class of smooth, non-parametric functions.

Let A C R? be the set of possible actions. In iteration
t of the algorithm, we consider a subset of the actions
V, C A, with cardinality V; (we will define V; later).
We assume that each action a € A has a latent utility
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to the user, denoted as f(a). Throughout the learning pro-
cess, LINECOSPAR stores a dataset of all user feedback,
D = {ar, > ar, |k = 1,...,N}, consisting of N
preferences, where ay, > ay, indicates that the user prefers
action ay, to action ay,. The preference data D is used to
update the posterior utilities of the actions in V;. Defining
f=1f(an), f(ar,),..., fla,)]" € RV, where a,, is the
i action in V,, the utilities f have posterior:

P(fID) < P(DIf)P(f)- (1

In each iteration ¢, we define a Gaussian process prior over
the utilities f of actions in V;:

1 1 .
P(f) = WCXP (—QfT[ZH 1f> , (@

where X} € RV>Ve  [2V];; = K(ay,,a¢,), and K is a

kernel. Our experiments use the squared exponential kernel.

To compute the likelihood P(D|f), we assume that the

preferences may be corrupted by noise, such that:
ai,)— f(a

P(akl >akz|f)_g<f( kl) f( k2)>

c

. 3)

where ¢(-) € [0, 1] is a monotonically-increasing link func-
tion, and ¢ > 0 is a hyperparameter indicating the degree
of preference noise. While previous work uses the Gaussian
cumulative distribution function for g [4], [22], we empiri-
cally found that using the heavier-tailed sigmoid distribution,
Gsig () := H-%’ as the link function improves performance.
gsig () satisfies the convexity conditions for the Laplace ap-
proximation [23] and has been used to model preferences in
other contexts [24]. The full likelihood expression becomes:

N
PDIf) = ] 9sie (W) _

k=1

“4)

The posterior in (1) is estimated via the Laplace approxima-
tion as in [22], yielding a multivariate Gaussian, N (ges, X¢).

Sampling Approach for Higher Dimensions. Existing
preference-based approaches optimize over the action space
A by discretizing the entire space before beginning the
learning process. This results in m? combinations from m
uniformly-spaced points (corresponding to actions) in each
of the d dimensions of A. Thus, the cardinality of this set
is A := |A| = m?; larger m enables finer-grained search at
a higher computational cost. The Bayesian preference model
is updated over all A points during each iteration. This is
intractable for higher d since computing the posterior over A
points involves expensive matrix operations, such as inverting
¥, € RAXA,

Inspired by [13], LINECOSPAR overcomes this intractabil-
ity by iteratively considering one-dimensional subspaces
(lines), rather than the full action space. In each iteration ¢,
LINECOSPAR selects uniformly-spaced points along a new
random line £; in the action space, which is determined by a
uniformly-random direction and the action p, that maximizes
the posterior mean. Including p; in the subspace encourages
exploration of higher-utility areas. The posterior P(D|f) is

Comparison of time per iteration

—&— LINECOSPAR
—&— COSPAR

;7 3 4 5 6
Dimensionality (4)

Fig. 2. Curse of dimensionality for COSPAR. Average time per iteration
of COSPAR vs. LINECOSPAR. The y-axis is on a logarithmic scale. For
LINECOSPAR, the time is roughly constant in the number of dimensions
d, while the runtime of COSPAR increases exponentially. For d = 4, the
duration of a COSPAR iteration is inconvenient in the human-in-the-loop
learning setting, and for d > 5, it is intractable.

Time per iteration (s)

calculated over V; := L; U W, where WV is the set of actions
for which D contains preference feedback. This approach
reduces the model’s covariance matrices X}, Y; from size
A x A to V; x V;. Rather than growing exponentially in
d, which is impractical for online learning, LINECOSPAR’s
complexity is constant in the dimension d and linear in the
number of iterations 7'. Since queries are expensive in many
human-in-the-loop robotics settings, 1" is typically low.

