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Towards Variable Assistance for Lower
Body Exoskeletons

Thomas Gurriet , Maegan Tucker , Alexis Duburcq, Guilhem Boeris, and Aaron D. Ames

Abstract—This letter presents and experimentally demonstrates
a novel framework for variable assistance on lower body exoskele-
tons, based upon safety-critical control methods. Existing work
has shown that providing some freedom of movement around a
nominal gait, instead of rigidly following it, accelerates the spinal
learning process of people with a walking impediment when using
a lower body exoskeleton. With this as motivation, we present a
method to accurately control how much a subject is allowed to
deviate from a given gait while ensuring robustness to patient
perturbation. This method leverages control barrier functions to
force certain joints to remain inside predefined trajectory tubes
in a minimally invasive way. The effectiveness of the method is
demonstrated experimentally with able-bodied subjects and the
Atalante lower body exoskeleton.

Index Terms—Prosthetics and exoskeletons, physically assistive
devices, control architectures and programming.

I. INTRODUCTION

ACTIVE lower-limb exoskeleton technology has the po-
tential to benefit approximately 6.4 million people in the

United States who are limited by the effects of stroke, polio,
multiple sclerosis, spinal cord injury, and cerebral palsy [1].
The term “exoskeleton” is traditionally associated with devices
that assist people with physical disabilities [2]–[5]. Additionally,
exoskeletons can also be designed to improve strength and
endurance of able-bodied persons [6], [7].

The main focus of this letter is exoskeleton technology aimed
at restoring locomotion for people with a leg pathology. While
mechanical design is an important consideration for the devel-
opment of exoskeleton devices, this letter focuses on the control
methodology. A general review of control strategies for lower-
limb assistive devices is given in [8]–[10]. Most current ap-
proaches to control powered leg devices are driven by finite-state
machines with each phase defined using heuristic parameters.
This approach typically requires the use of additional stability
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aids such as arm-crutches. Recently, dynamically stable crutch-
less exoskeleton walking has been demonstrated for patients
with paraplegia by leveraging the full nonlinear dynamics of
the system and generating dynamically stable gaits [11]. The
exoskeleton is then driven to follow these fixed trajectories.

While this full assistance approach enables crutch-less ex-
oskeleton walking, it is no longer optimal when exoskeleton
technology is extended to patients who are recovering muscle
functionality. For patients who are trying to strengthen recover-
ing muscles, partial assistance would be more appropriate than
full assistance. A previous study showed that permitting partial
assistance and variability during step training enhanced step-
ping recovery after a complete spinal cord transection in adult
mice [12]. The study also hypothesized that a fixed trajectory
training strategy would drive the spinal circuitry toward a state
of learned helplessness. These “assist-as-needed” algorithms,
which have also been explored in other publications [13]–[15],
utilize velocity field control to provide gentle guidance at a
constant rate towards the desired walking trajectory.

The algorithm presented in this letter proposes a comple-
mentary approach that leverages tools from controlled set in-
variance [16], [17]–in particular, control barrier functions [18],
[19] – to enable assist-as-needed strategies while guaranteeing
coherence of the walking pattern. The method allows users to
control their own motions when they are performing well (i.e.
staying in a tube around a nominal trajectory) but intervene when
they are not, so as to maintain a functional walking pattern.
This approach, therefore, takes motivation from the growing area
of safety-critical control [19]–[21], and extends its application
to exoskeletons with experimental demonstration with multiple
subjects.

In summary, this letter proposes a variable assistance frame-
work targeted for patients who are in the process of recovering
muscle functionality. Sec. III discusses the mathematical theory
behind the variable assistance framework. Sec. IV presents and
discusses the experimental results. Lastly, Sec. V discusses the
conclusions.

II. VARIABLE ASSISTANCE FRAMEWORK

A. The Atalante Exoskeleton Platform

The exoskeleton used for this work, named Atalante, was
developed by the French startup company Wandercraft and has
already demonstrated its ability to perform crutch-less dynamic
walking with patients with paraplegia [11]. As shown in Fig. 2,
Atalante has a total of 12 actuated joints. Each leg has three
actuated joints at the hip which control the spherical motion of
the hip, one actuated joint at the knee, and two actuated joints
at the ankle. The terms and abbreviations for the joints are as
follows: frontal hip (FH), transverse hip (TH), sagittal hip (SH),
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Fig. 1. Photos of the eight able-bodied subjects who participated in the experimental evaluation.

