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Abstract— This paper proposes a data-driven method for
powered prosthesis control that achieves stable walking without
the need for additional sensors on the human. The key idea is to
extract the nominal gait and the human interaction information
from motion capture data, and reconstruct the walking behavior
with a dynamic model of the human-prosthesis system. The
walking behavior of a human wearing a powered prosthesis is
obtained through motion capture, which yields the limb and
joint trajectories. Then a nominal trajectory is obtained by
solving a gait optimization problem designed to reconstruct
the walking behavior observed by motion capture. Moreover,
the interaction force profiles between the human and the
prosthesis are recovered by simulating the model following the
recorded gaits, which are then used to construct a force tube
that covers all the interaction force profiles. Finally, a robust
Control Lyapunov Function (CLF) Quadratic Programming
(QP) controller is designed to guarantee the convergence to the
nominal trajectory under all possible interaction forces within
the tube. Simulation results show this controller’s improved
tracking performance with a perturbed force profile compared
to other control methods with less model information.

I. INTRODUCTION

Commercially available prosthetic legs remain largely

limited to passive devices which increase an amputee’s

metabolic cost and their amputated side’s hip power and

torque [1]. Powered prostheses lend the benefit of providing

net power to the user and enabling a walking gait more

representative of a healthy biomechanical gait [2]. A large

subset of existing research on powered prostheses focuses

on the use of impedance control methods [3], [4], [5]. The

downsides of this method is that it requires extensive tuning

and is highly heuristic. To address this heuristic nature,

researchers have developed trajectory tracking methods for

prostheses inspired by bipedal robotics [5], [6], [7].

Powered prostheses present an interesting control problem

compared to walking robots in that the behavior of part

of the system is unknown: the human. To address this,

researchers have examined phase variables [5], [8] to prop-

erly modulate the prosthesis trajectory in response to the

human, but the trajectory tracking methods do not account

for the human dynamics. While feedback linearization and

CLFs can enforce the trajectories on walking robots [9],

[10], these methods cannot be applied to prostheses in the

same way because they require full model information. For
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Fig. 1: Powered prosthesis AMPRO3 attached to iWalk

adapter worn by human with Optitrack motion capture mark-

ers. (Right) Joint location determination based on markers.

example, in [11] a method was developed to apply CLF-QP

to a prosthesis, but in a model independent fashion. Model-

dependence is desired in a prosthesis controller to improve

tracking performance and robustness to perturbations. Recent

work [12] incorporated some model dependence into robust

prosthesis controllers but did not account for the interaction

force between the human and prosthesis.

Accounting for the interaction force in a model-dependent

prosthesis controller is crucial for the stance phase for two

reasons. One, during stance the human exerts a large force on

the prosthetic as the prosthetic supports the human’s weight

and motion, hence the force is a critical component of the

prosthesis dynamics. Two, the human relies on the prosthetic

for support and balance, making the stability of the prosthesis

vital for the human’s safety during this phase. Prosthesis

controllers were developed in [13] and [14] that incorporated

this interaction force in feedback linearization. While these

methods worked in simulation, they pose implementation

problems due to the drawbacks of a force sensor and lack of

robustness of feedback linearization. Force sensors for these

applications are expensive, noisy, and not robust to the multi-

directional force and torque impacts present in walking. This

motivates our goal to develop a model dependent prosthesis

control method without requiring a force sensor.

In order to characterize the reaction force between a

human and prosthesis without a force sensor, human walking

analysis is needed. Motion capture has often been used to

understand human walking behavior [15], [10]. The authors

in [16] and [17] used motion capture to develop a reference

trajectory for a powered prosthesis, yet the reference is taken

from normal human walking. In [18], the ground reaction

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6212-6/20/$31.00 ©2020 IEEE 4126

20
20

 IE
EE

/R
SJ

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 In

te
lli

ge
nt

 R
ob

ot
s a

nd
 S

ys
te

m
s (

IR
O

S)
 | 

97
8-

1-
72

81
-6

21
2-

6/
20

/$
31

.0
0 

©
20

20
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
IR

O
S4

57
43

.2
02

0.
93

41
38

8

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 15,2021 at 22:05:16 UTC from IEEE Xplore.  Restrictions apply.



force on a prosthesis was estimated with a nonlinear Kalman

filter methods, but the internal forces were not examined.

The internal force of a human tibia was analyzed with

a musculoskeletal model in [19], yet the model is only

applicable to a human body, not a human body in connection

with a prosthesis. This paper extends upon these works

by using motion capture to evaluate the interaction force
between a human user and prosthesis device, Fig. 1, and

develop a stable walking trajectory for the prosthesis.