Posterior Sampling Framework. Ultilities are learned using
the SELFSPARRING [15] approach to Thompson sampling
detailed above. Specifically, in each iteration, we calculate the
posterior of the utilities f over the points in V; = £; U W,
obtaining the posterior N (g, ;) over V,. The algorithm
then samples a utility function f; from the posterior, which
assigns a utility to each action in V;. Next, LINECOSPAR exe-
cutes the action a; that maximizes f, a; = argmax, .y, f(a).
The user provides a preference (or indicates indifference, i.e.
“no preference”) between a,; and the preceding action a;_1.

In addition, for each executed action a, the user can pro-
vide coactive feedback, specifying the dimension, direction
(higher or lower), and degree in which to change a;. The
user’s suggested action a; is added to W, and the feedback
is added to D as a, = a;. In each iteration, preference
and coactive feedback each add at most one action to W.
Thus, in iteration ¢, V; contains at most m + 2(t — 1)
actions, and so its size is independent of the dimensionality
d. In the subsequent analysis, an, is defined as the action
maximizing the final posterior mean after 7' iterations, i.e.,

Qmax 1= ArgMax, ¢y, fir+1(a).
III. PERFORMANCE OF LINECOSPAR
A. Simulation Results

We validate the performance of LINECOSPAR in simula-
tion using both standard Bayesian optimization benchmarks
and randomly-generated polynomials.! The simulations show
that LINECOSPAR 1is sample-efficient, converges to sampling
higher-valued actions, and learns a preference relation func-
tion such that actions with higher objective values have high
posterior utilities.

Standard Bayesian Optimization Benchmarks. We evalu-
ated the performance of LINECOSPAR on the standard Hart-

IThe code is at https:/github.com/myracheng/linecospar. All experiments
use the squared exponential kernel with lengthscale 0.15 in every dimension,
signal variance le—4, noise variance le—>5, and preference noise 0.005.
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Fig. 3. Convergence to higher values on standard benchmarks. Mean
objective value = SD using H3 and H6, averaged over 100 runs. The
sampled actions converge to higher objective values at a faster rate with
LINECOSPAR, which has an improved sampling approach and link function.
It is intractable to run COSPAR on a 6-dimensional space.
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Fig. 4. Robustness to noisy preferences. Mean objective value &= SD of the
action amax With the highest posterior utility. This is averaged over 100 runs
using LINECOSPAR on H6 with varying preference noise, as quantified by
cp,. Higher performance correlates with less noise (lower cy,). The algorithm
is robust to noise to a certain degree (c;, < 0.5).

mann3 (H3) and Hartmann6 (H6) benchmarks (3 and 6 di-
mensions, respectively). We do not compare LINECOSPAR to
other optimization methods because there are no other
preference-based Gaussian process methods that are tractable
in high dimensions. As discussed in Section II-B, we focus on
Gaussian process methods because they model smooth, non-
parametric utility functions. We validate LINECOSPAR with
noiseless preferences and then demonstrate its robustness to
noisy user preferences. Preferences are generated in simula-
tion by comparing objective function values.

Under ideal preference feedback, ay, = ai, if f(ag,) >
f(ag,). The true objective values f are invisible to the
algorithm, which observes only the preference dataset D.
Compared to COSPAR, LINECOSPAR converges to sampling
actions with higher objective values at a faster rate (Fig. 3).
Thus, LINECOSPAR not only enables higher-dimensional op-
timization, but also improves speed and accuracy of learning.

Since human preferences may be noisy, we tested the
algorithm’s robustness to noisy preference feedback. In sim-
ulation, this is modeled via P(ay, > ak,) = (1 + e_f)_l,
where s, = f(ak,) — f(ak,) and ¢, is a hyperparameter
for the noise level. As ¢;, — oo, the preferences approach
uniform randomness (i.e. become noisier). Also, actions be-
come less distinguishable when the distance between f(ay, )
and f(ay,) decreases. This reflects human preference gener-
ation since it is more difficult to give consistent preferences
between actions with similar utilities. By simulating noisy

Sampled values over time
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Fig. 5. Coactive feedback improves convergence. Mean objective value
=+ SD of the sampled actions using random functions. This is averaged over
1000 runs using LINECOSPAR on 100 randomly-generated six-dimensional
functions (d = 6). The sampled actions converge to high objective values
in relatively few iterations, and coactive feedback accelerates this process.

preferences, we demonstrate that LINECOSPAR is robust to
noisy feedback (see Fig. 4).

