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Abstract—Optimizing lower-body exoskeleton walking gaits
for user comfort requires understanding users’ preferences over
a high-dimensional gait parameter space. However, existing
preference-based learning methods have only explored low-
dimensional domains due to computational limitations. To
learn user preferences in high dimensions, this work presents
LINECOSPAR, a human-in-the-loop preference-based frame-
work that enables optimization over many parameters by
iteratively exploring one-dimensional subspaces. Additionally,
this work identifies gait attributes that characterize broader
preferences across users. In simulations and human trials,
we empirically verify that LINECOSPAR is a sample-efficient
approach for high-dimensional preference optimization. Our
analysis of the experimental data reveals a correspondence
between human preferences and objective measures of dynam-
icity, while also highlighting differences in the utility functions
underlying individual users’ gait preferences. This result has
implications for exoskeleton gait synthesis, an active field with
applications to clinical use and patient rehabilitation.

I. INTRODUCTION

Human-in-the-loop online learning techniques have

demonstrated significant potential in human-robot interaction

tasks [1]–[3], such as improving the performance of robotic

assistive devices. In particular, online learning from human

feedback can help to optimize walking gaits for lower-body

exoskeletons [4]–[6], which are placed over existing limbs

to assist mobility-impaired individuals.

This work focuses on optimizing walking gaits for individ-

ual user comfort using the Atalante lower-body exoskeleton

developed by Wandercraft. We use a pre-computed gait

library, which generates gaits offline using optimization-

based techniques from nonlinear dynamics and control [7]–

[9]. Gaits are specified by parameters ranging from centers

of pressure to step dimensions (step length, width, etc.).

Optimizing gait parameters for each exoskeleton user

serves two purposes. First, it enables gait personalization

to maximize each user’s comfort. Second, the relationships

among different users’ preferences, in particular their optimal

gaits, may provide insight into the properties of universally-

preferred gaits. While some gait optimization approaches

rely on numeric metrics such as the user’s metabolic ex-

penditure [5], there are no metrics that have established
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Fig. 1. Atalante Exoskeleton. The exoskeleton has 12 actuated joints.
The experiments explore six exoskeleton gait parameters: step length, step
duration, step width, maximum step height, pelvis roll, and pelvis pitch.

correspondences with user comfort. For example, metabolic

expenditure is not an appropriate metric as the exoskeleton

does not require the user to expend effort towards walking. A

quantitative understanding of human preferences could help

generate new gait profiles to improve the existing gait library,

which represents a small fraction of the rich space of human

walking behaviors. This motivates optimizing over the high-

dimensional space of exoskeleton gaits to characterize the

utility functions governing users’ gait preferences.

We rely on users’ pairwise preferences to learn exoskeleton

gaits that optimize user comfort, as several studies have

shown that for subjective human feedback, preferences are

more reliable than numerical scores [10]–[12]. While in-

teractive preference learning methods have been applied to

robotics [4], [6], existing online preference learning methods

are restricted to low-dimensional domains due to computa-

tional limitations; for example, previous work on preference-

based exoskeleton gait optimization either learns over at most

two dimensions [4] or utilizes domain knowledge to narrow

the search space before performing online learning [6].

We present LINECOSPAR, a high-dimensional human

preference-based learning approach that integrates existing

techniques for preference learning [4] and high-dimensional

optimization [13] into a unified framework. LINECOSPAR re-

lies on preference feedback to iteratively explore one-

dimensional subspaces. We demonstrate in simulation that

LINECOSPAR exhibits sample-efficient convergence to user-

preferred actions in high-dimensional spaces. The algorithm

is then deployed experimentally to optimize exoskeleton
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walking over six gait parameters for six able-bodied subjects.

Using the preferred gaits identified by LINECOSPAR in

the human experiments, we examine the connections among

user-preferred gaits to understand what makes some gaits

preferable to others. An analysis using the Zero Moment

Point [14] reveals that users’ preferences correspond to quan-

titative metrics of dynamicity. We observe that while most

users’ preferences are consistent with a metric that prioritizes

dynamic stability, one user’s preferences are explained by

metrics that favor static stability. Based on this analysis,

we suggest metrics that should be considered in the gait

generation process, such that future exoskeleton gait designs

can draw from regions of the gait trajectory space that

prioritize user comfort.

II. THE LEARNING ALGORITHM

The LINECOSPAR algorithm (Alg. 1) learns a Bayesian

model over the user’s preferences in a high-dimensional

space. To learn from preferences, we adopt the dueling bandit

setting [15]–[17], in which the algorithm selects actions and

receives relative preferences between them. The procedure,

based on Thompson sampling, iterates through: 1) updating

a Bayesian posterior over the actions’ utilities given the data,

2) sampling utility functions from the posterior, 3) executing

the actions that maximize the sampled utility functions, and

4) observing preferences among the executed actions.

