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Abstract. The weak localization or enhanced backscattering phenomenon has
received a lot of attention in the literature. The enhanced backscattering cone

refers to the situation that the wave backscattered by a random medium ex-
hibits an enhanced intensity in a narrow cone around the incoming wave direc-

tion. This phenomenon can be analyzed by a formal path integral approach.

Here a mathematical derivation of this result is given based on a system of
equations that describes the second-order moments of the reflected wave. This

system derives from a multiscale stochastic analysis of the wave field in the

situation with high-frequency waves and propagation through a lossy medium
with fine scale random microstructure. The theory identifies a duality relation

between the spreading of the wave and the enhanced backscattering cone. It

shows how the cone, its regularity and width relate to the statistical structure
of the random medium. We discuss how this information in particular can

be used to estimate the internal structure of the random medium based on

observations of the reflected wave.

1. Introduction. When a wave beam is impinging on a random halfspace or
medium the reflected field can be decomposed into many plane waves with the
decomposition over direction or wavevector being random. That is, the reflected
wave is random and generated by the fluctuations in the random medium and it can
be decomposed into plane wave components with random weights. Here we consider
the question about what information about the random medium is imprinted in the
distribution of the reflected wave or these random weights. In answering this ques-
tion the first point to be made is a fascinating physical phenomenon referred to as
weak localization or enhanced backscattering. In fact the intensity of the reflected
wave in the reverse of the main incoming direction (the backscattered direction)
is stronger than in the other directions. In weak localization, interference of the
direct and reverse paths leads to a net reduction of light transport in the forward
direction, similar to the weak localization phenomenon for electrons in disordered
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(semi)conductors and often seen as the precursor to Anderson (or strong) localiza-
tion. Weak localization of light can be detected since it produces an enhancement
of light intensity in the backscattered direction. This cone of directions of enhanced
backscatter is called the cone of coherent backscattering. A physical interpretation
for this phenomenon derives from constructive interferences between pairs of wave
“paths” and reversed paths, see Figure 1. The sum of all these constructive inter-
ferences should give an enhancement factor of 2 in the backscattered direction. If
the reflected wave is observed with an angle A compared to the backscattered di-
rection, then the phase shift between the direct and reversed paths is ke = kd sinA,
where k is the wave number and d is the typical transverse size of a wave path.
Therefore, constructive interference is possible if kdA ≤ 1, determining the width
of the cone. In fact in the simplest case this intuitive picture with an enhanced
backscattering (EBS) cone holds true. This phenomenon was first observed and

Figure 1. Physical interpretation of the scattering of a plane wave
by a random medium. The output wave in direction A is the super-
position of many different scattering paths. One of these paths is
plotted as well as the reversed path. The phase difference between
the two outgoing waves is ke = kd sinA.

subject to intense study in the context of physics [2, 23, 38, 35, 32, 36, 37]. In
[8, 9, 36] the enhanced backscattering is analyzed using diagrammatic expansions,
while we here set forth a rigorous analysis in the paraxial regime. We will consider
the case when there is backscattering from the medium itself which generates the
enhanced backscattering cone, in the continuation of [11], while in [7, 13] we con-
sidered the situation with backscattering from respectively an incoherent interface
and from microscopic particles like aerosol. We here consider a situation where we
exploit the coherent part of the backscattered intensity, the enhanced backscatter-
ing cone, and seek configurations where the speckle noise can be mitigated. There
are, however, other imaging modalities that seek to exploit the incoherent part in
the speckle, the speckle correlations, for imaging [16, 17].

From the applications point of view, the enhanced backscattering cone has been
put forward as a useful tool in medical imaging [40], in particular in spectroscopy
for predicting the risk of colon carcinogenesis and colorectal cancer [21, 25] by
using the shape of the cone to derive information about tissue statistics on the µm
scale. Similar motivating applications can be found in the context of the turbulent
atmosphere where one seeks to use backscattered wave energy to infer properties
about the turbulence or presence of aerosols say [1, 5, 6].

In the case of biomedical applications medium anisotropy can be important. Bi-
ological cells may in particular be strongly anisotropic and associated with rough
cell membranes generating backscattering. In [30] a common cell anisotropy fac-
tor of about 5 was reported, while in [19] the authors discuss backscattering from
rough anisotropic cells. The enhanced backscattering cone has indeed been used
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to detect such roughness and anomalous tissue associated with cancer, examples
range from colon cancer [21], to lung cancer [27] and non-melanoma skin cancer
[24]. Cone parameters like width, enhancement factor and wavelength dependence
are used as markers to probe for cell carcinogenesis causing micro/nano-scale alter-
ations. In the context of the turbulent atmosphere anisotropy can also be important
and corresponds to rapid vertical index of refraction fluctuations driven by vertical
temperature gradients.

Observations of the EBS cone is a challenging task, but important progress has
been made by using sources with low spatial coherence which serves to broaden
the cone and enhance the signal-to-noise ratio giving Low-coherence Enhanced
Backscattering (LEBS) [25, 34]. Low spatial coherence in the incoming wave cor-
responds to probing with a transverse wave profile that exhibits fluctuations, as
opposed to a plane wave profile. The independent transverse coherence structures
serve to enhance the signal-to-noise ratio since they provide independent contribu-
tions to the cone profile and favors scattering events that serves to broaden the
cone, moreover, partially eliminate the speckle noise. The signal-to-noise ratio
can be further enhanced by temporal coherence [20]. Low Coherence Enhanced
Backscattering also allows for depth selectivity since the depth range involved in
the backscattering enhancement for a given angle can be controlled by the lateral
coherence radius of the source [20, 22].

As a model for the statistics of the microstructural fluctuations in the index of
refraction in biological tissue or for atmospheric turbulence the Matérn covariance
function has played an important role [18]. This covariance function describes in
particular turbulent media with power law decay of the correlations. Media of this
type are also referred to as fractal [31, 39]. The power law parameter governs the
roughness of the medium and this medium feature has been identified as important
to characterize biological tissue anomaly [33]. We analyze from first principles how
the statistics of the microstructure affects the cone shape, producing an explicit
connection in between biological tissue structure or atmospheric conditions and
the enhanced backscattering cone. In our analysis, motivated by the applications
discussed, we will model the microstructure as anisotropic and use the Matérn
covariance function to describe its statistics. The enhanced backscattering cone
will depend on the incoming beam radius and its coherence properties [3, 21] and
we analyze explicitly here this connection.

The outline of the paper is as follows. In Section 2 we articulate the scaling
assumptions which correspond to beam propagation in an attenuating anisotropic
random medium. In Sections 3-4 we characterize the backscattered power and inten-
sity as a function of position. We address the enhanced backscattering phenomenon
in the small Fresnel number regime in Section 5. In Section 6 we analyze the form of
the backscattered intensity as a function of angle and in particular the enhancement
cone in the case of the Matérn covariance function for the medium statistics. We
finish with some concluding remarks in Section 8.

2. Waves in a random medium. We consider the scalar time-harmonic d + 1-
dimensional wave equation

ω2

ε4cε(x, z)2
uε + ∆uε +

iωσε(x, z)

ε2cε(x, z)2
uε = −fε(x, z) , (1)

where uε is the scalar wave field, cε is the propagation speed of the medium, σε is the
attenation of the medium, ω/ε2 is the operating frequency, and (x, z) ∈ Rd×R are
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the space coordinates. Here ε is a small parameter that characterizes the paraxial
regime, in which the wavelength is much smaller than the radius of the source,
which is itself much smaller than the typical propagation distance. The source is
modeled by the forcing term fε:

fε(x, z) = ∇ · F ε(x, z), F ε(x, z) = F
(x
ε

)
δ(z)ez , (2)

with ez the unit vector pointing in the z-direction. Here we shall focus on reflec-
tion from a random region occupying the interval z ∈ (−L, 0) (or the half-space
z ∈ (−∞, 0)) with the source fε located at z = 0+. The parameterization is mo-
tivated by waves probing an inhomogeneous medium and z is the main probing
direction. In the biological applications referred to above this is the direction cor-
responding to propagation into the tissue while it is the vertical direction in the
context of propagation through atmospheric turbulence. Here we shall refer to
waves propagating in a direction with a positive z component as right-propagating
waves.