Randomly-Generated Functions. We also tested
LINECOSPAR using randomly-generated d-dimensional
polynomials (for d = 6) as objective functions: p(a) =
DT Z?:l Bja;, where a; denotes the jM element of
a, and «;, ;i € {l,...,d} are sampled independently
from the uniform distribution ¢/(—1,1). The dimensions’
ranges and discretizations match those in the exoskeleton
experiments, so that these simulations approximate the
number of human trials needed to find optimal gaits.

Coactive feedback was simulated for each sampled action
a; by finding an action a} with a higher objective value that
differs from a; along only one dimension. The action a} is
determined by randomly choosing a dimension in {1,...,d}
and direction (positive or negative), and taking a step from
a; along this vector. If the resulting action a} has a higher
objective value, it is added to the dataset D as a; = a;. This
is a proxy for the human coactive feedback acquired in the
exoskeleton experiments described below, in which the user
can suggest a dimension and direction in which to modify an
action to obtain an improved gait.

Fig. 5 displays LINECOSPAR’s performance over 100
randomly-generated polynomials (10 repetitions each) with
computation time shown in Fig. 2. The results demonstrate
that LINECOSPAR samples high-valued actions within rela-
tively few iterations (= 20 with coactive feedback).

B. Human Subject Experiments

After the performance of LINECOSPAR was demonstrated
in simulation, the algorithm was experimentally deployed on
the lower-body exoskeleton Atalante (Fig. 1) to optimize six
gait parameters for six able-bodied users (see Table I for
results and [25] for a video).

Atalante Exoskeleton. Atalante (Fig. 1) [8], [26], [27], de-
veloped by Wandercraft, has 12 actuated joints: three at each
hip, one at each knee, and two in each ankle. [9] describes the
device’s mechanical components and control architecture in
detail. Exoskeleton walking is achieved using pre-computed
walking gaits, generated using the partial hybrid zero dynam-
ics framework [28] and a nonlinear constrained optimization
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Fig. 6. Experimental Procedure. After setup of the subject-exoskeleton system, subjects were queried for preferences between all consecutive pairs of
gaits, along with coactive feedback, in 30 gait trials (for a total of at most 29 pairwise preferences and 30 pieces of coactive feedback). After these 30
trials, the subject unknowingly entered the validation portion of the experiment, in which he/she validated the posterior-maximizing gait, @max, against four
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Fig. 7. Exploration vs. exploitation in human trials. Each row depicts
the distribution of a particular gait parameter’s values across all gaits that
the subject tested. Each dimension is discretized into 10 bins. Note that the
algorithm explores different parts of the action space for each subject. These
visitation frequencies exhibit a statistically-significant correlation with the
posterior utilities across these regions (Pearson’s p-value = 1.22e-10).

process that utilizes direct collocation. The configuration
space of the human-exoskeleton system is constructed as
q= (p,d,q) € Q € R'S, where p € R? and ¢ € SO denote
the position and orientation of the exoskeleton floating base
frame with respect to the world frame, and ¢ € R!2 denotes
the relative angles of the actuated joints. The generated gaits
are realized on the exoskeleton using PD control at the joint
level and a high-level controller adjusting joint targets based
on state feedback. The controller is executed by an embedded
computer unit running a real-time operating system. Gaits
are sent to the exoskeleton over a wireless connection via a
custom graphical user interface.

Experimental Procedure. LINECOSPAR optimized ex-
oskeleton gaits for six self-identified able-bodied subjects
over six gait parameters (Fig. 1): step length, step duration,
step width, maximum step height, pelvis roll, and pelvis
pitch. These parameters were chosen from the pre-computed
gait library because they are relatively intuitive for users to
understand when giving coactive feedback. The parameter
ranges, respectively, are: 0.08-0.18 meters, 0.85-1.15 seconds,
0.25-0.3 meters, 0.065-0.075 meters, 5.5-9.5 degrees, and
10.5-14.5 degrees. Fig. 6 illustrates the experimental proce-
dure for testing and validating LINECOSPAR.