The main contributions of this paper are

• developing a procedure that identifies the range of

interaction forces between a human and prosthesis from

motion capture without a force sensor

• constructing a robust CLF-QP controller that renders

the prosthesis stable, even with force disturbances, to a

walking trajectory similar to that in motion capture.

We obtain joint trajectory data using an Optitrack motion

capture system and calculate the interaction forces by simu-

lating the human-prosthesis system following the trajectories.

Through optimization we match the trajectories to obtain a

stable nominal walking gait that satisfies the dynamic equa-

tions to simulate continuous walking. For this we follow a

method similar to [10] but use asymmetric human-prosthesis

data with a human-prosthesis model instead of symmetric

human data. Then, to capture the nondeterministic nature the

of a human user, a force tube is constructed that covers all

interaction forces associated with the recorded steps. Finally,

we control the prosthesis in simulation with a robust CLF-

QP controller that guarantees convergence to the nominal gait

for any possible interaction force within the tube. Simulation

results show the improved tracking performance of this

model-dependent method with respect to perturbations.

The structure of this paper is depicted in the flow dia-

gram in Fig. 2 and outlined here. Section II explains the

method to obtain human-prosthesis walking data through

motion capture and process the data to obtain joint angle

trajectories. Section III describes the hybrid model for the

combined human-prosthesis system. Section IV covers the

construction of outputs for the human-prosthesis system and

how these are used in gait design to both develop a stable

walking trajectory that matches the motion capture data and

playback the data to obtain the interaction force profiles.

Further, this section covers the development of the tube of

interaction forces. Section V outlines the construction of our

robust CLF-QP controller and presents the simulation results

with this controller and our developed walking trajectory.

Finally Section VI concludes the paper and contains a brief

description of future work.

II. MOTION CAPTURE AND DATA PROCESSING

In the data collection phase, a human user wears the

custom-built powered transfemoral prosthesis, AMPRO3,

through the use of an iWalk adapter on her right leg, as shown

in Fig. 1. AMPRO3 has 2 DC brushless motors to actuate the

knee and ankle pitch and 2 encoders to read the positions and

velocities of both joints. The knee and ankle are controlled in

real-time by the most model-dependent prosthesis controller

Fig. 2: Flow diagram (with section numbers of paper)

depicting steps in method to go from motion capture data

to a model-dependent controller.

currently available, a robust-passive controller that tracks a

trajectory determined offline [12].

The behavior of the human with the prosthesis is captured

by an Optitrack motion capture system. It uses multiple

cameras (up to 40) to locate markers fixed on an object

and subsequently locate the object. Since we are tracking

a human wearing a prosthesis, not just a human subject, and

we only examine the motion in 2D space, it is not fitting or

necessary to use a standard human marker set, such as Helen

Hayes [20]. We place markers on each lower-limb segment

of the human user and the prosthesis, registering each set of

markers on the same segment as a rigid body in the tracking

system. Optitrack gives the position and rotation of the limbs.

While we do not use a standard marker set, we still apply

the basic principles of [20]: by modeling the human limb

segments as rigid bodies, the relative motion between these

segments gives us the trajectory of the center of rotation,

assumed to be the center of the joint.

A. Processing Motion Capture Data

Since the prosthesis only actuates in the sagittal plane,

we project the motion data to this plane, treating the data

as 2D walking data. For this section, let x, z denote the

longitudinal and vertical coordinates of the markers and θ
denote the pitch angle of the rigid bodies. Optitrack gives the

global coordinates of the markers along with the position and

orientation of the rigid bodies when it recognizes the rigid

bodies. From this we compute the lower-limb pitch angles,

joint angles, and joint positions for the human and prosthesis.

Compute Pitch Angles. When the system recognizes the

rigid body, it directly provides the pitch angle. When the

tracking is lost, we use two markers on the same limb to

compute the pitch angle as θ = arctan((x2−x1)/(z2−z1)),
where [xi, zi], i ∈ {1, 2} are the x and z coordinates of the

two markers. The difference between limb angles gives the

joint angle, providing the joint angle trajectories for walking.