2.1. Random and attenuating medium. We consider a scaling where the ran-
dom medium fluctuations vary relatively rapidly in space while the “background”
medium is constant. We consider the following anisotropic model for the fluctua-
tions of the propagation speed and the attenuation:

1

cε(x, z)2
=

1

c2o

{
1 + εν(x/ε, z/ε2) if z ∈ (−L, 0) ,
1 otherwise ,

(3)

σε(x, z)

cε(x, z)2
=
σo
c2o

{
1 + εµ(x/ε, z/ε2) if z ∈ (−L, 0) ,
0 otherwise ,

(4)

where co and σo are positive constants. As mentioned in the introduction, the
anisotropy in the medium with relatively rapid fluctuations in the z-direction can
come from anisotropic cell structure in the case of biological tissue or from rapid
vertical index of refraction fluctuations driven by vertical temperature gradients in
the context of the turbulent atmosphere. The random fields ν(x, z) and µ(x, z)
model the spatial fluctuations of the medium and we assume that they are zero-
mean, stationary, (d+1)-dimensional random processes and that they satisfy strong
mixing conditions in the z-direction. We define the autocorrelation function of the
fluctuations of the medium and its Fourier transform by

C(x, z) = E[ν(x′ + x, z′ + z)ν(x′, z′)] , (5)

Ĉ(k, k) =

∫
Rd

∫ ∞
−∞

C(x, z)e−i(k·x+kz)dzdx . (6)

We remark that the medium is specified as being matched at the boundaries of
the random region z ∈ (−L, 0) so that the wave speed in the complement of the
random region z < −L and z > 0 coincides with the background wave speed in the
random region z ∈ (−L, 0) [10].

2.2. Wave mode decomposition. Our objective is to characterize the reflected
wave field. Our first task is to identify equations that give a convenient description
of coupling between different wave modes. The complex amplitudes ǎε and b̌ε of
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the right-propagating and left-propagating modes are defined by

ǎε(x, z) =
(1

2
uε(εx, z) +

coε
2

2iω

∂uε

∂z
(εx, z)

)
e−i

ω
co

z
ε2 , (7)

b̌ε(x, z) =
(1

2
uε(εx, z)− coε

2

2iω

∂uε

∂z
(εx, z)

)
ei

ω
co

z
ε2 . (8)

They are such that the wave field has the form:

uε(x, z) = ǎε
(x
ε
, z
)
ei

ω
co

z
ε2 + b̌ε

(x
ε
, z
)
e−i

ω
co

z
ε2 , (9)

and they also satisfy the condition that serves to correctly decompose the wave

∂ǎε

∂z
ei

ω
co

z
ε2 +

∂b̌ε

∂z
e−i

ω
co

z
ε2 = 0 . (10)

In the homogeneous case ν = µ = 0 the ansatz (7-8) gives a decomposition into
uncoupled right- and left-propagating modes, the mode amplitudes ǎε and b̌ε are
constant in the half-space z < 0 and they are determined by the source. In the
layered case ν = ν(z) and µ = µ(z) the ansatz gives a decomposition into right- and
left-propagating modes that couple via a zero-mean random coupling matrix. The
problem moreover decomposes into distinct mode problems parameterized by the
transverse wavevector k [10]. In the general case with ν = ν(x, z) and µ = µ(x, z)
the modes are coupled via a zero-mean coupling “matrix” which involves modes of
all transverse wavevectors so that the coupling matrix is in fact a coupling operator
[12, 14] as shown below.

By substituting the ansatz (7-8) into Eq. (1) and by using the medium model in
(3-4) we obtain the following coupled mode equations for z ∈ (−L, 0):

dǎε

dz
= Lε(x, z)ǎε + e−2i iωco

z
ε2 Lε(x, z)b̌ε , (11)

db̌ε

dz
= −e2i iωco

z
ε2 Lε(x, z)ǎε − Lε(x, z)b̌ε , (12)

where

Lε(x, z) =
iω

2coε
ν
( z
ε2
,x
)

+
ico
2ω

∆⊥ −
σo
2co

(
1 + εµ

( z
ε2
,x
))
, (13)

and ∆⊥ is the transverse Laplacian. We describe below how this formulation leads
to a description of the statistics of the reflected wave via the introduction of a
reflection operator. To describe the problem satisfied by the reflection operator we
next discuss appropriate boundary conditions.

2.3. Boundary conditions. The mode amplitudes ǎε and b̌ε satisfy the system
(11-12) in the random region z ∈ (−L, 0). This system can be supplemented by
boundary conditions corresponding to the presence of the source term (2) in the
plane z = 0. In the regions z ∈ (−∞,−L) and z ∈ (0,∞) the medium is homoge-
neous. Then, taking into account the fact that there is no source in (−∞,−L), we
find that the right-going mode amplitudes ǎε are zero in this half-space:

ǎε(x,−L) = 0 . (14)

Moreover, taking into account the fact that there is no source in (0,∞), we find that
the left-going mode amplitudes b̌ε are zero in this half-space. The jump conditions
accross the source interface z = 0 then give the relations

ǎε(x, 0+)− ǎε(x, 0−) = −1

2
F (x) , b̌ε(x, 0−) = b̌0(x) :=

1

2
F (x) . (15)
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We will consider two types of sources, coherent and partially coherent:
- A coherent source which has a smooth deterministic transverse profile (say, Gauss-
ian) and a main angle of incidence (determined by the transverse wavector k0):

F (x) = exp
(
− |x|

2

2r2
0

+ ik0 · x
)
, (16)

where r0 is the initial radius and k0 is the incident transverse wavevector which
together with the rapid phase modulation in (9) determines the full wavevector
(k0, ω/co) giving the direction of propagation, in particular the angle atan(|k0/(ω/co)|)
with respect to the z-axis.
- A partially coherent source which has random fluctuations within an envelope. A
convenient model is the Gauss-Schell model:〈

F
(
x+

y

2

)
F
(
x− y

2

)〉
= exp

(
− |x|

2

r2
0

− |y|
2

4ρ2
0

+ ik0 · y
)
, (17)

where ρ0 (≤ r0) is the initial correlation radius. Here and below 〈·〉 means expec-
tation with respect to the source distribution, which is assumed to be independent
of the medium fluctuations, while we use the symbol E [·] for the expectation with
respect to the medium distribution. In the case that ρ0 = r0 this model in fact
gives the fully coherent source in Eq. (16).

2.4. Reflection operator. We make use of an invariant imbedding step and intro-
duce reflection and transmission operators. First, we define the transverse Fourier
modes

âε(k, z) =

∫
ǎε(x, z)e−ik·x dx , b̂ε(k, z) =

∫
b̌ε(x, z)e−ik·x dx , (18)

and make the ansatz

b̂ε(k,−L) =

∫
T̂ ε(k,k′, z)b̂ε(k′, z) dk′ , (19)

âε(k, z) =

∫
R̂ε(k,k′, z)b̂ε(k′, z)dk′ . (20)

We refer to [12] for a detailed dicussion of this ansatz and mention that the random
medium produces transmission and reflector operators that are random in the sense
that they depend on the realization of the random medium. In the parameterization
we use here they depend on the medium in between the depth z of evaluation
and the depth −L of the termination of the random slab and models respectively

transmission through and reflection from this part of the slab. For b̂ε(k′, 0−)

giving the incoming wave (see Eq. (15)), T̂ ε(k,k′, 0) maps it to the wave b̂ε(k,−L)

transmitted to z = −L, while R̂ε(k,k′, 0) maps it to the wave âε(k, 0−) reflected
from the random medium.

