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Abstract—We introduce a methodology to guarantee
safety against the spread of infectious diseases by view-
ing epidemiological models as control systems and human
interventions (such as quarantining or social distancing)
as control input. We consider a generalized compartmen-
tal model that represents the form of the most popular
epidemiological models and we design safety-critical con-
trollers that formally guarantee safe evolution with respect
to keeping certain populations of interest under prescribed
safe limits. Furthermore, we discuss how measurement
delays originated from incubation period and testing delays
affect safety and how delays can be compensated via
predictor feedback. We demonstrate our results by synthe-
sizing active intervention policies that bound the number of
infections, hospitalizations and deaths for epidemiological
models capturing the spread of COVID-19 in the USA.

Index Terms—COVID-19, epidemiology, safety-critical
control, time delay.

I. INTRODUCTION

THE RAPID spreading of COVID-19 across the world
forced people to change their lives and practice mitigation

efforts at a level never seen before, including social distancing,
mask-wearing, quarantining and stay-at-home orders. These
human actions played a key role in reducing the spreading
of the virus, although such interventions often have eco-
nomic consequences, lose of jobs and physiological effects.
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Fig. 1. Illustration of the SIR model as control system and its fit to US
COVID-19 data [10]. Model parameters were estimated from compart-
mental data (right) by accounting for a measurement delay τ . Mobility
data (left) were also used to fit the transmission rate and the associated
control input.

Therefore, it is important to focus mitigation efforts and deter-
mine when, where and what level of intervention needs to be
taken.

This letter provides a methodology to determine the level
of active human intervention needed to provide safety against
the spreading of infection while keeping mitigation efforts
minimal. We use compartmental epidemiological models to
describe the spreading of the infection [1], [2], and we view
these models as control systems where human intervention is
the control input. Viewing epidemiological models as control
systems has been proposed in the literature recently [3]–[5],
and various models with varying transmission rate [6]–[9] have
appeared to quantify the level of human interventions in the
case of COVID-19.

In this letter, we build on our recent work [10] and use a
safety-critical control approach to synthesize control strategies
that guide human interventions so that certain safety criteria
(such as keeping infection, hospitalization and death below
given limits) are fulfilled with minimal mitigation efforts. The
approach is based on the framework of control barrier func-
tions [11], [12] that leverages the theory of set invariance [13]
for dynamical [14], [15] and control systems [16]–[18]. We
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take into account that data about the spreading of the infec-
tion may involve significant measurement delays [5], [19]–[21]
due to the fact that infected individuals may not show
symptoms and get tested for quite a few days. We use predic-
tor feedback control [22]–[24] to compensate these delays,
and we provide safety guarantees against errors in delay
compensation.

The outline of the letter is as follows. Section II introduces
a generalized compartmental model, which covers the class of
the most popular epidemiological models. Section III intro-
duces safety critical control without considering measurement
delays, while Section IV is dedicated to delay compensation.
Conclusions are drawn in Section V.

II. GENERALIZED COMPARTMENTAL MODEL

Compartmental models describe how the size of certain
populations of interest evolve over time. Consider n + m com-
partments, given by x ∈ R

n+m, which are separated into two
groups: n so-called multiplicative compartments, given by
w ∈ R

n, and m outlet compartments, given by z ∈ R
m. The

evolution of these compartments over time t can be given by
the following generalized compartmental model:

ẇ(t) = f (w(t)) + g(w(t))u(t),

ż(t) = q(w(t)) + r(z(t)), (1)

where x = [wT zT]T, initial conditions are x(0) = x0, while
f , g : Rn → R

n, q : Rn → R
m and r : Rm → R

m are assumed
locally Lipschitz continuous and depend on the choice of the
model; see Examples 1, 2 and 3.

In (1), the multiplicative compartments w are populations
that essentially describe the transmission of the infection.
The transmission can be reduced by active interventions,
whose intensity is quantified by a control input u ∈ U ⊂ R

(considered here as scalar, although multiple inputs could
be studied analogously). The outlet compartments z do not
actively govern transmission, but rather indicate its effects, as
their evolution is driven by the multiplicative compartments.