Locate Joint Positions. Since markers are not on joint

rotation centers, we use a convex optimization approach to

determine the joint position relative to markers to obtain the

global joint positions from the marker positions. For each

joint, we find the two limbs connected to the joint, and select
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one marker on each joint, denoted as [x1, z1], [x2, z2], as

shown in the right portion of Fig. 1. We signify the joint

coordinate with [x0, z0] and the previously determined limb

pitch angles as θ1 and θ2. Let Λ1 and Λ2 denote the vectors

from the two markers to the joint, then the joint position can

be computed from two directions:

[x0, z0]
ᵀ = [x1, z1]

ᵀ+R(θ1)Λ1 = [x2, z2]
ᵀ+R(θ2)Λ2, (1)

where R(θ) is the 2D rotation matrix.
The following optimization solves for Λ1 and Λ2 by

minimizing the discrepancy between the two equivalent

computations:

min
Δ1,Δ2∈R2

∑
t

∥∥∥∥ [x1(t), z1(t)]
ᵀ +R(θ1(t))Λ1−

[x2(t), z2(t)]
ᵀ −R(θ2(t))Λ2

∥∥∥∥
2

,

with which we compute the joint location by taking the

average of the two expressions in (1). The joint position

information is potentially useful for the computation of limb

lengths, identifying different phases of the walking data, and

computing outputs that depend on joint positions.
With the procedure presented in this section, we are able

to get the limb angle trajectories, joint position trajectories,

and joint angle trajectories from the motion capture data. In

total, 37 step cycles were collected and analyzed.

III. HUMAN-PROSTHESIS MODEL

To simulate the joint trajectories from motion capture data,

we develop a model of the human-prosthesis system.

Model. The human-prosthesis system is modeled as a 2D

bipedal robot by the methods of [21], where the human limbs

are modeled as rigid linkages connected by revolute joints. A

3 DOF fixed joint is added at the human-prosthesis interface

to model the rigid connection between these two bodies, for

a total of 12 DOF, shown in Fig. 3. We consider 6 actuators,

one at each leg joint. The human limb lengths, mass, and

COM are calculated with Plagenhoef’s table of percentages

[22] and the subject’s total height and mass. The inertia of

each limb is estimated with Erdmann’s table of radiuses of

gyration [23]. The human right thigh limb accounts for the

iWalk, human’s bent calf, and human’s foot. We measured

the iWalk’s mass and length and used these measurements to

calculate the moment of inertia assuming simple geometry.

The prosthesis parameters are obtained from a CAD model

of AMPRO3 [11], a powered transfemoral prosthesis, Fig. 1.

Generalized Coordinates. We define the generalized coor-

dinates for the model as q = (qᵀh, q
ᵀ
f , q

ᵀ
p )

ᵀ. Here, the coor-

dinates of the human side are qh = (qᵀB , θlh, θlk, θla, θrh)
ᵀ,

where the extended coordinates qB ∈ SE(2) represent

the position and rotation of the system’s base frame RB

with respect to the world frame RW , and the remaining

coordinates are the relative joint angles as defined in Fig 3.

The coordinates of the fixed joint qf ∈ R
3 are the position

and rotation of the fixed joint reference frame Rf . The

prosthetic coordinates are given by qp = (θpk, θpa)
ᵀ, for

the knee and ankle, respectively.

Human-Prosthesis Dynamics. Because human walking con-

tains both continuous and discrete dynamics, we model it as

Fig. 3: (Right) Robot model of human-prosthesis system

labeled with generalized coordinates. (Left) Model of robotic

prosthetic leg with external forcing Fs.

a multi-domain hybrid control system, formally defined as a

tuple [10]:

H C = (Γ, D, U , S, Δ, FG),

where Γ = (V, E) is a directed cycle, with vertices V =
{v1 = ps, v2 = pns} and edges E = {e1 = {ps →
pns}, e2 = {pns → ps}}. Here ps stands for prosthesis
stance and pns for prosthesis non-stance. These are modeled

as separate domains because of the asymmetry of the model.

(For the scope of this paper, we only consider these single

support phases since we are most interested in controlling

the prosthesis when it is the only support for the human. We

assume when the human has her own foot as support, she

can balance herself more independently.) Each domain Dv ,

in the set of admissible domains defined by D = {Dv}v∈V ,

contains two 3-DOF holonomic constraints, hv(q) ∈ R
6,

one on the stance foot and the other on the fixed joint at

the human-prosthesis interface. The set of admissible inputs

is defined by U = {Uv}v∈V . The transitions between the

domains are a set of guards, S = {Se}e∈E , which in this

case is when the non-stance foot hits the ground. This event

causes an impact defined by Δ = {Δe}e∈E . The set of

control systems FG = {(fv, gv)}v∈V with (fv, gv) defines

the continuous dynamics ẋ = fv(x) + gv(x)uv .

To obtain these continuous dynamics of the human-

prosthesis system with x = (qᵀ, q̇ᵀ)T , we use the classical

Euler-Lagrangian equation for robotic systems [21], [24]:

D(q)q̈ +H(q, q̇) = Bu+ JT
v (q)Fv(q, q̇). (2)

Here D(q) ∈ R
12×12 is the inertial matrix. H(q, q̇) =

C(q, q̇) + G(q) ∈ R
12, a vector of centrifugal and Coriolis

forces and a vector containing gravity forces, respectively.