The backscattering from for instance biological tissue or the turbulent atmo-
sphere is weak and we shall make an assumption about weak backscattering cor-
responding to the scale of variation of the medium in the z-direction being large
relative to the wavelength, and the medium fluctuations being smooth so that the

autocorrelation function Ĉ decays rapidly. This can be expressed by the hypothesis

Ĉ(k, 2ω/co)

Ĉ(0, 0)
≤ δ � 1 , ∀k ∈ Rd . (21)
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The reflection operator has been studied in detail in [11] when there is no at-
tenuation and weak backscattering. The proof can be revisited in the presence of
attenuation and we get the following proposition (see Appendix A).

Proposition 1. We introduce the dimensionless autocorrelation function C of the
random medium:

C(x, z) = σ2C
( x
`x
,
z

`z

)
, (22)

where `z (respectively `x) is the longitudinal (respectively transverse) correlation ra-
dius of the random fluctuations, and σ is the standard deviation of the fluctuations.

We denote by ĈK(µ) and by ČK(λ) the full and partial Fourier transforms

ĈK(µ) =

∫ ∞
−∞

∫
Rd
C(λ, ζ)e−iKζ−iµ·λdλdζ , ČK(λ) =

∫ ∞
−∞
C(λ, ζ)e−iKζdζ .

(23)
We have as ε→ 0 and in the weak backscattering regime (21)

E
[
R̂ε(k′0 + k,k′0, z)R̂ε(k′1 + k′,k′1, z)

]
ε→0−→ δ(k′ − k)Dk′0,k′1,k(z) , (24)

where the cross spectral density Dk′0,k′1,k(z) is of the form

Dk′0,k′1,k(z) = Do exp
[
−i(k′0 − k′1) · (k′0 + k′1 + k)

coz

ω

]
×D
(

(k′0 − k′1)`x, (k
′
0 + k′1 + k)`x,k`x,

z

Latt

)
, (25)

with

Do =
σ2`z`

d
xLattČKz (0)

4(2π)d−2λ2
o

, λo =
2πco
ω

, Latt =
co

2σo
. (26)

The dimensionless cross spectral density D(u,v,w, ζ) for ζ ∈ (−ζL, 0) solves

dD(u,v,w, ζ)

dζ
=
ĈKz (w)

ČKz (0)
eiαu·vζ −D(u,v,w, ζ)− 2β

(2π)d

∫
Ĉ0(µ)dµD(u,v,w, ζ)

+
β

(2π)d

∫
Ĉ0(µ)

[
eiαµ·vζD(u− µ,v,w + µ, ζ) + e−iαµ·vζD(u+ µ,v,w + µ, ζ)

]
dµ

+
β

(2π)d

∫
Ĉ0(µ)

[
eiαµ·uζD(u,v − µ,w + µ, ζ) + e−iαµ·uζD(u,v + µ,w + µ, ζ)

]
dµ

− β

(2π)d

∫
Ĉ0(µ)e−iαµ·uζ

[
e−iαµ·(v+µ)ζD(u+ µ,v + µ,w, ζ)

+eiαµ·(v+µ)ζD(u− µ,v + µ,w, ζ)
]
dµ , (27)

starting from D(u,v,w, ζ = −ζL) = 0, where

ζL =
L

Latt
, Kz =

2ω`z
co

. (28)

The dimensionless parameters α and β are given by

α =
c2o

2σoω`2x
=
λoLatt

2π`2x
, β =

ω2σ2`z
8coσo

=
π2σ2`zLatt

λ2
o

. (29)

The parameter α is the inverse of the Fresnel number at the transverse scale `x
and for a propagation distance of the order of Latt, and it characterizes the strength
of diffraction. The parameter β is the ratio of the attenuation distance over the
scattering mean free path, and it characterizes the strength of random forward
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scattering for a propagation distance of the order of Latt. In typical applications,
both α and β are larger than one. This means that the wave can penetrate up to
depths that are in the far-field or Fraunhofer diffraction regime (α � 1), and that
are deeper than the scattering mean free path (β � 1).

3. Mean reflected power. As a first application of Proposition 1, we compute
the mean reflected power defined by:

P εtot =

∫ 〈
E[|ǎε(x, 0)|2]

〉
dx . (30)

Proposition 2. The mean reflected power P εtot as ε→ 0 and in the weak backscat-
tering regime (21) has the limit Ptot which is given by

Ptot = βČKz (0)
[ ∫ 〈

|b̌0(x)|2
〉
dx
][

1− exp(−L/Latt)
]
, (31)

where b̌0(x) = 1
2F (x) stands for the incoming wave (15).

Proof. Using Parseval’s formula we have

P εtot =
1

(2π)d

∫ 〈
E[|âε(k, 0)|2]

〉
dk

=
1

(2π)d

∫∫∫
E
[
R̂ε(k,k′, 0)R̂ε(k,k′′, 0)

] 〈
b̂0(k′)b̂0(k′′)

〉
dkdk′dk′′ ,

where b̂0(k) stands for the incoming wave. By the convergence (24) the mean
reflected power P ε(ω) has the limit P (ω) as ε→ 0 given by

Ptot =
1

(2π)d

∫∫
Dk′,k′,k−k′(0)

〈
|b̂0(k′)|2

〉
dkdk′ .

Using the identity (25) this can also be written as

Ptot =
Do`

−d
x

(2π)d

∫
E(2k′`x, 0)

〈
|b̂0(k′)|2

〉
dk′ ,

where E(v, ζ) =
∫
D(0, 2v +w,w, ζ)dw. Then, using the system of coupled differ-

ential equations (27), we get that the function E(v, ζ) satisfies

dE(v, ζ)

dζ
= (2π)d − E(v, ζ) +

β

(2π)d

∫
Ĉ0(µ)

[
E(v + µ, ζ)− E(v, ζ)

]
dµ ,

because all but two of the terms of the right-hand side of (27) cancel when taking
(u,v,w) → (0, 2v +w,w) and integrating in w. The initial condition is E(v, ζ =
−ζL) = 0 and the solution is the function E(v, ζ) = (2π)d(1 − exp(−ζL − ζ))
independent of v. We finally obtain that the mean reflected power is

Ptot = Do`
−d
x

∫ 〈
|b̂0(k)|2

〉
dk
(
1− exp(−ζL)

)
, (32)

which also reads as (31). �
This proposition shows that, in the case of a random half-space or when L� Latt,
the mean reflected power is:

Ptot = βČKz (0)
[ ∫ 〈

|b̌0(x)|2
〉
dx
]
. (33)

Note that we have

βČKz (0) =
π2Latt

2λo

∫ ∞
−∞

E [ν(0, 0)ν(0, ζλo/2)] cos(2πζ)dζ , (34)
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with ν the relative fluctuations in the index of refraction. Thus, the mean reflected
power scales with the spectrum of the medium fluctuations at the scale of half
the wavelength. The reflected power in our configuration is then maximized by
tuning the wavelength to the correlation radius of the medium fluctuations in the
longitudinal, z, direction.