Fig. 2. Image of the hardware. Silhouette with joints colored. In red are the
joints that will be used for variable assistance.

sagittal knee (SK), sagittal ankle (SA), and henke ankle (HA). As
for the sensing capabilities of Atalante, the position and velocity
of each joint is measured using a digital encoder mounted on the
motor. Additional attitude estimations are obtained using four
Inertial Measurement Units (IMUs) that are located on the torso,
the pelvis, the left tibia, and the right tibia. Finally, ground force
information is obtained using eight 3-axis force sensors, four
located on the bottom of each foot. The controller is run on a
central processing unit running a real-time operating system.

B. Baseline Walking Approach

The baseline walking approach used in this work, on which
the variable assistance framework is added, consists of four
separate components (cf. Fig. 3). The first component, patient-
exoskeleton model generation, entails the creation of a patient-
specific dynamical model. The patient-exoskeleton model is
created by fusing the mass and inertia of each link of a simplified
human model with that of each link of the exoskeleton. The

Fig. 3. Structure of the gait library generation and joint tracking.

simplified human model is created using the patient mass, height,
thigh length, and shank length. The human model generation
process is based off of the anthropometric data presented in [22].
The thigh and shank length of the exoskeleton are adjusted to
match those of the patient.

Next, dynamically stable walking gaits are generated for
the patient-exoskeleton model using the Partial Hybrid Zero
Dynamics (PHZD) method [11], [23]–[27]. Multiple gaits are
generated over a grid of parameters such as patient mass, patient
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Fig. 4. Architecture of the variable assistance framework.

height, step length, step duration, etc. These gaits comprised
together form a gait library which is then fitted using a neural
network. Once trained, the neural network takes the parameters
as inputs, and outputs a joint-level trajectory for each of the 12
joints. The final component of the baseline walking approach is
tracking of the joint-level trajectories which is achieved through
basic PID control. A deadbeat is implemented to account for
early impacts. The desired trajectory each joint is tracking is
given by:

qdes(t) = qnom(t− ti) + s(t− ti) (1)

where ti is the time of the latest impact and s(t) is a cubic
polynomial satisfying:{

s(0) = q(ti)− qnom(0), s(αT ) = 0

s′(0) = q′(ti)− q′nom(0), s′(αT ) = 0
(2)

with T the nominal duration of a step and α a scalar between 0
and 1.

Additional features were also implemented to improve the
performance of nominal exoskeleton walking on hardware. First,
flat-foot ankle control was implemented to to ensure that the
swing foot always remain parallel to the ground. This ensures a
horizontal foot at impact regardless of the time of impact. The
flat-foot controller works by using inverse kinematics based on
the swing leg tibia IMU to find the ankle joint angles that result in
the foot being horizontal. These new swing ankle joint targets are
then tracked by the same PID controller as the rest of the joints.
Finally, a one degree offset was also added to sagittal ankle
desired trajectories to compensate for the effect of hardware
flexibilities.

C. Variable Assistance Architecture

As discussed in [12], the correct muscle activation pattern
is an important criterion for the spinal learning process. It is
also showed in the same work that having rigid tracking of the
desired gait is sub-optimal in that regard. Leaving some room
for the patient to be the one doing the movement yields better
results. However, with lower body exoskeletons like Atalante,
there is a strong constraint of stability, which limits how much
freedom of movement can be given to the user.

To that end, we explore an approach to precisely control how
much freedom is granted to the user, as the better the motoricity
of the patient is, the more he or she can be relied on to execute
a stable walking pattern. First, we chose joints that we want to

let the user control: the assisted joints. All the other joints will
be rigidly controlled as described in Sec. II-B. In this work, we
choose to only assist the sagittal hip and sagittal knee of the
swing leg (cf. Fig. 2 ).

The architecture of the variable assistance framework, as
shown in Fig. 4, contains four main components. First, a tra-
jectory is obtained from the neural network based on patient-
specific model and desired gait parameters. This trajectory is
modulated by the deadbeat mechanism describe in Sec. II-B.
This deadbeat mechanism is critical in this case because the
nominal joint trajectory will not be followed very accurately
when the user is in control of the assisted joints.

The filtered trajectory qdes(·) is then fed into two sepa-
rate controllers. One is the baseline controller presented in
Sec. II-B. This controller plays back the trajectory and generates
position and velocity targets qdes(t− ti) and q′des(t− ti) for
the PID controllers that in turn generate tracking torques ut(t).
The flatfoot ankle controller separately computes targets for the
swing leg ankle that are then substituted in place of the nominal
ones.