The actuation matrix B ∈ R
12×6 contains the gear-reduction

ratio of the actuated joints and is multiplied by the control

inputs u ∈ R
6. The wrenches Fv(q, q̇) ∈ R

6 enforce the 6
holonomic constraints. The Jacobian matrix of the holonomic

constraints Jv(q) = ∂hv

∂q ∈ R
6×12 enforces the holonomic

constraints by the following equation:

J̇v(q, q̇)q̇ + J(q)v q̈ = 0. (3)
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Solving (2) and (3) simultaneously yields the constrained
dynamics. These terms will now be referred to as

D, H, Jv, and Fv , respectively, for notational simplicity.

IV. SIMULATING MOTION CAPTURE DATA

In order to reconstruct the motion capture in simulation,

we track the joint trajectories obtained from motion capture

with the human-prosthesis model built in Section III. Since

the raw data does not satisfy the dynamics equations, we

construct a stable reference trajectory close to the data in

Section IV-A to simulate continuous walking for controller

testing. To estimate the range of interaction forces and

moments seen by the prosthesis from the human for use in a

controller, we simulate multiple continuous domains of the

data in Section IV-B.

A. Gait Design

To design a stable walking gait, state-based outputs are

defined to enable construction of a state-based controller for

improved robustness [25].

State-based Outputs for Control. To modulate the outputs,

a monotonic phase variable τ(q) is developed with the

linearized hip position relative to the ankle:

δphip(θsk, θsa) = (lst + lss)θsk + lssθsa,

where lss, lst are the length of the stance shin and stance

thigh, and θsk, θsa are the stance knee and stance ankle joint

angles. Previous research showed this value to approximately

linearly increase during a human step [26]. The phase

variable is defined as:

τ(q) =
δphip(θsk, θsa)− δp

hip

δphip − δp
hip

, (4)

where δp
hip

and δphip are the initial and final hip positions

in a step, respectively. To specify the walking behavior,

we define a set of outputs for each domain, parameterized

by parameters αv := {αv,k}k=1...ny,v , where αv,k is the

parameter set for the k-th output in Dv , ny,v is the number of

outputs for Dv . In particular, state-based control for walking

requires a velocity-modulating output y1,v(q, q̇) to progress

the trajectory forward:

y1,v(q, q̇) = ya1,v(q, q̇)− yd1,v(αv) ∈ R,

where ya1,v(q, q̇) = δ̇phip(q), the forward hip velocity,

and yd1,v(αv) ≡ vhip,v , a constant determined through

optimization to match the constant hip velocity observed

in experiment. To track the joint trajectories, we define 5

relative degree 2 outputs:

y2,v(q) = ya2,v(q)− yd2,v(τ(q), αv) ∈ R
5.

Here ya2,v(q) are all of the individual joint angles except

the stance ankle. Therefore, ny,v = 6 for the single support

domains since y2,v ∈ R
5 and y1,v ∈ R.

Fig. 4: The Bézier polynomials for yd2,ps(τ(q), αps (top) and

yd2,pns(τ(q), αpns): (black) motion capture data fit, (blue)

PHZD optimization result.

Joint Trajectories from Motion Capture Data. The pa-

rameterization of the outputs are via Bézier curves. A Bézier

curve is a parameterized polynomial of variable s ∈ [0, 1] as

B(s) =
∑m

i=0
αi

m!

(m− i)!i!
si(1− s)m−i,

where m is the degree of the Bézier curve and {αi} are

the Bézier coefficients. This provides a convenient way to

parameterize nonlinear curves because simple manipulations

of the Bézier coefficients can give the derivative, integral,

and square of the Bézier curve.

To divide the walking data into two phases, we exam-

ine δphip(θpk, θpa) which oscillates during walking. We

consider the portion when δphip(θpk, θpa) monotonically

increases as the prosthesis stance phase, and the portion when

δphip(θpk, θpa) monotonically decreases as the prosthesis

non-stance phase. Based on this division we find δp
hip

and

δphip from the data for each step, used in (4) to compute τ .

This gives us a sequence τ(1 : T ), where T is the number of

data time-steps for each walking step. For this range, the joint

trajectories from Section II-A are used to obtain the desired

outputs ydv,k , where the set {ydv,k}k=1...ny,v
= {yd1,v, yd2,v},

giving us a sequence ydv,k(1 : T ).
We perform the curve fitting with a regression procedure

since a Bézier curve is a linear combination of the nonlinear

basis functions Bi(s) = m!
(m−i)!i!s

i(1 − s)m−i. Given the

sequence of τ(1 : T ) and the corresponding sequence of

output ydv,k(1 : T ), let

H ∈ R
T×(m+1), Hij = Bj−1(τ(i))

be the regressor, then αmc
v,k = (HᵀH)−1(Hᵀydv,k(1 : T )),

where αmc
v,k are the Bézier coefficients fit to the motion

capture data for Dv and output k. One special case is when

m = 0, in this case the Bezier regression is equivalent to

taking the average, which is the used for yd1,v . Note that we

do not require τ(1 : T ) to be unique or monotonic.