4. Mean reflected intensity. In Appendix B we analyze the system (27) for D
in the limit case α → ∞. This result allows us to get closed-form expressions
for physically relevant quantities. In this section we consider the mean reflected
intensity defined by

Iε(x) =
〈
E[|ǎε(x, 0)|2]

〉
. (35)

Proposition 3. As ε → 0 and in the weak backscattering regime (21) the mean
reflected intensity Iε(x) converges to I(x) where

I(x) =
1

(2π)2d

∫∫∫ 〈
b̂0(k′0)b̂0(k′1)

〉
ei(k

′
0−k

′
1)·xDk′0,k′1,k(0) dkdk′0dk

′
1 . (36)

This can also be written as

I(x) =
Ptot

`dx
I
( x
`x

)
, (37)

with Ptot the mean reflected power given by (31).
If the source has covariance function〈

F
(
x+

y

2

)
F
(
x− y

2

)〉
= exp

(
− |x|

2

r2
0

− |y|
2

4ρ2
0

)
, (38)

with a large radius r0 = αr̄0 and a large correlation radius ρ0 = αρ̄0 (large means
larger than `x), then the normalized intensity profile is independent of ρ0 and with
L� Latt it has the form:

lim
α→∞

αdI(αy) =
1

(2π)d

∫ ∞
0

∫
exp

(
− r̄2

0|s|2

4`2x

) ČKz (sζ)

ČKz (0)

×eβ
∫ 2ζ
0
Č0(sζ′)−Č0(0)dζ′−ζe−is·ydsdζ . (39)

If the source has a large radius r0 = αr̄0 and a correlation radius ρ0 of the order
of or smaller than `x, then the normalized intensity profile depends on ρ0 and for
L� Latt it has the form:

lim
α→∞

αdI(αy) =
1

(2π)d

∫ ∞
0

∫
exp

(
− r̄2

0|s|2

4`2x

) ČKz (sζ)

ČKz (0)

×eβ
∫ 2ζ
0
Č0(sζ′)−Č0(0)dζ′−ζ exp

(
− |s|

2ζ2`2x
ρ2

0

)
e−is·ydsdζ . (40)

This proposition gives information about the lateral spreading of the reflected
wave field and how it depends on the correlation properties of the fluctuations of
the random medium in a non-trivial way. The fact that the transverse profile of the
reflected intensity depends in a non-trivial way of the medium statistics is good news
from the inverse problem point of view. We discuss in Section 6.1 how the analytic
expression of the transverse profile of the reflected intensity can be exploited for the
estimation of medium statistics from the observation of the reflected intensity.
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Proof. The mean reflected intensity is

Iε(x) =
1

(2π)2d

∫∫∫∫
ei(k1−k2)·xE

[
R̂ε(k1,k

′
1, 0)R̂ε(k2,k

′
2, 0)

]
×
〈
b̂0(k′1)b̂0(k′2)

〉
dk1dk

′
1dk2dk

′
2 .

By Proposition 1 we obtain that the limit of Iε(x) as ε → 0 is (36). Using the
dimensionless cross spectral density D (identity (25)) this can also be written as

I(x) =
Do`

−3d
x

23dπ2d

∫∫∫ 〈
b̂0

(
v + u−w

2`x

)
b̂0

(
v − u−w

2`x

)〉
×eiu·

x
`xD(u,v,w, 0) dudvdw .

In the regime α � 1, if the source is (38) with r0 = αr̄0, then by Lemma B.2 we
obtain

lim
α→∞

I(αx) =
Dor̄

d
0ρ
d
0

22d+2πd`3dx

∫∫∫
exp

(
− r̄2

0|s|2

4`2x
− ρ2

0|v −w|2

4`2x

)
×Ds(v,w, 0)eis·

x
`x dsdvdw .

Substituting the expression (101) of Ds(v,w, 0) and integrating in v and λ gives
(40), with

Do

Ptot
=

`dx
2d−2π3d/2αdr̄d0

.

The result (39) follows similarly. �
In Section 6.1 we discuss in more detail the form of the reflected intensity in the
case when the medium fluctuations are modeled in terms of a Matérn covariance
function.

5. Enhanced backscattering. In this section, we give a mathematical proof of
enhanced backscattering phenomenon and we compute the maximum, the angular
width, and the shape of the enhanced backscattering cone. We also analyze the role
of the spatial coherence of the source.

We consider the following experiment: for a given k0, we send a wave of unit
amplitude, carrier transverse wavevector k0, radius r0 = αr̄0 and correlation radius
ρ0 = αρ̄0 into the medium. The covariance function of the source has the form:〈

F
(
x+

y

2

)
F
(
x− y

2

)〉
= exp

(
− |x|

2

r2
0

− |y|
2

4ρ2
0

+ ik0 · y
)
. (41)

We record the reflected intensity in the backscattered direction −k0 or close to it.
We observe as a function of relative transverse wavevector k:

P εk,k0
:= |âε(−k0 + α−1k, 0)|2 , (42)

which in view of the longitudinal (z-dependent) phase in Eq. (9) looks like a cone
of angular aperture of order α−1(ω`x/co)

−1.
If we average with respect to the random medium and the source, and consider

the asymptotic regime ε→ 0, then this means that we are interested in

Pk,k0 = lim
ε→0

〈
E
[
P εk,k0

]〉
. (43)

This is the mean intensity reflected by the random region Rd × (−L, 0) in the
backscattered direction (for k = 0) or close to the backscattered direction, in
a direction whose angle with respect to the backscattered direction is of order
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α−1(ω`x/co)
−1 (for k 6= 0). We also consider the k0-average of this quantity,

that turns out to have a simple expression as shown in the following proposition:

Pk =

∫
Pk,k0

dk0 . (44)

Proposition 4. In the regime α� 1 and L� Latt the mean intensity reflected in
the direction k relative to the backscattered direction has the form

lim
α→∞

Pk,k0
= PtotPk0

(k) , (45)

with Ptot the mean reflected power (33) and

Pk0
(k) = `dx

ρ̄d0
πd/2

∫
dk′ exp

(
− ρ̄2

0|k′|2
){∫

dλ
ČKz (λ)

ČKz (0)
ei2λ·k0`x

×
[ ∫ ∞

0

eβ
∫ ζ
0
Č0(λ+(k−k′)`xζ′)+Č0(λ−(k−k′)`xζ′)−2Č0(0)dζ′−ζdζ

+
1

1 + 2β(Č0(0)− Č0(λ))
− 1

1 + 2βČ0(0)

]}
. (46)

The k0-average (44) of the the mean reflected intensity has the form

lim
α→∞

Pk = πdPtotP(k) , (47)

with

P(k) =
ρ̄d0
πd/2

∫
dk′ exp

(
− ρ̄2

0|k′|2
){∫ ∞

0

e2β
∫ ζ
0
Č0((k−k′)`xζ′)−Č0(0)dζ′−ζdζ

+
2βČ0(0)

1 + 2βČ0(0)

}
. (48)

Proof. We have

P εk,k0
=
∣∣∣ ∫ R̂ε(−k0 + α−1k,k′, 0)b̂0(k′) dk′

∣∣∣2 ,
and therefore

Pk,k0 =
(2παr̄0ρ̄0)d

4

∫
Dk0+α−1k′,k0+α−1k′,−2k0+α−1(k−k′)(0) exp

(
− ρ̄2

0|k′|2
)
dk′ .

When α � 1 we find by Lemma B.2 that the mean reflected intensity observed in
the relative direction k is

lim
α→∞

α−dPk,k0
=

(2πr̄0ρ̄0)dDo

4

∫
D(k′+k)`x,0(−2k0`x, 0) exp

(
− ρ̄2

0|k′|2
)
dk′ .

By substituting the expressions (98) and (101-102) in this equation, we get the de-
sired result. �

When the source is a plane wave (i.e. r̄0 → ∞) fully coherent (i.e. ρ̄0 → ∞),
then P(k) has the form

PP(k) =

∫ ∞
0

e2β
∫ ζ
0
Č0(k`xζ

′)−Č0(0)dζ′−ζdζ +
2βČ0(0)

1 + 2βČ0(0)
. (49)
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The partial coherence introduces a smoothing of the cone, in the sense that the
cone (48) is the convolution of the perfect cone (49) with the covariance function of
the source:

P(k) =
ρ̄d0
πd/2

∫
dk′ exp

(
− ρ̄2

0|k′|2
)
PP(k − k′). (50)

The mean reflected intensity in an arbitrary direction out of the small cone
around the backscattered direction can be obtained by taking the limit |k| → ∞:

lim
|k|→∞

PP(k) = 1 . (51)

The maximum of the enhanced backscattering cone is reached at k = 0 for an inci-
dent plane wave, that is, for the exact backscattered direction, and this maximum
is given by

max
k∈Rd

PP(k) = PP(0) =
1 + 4βČ0(0)

1 + 2βČ0(0)
, (52)

which takes values in the interval (1, 2). In the weak forward-scattering regime
β � 1, the enhancement factor is equal to 1. In the strong forward-scattering
regime β � 1, the enhancement factor is equal to 2. In Section 6.2 we discuss the
structure of the cone in more detail in the case that the medium fluctuations are
modeled in terms of the Matérn covariance function.