Drawing inspiration from the LINEBO algorithm [13],

LINECOSPAR exploits low-dimensional structure in the

search space by sequentially considering one-dimensional

subspaces from which to sample actions. This allows the

algorithm to maintain its Bayesian preference relation func-

tion over a subset of the action space in each itera-

tion. LINECOSPAR builds upon COSPAR, which finds user-

preferred parameters across one and two dimensions [4].

Compared to COSPAR, LINECOSPAR learns the model

posterior much more efficiently and can be scaled to higher

dimensions.

This section provides background on existing approaches

and then describes the LINECOSPAR algorithm, including

1) defining the posterior updating procedure, 2) achieving

high-dimensional learning, and 3) incorporating Thompson

sampling and coactive feedback.

A. Background

Preference-Based Learning. We learn users’ preferred

exoskeleton gaits through their relative preferences, which are

more reliable than subjective numerical feedback [4], [10]–

[12]. To maximize sample efficiency, we adopt the mixed-

initiative approach of COSPAR [4], which learns from both

pairwise preference and coactive feedback. In coactive learn-

ing [18], [19], after each time the algorithm selects an action,

the user identifies an improved action. Under both feedback

types, the exoskeleton user tests various gaits to specify pref-

erences and suggest gait modifications. COSPAR effectively

identifies user-preferred gait parameters across one and two

dimensions. However, COSPAR is intractable in larger action

spaces, as it jointly maintains and samples from a posterior

Algorithm 1 LINECOSPAR

1: procedure LINECOSPAR(Utility prior parameters; m = granu-
larity of discretization)

2: D = ∅, W = ∅ � D: preference data, W: actions in D
3: Set p1, a0 to uniformly-random actions
4: for t = 1, 2,. . . , T do
5: Lt = random line through pt, discretized via m
6: Vt = Lt ∪W � Points over which to update posterior
7: (μt,Σt) = posterior over points in Vt, given D
8: Sample utility function ft ∼ N (μt,Σt)
9: Execute action at = argmaxa∈Vt

ft(a)
10: Add pairwise preference between at and at−1 to D
11: Add coactive feedback a′

t to D
12: Set W = W ∪ {at} ∪ {a′

t} � Update actions in D
13: Set pt+1 = argmaxa∈Vt

μt(a)
14: end for
15: end procedure

over every action, causing the computational complexity to

increase exponentially in the action space dimension.

High-Dimensional Bayesian Optimization. Bayesian opti-

mization is a powerful approach for optimizing expensive-to-

evaluate black-box functions. It maintains a model posterior

over the unknown function, and cycles through a) using the

posterior to acquire actions at which to query the function,

b) querying the function, and c) updating the posterior using

the obtained data. This procedure is challenging in high-

dimensional search spaces due to the computational cost

of the acquisition step (a), which often requires solving

a non-convex optimization problem over the search space,

and maintaining the posterior in the update step (c), which

can require manipulating matrices that grow exponentially

with the action space’s dimension. Dimensionality reduction

techniques are therefore an area of active interest. Solu-

tions vary from optimizing variable subsets (DROPOUTBO)

[20] to projecting into lower-dimensional spaces (REMBO)

[21] to sequentially optimizing over one-dimensional sub-

spaces (LINEBO) [13]. We draw upon the approach of

LINEBO because of its state-of-the-art performance in high-

dimensional spaces. Furthermore, it is especially sample-

efficient in spaces with underlying low-dimensional structure.

In the case of exoskeleton walking, this low-dimensional

structure may appear as linear relationships between two gait

parameters in the user’s utility function, i.e., users who prefer

short step lengths also prefer short step durations.

B. The LINECOSPAR Algorithm

Modeling Utilities Using Pairwise Preference Data.
LINECOSPAR uses pairwise comparisons to learn a Bayesian

model posterior over the relative utilities of actions (i.e., gait

parameter combination) to the user based upon the Gaussian

process preference model in [22]. We use Gaussian process

learning, as it enables us to model a Bayesian posterior over

a class of smooth, non-parametric functions.

Let A ⊂ R
d be the set of possible actions. In iteration

t of the algorithm, we consider a subset of the actions

Vt ⊂ A, with cardinality Vt (we will define Vt later).