Stable Walking Trajectory. To use the regression to get

a state-based reference output from the data, the τ and

ydv,k sequences corresponding to multiple gaits are stacked

and a set of Bézier coefficients {αmc
v,k} defining a single

Bézier curve is solved for each output for k = 1, . . . , ny,v

and v ∈ V . While we could track these outputs over the

4129

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 15,2021 at 22:05:16 UTC from IEEE Xplore.  Restrictions apply.



continuous domain, yielding invariant zero dynamics [27],

the zero dynamics may not remain invariant through impacts.

Hence, we develop desired trajectories ydv(τ(q), αv) similar

to those defined by αmc
v that yield a stable walking gait,

where αmc
v := {αmc

v,k}k=1...ny,v
. Since the impact map causes

a jump of velocities, we do not enforce an impact invariance

condition on the velocity-modulating output, only the relative

degree 2 outputs, rendering partial zero dynamics:

PZαv = {(q, q̇) ∈ Dv : y2,v(q, αv) = 0, ẏ2,v(q, q̇, αv) = 0}.
We enforce partial hybrid zero dynamics (PHZD) constraints

[10] while minimizing the differences between the output

defined by αv and the motion capture outputs defined by

αmc
v with the following optimization:

c�v = argmin
αv,δphip,v,δphip,v

Jv (PHZD Optimization)

s.t Δei(Sei ∩ PZαvi
) ⊆ PZαvi+1

, (PHZD)

where vi+1 is the next domain in the directed cycle and

Jv =
∑ny,v

k=1

∫ 1

0

wv,k(y
d
v,k(s, αv,k)− ydv,k(s, α

mc
v,k)− δαv,k)

2ds

+wδ

(
(δpmc

hip,v − δpmc
hip,v

)− (δphip,v − δp
hip,v

)
)2

Jv can be represented as a simple quadratic function of

the Bézier coefficients and phase variable parameters. Here

δαv := {δαv,k}k=2...ny,v is a set of offsets the optimization can

select to minimize the differences of the relative degree 2 out-

puts, since a joint offset likely existed in the data collection

to determine αmc
v . We selected weights wk,v to encourage the

optimization to give higher priority to outputs that were more

difficult to match. We also include the difference of phase

parameters to yield a trajectory with a similar step length,

where (δpmc
hip,v, δp

mc
hip,v

) are the average phase parameters

found for Dv in the motion capture data. The solution of the

optimization is the set c�v = {α�
v, δ

α,�
v , δp�hip,v, δp

�
hip,v

} for

each domain Dv , where α�
v , which includes vhip, defines the

desired output functions to render stable human-prosthesis

walking similar to that seen in experiment. We solve this

optimization in a direct collocation based multi-domain

HZD gait optimization approach, called FROST, described

in [28]. Fig. 4 shows the comparison between the outputs

yd2,v(τ(q), α
�
v) and yd2,v(τ(q), α

mc
v ) + δαv .

B. Socket Force Estimation

Developing a model-based controller for the prosthesis

requires knowledge of the interaction forces and moments

between the human and prosthesis. This is at the socket for an

amputee and at the pin connection between the iWalk adapter

and top of prosthesis for our system. For simplicity, we refer

to these forces and moments as the socket force. This section

outlines a method to estimate these forces offline based on

motion capture data and the human-prosthesis model.

Socket Force Profiles from Data Playback. To estimate

the socket force present in the walking observed by motion

capture, we simulate the human-prosthesis model following

the joint trajectories from the data for each prosthesis stance

Fig. 5: Difference in socket force profile between nominal

trajectory and data playback (colored lines). Computed force

tube (green line).

phase. The trajectory of each joint is fit with a Bézier

polynomial with parameters {αpb
v,i}, per the methods of

Section IV-A, for each data set i of prosthesis stance. This

process gives us 20 sets of joint trajectories to simulate. A

feedback linearizing controller [10] in simulation calculates

the necessary torque u at each joint to track these trajectories.

By solving (2) for q̈ and substituting into (3) along with this

u, we calculate the fixed joint constraint wrenches:

Fs = (JsD
−1JT

s )−1(JsD
−1(H −Bu)− J̇sq̇), (5)

where Js is the Jacobian of the fixed joint holonomic

constraint. Note we dropped the v subscript since Js is

the same for Dps and Dpns. We consider Fs to be an

approximation of the socket force seen by the prosthesis in

the human-prosthesis walking experiment.