We remark that above we averaged with respect to the random medium and
the source when we computed the cone structure. The averaging with respect to
the source is obtained in practice by the use of partially coherent sources, which
are realizations of a source with covariance structure (41) that ergodically fluctu-
ates in time. A photodetector integrates in time the different realizations hence
the averaging with respect to the source distribution. The averaging with respect
to the medium is, however, a critical issue. In practice the statistical stability of
the cone is an important aspect and without proper averaging the cone may be
buried in speckle noise. This stability can be achieved as we have proposed in Eq.
(44), by averaging with respect to the incident angle. In biological applications the
incidence angle is usually fixed but partially coherent sources have been exploited
as an important technique to enhance statistical stability, essentially by provid-
ing independent views of the medium via the structure in the source, however, at
the cost of blurring of the cone as seen in Eq. (50). Motivated by applications
Low-Coherence-Enhanced-BackScattering (LEBS) [22, 21, 34] systems have been
designed that elegantly achieve statistical stability via partially coherent sources.
In fact, both approaches (averaging with respect to the incidence angle or by the use
of partially coherent sources) for signal enhancement can be expressed as averaging
with respect to transverse wavevector. This is clear for the average with respect to
the incidence angle, and, if we take into account the ergodic average with respect
to the source distribution (17):〈

|âε(−k0 + k)|2
〉

=
(4πρ0r0)d

4

∫∫
R̂ε(−k0 + k,k1 + k2 + k0)

×R̂ε(−k0 + k,k1 − k2 + k0) exp
(
− r2

0|k2|2 − ρ2
0|k1|2

)
dk1dk2 , (53)

then we observe that a small ρ0 gives averaging with respect to k1. Thus, decorrela-
tion in the reflection coefficient with respect to transverse wavevector gives enhanced
signal-to-noise ratio. We expect that the averaging with respect to k0, and/or k1 as
in LEBS, is sufficient to ensure the averaging with respect to the random medium
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fluctuations, a detailed proof of this self-averaging property would require to study
higher-order moments as in [15], which is beyond the scope of this paper. We can
summarize by saying that reducing the coherence of the illumulation (i.e. reducing
ρ0) increases the signal-to-noise ratio but also smoothes the enhanced backscatter-
ing cone. This is a traditional trade-off between resolution and stability.

6. Backscattering characteristics for Matérn covariance function. In bi-
ological applications appropriate modeling of the tissue fabric is important both
from the point of view of techniques that use scattering for diagnostic information
as well as for proper dose distribution in therapies involving focused beams, while
in atmospheric propagation proper modeling is critical in the design of imaging and
communication systems. Here we will consider a specific model for the covariance
function of the medium fluctuations, the commonly used Matérn covariance function
or family. Tissue modeling with the Matérn covariance function is nicely reviewed
in [29]. Here we will model the covariance function of the medium fluctuations as∫

E[ν(x′ + x, z′ + z)ν(x′, z′)]dz = σ2`z Č0
( x
`x

)
, (54)

with

Č0(s) =Mp(s) :=

(
2
√
p|s|

)p
Γ(p)2p−1

Kp (2
√
p|s|) , (55)

for Kp the modified Bessel function of the second kind of order p. Note that we
assume that the dimension d = 2 throughout this section. The parameter p ∈
[1/2,∞) characterizes the smoothness of the process with larger values for p giving
a smoother process. We remark that the notation D = 2p + 2 is sometimes used
for the spectral exponent. Some important special cases for the Matérn covariance
function are:

lim
p→∞

Mp(s) = exp(−|s|2) , Gaussian , (56)

M1/2(s) = exp(−
√

2|s|) , Exponential . (57)

The case p = 5/6 corresponds to the von Kármán spectrum of Kolmogorov turbu-
lence with zero inner scale and outer scale L0 and associated with the spectrum:∫∫

E[ν(x′ + x, z′ + z)ν(x′, z′)]e−ik·xdzdx = 0.033C2
n

( 1

L2
0

+ |k|2
)−11/6

, (58)

where L0 = `x/(2
√
p) and 0.033C2

n = 4πpσ2L−2p
0 . We have the asymptotics

Mp(s) = 1− ppΓ(1− p)
Γ(1 + p)

|s|2p + o(|s|2p) as |s| → 0+, (59)

for 1/2 ≤ p < 1. We remark that in the Kolmogorov case this corresponds to a
structure function with the growth |s|5/3 (rather than the Kolmogorov structure
function growth of |s|2/3), which is a consequence of the fact that we integrated the
covariance function of the medium fluctuations in the z dimension.

In [27, 33] it is discussed how the medium parameters, essentially {p, σ2`z, `x},
relate to the optical scattering parameters and in turn how these relate to the shape
of the cone, moreover, how the cone shape parameters can then be used to construct
a LEBS Marker for early indication of cancerous tissue. The connection between
medium parameters and the cone is in this analysis partly based on empirical equa-
tions derived from Monte-Carlo simulations and assumes weak backscattering mod-
eled in terms of a Born approximation [4, 28]. Here, we consider a regime of stronger
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multiple scattering effects in the context of the scaling regime outlined above. Our
analysis can be used to link the medium parameters to the shape of the cone. In our
modeling we incorporate the effects of random forward as well as lateral scattering.
We give next some asymptotic forms for the mean reflected intensity profile and the
enhanced backscattering cone in the regime β � 1 corresponding to strong forward
scattering.

6.1. Reflected intensity profile. The profile of the mean reflected intensity is
described in Proposition 3. Here we want to focus on the physically relevant case,
when the initial beam has a large coherence radius ρ0 � `x and a large beam radius
such that r0 � `x but r0 � λoLatt/`x. The last condition means that the radius
of the mean reflected intensity is determined by scattering and not by the initial
beam radius (equivalently, the initial beam radius is negligible compared to the
beam spreading due to scattering). This means that we deal with Eq. (38) with
ρ0 = αρ̄0, r0 = αr̄0, and r̄0 � `x. Then we get from (39) that the mean reflected
intensity is

lim
α→∞

α2I(αy) =
1

(2π)2

∫ ∞
0

∫
ČKz (sζ)

ČKz (0)
eβ

∫ 2ζ
0
Č0(sζ′)−Č0(0)dζ′−ζe−is·ydsdζ , (60)

which is independent of ρ̄0 and r̄0. We aim at showing that this expression becomes
simple when forward scattering is strong β � 1, which requires us to distinguish
the cases in which Č0 is smooth or not at 0.

Let us first consider the smooth case with Č0(s) =M∞(s). Then we can make
use of the expansion Č0(s) ' 1−|s|2+o(|s|2) as |s| → 0. Since we can anticipate from
(60) that the radius of the mean reflected intensity is of order αβ1/2`x, we look at
the mean intensity profile at this particular scale and we obtain using Proposition 3:

lim
β→∞

lim
α→∞

α2βI(αβ1/2y) = Q∞(y) , (61)

where

Q∞(y) =
1

4π

∫ ∞
0

e
− |y|

2

4
3

8ζ3

( 3

8ζ3

)
e−ζ dζ . (62)

The dimensionless intensity profile Q∞(y) is normalized so that
∫
Q∞(y)dy = 1.