We assume that each action a ∈ A has a latent utility
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to the user, denoted as f(a). Throughout the learning pro-

cess, LINECOSPAR stores a dataset of all user feedback,

D = {ak1 � ak2 | k = 1, . . . , N}, consisting of N
preferences, where ak1

� ak2
indicates that the user prefers

action ak1
to action ak2

. The preference data D is used to

update the posterior utilities of the actions in Vt. Defining

f = [f(at1), f(at2), . . . , f(atVt
)]T ∈ R

Vt , where ati is the

ith action in Vt, the utilities f have posterior:

P(f |D) ∝ P(D|f)P(f). (1)

In each iteration t, we define a Gaussian process prior over

the utilities f of actions in Vt:

P(f) =
1

(2π)Vt/2|Σpr
t |1/2

exp

(
−1

2
fT [Σpr

t ]
−1f

)
, (2)

where Σpr
t ∈ R

Vt×Vt , [Σpr
t ]ij = K(ati ,atj ), and K is a

kernel. Our experiments use the squared exponential kernel.

To compute the likelihood P(D|f), we assume that the

preferences may be corrupted by noise, such that:

P(ak1 � ak2 |f) = g

(
f(ak1

)− f(ak2
)

c

)
, (3)

where g(·) ∈ [0, 1] is a monotonically-increasing link func-

tion, and c > 0 is a hyperparameter indicating the degree

of preference noise. While previous work uses the Gaussian

cumulative distribution function for g [4], [22], we empiri-

cally found that using the heavier-tailed sigmoid distribution,

gsig(x) :=
1

1+e−x , as the link function improves performance.

gsig(x) satisfies the convexity conditions for the Laplace ap-

proximation [23] and has been used to model preferences in

other contexts [24]. The full likelihood expression becomes:

P(D|f) =
N∏

k=1

gsig

(
f(ak1

)− f(ak2
)

c

)
. (4)

The posterior in (1) is estimated via the Laplace approxima-

tion as in [22], yielding a multivariate Gaussian, N (μt,Σt).

Sampling Approach for Higher Dimensions. Existing

preference-based approaches optimize over the action space

A by discretizing the entire space before beginning the

learning process. This results in md combinations from m
uniformly-spaced points (corresponding to actions) in each

of the d dimensions of A. Thus, the cardinality of this set

is A := |A| = md; larger m enables finer-grained search at

a higher computational cost. The Bayesian preference model

is updated over all A points during each iteration. This is

intractable for higher d since computing the posterior over A
points involves expensive matrix operations, such as inverting

Σpr
t ,Σt ∈ R

A×A.

Inspired by [13], LINECOSPAR overcomes this intractabil-

ity by iteratively considering one-dimensional subspaces

(lines), rather than the full action space. In each iteration t,
LINECOSPAR selects uniformly-spaced points along a new

random line Lt in the action space, which is determined by a

uniformly-random direction and the action pt that maximizes

the posterior mean. Including pt in the subspace encourages

exploration of higher-utility areas. The posterior P(D|f) is

2 3 4 5 6

Dimensionality (d)

100

102

T
im

e
pe
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ite

ra
tio

n
(s

) Comparison of time per iteration
LineCoSpar
CoSpar

Fig. 2. Curse of dimensionality for COSPAR. Average time per iteration
of COSPAR vs. LINECOSPAR. The y-axis is on a logarithmic scale. For
LINECOSPAR, the time is roughly constant in the number of dimensions
d, while the runtime of COSPAR increases exponentially. For d = 4, the
duration of a COSPAR iteration is inconvenient in the human-in-the-loop
learning setting, and for d ≥ 5, it is intractable.

calculated over Vt := Lt ∪ W , where W is the set of actions

for which D contains preference feedback. This approach

reduces the model’s covariance matrices Σpr
t ,Σt from size

A × A to Vt × Vt. Rather than growing exponentially in

d, which is impractical for online learning, LINECOSPAR’s

complexity is constant in the dimension d and linear in the

number of iterations T . Since queries are expensive in many

human-in-the-loop robotics settings, T is typically low.

Posterior Sampling Framework. Utilities are learned using

the SELFSPARRING [15] approach to Thompson sampling

detailed above. Specifically, in each iteration, we calculate the

posterior of the utilities f over the points in Vt = Lt ∪ W ,

obtaining the posterior N (μt,Σt) over Vt. The algorithm

then samples a utility function ft from the posterior, which

assigns a utility to each action in Vt. Next, LINECOSPAR exe-

cutes the action at that maximizes f , at = argmaxa∈Vt
f(a).

The user provides a preference (or indicates indifference, i.e.

“no preference”) between at and the preceding action at−1.