Socket Force Tube. By calculating this socket force profile

for 20 steps of walking data, we obtain a collection of 20

force profiles around which we define a tube. First we remove

the socket force segment at the beginning and end since

these sections correspond to a double support phase, which is

outside the scope of this paper. We use the x coordinate of the

markers on the human foot to determine whether the human

is on single support by the prosthesis or double support, and

remove the double support portion of the data. After this

removal, the single support portion starts at τ and ends at τ .

For the N gaits collected from motion capture, let F i
s denote

the socket force corresponding to the i-th gait computed. We

compare these socket force profiles to F �
s - the socket force

profile from the nominal trajectory obtained by the FROST

optimization. The difference between them is denoted as

ΔFs, which includes 3 elements: [ΔFs,x,ΔFs,z,ΔMs,y],
denoting the longitudinal, vertical force and the pitch mo-

ment. Then the following optimizations are used to find

the upper bound ΔFs and lower bound ΔFs of ΔFs as a

function of τ , shown in Fig. 5.

max
ΔFs

∫ τ

τ

ΔFs(τ)dτ

s.t. ∀i = 1, ..., N, ∀τ ≥ τ ≥ τ ,ΔFs(τ) ≤ F i
s(τ)− F �

s (τ)

min
ΔFs

∫ τ

τ

ΔFs(τ)dτ

s.t. ∀i = 1, ..., N, ∀τ ≥ τ ≥ τ ,ΔFs(τ) ≥ F i
s(τ)− F �

s (τ).

The upper and lower bounds ΔFs and ΔFs are represented

as Bézier curves of τ , and the integration is computed as a
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linear function of the Bézier coefficients.

Remark 1. Since the tube is computed with a finite set

of measurements, the credibility of the force tube can be

analyzed with the theory of Random Convex Programs [29].

In general, using a high degree Bézier curve results in a

tighter tube, yet it hurts the credibility, i.e., there is a higher

chance that the tube is breached by additional measurements.

Remark 2. While this force estimation method uses a rudi-

mentary model for the human, we believe this suffices to

prove the capability and advantage of our proposed control

method, introduced and demonstrated in simulation in the

next section. Future work will implement this controller

on the prosthesis platform and good tracking and stability

could confirm this estimation technique captures this force

component of the prosthesis dynamics well enough. This

force estimation method’s accuracy could be improved with

a more sophisticated musculoskeletal model for the human.

V. ROBUST CLF-QP CONTROLLER

In this section we present the robust CLF-QP controller

for the prosthesis in stance and implement it in simulation.

Prosthesis Model and Dynamics. Since no sensing and

actuation is available on the human body we model the

prosthesis as an independent robotic leg, Fig. 3, per the

methods of [14], with 2 joints being the ankle and the

knee and 3 limbs being the foot, shin, and thigh. For this

subsystem, a floating base frame at the top of the prosthesis

is subject to external forcing of the socket force Fs present

in the full model. A holonomic constraint enforces the foot

to stay flat on the ground during prosthesis stance phase. The

dynamics are given by:

D̄(q̄)¨̄q + H̄(q̄, ˙̄q) = B̄ū+ J̄T (q̄)F̄ (q̄, ˙̄q) + J̄T
s (q̄)Fs,

˙̄J ˙̄q + J̄ ¨̄q = 0,

where q̄ = (q̄ᵀB , q
ᵀ
p )

ᵀ and q̄B ∈ SE(2) represent the position

and rotation of the subsystem’s base frame R̄B with respect

to the world frame RW . Again qp = (θpk, θpa)
ᵀ. Here J̄(q)

is the Jacobian of the foot’s holonomic constraint and J̄s is

the projection of Fs onto the base coordinates, see [14] for

details. Because of the holonomic constraint, the dynamics

are written as a 4 state system:

ẋp = fp(xp) + gmp (xp)up + gsp(xp)Fs,

where xp = (θpk, θpa, θ̇pk, θpa)
ᵀ and up ∈ R

2 denotes the

motor torque input at the prosthesis knee and ankle, and Fs

denotes the socket force.