Example 1 (SIR model): One of the most fundamental epi-
demiological models is the SIR model [25], [26] that consists
of susceptible, S, infected, I, and recovered, R, populations.
The SIR model captures the spread of the infection based on
the interplay between the susceptible and infected populations.
Thus, S and I are multiplicative compartments, while R, that
measures the number of recovered (or deceased) individuals,
is an outlet compartment. The model uses three parameters:
the transmission rate β0 > 0, the recovery rate γ > 0 and the
total population N. Active interventions given by the control
input u ∈ [0, 1] allow the population to reduce the transmis-
sion to an effective rate β = β0(1 − u), where u = 0 means
no intervention and u = 1 means total isolation of infected
individuals. This puts the SIR model with active intervention
to form (1) where

w =
[

S
I

]
, f (w) =

[
−β0

N SI
β0
N SI − γ I

]
, g(w) =

[
β0
N SI

−β0
N SI

]
,

z = R, q(w) = γ I, r(z) = 0. (2)

Example 2 (SEIR model): The SEIR model [27], [28] is an
extension of the SIR model that incorporates an exposed popu-
lation E apart from the S, I and R compartments. The exposed
individuals are infected but not yet infectious over a latency

period given by 1/σ > 0. Since the latency affects the trans-
mission, E is a multiplicative compartment. The SEIR model
can be described by (1) with

w =
[

S
E
I

]
, f (w) =

⎡
⎣ −β0

N SI
β0
N SI − σE
σE − γ I

⎤
⎦, g(w) =

⎡
⎣ β0

N SI
−β0

N SI
0

⎤
⎦,

z = R, q(w) = γ I, r(z) = 0. (3)

Example 3 (SIHRD model): The SIHRD model [10] adds
two more outlet compartments to the SIR model: hospitalized
population H and deceased population D. Their evolution is
captured by three additional parameters: the hospitalization
rate λ > 0, the recovery rate ν > 0 in hospitals and the death
rate μ > 0. Equation (1) yields the SIHRD model for

w =
[

S
I

]
, f (w)=

[
−β0

N SI
β0
N SI−(γ+λ+μ)I

]
, g(w)=

[
β0
N SI

−β0
N SI

]
,

z =
[

H
R
D

]
, q(w)=

[
λI
γ I
μI

]
, r(z)=

[−νH
νH
0

]
. (4)

There exist several other compartmental models of form (1)
which involve further compartments, such as the SIRD [29],
SIRT [7], SIXRD [30], or SIDARTHE [1] models. More com-
plex models can provide higher fidelity, although they involve
more parameters that need to be identified. In what follows,
we show applications of the SIR and SIHRD models and we
discuss the occurrence of time delays related to incubation
and testing. We omit further discussions on latency, the SEIR
model or other more complex models.

Fig. 1 shows the performance of the SIR model in cap-
turing the spread of COVID-19 for the case of US national
data. The parameters β0 = 0.33 day−1, γ = 0.2 day−1 and
N = 33 × 106 of the SIR model and the control input u(t)
were fitted following the algorithm in [10] to the recorded
number of confirmed cases I + R [31] between March 25 and
August 9, 2020 and to mobility data [32] about the medium
time people spent home. The fitted control input (blue) follows
the trend of the mobility data (gray) well in the beginning
of the pandemic when stay-at-home orders came into action,
and it deviates later when other means of mitigation (such
as mask-wearing) became more significant. While the fitted
model (blue) captures the data about confirmed cases (gray),
the model also has predictive power (orange); see more details
about forecasting in [10].

Note that once an individual gets infected by COVID-19, it
takes a few days of incubation period to show symptoms and
an additional few days to get tested for the virus [5] [19]–[21].
Therefore, the measured number of confirmed cases represents
a delayed state of the system, I(t − τ) + R(t − τ), and thus
we involved a time delay τ in the model identification pro-
cess, which was found to be τ = 11 days by fitting [10]. The
delay-free counterpart of the fit (purple) shows that the mea-
surement delay can lead to a significant error in identifying the
true current level of infection. The effects of the delay τ on
safety-critical control and its compensation will be discussed
in Section IV.

III. SAFETY-CRITICAL CONTROL

Formally, safety can be translated into keeping system (1)
within a safe set S ⊂ R

n+m that is the 0-superlevel set of a
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continuously differentiable function h : Rn+m → R:

S := {x ∈ R
n+m : h(x) ≥ 0}, (5)

where x = [wT, zT]T. Function h prescribes the condition for
safety: for example, if one intends to keep the infected popula-
tion I under a limit Imax for the SIR, SEIR or SIHRD models,
the safety condition is h(x) = Imax − I ≥ 0.