All subjects were volunteers without prior exoskeleton
exposure. For each subject, the testing procedure lasted ap-
proximately two hours, with one hour of setup and one hour

During the testing, the subjects had control over initiating and
terminating each instance of exoskeleton walking and were
instructed to try each walking gait until they felt comfortable
giving a preference. The subjects could choose to test each
gait multiple times to confirm their preference. They could
also specify “no preference” between two gait trials, in which
case no new information was added to the dataset D.

After completing 30 trials (including trials with no pref-
erence, but not including voluntary gait repetitions), the
subject began a set of “validation” trials; for consistency, the
subject was not informed of the start of the validation phase.
Validation consisted of six additional trials and yielded four
pairwise preferences, each between the posterior-maximizing
action an,, and a randomly-generated action. This validation
step verifies that ap. is preferred over other parameter
combinations across the search space.

Gait Optimization Results. Fig. 7 shows that the
LINECOSPAR algorithm both explores across the gait param-
eter space and exploits regions with higher posterior utility.
Over time, LINECOSPAR increasingly samples actions con-
centrated in regions of the search space that are preferred
based on previous feedback. This results in a significant cor-
relation between visitation frequencies and posterior utilities
across these regions (Pearson’s p-value = 1.22e-10).

For each subject, Table I lists the parameters of the
predicted optimal gaits, an,y, identified by LINECOSPAR.
Table I also illustrates the results of the validation trials for
each subject. These results show that ap, was predomi-
nantly preferred over the randomly-selected actions during
validation. For four of the six subjects, all four validation
preferences matched the posterior, while the other subjects
matched three and one of the four preferences, respectively.

IV. ANALYSIS OF PREFERENCE FEEDBACK AND
IMPLICATIONS FOR GAIT SYNTHESIS

In addition to optimizing exoskeleton walking gaits for
individual users, we aim to understand the utility functions
underlying human preferences and apply this knowledge
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TABLE I
GAIT PARAMETERS OPTIMIZING LINECOSPAR’S POSTERIOR MEAN (@yax) FOR EACH ABLE-BODIED SUBJECT

Subject Height | Mass Step Length | Step Duration | Step Width Max Step Pelvis Roll | Pelvis Pitch Validation
(m) (kg) (m) (s) (m) Height (m) (deg) (deg) Accuracy (%)
1 1.85 89.9 0.0835 0.943 0.278 0.0674 6.38 10.9 75
2 1.668 69.2 0.136 1.04 0.285 0.0679 6.41 12.4 100
3 1.635 51.2 0.137 0.922 0.279 0.0688 8.56 11.4 100
4 1.795 73.6 0.127 0.989 0.268 0.065 6.68 12.7 25
5 1.625 55.9 0.161 1.05 0.258 0.0689 7.32 13.2 100
6 1.66 65 0.177 1.11 0.256 0.0663 7.71 13.5 100

towards improving gait synthesis. As discussed in [4], ex-
oskeleton gaits are generated using the partial hybrid zero
dynamics framework, which is formulated by the following
nonlinear optimization problem [8]:

o = argmin  J(a)
st. ASNPZ,) CPZ,
Na = Acilas

where « are coefficients of Bézier polynomials that yield
impact-invariant periodic orbits, J(«) is a user-determined
cost, A(SNPZ,) C PZ, is the impact invariance condition,
W;x < b; are other physical constraints, and 7, = Ay
is the output dynamics condition. For more details on these
constraints, refer to [28].

The cost function () largely influences the behavior
of the walking gaits that it generates; however, the user’s
cost function Jhuman underlying her preferences is poorly-
understood. This section aims to describe the relationship
between gaits and user preferences through the underlying
cost function Jhyman, SO that future gait synthesis can be
streamlined towards user-preferred walking. Thus, we aim
to identify key terms in Jhyman that numerically account for
the preferences captured by LINECOSPAR.