Prosthesis Robust CLF-QP. The outputs for the prosthesis

are defined as a subset of the outputs for the full system:

ȳa1 (qp, q̇p) = δṗhip(θpk, θpa) and ȳa2 (qp) = θpk. With the

output defined, let

η1 = ȳa1 (qp, q̇p)− v�hip
.
= ȳ1(xp, v

�
hip)

η2 = ȳa2 (qp)− ȳd2(τ(qp), α
�
ps)

.
= ȳ2(xp, α

�
ps),

where v�hip is the nominal hip velocity and α�
ps is the Bézier

coefficients corresponding to the nominal output trajectories,

both determined through optimization for the full system

Dps. The output dynamics are obtained with feedback lin-

earization (see [9] for detailed derivation):⎡
⎣η̇1η̇2
η̈2

⎤
⎦

︸ ︷︷ ︸
η

=

⎡
⎣0 0 0
0 0 1
0 0 0

⎤
⎦

︸ ︷︷ ︸
A

⎡
⎣η1η2
η̇2

⎤
⎦+

⎡
⎣1 0
0 0
0 1

⎤
⎦

︸ ︷︷ ︸
B

ν(up, Fs), (6)

where:

ν(up, Fs) =

[Lfp ȳ1
L2
fp
ȳ2

]
︸ ︷︷ ︸
L∗

fp
(xp)

+

[ Lgm
p
ȳ1

Lgm
p
Lfp ȳ2

]
︸ ︷︷ ︸

A∗
m(xp)

up +

[ Lgs
p
ȳ1

Lgs
p
Lfp ȳ2

]
︸ ︷︷ ︸

A∗
s(xp)

Fs

(7)

Here Lfp , Lgm
p
, Lgs

p
, L2

fp
denote the Lie derivatives [30].

With 0 < ε < 1, the following rapidly exponentially

stabilizing CLF [9] is defined:

Vε(η) = η

[
1
εI 0
0 I

]
P

[
1
εI 0
0 I

]
:= ηᵀPεη,

where P is obtained by solving a Riccati equation with

the linear output dynamics in (6) with Q and R matrices

representing the state and input costs:

AᵀP + PA− PBR−1BᵀP +Q = 0.

Defining a CLF-QP for the prosthesis would include

ν(up, Fs) from (7), requiring knowledge of the socket force

Fs. Since this is unknown, we instead use an estimate of the

range of Fs obtained from the analysis in Section IV-B:

F �
s (τ) + ΔFs(τ) ≥ Fs(τ) ≥ F �

s (τ) + ΔFs(τ),

where τ(qp) is the phase variable. Then the following robust

CLF-QP is formulated that enforces the CLF condition on

all possible Fs within the range:

u�
p = argmin

up∈R2

uᵀ
pHup + bᵀup

s.t. ∀F �
s (τ) + ΔFs(τ) ≥ Fs ≥ F �

s (τ) + ΔFs(τ),

LBVε(η)ν(up, Fs) ≤ −γ

ε
Vε − LAVε(η),

(8)

which is a QP w.r.t. up. Here up is a function of

xp, c
∗
v, F

∗
s , ΔFs, and ΔFs, γ > 0,

H = A∗
m(xp)

ᵀA∗
m(xp),

b = (L∗
fpy(xp) +A∗

s(xp)F
∗
s )

ᵀA∗
m(xp),

LAVε(η) = ηT (PεA+ATPε)η, and

LBVε(η) = 2ηTPεB.

The CLF condition enforces η to converge exponentially

to the origin, thus driving the system to track the desired

trajectory [9]. When ΔFs
(τ) is a hyperbox, (8) is easily

solved as a QP. Accounting for the interaction force allows

construction of this model-dependent prosthesis controller

within the class developed in [31], which guarantees stability

of the whole human-prosthesis system.

The formulation of this controller can yield a non-smooth

control input since it stabilizes for the worst-case scenario in

a point-wise optimal way, and the worst case changes at each
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Fig. 6: Prosthesis control inputs calculated with (8) (blue)

with no torque bounds and (9) (pink) with torque bounds

and CLF relaxation for smoothing.

point. To smooth the control input profile to be physically

feasible on the prosthesis platform, we modify the QP:

argmin
(up,ρ)∈R3

uᵀ
pHup + bᵀup + cρρ (9)

s.t. ∀F �
s (τ) + ΔFs(τ) ≥ Fs ≥ F �

s (τ) + ΔFs(τ),

LBVε(η)ν(up, Fs) ≤ γ

ε
(ρ− Vε)− LAVε(η),

−Δu ≤ (up − ūp) ≤ Δu,

0 < ρ < ρmax,

where the bound Δu is placed on the change between up and

the previous control input ūp to minimize the fluctuations in

up. To ensure the QP is always solvable with the torque

bounds, the relaxation term ρ is added to the Lyapunov

function Vε. With upper bound ρmax, this relaxation term

allows the QP to find a solution within a Lyapunov level set

less than ρ, which is penalized with the weight cρ.