To guarantee safety, we design a locally Lipschitz continu-
ous controller

u(t) = A(x(t)) (6)

that ensures that the set S in (5) is forward invariant under
the dynamics (1), i.e., if x(0) ∈ S (h(x(0)) ≥ 0), then x(t) ∈ S
(h(x(t)) ≥ 0) for all t > 0. Below we use the framework of
control barrier functions [11], [12] to synthesize controllers
that are able to keep certain compartments of interest within
prescribed limits. First, we consider safety for multiplicative
compartments, and then for outlet compartments.

A. Safety Guarantees for Multiplicative Compartments
Consider keeping the i-th multiplicative compartment

(1 ≤ i ≤ n) below a safe limit given by Ci, i.e., we prescribe

h(x) = Ci − wi, (7)

where Ci is an upper bound for wi. A lower bound could also
be considered similarly, by taking h(x) = wi − Ci.

Theorem 1: Consider dynamical system (1), function h
in (7) and the corresponding set S given by (5). The fol-
lowing safety-critical active intervention controller guarantees
that S is forward invariant (safe) under dynamics (1) if
gi(w) �= 0 ∀w ∈ R

n:

u(t) = Ai(x(t)) = −sign(gi(w(t)))ReLU

(
ϕi(w(t))

|gi(w(t))|
)

, (8)

where ReLU(·) = max{0, ·} is the rectified linear unit,

ϕi(w) = fi(w) − α(Ci − wi) (9)

and α > 0. Furthermore, the controller is optimal in the sense
that it has minimum-norm control input.

Proof: According to [12], the necessary and sufficient
condition of forward set invariance is given by1

ḣ(x(t)) ≥ −αh(x(t)), (10)

∀t ≥ 0, where the derivative is taken along the solution of (1).
If there exists a control input u(t) so that (10) is satisfied,
then h is called a control barrier function. Substitution of (7)
and (1) into (10) gives the safety condition

− ϕi(w(t)) − gi(w(t))u(t) ≥ 0, (11)

where ϕi is given by (9). The control input u(t) must sat-
isfy (11) for all t ≥ 0. To keep control efforts minimal, one
can achieve this by solving the quadratic program:

u(t) = Ai(x(t)) = argmin
u∈U

u2

s.t. (11). (12)

Based on the KKT conditions [33], the explicit solution is

u(t) = Ai(x(t)) =
{
0 if − ϕi(w(t)) ≥ 0,
−ϕi(w(t))

gi(w(t)) if − ϕi(w(t)) < 0, (13)

1More precisely, α must be chosen as an extended class K function [12],
but we use a constant for simpler discussion and without loss of generality.

Fig. 2. Safety-critical active intervention control of the SIR model fit-
ted in Fig. 1 to US COVID-19 data. The controller keeps the infected
population under the prescribed limit Imax as opposed to the second
wave of infection experienced over the summer of 2020 due to a drop in
mitigation efforts.

if gi(w(t)) �= 0, which can be simplified to (8).
We remark that if gi(w) = 0, safety can be ensured by the

help of extended control barrier functions as discussed for the
safety guarantees of outlet compartments in Section III-B.

For example, to keep the infected population I below the
limit Imax for the SIR model given by (2), one shall prescribe
h(x) = Imax − I, and (8) leads to the controller

AI(x) = ReLU

(
1 − αI(Imax − I) + γ I

β0SI/N

)
. (14)

Fig. 2 shows the closed loop dynamics of the COVID-19
model of Fig. 1 by prescribing Imax = 200, 000 and using
α = γ /10. Indeed, the safety-critical controller (red) applied
from June 1, 2020 (with the blue fitted control input as his-
tory) keeps the level of infection under the safe limit (red
dashed), while gradually reducing mitigation efforts to zero.
Meanwhile, the US experienced a second wave of infections
(gray) in the summer of 2020, which was caused by the drop
in mitigation efforts in June (see the blue control input).