All walking gaits on the exoskeleton are flat-footed. Thus,
by analyzing the center of mass (CoM) and center of pressure
(CoP), we can treat the patient-exoskeleton system as a
Linear Inverted Pendulum Model (LIPM). This allows us to
analyze the underlying utility function Jhyman using the cost
structure from [29]. We first introduce Zero Moment Point
(ZMP) and LIPM, and then discuss correspondences between
metrics of dynamic stability and user comfort.

Zero Moment Point. The Zero Moment Point (ZMP) is a
widely-used notion of stability for bipedal robots that is
defined as the point on the ground at which the net moment
of the inertial forces and the gravity forces has no component
along the horizontal axes [14]. When the ZMP exists outside
of the “support polygon,” i.e. the convex hull of the stance
foot (or stance feet in the double-support domain), the robot
experiences foot roll.

Static and Dynamic Stability. For a full discussion, refer to
pg. 7 of [30]. In general, static stability is the condition in
which the CoM and CoP never leave the support polygon.
In contrast, quasi-static stability relaxes this condition on
the CoM and only requires that the CoP remains inside the

Linear inverted pendulum
contact resets at impact

1
M {X', y}%o;)th'[

Fig. 8. Illustration of a single step with the overlayed LIPM model.

support polygon. For dynamic stability, the CoP lies on the
boundary of the support polygon for a portion of the gait.

Linear Inverted Pendulum Model (LIPM). The LIPM is a
low-dimensional dynamical system for reduced-order gait
generation. The LIPM model assumes constant height of the
center of mass, as well as zero angular momentum. The
dynamics of the LIPM [31] are:

. mg
MmEcom = —=(Tcom — Tcop)

20

. mg
micom = —= (Ycom — Ycop)s

0

where {x,y}com are the x and y positions of the CoM
at constant height zg, and {z,y}cop denote the z and y
positions of the CoP. For planar horizontal ground walking,
the ZMP is mathematically equivalent to the CoP. The CoP
was experimentally obtained using the four 3-axis force
sensors on the bottom of the exoskeleton’s feet.

Fitting the LIPM Cost Function to User Preferences.
Since flat-foot level-ground walking is well captured by the
LIPM model, the cost function used in the LIPM to generate
desirable walking behavior may explain the users’ utility
functions underlying their exoskeleton gait preferences. As
defined in [29], the LIPM cost function is:

Jiupm = w1|\$ggﬁ — mcom|[? + wal|Zcom||*+

ws|Ecop|* + wal[pE™ — o[+

leyé?;;\l/I — yeoml|* + wa|[gcom|[*+

ws|lgeor||* + wal [P — py 12,
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Fig. 9. Comparison of Preferences. This figure illustrates the trade-off between more and less dynamically-stable gaits as well as the contrasting
preferences among different subjects. While all of the exoskeleton gaits are dynamically stable, both the least preferred gait (amin) of subject 1 and the
most preferred gait (amax) of subject 5 exhibit behavior closer to statically-stable gaits. Subject 1 preferred dynamic gaits with a large difference between
zcop and Tcom; in contrast, subject 5 preferred gaits in which zcep closely followed the center of mass. Rectangles represent the exoskeleton’s feet.

where {z,y}£%, denotes the CoM goal position in the 2 and

the y directions, {&, §}cop denotes the velocity of the CoP in
the x and y directions, {%, ¢ }com is the velocity of the CoM,
p%(fy} denotes the next stance foot position in the x and y
directions, and py, .1 denotes the x and y positions of the
swing foot (Fig. 8).