Results. In simulation the human side tracked the nominal

trajectory yd2,v(τ(q), α
�
v) from Section IV-A with a feedback

linearizing controller. The prosthetic tracked this trajectory

with the robust CLF-QP controller in Dps and feedback

linearization in Dpns. In Dps, the controller presented in (8)

was used and the control input exhibited rapid chatter, as

shown in Fig. 6. Hence, the robust CLF-QP was modified

as (9) to reduce the change in up through the use of torque

bounds and a CLF relaxation. Fig. 6 shows this smoothed

torque profile. The phase portraits of 20 steps shown in Fig.

7 show this novel prosthesis controller (9) achieves stability

while accounting for a range of force disturbances. Fig. 7

also shows the phase portraits of the motion capture data

for individual steps. Its alignment with the simulation phase

portraits shows our nominal trajectory from optimization rep-

resents the walking observed by motion capture well. Note

that the jump that appears in the simulation portrait but not in

the motion capture data is a result of the rigid impact model

we use for the human-prosthesis system. A human has more

compliance that absorbs some impact yielding data that does

not show a large discrete jump in velocities. The alignment

between the portraits in combination with the stability shown

support the idea that our controller would achieve stability

in a similar human-prosthesis walking experiment.

To test this controller’s robustness to perturbations in the

nominal force profile, we simulated the human-prosthesis

system with the human joints following a different trajectory

than the nominal trajectory with feedback linearization and

Fig. 7: Phase portraits: prosthesis knee and ankle with robust

CLF-QP controller in Dps (green) and feedback linearization

in Dpns (pink), (multi-colored lines) motion capture data for

individual steps.

Fig. 8: Prosthesis knee joint angle trajectories from Dps

from simulations with 3 controllers with 3 perturbed human

trajectories, (light blue) desired trajectory.

gave the prosthesis an initial condition off of its nominal

trajectory. To enforce the nominal prosthesis trajectory, we

tested 3 different controllers on the prosthesis in Dps: our

robust CLF-QP (9), the robust-passive controller we used for

the motion capture experiments [12], and a PD controller.

The results for 3 different human gaits in Fig. 8 demonstrate

the benefit of model-dependent controllers since the robust

passive controller with some model dependence outperforms

the PD controller in tracking performance with the perturba-

tion. Further, our robust CLF-QP outperformed both of these

controllers with its consideration of the human-prosthesis

interaction forces. Also, while the robust-passive controller

required careful tuning of the ankle PD gains our robust

CLF-QP did not. These results also demonstrate the success

of our controller design: it stabilized trajectories with force

profiles different from the expected nominal force profile by

considering a set of forces and stabilizing for the worst case

scenario. This robustness is imperative for a prosthesis con-

nected to a human with varying behavior and where stability

is essential for the human’s safety. A video of the method and

results is shown at https://youtu.be/7cOjmk7bUcs.

VI. CONCLUSION AND FUTURE WORK

This paper presents a methodology that models the human

walking behavior while wearing a powered prosthesis and

uses the model information to design a model-dependent

controller for the prosthesis. The data obtained from motion

capture is processed and used in two ways. First, a cus-

tomized gait optimization procedure is proposed to extract

the nominal trajectory from the data, which emulates the

human walking recorded by motion capture, and satisfies

the dynamics of the human-prosthesis system. Second, a

“playback” procedure is designed to obtain the interaction
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force profiles from the multiple steps recorded, which are

then used to construct a force tube that contains all the force

profiles. With this information, a robust CLF-QP controller

is designed that guarantees convergence to the nominal

trajectory. Simulation results demonstrate the robustness of

this prosthesis controller compared to a model independent

controller as well prosthesis controllers with some model

dependence. This novel methodology of characterizing hu-

man interaction in prosthesis walking provides a means to

replace the need for an expensive force sensor with a single

set of motion capture experiments for a given user, preventing

the introduction of noise from the force sensor while also

increasing the robustness of a model-dependent CLF-QP.

For future work, this controller can be experimentally

realized on the prosthesis platform to assess its tracking per-

formance, energy efficiency, and robustness to disturbances

compared to the current PD controller and robust passive

controller used for trajectory tracking. The advantage of this

method can be tested across multiple subjects, including

amputees, by having each subject be part of one set of motion

capture experiments and then develop a specific trajectory

and force tube based on their model parameters and data.

The same user can test their specific controller in experiment.

Examining the results across multiple subjects could also

provide insight on the generalizability of force profiles across

users such that the force profile could be predicted for a

subject without motion capture. In the case a force sensor is

incorporated into the prosthesis platform to directly measure

the interaction force, the force profiles collected in this work

shall provide the statistics (mean and covariance) for the

design of the force sensor filter, e.g., a Kalman filter. This

methodology opens the door to model-dependent prosthesis

controllers that account for the human’s varying dynamic

behavior and establish stability in response.
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