B. Safety Guarantees for Outlet Compartments
Now consider the case where the j-th outlet compartment

(1 ≤ j ≤ m) needs to be kept within the safe limit Cj:

h(x) = Cj − zj. (15)

In the following theorem, we use a dynamic extension of
control barrier functions to guarantee safety.

Theorem 2: Consider dynamical system (1), function h
in (15) and the corresponding set S given by (5). The fol-
lowing safety-critical active intervention controller guarantees
that S is forward invariant (safe) under dynamics (1) if
ḣ(x(0)) + αh(x(0)) ≥ 0 and if Lgqj(w) �= 0 ∀w ∈ R

n:

u(t) = Aj(x(t)) = −sign
(
Lgqj(w(t))

)
ReLU

(
ϕe

j (x(t))∣∣Lgqj(w(t))
∣∣
)

,

(16)
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where Lgqj(w) = ∂qj
∂w (w)g(w),

ϕe
j (x) = ∂qj

∂w
(w)f (w) + ∂rj

∂z
(z)(q(w) + r(z))

+ (α + αe)
(
qj(w) + rj(z)

) − αeα(Cj − zj), (17)

and α > 0, αe > 0. Furthermore, the controller is optimal in
the sense that it has minimum-norm control input.

Proof: We again use (10) as the necessary and sufficient
condition for safety, where the following expression appears:

he(x(t)) := ḣ(x(t)) + αh(x(t))

= −(qj(w(t)) + rj(z(t))) + α(Cj − zj(t)), (18)

which puts the safety condition into the form
he(x(t)) ≥ 0 ∀t ≥ 0. However, the control input does
not explicitly show up in (18). Still, if there exists a control
input that satisfies

ḣe(x(t)) ≥ −αehe(x(t)), (19)

then he is an extended control barrier function [13], [34],
whose 0-superlevel is forward invariant, that is, he(x0) ≥ 0
implies he(x(t)) ≥ 0 ∀t > 0. Substitution of (18), (15) and (1)
into (19) gives the extended safety condition

− ϕe
j (x(t)) − Lgqj(w(t))u(t) ≥ 0, (20)

where ϕe
j is defined by (17). This can be satisfied by a min-

norm controller obtained from the quadratic program:

u(t) = Aj(x(t)) = argmin
u∈U

u2

s.t. (20). (21)

The explicit solution of the quadratic program is

u(t) = Aj(x(t)) =
{
0 if − ϕe

j (x(t)) ≥ 0,

− ϕe
j (x(t))

Lgqj(w(t)) if − ϕe
j (x(t)) < 0,

(22)

if Lgqj(w(t)) �= 0, which is equivalent to (16).
As an example of keeping outlet compartments safe, con-

sider limiting the number of hospitalizations below Hmax and
deaths below Dmax for the SIHRD model given by (4). By
choosing h(x) = Hmax − H, one can guarantee safety in terms
of hospitalization based on (16) by the controller:

AH(x) = ReLU

(
1 − αe

HαH(Hmax − H)

λβ0SI/N

− (ν − αH − αe
H)(λI − νH) + (γ + λ+μ)λI

λβ0SI/N

)
, (23)

whereas prescribing h(x) = Dmax − D ensures safety by upper
bounding deaths via:

AD(x) = ReLU

(
1 − αe

DαD(Dmax − D)

μβ0SI/N

− (γ + λ + μ − αD − αe
D)μI

μβ0SI/N

)
. (24)

C. Safety Guarantees for a Combination of
Compartments

Having synthesized controllers that keep selected com-
partments safe, let us now guarantee safety for multiple
compartments at the same time: a set of multiplicative com-
partments I ⊂ {1, . . . , n} and a set of outlet compartments
J ⊂ {1, . . . , m}. To formulate the safety condition, one can
utilize (11) for any multiplicative compartment i ∈ I and (20)
for any outlet compartment j ∈ J . Then, one needs to solve
the corresponding quadratic program subject to all these con-
straints. In general, the quadratic program can only be solved
numerically and one may need relaxation terms to satisfy
multiple constraints [12]. However, analytical solutions can
be found in some special cases, such as the one given by the
following assumption.

Assumption 1: Assume that the following terms have the
same sign: sign(gi(w(t))) = sign (Lgqj(w(t))) = −1 ∀i ∈ I
∀j ∈ J ∀t ≥ 0.