The other controller is the variable assistance controller. This
controller is the heart of the variable assistance framework. The
variable assistance controller has three subcomponents: joint
idealization, feedforward assistance and virtual guide filter. The
torques of these three subcomponents are summed together to
form a holistic “assistive torque”:

ua(t) = ui(t) + uf (t) + uv(t)

Joint Idealization: The joint idealization component computes
the torques required to compensate for gravity and friction in the
assisted joints. The goal is to make these joints as transparent as
possible such that when there is no assistance, the user does not
feel any resistance that would impede his ability to walk freely.
The idealization torques are given by:

ui(t) = kdsign (q(t)) + kvq(t) + ug(t) (3)

where ug(t) is computed numerically using inverse dynamics
on the model of the empty exoskeleton to compensate the effect
of gravity. The friction coefficients kd and kv were identified
experimentally on the hardware.

Feedforward Assistance: The joint idealization component
is not sufficient to make the exoskeleton fully transparent as
the inertia of the exoskeleton is not compensated for, which
makes the user’s legs harder to move. The feedforward as-
sistance component therefore provides feedforward torques
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uf (t) – calculated during the PHZD gait generation process [11]
– to obtain a first order level of compensation for the inertia of
the assisted joints. This does not truly compensate for inertia
but at least provides enough assistance for the user to move the
exoskeleton legs along the desired trajectory. The intensity of
both idealization and feedforward components can be adjusted
to produce varying levels of user effort.

Virtual Guide Filter: The virtual guide filter computes the
joint torques uv(t) required to limit the discrepancy between the
actual and desired trajectory of the assisted joints. This discrep-
ancy limit is described by a tube around the desired trajectory:
a virtual guide. The use of virtual guides is most common in
the field of human robot interaction [28]. The shapes and sizes
of the virtual guides can be chosen almost arbitrarily. Given a
virtual guide shape, we will talk about “assistance factor” to
describe the width of the virtual guide tube. Specifically, the
assistance factor (denoted by Ξ) will be inversely proportional
to the width of the guide as defined later by Equation (18). Using
this relationship, Ξ = 0 will be the lowest level of exoskeleton
assistance, and Ξ = 1 will be equivalent to the baseline walking
controller without any assistance. The inner workings of this
virtual guide filter will be presented in more details the next
section.

Finally, the impact detection block also records which leg of
the exoskeleton is in stance or swing, and generates an “assisted
joints selection matrix” that controls which joints are being
assisted at a given instant. Only these joints are assigned the
assistive torques. The remaining joints are assigned the baseline
tracking torques. The merging of these torques comprise the
final joint torques u(t) that are commanded to the exoskeleton.

D. Haptic Feedback

Real-time haptic feedback is provided to the user in an effort
to increase his ability to follow the desired walking gait. The
haptic feedback consists of eight small vibration motors that are
located on the front and back of the user’s thighs and shanks.
Since the user only has control over the gait for Ξ < 1, as Ξ = 1
is equivalent to the baseline controller, haptic feedback is only
given for assistance factors below 1. The level of vibration
is a function of the current joint distance to the virtual guide
boundary as well as the assistance factor, and is given by:

vibration(t) =

∣∣∣∣ q(t)− qdes(t)

qbound(t)− qdes(t)

∣∣∣∣ (1− e30(Ξ−1)
)

(4)

The amplitude of the vibration increases as the user approaches
the virtual guide and only occurs on the vibration motor that is
located on the side of the joint that matches direction of the track-
ing error. For example, if the joint is above the desired target,
the user feels a vibration on the front of the limb. Alternatively,
if the user is below the desired target angle, the user would feel
the vibration on the back of the limb. This way, the user has
a physical intuition for where the joints are with respect to the
virtual guides.

III. VIRTUAL GUIDE FILTER

We now present the methodology underlying our approach
to providing variable assistance on lower body exoskeletons:
the Virtual Guide Filter. The theory discussed draws heavily
from the field of safety-critical control [16], [17] and control

barrier functions [18], [19], [29], [30], and will be presented
here without proofs.

A. Control Barrier Functions

Let’s consider continuous-time affine control systems of the
form:

ẋ = f(x) + g(x)u. (5)

The functions f and g defined on a compact set X ⊂ Rn are
continuously differentiable. The control policies are restricted
to be functions u : R + ×X −→ Rm Lipschitz continuous in
state over X and piecewise continuous in time over R + . We
furthermore defineU ⊂ Rm to be the compact and convex set of
admissible inputs for this system, i.e. ∀x ∈ X and ∀ t ∈ R + ,
u(t, x) ∈ U . Finally, we assume that system (5) has a unique
solution over a time interval [0, T ] for any initial condition
x(0) ∈ Int(X) and with T > 0.