Therefore the asymptotic expressions satisfy
∫
I(y)dy = 1 and

∫
I(x)dx = Ptot.

The mean intensity profile has sub-exponential decay for large |y|,

Q∞(y) ∝ |y|−5/4 exp
(
−
√
|y|23/4/

√
3
)

for |y| � 1, (63)

given by the contributions of the waves that have propagated deep into the medium.
It also has power divergence for small |y|,

Q∞(y) ∝ |y|−4/3 for |y| � 1. (64)

This is given by the contributions of reflections that occur close to the surface z = 0.
The radius `∞ of the mean intensity profile is

`∞ = `xαβ
1/2 =

√
σ2`zLatt

(
Latt

2`x

)
. (65)

Thus, the spreading is independent of the wavelength and is stronger when the at-
tenuation distance is larger so that the wave propagates deeper into the medium,
moreover, is stronger with a larger longitudinal correlation length σ2`z. Note, how-
ever, that the spreading is inversely proportional to the lateral coherence length `x
so that smooth transverse medium variations give less spreading.
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Let us next consider the case in which Č0(s) is not smooth at 0 and has the form
Č0(s) = 1− cp|s|2p + o(|s|2p), with

cp = ppΓ(1− p)/Γ(1 + p) , (66)

for 1/2 ≤ p < 1. This corresponds to a rough random medium, with jumps in the
derivative of ν. We then find that

lim
β→∞

lim
α→∞

α2β1/pI(αβ1/(2p)y) = Qp(y) , (67)

where

Qp(y) =
1

(2π)2

∫ ∫ ∞
0

e−
cp2

p+1ζ2p+1|s|2p

2p+1 −ζe−is·ydζds. (68)

Thus, in this case the radius `p of the mean intensity profile is

`p = `xαβ
1/(2p) =

(
σ2`zLatt

)1/(2p)(Latt

2`x

)( π
λo

)(1−p)/p
. (69)

This shows that, when medium variations are rough, then the intensity spreading
is more sensitive to the correlation length, moreover, it actually depends on the
wavelength λo at a fractional power with a smaller wavelength and rougher medium
giving stronger spreading. Note that we also obtain in this rough case a power law
decay at infinity and a power divergence at 0:

Qp(y) ∝ |y|−(2p+2)/(2p+1) for |y| � 1 , (70)

Qp(y) ∝ |y|−2p−2 for |y| � 1 . (71)

In order to establish the last result we have used the fact that the two-dimensional
Fourier transform of exp(−|s|2p) decays as |y|−2p−2; this has been studied in the
literature because it is the density of a multivariate stable distribution [26].

The special case p = 1/2 corresponds to the exponential correlation function in
Eq. (57). We remark that in this case we get

Q1/2(y) =
1

π

∫ ∞
0

ζ2e−ζ

(|y|2 + 4ζ4)3/2
dζ , (72)

which again is such that
∫
Q1/2(y)dy = 1. The radius of the mean intensity profile

is of order αβ`x ∝ 1/λo and it decays as |y|−3 at infinity and it diverges as |y|−3/2

at zero. This can be contrasted with the result obtained in the case of a smooth
random medium, where the beam has sub-exponential tail at infinity and a width
of order αβ1/2`x independent of λ0.

6.2. Enhanced backscattering cone. The shape PP(k) of the perfect cone is
given by (49) for any value of β. We can give a more quantitative description in
the regime β � 1, but this analysis requires us to distinguish the cases in which Č0
is smooth or not at 0.

Let us first consider the smooth case with Č0(s) =M∞(s). In this case we can
expand as Č0(s) ' 1− |s|2 + o(|s|2) and we find that

lim
β→∞

PP(β−1/2k) = QEBC,∞(k`x), QEBC,∞(s) = 1+

∫ ∞
0

e−
2ζ3

3 |s|
2−ζ dζ . (73)

For small |s|, we have

QEBC,∞(s) = 2− 4|s|2 + o(|s|2), (74)
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which shows that the peak is smooth. For large |s|, we obtain

QEBC,∞(s) = 1 + 18−1/3Γ(1/3)|s|−2/3 + o(|s|−2/3) , (75)

which shows that the angular aperture of the enhanced backscattering cone is of
order (taking into account (65)):

AEBC =
λo

`xαβ1/2
=
λo
`∞

. (76)

In particular this means that the cone width is proportional to the wavelength λo.
Let us next consider the case in which Č0(s) is not smooth at 0 and has the form

Č0(s) = 1− cp|s|2p + o(|s|2p), with cp = ppΓ(1− p)/Γ(1 + p) and 1/2 ≤ p < 1. We
find that

lim
β→∞

PP(β−1/2pk) = QEBC,p(k`x) , QEBC,p(s) = 1 +

∫ ∞
0

e−
2cpζ

2p+1|s|2p

2p+1 −ζ dζ .

(77)
This shows that the angular aperture of the enhanced backscattering cone is now
of order (taking into account (69)):

AEBC =
λo

`xαβ1/(2p)
=
λo
`p
.

In particular this means that the cone width is proportional to the wavelength λo
to a fractional power: λ

2−1/p
o .

For small |s| we have

QEBC,p(s) = 2− 2cpΓ(2p+ 1)|s|2p + o(|s|2p) , (78)

which shows that the peak is not smooth but has a cusp. For large |s|, we obtain

QEBC,p(s) = 1 +
Γ(1/(2p+ 1))

(2p+ 1)2p/(2p+1)(2cp)1/(2p+1)
|s|−2p/(2p+1) + o(|s|−2p/(2p+1)) .

(79)
To summarize, for both smooth and rough media, we have obtained that the

radius ` of the mean reflected intensity and the angular aperture AEBC of the
enhanced backscattering cone are related to each other through the duality relation:

AEBC ∼
λo
`
. (80)

This relation is in agreement with the physical interpretation of enhanced backscat-
tering as a constructive interference between pairs of wave “paths” and reversed
paths, see Figure 1. If the reflected wave is observed with an angle A compared to
the backscattered direction, then the phase shift between the direct and reversed
paths is ωe/co = ωd sinA/co, where d is the typical transverse size of a wave path,
which is in our setting of the order of the radius ` of the reflected intensity. There-
fore, constructive interference is possible if ω`A/co ≤ 1, which gives the angular
aperture of the enhanced backscattering cone. This “path” interpretation is not
used in our paper, but we recover the physical result by exploiting our characteri-
zation of the second-order moments of the reflection operator.
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7. Summary and medium parameter estimation. In a typical experimental
configuration one can measure the profile and the radius of the backscattered in-
tensity in the near field |ǎε(x, 0)|2 and/or in the far field |âε(k, 0)|2, with the latter
corresponding to enhanced backscattering type of data. The analysis presented in
this paper shows that the two sets of observations provide the same information.
The shapes of the profiles, with either near or far field data, make it possible to
identify the smoothness of the medium. The magnitudes and radii of the profiles
make it possible to identify parameters that are combinations of the statistics of
the random medium (standard deviation and the correlation radii) and of the at-
tenuation of the medium. The estimation of these parameters can help to classify
biological tissue in medical imaging and the state of the atmosphere in atmospheric
propagation. We remark that in practice, far field measurements are usually easier
than near field measurements.

We next summarize our results and review more specifically how the profile
parameters relate to the medium model. We have considered a time-harmonic
high-frequency regime with rapid anisotropic medium fluctuations on the microscale
as described by Eqs. (1) and (2) with ε � 1. We assume a regime of weak
backscattering as described by (21), moreover, a random half-space or a random
region with thickness L� Latt and a large inverse Fresnel number

α =
λoLatt

2π`2x
� 1 ,

for λo the wavelength, `x the lateral correlation radius of the medium fluctuations,
and Latt the attenuation length. Then we find that the mean intensity profile is
described by Proposition 3 and the enhanced backscattering cone is described by
Proposition 4. This is the main regime and also the main results of our paper.