In addition, for each executed action at, the user can pro-

vide coactive feedback, specifying the dimension, direction

(higher or lower), and degree in which to change at. The

user’s suggested action a′
t is added to W , and the feedback

is added to D as a′
t � at. In each iteration, preference

and coactive feedback each add at most one action to W .

Thus, in iteration t, Vt contains at most m + 2(t − 1)
actions, and so its size is independent of the dimensionality

d. In the subsequent analysis, amax is defined as the action

maximizing the final posterior mean after T iterations, i.e.,

amax := argmaxa∈Vt
μT+1(a).

III. PERFORMANCE OF LINECOSPAR

A. Simulation Results

We validate the performance of LINECOSPAR in simula-

tion using both standard Bayesian optimization benchmarks

and randomly-generated polynomials.1 The simulations show

that LINECOSPAR is sample-efficient, converges to sampling

higher-valued actions, and learns a preference relation func-

tion such that actions with higher objective values have high

posterior utilities.

Standard Bayesian Optimization Benchmarks. We evalu-

ated the performance of LINECOSPAR on the standard Hart-

1The code is at https://github.com/myracheng/linecospar. All experiments
use the squared exponential kernel with lengthscale 0.15 in every dimension,
signal variance 1e−4, noise variance 1e−5, and preference noise 0.005.
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Fig. 3. Convergence to higher values on standard benchmarks. Mean
objective value ± SD using H3 and H6, averaged over 100 runs. The
sampled actions converge to higher objective values at a faster rate with
LINECOSPAR, which has an improved sampling approach and link function.
It is intractable to run COSPAR on a 6-dimensional space.
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Fig. 4. Robustness to noisy preferences. Mean objective value ± SD of the
action amax with the highest posterior utility. This is averaged over 100 runs
using LINECOSPAR on H6 with varying preference noise, as quantified by
ch. Higher performance correlates with less noise (lower ch). The algorithm
is robust to noise to a certain degree (ch ≤ 0.5).

mann3 (H3) and Hartmann6 (H6) benchmarks (3 and 6 di-

mensions, respectively). We do not compare LINECOSPAR to

other optimization methods because there are no other

preference-based Gaussian process methods that are tractable

in high dimensions. As discussed in Section II-B, we focus on

Gaussian process methods because they model smooth, non-

parametric utility functions. We validate LINECOSPAR with

noiseless preferences and then demonstrate its robustness to

noisy user preferences. Preferences are generated in simula-

tion by comparing objective function values.

Under ideal preference feedback, ak1
� ak2

if f(ak1
) >

f(ak2). The true objective values f are invisible to the

algorithm, which observes only the preference dataset D.

Compared to COSPAR, LINECOSPAR converges to sampling

actions with higher objective values at a faster rate (Fig. 3).

Thus, LINECOSPAR not only enables higher-dimensional op-

timization, but also improves speed and accuracy of learning.

Since human preferences may be noisy, we tested the

algorithm’s robustness to noisy preference feedback. In sim-

ulation, this is modeled via P(ak1 � ak2) = (1 + e
− sk

ch )−1,

where sk = f(ak1) − f(ak2) and ch is a hyperparameter

for the noise level. As ch → ∞, the preferences approach

uniform randomness (i.e. become noisier). Also, actions be-

come less distinguishable when the distance between f(ak1
)

and f(ak2
) decreases. This reflects human preference gener-

ation since it is more difficult to give consistent preferences

between actions with similar utilities. By simulating noisy
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Fig. 5. Coactive feedback improves convergence. Mean objective value
± SD of the sampled actions using random functions. This is averaged over
1000 runs using LINECOSPAR on 100 randomly-generated six-dimensional
functions (d = 6). The sampled actions converge to high objective values
in relatively few iterations, and coactive feedback accelerates this process.

preferences, we demonstrate that LINECOSPAR is robust to

noisy feedback (see Fig. 4).

Randomly-Generated Functions. We also tested

LINECOSPAR using randomly-generated d-dimensional

polynomials (for d = 6) as objective functions: p(a) =∑d
i=1 αi

∑d
j=1 βjaj , where aj denotes the jth element of

a, and αi, βi, i ∈ {1, . . . , d} are sampled independently

from the uniform distribution U(−1, 1). The dimensions’

ranges and discretizations match those in the exoskeleton

experiments, so that these simulations approximate the

number of human trials needed to find optimal gaits.

Coactive feedback was simulated for each sampled action

at by finding an action a′
t with a higher objective value that

differs from at along only one dimension. The action a′
t is

determined by randomly choosing a dimension in {1, . . . , d}
and direction (positive or negative), and taking a step from

at along this vector. If the resulting action a′
t has a higher

objective value, it is added to the dataset D as a′
t � at. This

is a proxy for the human coactive feedback acquired in the

exoskeleton experiments described below, in which the user

can suggest a dimension and direction in which to modify an

action to obtain an improved gait.