Let’s denote the tube we want the system to stay in for a
duration T by ∀ t ∈ [0, T ], S̃(t) ⊂ X and require that it is
compact. If S̃ is chosen arbitrarily, it will most certainly contain
states that cannot be visited without leading to the system leaving
S̃(t) before time T . Therefore, in order to be able to steer the
system to remain in S̃(t), ∀ t ∈ [0, T ], it has to be constrained to
stay inside a tube S such that S(t) ⊆ S̃(t), ∀ t ∈ [0, T ] and that
has the property of being a viable tube. Such a subset does not
contain any unsafe states and it is therefore possible to guarantee
the finite time invariance of this new tube through the use of a
local characterization of invariance (cf. [16] for more details).
The description function h of such a tube S is called a control
barrier function.

For that, let’s consider smooth practical sets as defined in [17].
To describe such sets, one only needs to consider a continuously
differentiable function h : [0, T ]× Rn → R such that:

S(t) = {x ∈ Rn | h(t, x) ≥ 0}
∂S(t) = {x ∈ S | h(t, x) = 0} . (6)

This yields the following result from [18] (see [16], [17], [19]
for more details).

Theorem 1: Given (5) and control policy u(t, x) ∈ U subject
to the assumptions above, if for almost all t ∈ [0, T ], for all
x ∈ S(t), and for an extended class K function γ : R → R:

∂h

∂x
(f(x) + g(x)u(t, x)) +

∂h

∂t
≥ −γ(h(t, x)), (7)

then h is a control barrier function, and for all x(0) ∈ S(0) the
solution to (5) remains in S, x(t) ∈ S, for all t ∈ [0, T ].

From this theorem, it naturally follows that the regulation map
US : [0, T ]× S ⇒ U characterises the set of safe inputs:

US(t, x)

�
{
u ∈ U | ∂h

∂x
(f(x) + g(x)u) +

∂h

∂t
≥ −γ(h(t, x))

}
(8)

and captures the constraint that needs to be enforced on the
control action for the system to remain inS untilT , and therefore
remain in S̃ until T . Indeed, u(t) ∈ US(t, x(t)), ∀ t ∈ [0, T ]
guarantees the finite time invariance of S.
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B. Safe Backward Image

Finding an explicit representation of viable tubes for even
trivial systems is hard and time consuming. To avoid these
complexities, the work presented in [29] proposes to use sets
that are implicitly defined as a function of the flow of the system
under a backup control law, and evaluateh(t, x) online as needed
using numerical methods.

Let U be the set of all continuously differentiable backup
control laws taking values in the set of admissible inputs:
ub : Rn → U . Under the assumptions on the control system,
we know that for all ub ∈ U there exists a solution to (5) that
is unique and defined until T . Therefore, one can define φub :
[0, T ]×X → Rn to be the flow of (5) under the control law ub.
Under these assumptions, the map φub

t : X → Rn defined by
φu
t (x) � φu(t, x) is a homeomorphism of X for all t ∈ [0, T ]

[31]. In that context we can define the following set.
Definition 1: The safe backward image of S̃(T ) is defined

to be the set:

Ωub

T (t) �
{
x ∈ X | ∀ τ ∈ [0, T − t] , φub

τ (x) ∈ S̃(τ)
}
. (9)

It is then easy to show that if Ωub

T is non empty, it is a
viability tube subset of S̃ and that for all t ∈ [0, T ] and for
all x ∈ Ωub

T (t), ub(x) ∈ UΩ
ub
T
(t, x). Furthermore, the set Ωub

T

enjoys the following property:

Ωub

T (t) =

{
x ∈ S̃ | min

τ∈[0,T−t]
h ◦ φub

τ (x) ≥ 0

}
. (10)

We thus obtain the main theoretic result of this letter aimed at
synthesizing both control barrier functions and controllers that
yield safe behavior.

Proposition 1: Given a nonlinear control system (5) with a
corresponding backup controller ub : X → U , the function:

hΩ
T (t, x) � min

τ∈[0,T−t]
h ◦ φub

τ (x), (11)

is a control barrier function. Moreover, given a smooth function
α : [0, T ]×X × R → U , the control law defined by

u(t, x) = α
(
t, x, hΩ

T (t, x)
)

(12)

is a smooth selection of UΩ
ub
T

ifα(t, x, 0) = ub(t, x), and there-
fore if x(0) ∈ Ωub

T (0) the system will remain in Ωub

T , and thus
in S̃ under such a control law.