In order to get more qualitative insight about how the profiles depend on the
medium fabric we consider next some subsequent scaling relations.
Consider the case with large beam and coherence radii for the partly coherent source
as described by Eq. (38) with α`x � r0 ≥ ρ0 � `x. Then we find the simplified
expressions for the near field mean intensity measurements at the surface of the
complex halfspace:

〈
E[|ǎε(x, 0)|2]

〉
=

Ptot

(2π`xα)2

∫ ∞
0

∫
ČKz (sζ)

ČKz (0)
eβ

∫ 2ζ
0
Č0(sζ′)−Č0(0)dζ′−ζe−is·x/(α`x)dsdζ ,

with Ptot the mean reflected power given by (32) and ČKz a partial Fourier transform
of the medium fluctuations, see Eqs. (23) and (28).
Consider the case with large beam and coherence radii for the partly coherent source
as described by Eq. (41) with α`x � ρ0 � `x and k0 the transverse wavevector
corresponding to the probing direction. Then we find the simplified expressions for
the far field measurements:〈

E
[
|âε(−k0 + k, 0)|2

]〉
= `2xPtot

∫
ČKz (λ)

ČKz (0)
ei2λ·k0`x

[ ∫ ∞
0

eβ
∫ ζ
0
Č0(λ+kα`xζ

′)+Č0(λ−kα`xζ′)−2Č0(0)dζ′−ζdζ

+
1

1 + 2β(Č0(0)− Č0(λ))
− 1

1 + 2βČ0(0)

]
dλ ,
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and for the far field measurements averaged over incoming direction we have∫ 〈
E
[
|âε(−k0 + k, 0)|2

]〉
dk0

= π2Ptot

(∫ ∞
0

e2β
∫ ζ
0
Č0(ζ′kα`x)−Č0(0)dζ′−ζdζ +

2βČ0(0)

1 + 2βČ0(0)

)
. (81)

In Figure 2 we show the enhancement profile (81) (normalized by π2Ptot). Here we
use the Matérn covariance function (55). Note that a larger p and smoother medium
fluctuations give a broader backscattering enhancement cone and that a large value
for β gives a sharp cusp like cone with a maximum enhancement factor of two. In-
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Figure 2. The backscattering enhancement cone in Eq. (81)
(normalized by π2Ptot). Here we use the Matérn covariance func-
tion (55). In the left plot p = .6, while in the right plot p = .9
so that the medium fluctuations are smoother in the right plot. In
the plots the narrowest cones with largest peak values correspond
to the largest β values.

deed, a broad support in near field intensity measurements corresponds to a narrow
far field enhanced backscattering cone. Moreover, rough medium fluctuations give
wavelength-dependent intensity profiles.

In order to get more insight about how the profiles depend on the medium fabric
and articulate the main parameters that can be identified we consider finally the
regime of strong forward scattering:

β =
π2σ2`zLatt

λ2
o

� 1 ,

for `z the correlation radius in the longitudinal direction and σ the standard de-
viation of the medium fluctuations. Moreover, we model the medium fluctuations
in terms of the Matérn correlation function (55). Then we find that the intensity
profile has the principal shape〈

E[|ǎε(x, 0)|2]
〉

=
Ptot

`2p
Qp
( x
`p

)
, (82)
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with

Qp (y) ∝
{
|y|−(2p+2)/(2p+1) for |y| � 1 ,
|y|−2p−2 for |y| � 1 .

We also find that the enhanced backscattering cone averaged over incoming direction
has the principal shape∫ 〈

E
[
|âε(−k0 + k, 0)|2

]〉
dk0 = π2PtotQEBC,p (k`p) , (83)

with

QEBC,p (s) '

{
2− 2cpΓ(2p+ 1)|s|2p for |s| � 1 ,

1 + Γ(1/(2p+1))
(2p+1)2p/(2p+1)(2cp)1/(2p+1) |s|−2p/(2p+1) for |s| � 1 ,

for cp given by (66). Thus, the profiles both identify the three parameters

p , `p , Ptot , (84)

and we have

`p =

(
λoLatt

2π`x

)(
π2σ2`zLatt

λ2
o

)1/2p

, (85)

Ptot =

(
π2σ2`zLatt

λ2
o

)
ČKz (0)

[ ∫ 〈
|b̌0(x)|2

〉
dx
]
. (86)

We remark that if we assume a specific form for the medium correlation function in
the longitudinal direction we can identify further medium fluctuation parameters.
Assuming for instance the rough (p = 1/2) Matérn model (57) gives

ČKz (0) =

√
2

1 + 8(π`z/λo)2
. (87)

Note first that in this rough case the mean reflected power is maximized by choosing
the wavelength as small as possible. Note next that if we have measurements at

two wavelengths {λ(j)
o , j = 1, 2}, and identify the corresponding profile parameters

in (84), {P (j)
tot , j = 1, 2}, then we can identify

`2z =

(
1

8π2

)
P

(1)
tot (λ

(1)
o )2 − P (2)

tot (λ
(2)
o )2

P
(2)
tot − P

(1)
tot

. (88)

Using the `z estimate from Eq. (88) to compute ČKz (0) as in Eq. (87) allows us to
identify σ2`zLatt from Eq. (86), which subsequently allows us to identify Latt/`x
from Eq. (85). To summarize, we identify p that characterizes the roughness of the
medium fluctuations from the observed profiles in Eqs. (82) and (83). Then using
also the other profile parameters at two wavelengths we can identify the medium
parameters:

`z , σ2`x , σ2Latt .

We remark that averaging with respect to the transverse wavevector enhances the
signal-to-noise ratio. In addition averaging over several transverse probing positions
and frequencies can also be used to enhance the signal-to-noise ratio. In the context
of the turbulent atmosphere one can use the time dependence and ergodicity of the
medium and repeated probing to enhance the signal-to-noise ratio.
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8. Conclusions. We have considered the statistics of the wave field reflected by a
random medium. We have analyzed how the structure of the enhanced backscat-
tering cone relates to the statistics of the medium. We have analyzed in particular
the form of the cone in the case when the medium fluctuations are modeled by the
Matérn covariance function. This covariance function is frequently used to model
atmospheric turbulence or biological tissue and in the latter context the form of
the cone and its dependence on medium fabric have been used to probe for tissue
anomaly caused by cancer. An important aspect of the implementation in the case
of biological applications is to use low-coherence sources as they serve to enhance
the signal-to-noise ratio and we analyze here the situation with sources of this type.

Acknowledgments. This research is supported by AFOSR grant FA9550-18-1-
0217 and NSF grant 1616954.

Appendix A. Asymptotic analysis of the reflection operator.