This assumption often holds for models where compart-
ments need to be upper bounded for safety, e.g., the assump-
tion holds for keeping E, I, R, H or D below a safe limit in
the SIR, SEIR or SIHRD models. Under this assumption, one
can state the following proposition.

Proposition 1: Consider dynamical system (1) with
Assumption 1 and the controllers (8) and (16) that keep
individual multiplicative compartments wi, i ∈ I ⊂ {1, . . . , n}
and outlet compartments zj, j ∈ J ⊂ {1, . . . , m} safe using
the control barrier functions in (7) and (15). The following
safety-critical active intervention controller guarantees safety
for all compartments at the same time:

u(t) = max
i∈I,j∈J

{
Ai(x(t)), Aj(x(t))

}
. (25)

That is, one needs to take the maximum of the individual
control inputs that keep each individual compartment safe.

Proof: If Assumption 1 holds, the safety conditions in (11)
and (20) can be combined into one inequality:

min
i∈I,j∈J

{
−ϕi(w(t))

|gi(w(t))| ,
−ϕe

j (x(t))

|Lgqj(w(t))|

}
+ u(t) ≥ 0. (26)

Then, one can solve the quadratic program:

u(t) = AIJ (x(t)) = argmin
u∈U

u2

s.t. (26) (27)

in the form:

u(t) = ReLU

(
− min

i∈I,j∈J

{
−ϕi(w(t))

|gi(w(t))| ,
−ϕe

j (x(t))

|Lgqj(w(t))|

})
. (28)

This can be simplified to (25) based on (8) and (16).
Fig. 3 shows the closed loop response of the SIHRD

model given by (4) that was fitted to US COVID-19
data [10]. The data about confirmed cases were scaled by
the cube root of the positivity rate (positive per total tests)
to account for the significant under-reporting of cases dur-
ing the first wave of the virus (and cube root was applied
to scale less aggressively). Starting from June 1, safety-
critical active intervention control is applied to limit both
the hospitalizations below Hmax = 40, 000 and the deaths
below Dmax = 400, 000. Based on (25), we utilize the con-
troller AHD(x) = max{AH(x), AD(x)} where AH and AD are
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Fig. 3. The dynamics of the SIHRD model fitted to US COVID-
19 data under the safety-critical active intervention policy that keeps
hospitalization and deaths under the prescribed limits Hmax and Dmax.

given by (23) and (24). The model and controller param-
eters are β0 = 0.53 day−1, γ = 0.14 day−1, λ = 0.03 day−1,
ν = 0.14 day−1, μ = 0.01 day−1, N = 15 × 106, τ = 9 days,
αD = αe

D = αH = (γ + λ + μ)/10 and αe
H = ν/10. Safety-

critical control is able to reduce mitigation efforts while
keeping the system below the prescribed hospitalization and
death bounds and preventing a second wave of the virus.

IV. SAFETY UNDER MEASUREMENT DELAYS

Controller (6) in Section III is designed based on feed-
ing back the instantaneous state x(t) of the compartmental
model. However, data about certain compartments is measured
with delay due to the incubation period and testing delays.
Thus, the instantaneous state x(t) may not be available for
feedback, but the delayed state x(t − τ) with measurement
delay τ shall be used. If one implements A(x(t − τ)) instead
of A(x(t)) for active intervention, a significant discrepancy
between the delayed and instantaneous states can endanger
safety. For example, the delay was identified to be τ = 11 days
for the US COVID-19 data in Fig. 1, while the infected pop-
ulation grew from a few thousands to more than a hundred
thousand within 11 days in mid March. This difference sig-
nificantly impacts safety-critical control. Thus, we propose a
method to compensate delays via predicting the instantaneous
state from the delayed one and we analyze how the prediction
error affects safety.

A. Safety of Predictor Feedback Control
We use the idea of predictor feedback control [22]–[24] to

overcome the effect of delays. At each time moment t we use
the data that are available up to time t − τ and we calculate a
predicted state xp(t) that approximates the instantaneous state:
xp(t) ≈ x(t). Then, we use the predicted state in the feedback

law by applying A(xp(t)) ≈ A(x(t)). If the prediction is perfect
(i.e., xp(t) = x(t)), safety is guaranteed even in the presence of
delay according to Section III. Below we analyze how errors
in the prediction affect safety.