Fig. 5 displays LINECOSPAR’s performance over 100

randomly-generated polynomials (10 repetitions each) with

computation time shown in Fig. 2. The results demonstrate

that LINECOSPAR samples high-valued actions within rela-

tively few iterations (≈ 20 with coactive feedback).

B. Human Subject Experiments

After the performance of LINECOSPAR was demonstrated

in simulation, the algorithm was experimentally deployed on

the lower-body exoskeleton Atalante (Fig. 1) to optimize six

gait parameters for six able-bodied users (see Table I for

results and [25] for a video).

Atalante Exoskeleton. Atalante (Fig. 1) [8], [26], [27], de-

veloped by Wandercraft, has 12 actuated joints: three at each

hip, one at each knee, and two in each ankle. [9] describes the

device’s mechanical components and control architecture in

detail. Exoskeleton walking is achieved using pre-computed

walking gaits, generated using the partial hybrid zero dynam-

ics framework [28] and a nonlinear constrained optimization
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Fig. 6. Experimental Procedure. After setup of the subject-exoskeleton system, subjects were queried for preferences between all consecutive pairs of
gaits, along with coactive feedback, in 30 gait trials (for a total of at most 29 pairwise preferences and 30 pieces of coactive feedback). After these 30
trials, the subject unknowingly entered the validation portion of the experiment, in which he/she validated the posterior-maximizing gait, amax, against four
randomly-selected gaits.

Fig. 7. Exploration vs. exploitation in human trials. Each row depicts
the distribution of a particular gait parameter’s values across all gaits that
the subject tested. Each dimension is discretized into 10 bins. Note that the
algorithm explores different parts of the action space for each subject. These
visitation frequencies exhibit a statistically-significant correlation with the
posterior utilities across these regions (Pearson’s p-value = 1.22e-10).

process that utilizes direct collocation. The configuration

space of the human-exoskeleton system is constructed as

q = (p, φ, qb) ∈ Q ∈ R
18, where p ∈ R

3 and φ ∈ SO
3 denote

the position and orientation of the exoskeleton floating base

frame with respect to the world frame, and qb ∈ R
12 denotes

the relative angles of the actuated joints. The generated gaits

are realized on the exoskeleton using PD control at the joint

level and a high-level controller adjusting joint targets based

on state feedback. The controller is executed by an embedded

computer unit running a real-time operating system. Gaits

are sent to the exoskeleton over a wireless connection via a

custom graphical user interface.

Experimental Procedure. LINECOSPAR optimized ex-

oskeleton gaits for six self-identified able-bodied subjects

over six gait parameters (Fig. 1): step length, step duration,

step width, maximum step height, pelvis roll, and pelvis

pitch. These parameters were chosen from the pre-computed

gait library because they are relatively intuitive for users to

understand when giving coactive feedback. The parameter

ranges, respectively, are: 0.08-0.18 meters, 0.85-1.15 seconds,

0.25-0.3 meters, 0.065-0.075 meters, 5.5-9.5 degrees, and

10.5-14.5 degrees. Fig. 6 illustrates the experimental proce-

dure for testing and validating LINECOSPAR.

All subjects were volunteers without prior exoskeleton

exposure. For each subject, the testing procedure lasted ap-

proximately two hours, with one hour of setup and one hour

of exoskeleton testing. The setup consisted of explaining the

procedure (including how to provide preference and coactive

feedback), measuring subject parameters, and adjusting the

thigh and shank length of the exoskeleton to the subject.

During the testing, the subjects had control over initiating and

terminating each instance of exoskeleton walking and were

instructed to try each walking gait until they felt comfortable

giving a preference. The subjects could choose to test each

gait multiple times to confirm their preference. They could

also specify “no preference” between two gait trials, in which

case no new information was added to the dataset D.

After completing 30 trials (including trials with no pref-

erence, but not including voluntary gait repetitions), the

subject began a set of “validation” trials; for consistency, the

subject was not informed of the start of the validation phase.

Validation consisted of six additional trials and yielded four

pairwise preferences, each between the posterior-maximizing

action amax and a randomly-generated action. This validation

step verifies that amax is preferred over other parameter

combinations across the search space.

Gait Optimization Results. Fig. 7 shows that the

LINECOSPAR algorithm both explores across the gait param-

eter space and exploits regions with higher posterior utility.