A.1. Coupled equations. Using the mode coupling equations (11-12) we find for
the reflection and transmission operators introduced in Eqs. (19) and (20)

d

dz
R̂ε(k,k′, z) = e−2i ωco

z
ε2 L̂ε(k,k′, z) (89)

+e2i ωco
z
ε2

∫∫
R̂ε(k,k1, z)L̂ε(k1,k2, z)R̂ε(k2,k

′, z)dk1dk2

+

∫
L̂ε(k,k1, z)R̂ε(k1,k

′, z) + R̂ε(k,k1, z)L̂ε(k1,k
′, z)dk1 ,

d

dz
T̂ ε(k,k′, z) =

∫
T̂ ε(k,k1, z)L̂ε(k1,k

′, z)dk1

+e2i ωco
z
ε2

∫∫
T̂ ε(k,k1, z)L̂ε(ω,k1,k2, z)R̂ε(k2,k

′, z)dk1dk2 , (90)

where we have defined

L̂ε
(
k1,k2, z

)
= − ico

2ω
|k1|2δ(k1 − k2) +

iω

2(2π)dcoε
ν̂
(
k1 − k2,

z

ε2

)
− σo

2co
δ(k1 − k2)− εσo

2(2π)dco
µ̂
(
k1 − k2,

z

ε2

)
, (91)

with ν̂(k, z) the partial Fourier transform of ν(x, z) (as in (18)). This system is
supplemented by the initial conditions

R̂ε(k,k′, z = −L) = 0 ,

T̂ ε(k,k′, z = −L) = δ(k − k′) ,

corresponding to the boundary conditions (14-15). The reflection operator evaluated
at z = 0 carries all the relevant information about the random medium from the
point of view of the reflected wave. We next discuss how we can characterize the
second order moments associated with the reflection operator.
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A.2. The second-order moments of the reflection operator. The reflection
operator R̂ε solves (89) with the initial condition (92). It is possible to compute
the cross moments of the reflection operator using diffusion approximation theory
in the limit ε→ 0, in which the phase factors exp(±2iωz/(coε

2)) act as decoupling
terms [11]. We are interested in the second-order moment

V(k1,k2),(k3,k4)(z) = lim
ε→0

E
[
R̂ε(k1,k2, z)R̂ε(k3,k4, z)

]
, (92)

at the surface z = 0 in the regime of weak backscattering. This regime derives

from the hypothesis in Eq. (21) where Ĉ(k,K) = σ2`z`
d
x ĈK`z (k`x). We have up

to terms of order δ2 the following result (this is a straightforward generalization of
Proposition 2 in [11] for the case without attenuation).

Proposition 5. In the weak backscattering regime (21) the limit moments V(k1,k2),(k3,k4)

are given by the system of equations

∂V(k1,k2),(k3,k4)

∂z
= −2σo

co
V(k1,k2),(k3,k4)

+
ico
2ω

[
−
(
|k1|2 + |k2|2

)
+
(
|k3|2 + |k4|2

)]
V(k1,k2),(k3,k4)

+
ω2

4(2π)dc2o

∫
Ĉ(k, 0)

{
V(k1−k,k2),(k3−k,k4) + V(k1,k2−k),(k3,k4−k)

+V(k1−k,k2),(k3,k4+k) + V(k1,k2−k),(k3+k,k4)

−V(k1−k,k2−k),(k3,k4) − V(k1,k2),(k3−k,k4−k)

−2V(k1,k2),(k3,k4)

}
dk

+
ω2

4(2π)dc2o
Ĉ
(
k1 − k2,

2ω

co

)
δ(k1 − k2 − k3 + k4) , (93)

starting from V(k1,k2),(k3,k4)(z = −L) = 0.

We can observe that V(k1,k2),(k3,k4) is supported on k1−k2−k3 +k4 = 0 so that
we can parameterize the solution in terms of three wavevectors. We then obtain
Proposition 1.

Appendix B. Asymptotic expressions for the cross spectral density. In
the next two lemmas we give the asymptotic expressions for the dimensionless cross
spectral density D in the regime α� 1.

Lemma B.1. 1. There exists Cβ such that supu,v,w∈Rd |D(u,v,w, 0)| ≤ Cβ
uniformly in α.

2. If u · v 6= 0, then limα→∞D(u,v,w, 0) = 0.
3. If u 6= 0, v 6= 0, and u · v = 0, then

lim
α→∞

D(u,v,w, 0) =
ĈKz (w)

ČKz (0)

1− e−[1+2βČ0(0)]ζL

1 + 2βČ0(0)
. (94)

4. If u = 0 and v 6= 0, then limα→∞D(0,v,w, 0) = D0(w, 0), where D0(w, ζ)
is the solution of

dD0(w, ζ)

dζ
=
ĈKz (w)

ČKz (0)
−D0(w, ζ)

+
2β

(2π)d

∫
Ĉ0(µ) [D0(w + µ, ζ)−D0(w, ζ)] dµ , (95)
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starting from D0(w, ζ = −ζL) = 0.
5. If u 6= 0 and v = 0, then limα→∞D(u,0,w, 0) = D0(w, 0).
6. If u = 0 and v = 0, then limα→∞D(0,0,w, 0) = D0,0(w, 0) with

D0,0(w, 0) = 2D0(w, 0)− ĈKz (w)

ČKz (0)

1− e−[1+2βČ0(0)]ζL

1 + 2βČ0(0)
. (96)

By comparing the third and fourth items (or the fifth and sixth items) a sharp
transition is noticed from the case u = 0 to u 6= 0. This transition can be studied
in detail by looking at small u of order α−1, and we then find

Lemma B.2. 1. If v 6= 0, then limα→∞D(α−1s,v,w, 0) = Ds(v,w, 0) where
Ds(v,w, ζ) is solution of

dDs(v,w, ζ)

dζ
=
ĈKz (w)

ČKz (0)
eis·vζ −

[
1 + 2βČ0(0)

]
Ds(v,w, ζ)

+
β

(2π)d

∫
Ĉ0(µ)

[
eis·µζDs(v − µ,w + µ, ζ)

+e−is·µζDs(v + µ,w + µ, ζ)
]
dµ , (97)

starting from Ds(v,w, ζ = −ζL) = 0.
2. If v = 0, then limα→∞D(α−1s,0,w, 0) = Ds,0(w, 0) with

Ds,0(w, 0) = Ds(0,w, 0) +D0(w, 0)− ĈKz (w)

ČKz (0)

1− e−[1+2βČ0(0])ζL

1 + 2βČ0(0)
. (98)

Note that Ds(v,w, 0) |s=0= D0(w, 0) as defined by (95). By solving the differ-
ential equation (97) we obtain the following integral representation of Ds(v,w, ζ)
valid for all s ∈ Rd:

Ds(v,w, ζ) =

∫
ČKz (λ)

ČKz (0)
e−iw·λ

∫ ζ

−ζL
eiv·sζ

′

×eβ
∫ ζ
ζ′ Č0(λ−sζ′′)+Č0(λ+sζ′′)−2Č0(0)dζ′′−(ζ−ζ′)

dζ ′dλ . (99)

When s = 0 the function Ds(v,w, ζ) is independent of v and we have

D0(w, ζ) =

∫
ČKz (λ)

ČKz (0)
e−iw·λ

∫ ζL+ζ

0

e−ζ
′+2β[Č0(λ)−Č0(0)]ζ′ dζ ′dλ . (100)

As a result we get the following lemma.

Lemma B.3. When L� Latt we have

Ds(v,w, 0) =

∫
ČKz (λ)

ČKz (0)
e−iw·λ

∫ ∞
0

e−iv·sζ

×eβ
∫ ζ
0
Č0(λ−sζ′)+Č0(λ+sζ′)−2Č0(0)dζ′−ζ dζdλ , (101)

and

D0(w, 0) =

∫
ČKz (λ)

ČKz (0)
e−iw·λ

1

1 + 2β[Č0(0)− Č0(λ)]
dλ . (102)

We use these expressions in the paper to study the reflected intensity profiles
and the enhanced backscattering cone, specifically to derive Propositions 3 and 4.

Appendix C. Notations.
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co background speed of propagation of the medium
σo background attenuation of the medium
`z longitudinal correlation radius of the random medium
`x transverse correlation radius of the random medium
σ standard deviation of the random medium
ω (angular) frequency of the source
r0 radius of the source
ρ0 correlation radius of the source
k0 transverse wavevector of the source

λo =
2πco
ω

wavelength

Latt =
co

2σo
attenuation length

ζL =
L

Latt
relative propagation distance

Kz =
2ω`z
co

relative wavenumber

α =
c2o

2σoω`2x
strength of diffraction

β =
ω2σ2`z
8coσo

strength of forward scattering

Do cross spectral density central value (see Eq. (26))
Ptot mean reflected power (see Eq. (31))

Table 1. Notations used in the paper.
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