The prediction can be done by any model-based or data-
based methods; see Example 4 for instance. At this point we
only assume that the prediction error defined by

e(t) := xp(t) − x(t) (29)

is bounded in the sense that ‖e(t)‖∞ ≤ ε for some ε ≥ 0. The
prediction error leads to an input disturbance

d(t) := A(xp(t)) − A(x(t)) (30)

relative to the nominal control input u(t) = A(x(t)), which
yields the closed control loop

ẇ(t) = f (w(t)) + g(w(t))(u(t) + d(t)),

ż(t) = q(w(t)) + r(z(t)). (31)

For a Lipschitz continuous controller A (such as (8) or (16))
with Lipschitz constant c, the disturbance is upper bounded by
‖d(t)‖∞ ≤ c‖e(t)‖∞ ≤ cε =: δ. The following theorem sum-
marizes how the disturbance affects safety via the notion of
input-to-state safety [35]. For simplicity, we state this theorem
only for the safety of multiplicative compartments.

Theorem 3: Consider dynamical system (31), function h
in (7) and the corresponding set S given by (5). Assume that
the nominal controller u(t) guarantees safety without the input
disturbance d(t) by satisfying (11), while the input disturbance
d(t) defined by (30) is bounded by ‖d(t)‖∞ ≤ δ. Then, set S
is input-to-state safe in the sense that a larger set Sd ⊇ S
given by

Sd := {x ∈ R
n+m : hd(x) ≥ 0} (32)

is forward invariant (safe) under dynamics (31), where
hd : Rn+m → R is defined by

hd(x) := h(x) + δ

α
‖gi(w(t))‖∞. (33)

Proof: Similarly to (10) and (19), the necessary and suffi-
cient condition for the invariance of Sd is given by

ḣd(x(t)) ≥ −αhd(x(t)). (34)

Substituting (33), using ḣd(x(t)) = ḣ(x(t)), and taking the
derivative along the solution of (31) yields

−ϕi(w(t))−gi(w(t))(u(t)+d(t))+δ‖gi(w(t))‖∞≥0, (35)

which indeed holds, since (11) and ‖d(t)‖∞ ≤ δ hold.
How much larger set Sd is compared to set S depends on the

size δ of the disturbance that is related to the prediction error
ε. If the prediction is perfect (xp(t) = x(t)), then ε = 0, δ = 0
and Sd recovers S . However, if one implements a delayed state
feedback controller without prediction (xp(t) = x(t − τ)), then
ε and δ can be large, while Sd can be significantly larger than
the desired set S .

Example 4: A possible model-based prediction can be done
as follows. At each time moment t, we take the most recent
available measurement x(t − τ) and calculate the predicted
state xp(t) by numerically integrating the ideal delay-free
closed loop over the delay interval θ ∈ [t − τ, t]:

ẇp(θ) = f (wp(θ)) + g(wp(θ))A(xp(θ)),

żp(θ) = q(wp(θ)) + r(zp(θ)), (36)
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where xp = [wT
p zTp ]

T and the initial condition for integration
is xp(t − τ) = x(t − τ). The thick red curves in Figs. 2 and 3
involve this kind of predictor feedback to compensate the delay
τ in an ideal scenario with accurate predictor. The thin red
lines in Fig. 3 illustrate the effect of prediction error: when
τ ± 0.33τ are used during prediction instead of τ , the strict
safety guarantees may be lost, but a level of input-to-state
safety is ensured by keeping a larger set safe.

V. CONCLUSION

We viewed compartmental epidemiological models as con-
trol systems where human actions (such as quarantining
or social distancing) are considered as control input. By
the framework of control barrier functions, we synthesized
optimal safety-critical active intervention controllers that for-
mally guarantee safety against the spread of infection while
keeping mitigation efforts minimal. We highlighted that time
delays arising during state measurements can significantly
affect safety-critical control, and we proposed predictor feed-
back to compensate the delays while preserving a certain
level of input-to-state safety. We demonstrated our results on
compartmental models fitted to US COVID-19 data, where
we synthesized controllers to keep infection, hospitalization
and deaths within prescribed limits. Although translating the
proposed continuous control actions into discrete policies is
nontrivial, the controllers can guide policy makers to decide
whether mitigation efforts shall be reduced or increased, and
this recommendation can be ever updated based on new data.
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