Over time, LINECOSPAR increasingly samples actions con-

centrated in regions of the search space that are preferred

based on previous feedback. This results in a significant cor-

relation between visitation frequencies and posterior utilities

across these regions (Pearson’s p-value = 1.22e-10).

For each subject, Table I lists the parameters of the

predicted optimal gaits, amax, identified by LINECOSPAR.

Table I also illustrates the results of the validation trials for

each subject. These results show that amax was predomi-

nantly preferred over the randomly-selected actions during

validation. For four of the six subjects, all four validation

preferences matched the posterior, while the other subjects

matched three and one of the four preferences, respectively.

IV. ANALYSIS OF PREFERENCE FEEDBACK AND

IMPLICATIONS FOR GAIT SYNTHESIS

In addition to optimizing exoskeleton walking gaits for

individual users, we aim to understand the utility functions

underlying human preferences and apply this knowledge

3427

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 15,2021 at 22:03:00 UTC from IEEE Xplore.  Restrictions apply.



TABLE I
GAIT PARAMETERS OPTIMIZING LINECOSPAR’S POSTERIOR MEAN (aMAX ) FOR EACH ABLE-BODIED SUBJECT

Subject Height
(m)

Mass
(kg)

Step Length
(m)

Step Duration
(s)

Step Width
(m)

Max Step
Height (m)

Pelvis Roll
(deg)

Pelvis Pitch
(deg)

Validation
Accuracy (%)

1 1.85 89.9 0.0835 0.943 0.278 0.0674 6.38 10.9 75
2 1.668 69.2 0.136 1.04 0.285 0.0679 6.41 12.4 100
3 1.635 51.2 0.137 0.922 0.279 0.0688 8.56 11.4 100
4 1.795 73.6 0.127 0.989 0.268 0.065 6.68 12.7 25
5 1.625 55.9 0.161 1.05 0.258 0.0689 7.32 13.2 100
6 1.66 65 0.177 1.11 0.256 0.0663 7.71 13.5 100

towards improving gait synthesis. As discussed in [4], ex-

oskeleton gaits are generated using the partial hybrid zero

dynamics framework, which is formulated by the following

nonlinear optimization problem [8]:

α∗ = argmin
α

J (α)

s.t. Δ(S ∩ PZα) ⊂ PZα

Wix ≤ bi

η̇α = Aclηα,

where α are coefficients of Bézier polynomials that yield

impact-invariant periodic orbits, J (α) is a user-determined

cost, Δ(S∩PZα) ⊂ PZα is the impact invariance condition,

Wix ≤ bi are other physical constraints, and η̇α = Aclηα
is the output dynamics condition. For more details on these

constraints, refer to [28].

The cost function J (α) largely influences the behavior

of the walking gaits that it generates; however, the user’s

cost function Jhuman underlying her preferences is poorly-

understood. This section aims to describe the relationship

between gaits and user preferences through the underlying

cost function Jhuman, so that future gait synthesis can be

streamlined towards user-preferred walking. Thus, we aim

to identify key terms in Jhuman that numerically account for

the preferences captured by LINECOSPAR.

All walking gaits on the exoskeleton are flat-footed. Thus,

by analyzing the center of mass (CoM) and center of pressure

(CoP), we can treat the patient-exoskeleton system as a

Linear Inverted Pendulum Model (LIPM). This allows us to

analyze the underlying utility function Jhuman using the cost

structure from [29]. We first introduce Zero Moment Point

(ZMP) and LIPM, and then discuss correspondences between

metrics of dynamic stability and user comfort.

Zero Moment Point. The Zero Moment Point (ZMP) is a

widely-used notion of stability for bipedal robots that is

defined as the point on the ground at which the net moment
of the inertial forces and the gravity forces has no component
along the horizontal axes [14]. When the ZMP exists outside

of the “support polygon,” i.e. the convex hull of the stance

foot (or stance feet in the double-support domain), the robot

experiences foot roll.

Static and Dynamic Stability. For a full discussion, refer to

pg. 7 of [30]. In general, static stability is the condition in

which the CoM and CoP never leave the support polygon.

In contrast, quasi-static stability relaxes this condition on

the CoM and only requires that the CoP remains inside the

Fig. 8. Illustration of a single step with the overlayed LIPM model.

support polygon. For dynamic stability, the CoP lies on the

boundary of the support polygon for a portion of the gait.