We hypothesize that Jhuman(w) can be captured as a func-
tion of the weights w := {w; },i € {1,...,4}. Therefore, we
fit the weights w of Jppm to the validation-stage preference
data, i.e., the preferences between the most-preferred gaits
(gaits with parameters am.x) and each of the random gaits
presented during the validation phase?. The weights w were
optimized via the quadratic program:

w+ = argmin ||w||
w

OSSN S N K
s.t. : w2l o,

: w5

0o o o | |

where n denotes the number of pairwise preferences, and:
ref ref not pref not pref
6 = (Il I12 + 1o 12) = (fosSeiI + lafoesii?)
B _ ,.goal
(Ly) = Ycom ~ YcoM
T(2,y) = YcoM
L(3,y) = Ycopr
T — pgoal __ T _ goal
(4,2) = Pz Dz (4y) = Py Dy-
We use subject-wise holdout (leave-one-out) cross-validation
across the subjects to verify the reliability of the fit. The av-
erage weights across all six holdout fits are: w; = —0.1266,
wy = 0.1363, ws = —0.0944, and wy = 1.0662.

z _ xgoal —r
(L,z) = tcoMm CoM
L(2,2) = LCoM

Z(3,2) = LCoP

2Cost function fitting and CoP/CoM plotting code can be found at:
https://github.com/myracheng/linecospar/tree/master/gaitAnalysis

We quantify the predictive power of each fitted cost
function on the users’ utility functions using the rank con-
sistency between the cost function values and the preference
data. Table II shows the predictive power of Jipm on the
preferences, as well as the predictive power of two other
cost functions, Juaic and Jaynamic, respectively defined as:

Tstatic = {2, Y} com — {7, y}CoPHQv
goal

jdynamic = Hp{Ly} - p{x,y}||2'

These two metrics are directly opposed: while Jaynamic 18
the term from Jipm that promotes dynamic stability, Jyuagic
penalizes dynamic stability in favor of static stability. This is
because in the LIPM dynamics, the acceleration of {x, y }com
approaches zero as Jyic approaches zero. We find that Jipm
and Jaynamic capture the preferences of five of the six subjects,
while Jyic completely predicts the preferences of the single
outlier, subject 5.

Fig. 9 further illustrates this difference. The largest dis-
crepancy between Jaynamic and Jsuic s that of subject 1 and
subject 5. The preferences of subject 1 align with dynamic
stability, while the preferences of subject 5 align with static
stability. The diametric opposition between the cost function
terms predicting these users’ preferences reflects inconsis-
tencies across users’ gait utility functions. This suggests that
there is most likely no single metric that entirely captures all
users’ underlying utilities. Thus, it is important to generate
a variety of gaits that satisfy the cost functions reflecting
different users’ preferences.

V. CONCLUSION

This work presents two main contributions: 1) the
LINECOSPAR algorithm to efficiently learn personalized,
user-preferred gaits in high dimensions, and 2) an approach
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TABLE II
PREDICTIVE POWER OF COST FUNCTIONS ON USER PREFERENCES

Cost Function Correctly predicted preferences per subject (%)
4 5 6
Juem (holdout) | 75 100 [ 625 | 75 | 12.5 87.5
JLipm 75 | 875 | 625 | 75 | 62.5 100
Jdynamic 100 | 100 50 75 | 1255 37.5
Tstatic 50 75 37.5 | 50 [ 100 75

for understanding the mechanisms dictating individual users’
gait preferences.

LINECOSPAR identifies preferred actions in high dimen-
sions, both in simulation and in experiments with six able-
bodied subjects using the Atalante lower-body exoskeleton.
We then examine the experimentally-obtained gait prefer-
ences to gain insight into the utility functions underlying
users’ gait preferences. We identify opposing measures of
dynamicity that have predictive power for different users’
preferences, implying that each user consistently prefers
walking gaits that are either more dynamically or statically
stable. These considerations may inform the synthesis of new
exoskeleton gaits that maximize user comfort.

Future steps include conducting studies involving subjects
with paraplegia, whose preferences likely differ from those of
able-bodied subjects. As user preferences may change over
time, creating a learning framework that accounts for these
adaptations is also an important future research direction.

LINECOSPAR’s high-dimensional learning capabilities
provide insight into exoskeleton walking gaits that maximize
user comfort, paving the way for generating new gaits beyond
the gait library. This presents promising advancements for
clinical trials and the broader rehabilitation community.
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