Linear Inverted Pendulum Model (LIPM). The LIPM is a

low-dimensional dynamical system for reduced-order gait

generation. The LIPM model assumes constant height of the

center of mass, as well as zero angular momentum. The

dynamics of the LIPM [31] are:

mẍCoM =
mg

z0
(xCoM − xCoP),

mÿCoM =
mg

z0
(yCoM − yCoP),

where {x, y}CoM are the x and y positions of the CoM

at constant height z0, and {x, y}CoP denote the x and y
positions of the CoP. For planar horizontal ground walking,

the ZMP is mathematically equivalent to the CoP. The CoP

was experimentally obtained using the four 3-axis force

sensors on the bottom of the exoskeleton’s feet.

Fitting the LIPM Cost Function to User Preferences.
Since flat-foot level-ground walking is well captured by the

LIPM model, the cost function used in the LIPM to generate

desirable walking behavior may explain the users’ utility

functions underlying their exoskeleton gait preferences. As

defined in [29], the LIPM cost function is:

JLIPM = w1||xgoal
CoM − xCoM||2 + w2||ẋCoM||2+

w3||ẋCoP||2 + w4||pgoal
x − px||2+

w1||ygoal
CoM − yCoM||2 + w2||ẏCoM||2+

w3||ẏCoP||2 + w4||pgoal
y − py||2,
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Fig. 9. Comparison of Preferences. This figure illustrates the trade-off between more and less dynamically-stable gaits as well as the contrasting
preferences among different subjects. While all of the exoskeleton gaits are dynamically stable, both the least preferred gait (amin) of subject 1 and the
most preferred gait (amax) of subject 5 exhibit behavior closer to statically-stable gaits. Subject 1 preferred dynamic gaits with a large difference between
xCoP and xCoM; in contrast, subject 5 preferred gaits in which xCoP closely followed the center of mass. Rectangles represent the exoskeleton’s feet.

where {x, y}goal
CoM denotes the CoM goal position in the x and

the y directions, {ẋ, ẏ}CoP denotes the velocity of the CoP in

the x and y directions, {ẋ, ẏ}CoM is the velocity of the CoM,

pgoal

{x,y} denotes the next stance foot position in the x and y
directions, and p{x,y} denotes the x and y positions of the

swing foot (Fig. 8).

We hypothesize that Jhuman(w) can be captured as a func-

tion of the weights w := {wi}, i ∈ {1, . . . , 4}. Therefore, we

fit the weights w of JLIPM to the validation-stage preference

data, i.e., the preferences between the most-preferred gaits

(gaits with parameters amax) and each of the random gaits

presented during the validation phase2. The weights w were

optimized via the quadratic program:

w∗ = argmin
w

||w||

s.t.

⎡
⎢⎢⎣
δ
(1)
1 δ

(1)
2 δ

(1)
3 δ

(1)
4

...

δ
(n)
1 δ

(n)
2 δ

(n)
3 δ

(n)
4

⎤
⎥⎥⎦

⎡
⎢⎢⎣
w1

w2

w3

w4

⎤
⎥⎥⎦ < 0,

where n denotes the number of pairwise preferences, and:

δi =
(
||xpref

(i,x)||2 + ||xpref

(i,y)||2
)
−
(
||xnot pref

(i,x) ||2 + ||xnot pref

(i,y) ||2
)

x(1,x) = xgoal
CoM − xCoM x(1,y) = ygoalCoM − yCoM

x(2,x) = ẋCoM x(2,y) = ẏCoM

x(3,x) = ẋCoP x(3,y) = ẏCoP

x(4,x) = pgoalx − px x(4,y) = pgoal
y − py.

We use subject-wise holdout (leave-one-out) cross-validation

across the subjects to verify the reliability of the fit. The av-

erage weights across all six holdout fits are: w1 = −0.1266,

w2 = 0.1363, w3 = −0.0944, and w4 = 1.0662.

2Cost function fitting and CoP/CoM plotting code can be found at:
https://github.com/myracheng/linecospar/tree/master/gaitAnalysis

We quantify the predictive power of each fitted cost

function on the users’ utility functions using the rank con-

sistency between the cost function values and the preference

data. Table II shows the predictive power of JLIPM on the

preferences, as well as the predictive power of two other

cost functions, Jstatic and Jdynamic, respectively defined as:

Jstatic = ||{x, y}CoM − {x, y}CoP||2,
Jdynamic = ||pgoal

{x,y} − p{x,y}||2.
These two metrics are directly opposed: while Jdynamic is

the term from JLIPM that promotes dynamic stability, Jstatic

penalizes dynamic stability in favor of static stability. This is

because in the LIPM dynamics, the acceleration of {x, y}CoM

approaches zero as Jstatic approaches zero. We find that JLIPM

and Jdynamic capture the preferences of five of the six subjects,

while Jstatic completely predicts the preferences of the single

outlier, subject 5.

Fig. 9 further illustrates this difference. The largest dis-

crepancy between Jdynamic and Jstatic is that of subject 1 and

subject 5. The preferences of subject 1 align with dynamic

stability, while the preferences of subject 5 align with static

stability. The diametric opposition between the cost function

terms predicting these users’ preferences reflects inconsis-

tencies across users’ gait utility functions. This suggests that

there is most likely no single metric that entirely captures all

users’ underlying utilities. Thus, it is important to generate

a variety of gaits that satisfy the cost functions reflecting

different users’ preferences.

V. CONCLUSION

This work presents two main contributions: 1) the

LINECOSPAR algorithm to efficiently learn personalized,

user-preferred gaits in high dimensions, and 2) an approach
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TABLE II
PREDICTIVE POWER OF COST FUNCTIONS ON USER PREFERENCES

Cost Function Correctly predicted preferences per subject (%)
1 2 3 4 5 6

JLIPM (holdout) 75 100 62.5 75 12.5 87.5
JLIPM 75 87.5 62.5 75 62.5 100
Jdynamic 100 100 50 75 12.5 37.5
Jstatic 50 75 37.5 50 100 75

for understanding the mechanisms dictating individual users’

gait preferences.
LINECOSPAR identifies preferred actions in high dimen-

sions, both in simulation and in experiments with six able-

bodied subjects using the Atalante lower-body exoskeleton.

We then examine the experimentally-obtained gait prefer-

ences to gain insight into the utility functions underlying

users’ gait preferences. We identify opposing measures of

dynamicity that have predictive power for different users’

preferences, implying that each user consistently prefers

walking gaits that are either more dynamically or statically

stable. These considerations may inform the synthesis of new

exoskeleton gaits that maximize user comfort.
Future steps include conducting studies involving subjects

with paraplegia, whose preferences likely differ from those of

able-bodied subjects. As user preferences may change over

time, creating a learning framework that accounts for these

adaptations is also an important future research direction.
LINECOSPAR’s high-dimensional learning capabilities

provide insight into exoskeleton walking gaits that maximize

user comfort, paving the way for generating new gaits beyond

the gait library. This presents promising advancements for

clinical trials and the broader rehabilitation community.
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[14] M. Vukobratović and B. Borovac, “Zero-moment point—thirty five
years of its life,” Int. journal of humanoid robotics, vol. 1, no. 01, pp.
157–173, 2004.

[15] Y. Sui, V. Zhuang, J. W. Burdick, and Y. Yue, “Multi-dueling bandits
with dependent arms,” in Conf. on Uncertainty in Artificial Intelligence,
2017.

[16] Y. Sui, M. Zoghi, K. Hofmann, and Y. Yue, “Advancements in dueling
bandits,” in IJCAI, 2018, pp. 5502–5510.

[17] Y. Yue, J. Broder, R. Kleinberg, and T. Joachims, “The k-armed dueling
bandits problem,” Journal of Computer and System Sciences, vol. 78,
no. 5, pp. 1538–1556, 2012.

[18] P. Shivaswamy and T. Joachims, “Online structured prediction via
coactive learning,” in Int. Conf. on Machine Learning. Omnipress,
2012, pp. 59–66.

[19] ——, “Coactive learning,” Journal of Artificial Intelligence Research,
vol. 53, pp. 1–40, 2015.

[20] C. Li, S. Gupta, S. Rana, V. Nguyen, S. Venkatesh, and A. Shilton,
“High dimensional Bayesian optimization using dropout,” Int. Joint
Conf. on Artificial Intelligence, 2017.

[21] Z. Wang, F. Hutter, M. Zoghi, D. Matheson, and N. D. Freitas,
“Bayesian optimization in a billion dimensions via random embed-
dings,” J. of Artificial Intelligence Research, vol. 55, p. 361–387, 2016.

[22] W. Chu and Z. Ghahramani, “Preference learning with Gaussian
processes,” in Int. Conf. on Machine Learning. ACM, 2005, pp.
137–144.

[23] U. Ezeafulukwe, M. Darus, and O. Fadipe-Joseph, “On analytic
properties of a sigmoid function,” Int. Journal of Mathematics and
Computer Science, vol. 13, no. 2, pp. 171–178, 1 2018.

[24] C. Wirth, R. Akrour, G. Neumann, and J. Fürnkranz, “A survey of
preference-based reinforcement learning methods,” Journal of Machine
Learning Research, vol. 18, no. 136, pp. 1–46, 2017.

[25] “Video of the experimental results.” https://youtu.be/c6a0kXMyML0.
[26] A. Duburcq, Y. Chevaleyre, N. Bredech, and G. Boéris, “Online
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