To be able to evaluate that policy online, one only has to be able
to evaluate the flow of the systemφub

τ for all τ ∈ [0, T − t]. Even
though this cannot be done numerically, it can be approximated
by numerically integrating the dynamics and evaluating the flow
on a finite set of points in [0, T − t] (see [29], [30]). Let’s now
specialize these results for our specific application.

C. Application to Joint Based Filtering

As presented in Sec. II, each joint is idealized and handled
independently. We therefore consider the following dynamics
for each joint:

Jq̈ = uv + uf (t− ti) + uext, (13)

where J is the inertia at the joint, uv is the torque the virtual
guide filter can apply, uf (t) is the feedforward torque applied to
the joint, and uext is the torque applied by the user on the joint.
The state of the system is therefore x = [q, q̇]
.

Fig. 5. Left hip joint angles for the exoskeleton when empty and hanging in
the air. Each plot includes 30 right stance steps and corresponds to a different
virtual guide shape.

The virtual guide S̃ we want to constrain the joint to stay in
is characterized by:

h(t, x) = 1−
(
qdes(t− ti)− q(t)

qbound(t− ti)

)2

(14)

for some properly chosen qbound to achieve the desired shape of
the guide (cf. Fig. 5 for examples of shapes).

Because uext is not known ahead of time, a robust version
of the results presented before has to be actually used. These
extensions are straightforward and will not be presented here
due to space constraints, but one must note that they can be used
here because system (13) is monotone [32]. In this case, the safe
backward image is characterized by:

hΩ
T (t, x) = min

τ∈[0,T−t]

uext∈{umin
ext, u

max
ext}

h ◦ φub,uext
τ (q), (15)

where umin
ext and umax

ext are the extreme values of the disturbance
the user can generate. These values were determined experi-
mentally by measuring the maximum joint torque that patients
could generate. So in order to evaluate hΩ

T (t, q), the numerical
integration of the dynamics only has to be performed twice
each time assuming the extremal values of the disturbance. The
backup policy is chosen to be:

ub(t, x) = Kp(qdes(t− ti)− q) +Kd(q̇des(t− ti)− q̇),
(16)

for some properly chosen gains Kp and Kd. For this work, these
gains were chosen to be the same as the ones used for the PIDs
of the baseline controller.

Finally, the filtering law is given by:

uv(t, x) = (λ(t, q) + (1− λ(t, q)) λd(t, q))ub(t, q, q̇), (17)

where λ(t, q) = (1− hΩ
T (t, q))

3 and λd(t, q) = ζ
dhΩ

T (t,q(t))

dt for
some derivative gain ζ as it is easy to verify that for all t ∈
[0, T ], uv(t) ∈ UΩ

ub
T
(t, x(t)). The usage of the derivative term

λd(t, q) helps dampen the behavior of the safety filter. The width
of the virtual guide is chosen to be correlated with the assistance
factor as defined by:

qbound = ± (0.5 + 7(1− Ξ)) degrees (18)
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Fig. 6. Top figure: variable assistance testing procedure. Bottom figure:
metabolic rates as aligned with the testing procedure.

and λ(t, q) is coupled with the assistance factor by λ(t, q) =
(1 + (Ξ10 − 1)hΩ

T (t, q))
3 in order to avoid high frequency os-

cillations when the virtual guide gets small.

IV. EXPERIMENTAL RESULTS

The variable assistance controller was demonstrated in three
separate experiments. First, it was tested on the empty exoskele-
ton to verify its effectiveness for various tube shapes. Second,
the entire framework was tested with eight able-bodied human
subjects of masses and heights from 58 kg to 91 kg and 1.62 m
to 1.93 m (cf. Fig. 1). Lastly, the framework was tested over a
larger set of assistance factors for a single subject.

Demonstration of the Virtual Guide Filter: The initial valida-
tion experiments were performed on the empty exoskeleton as
it hung in the air in an effort to show the behavior of the filter
without user perturbations and without feedforward torque. The
plots of the experimental results, shown in Fig. 5, illustrate the
actual joint angles over 30 steps with each step overlaid on top
of each other. It can be seen that for all tube shapes, the actual
joint angles remained inside of the bounds and the filter only
acts when necessary.

Full Assistance versus Partial Assistance: The experimental
testing conducted for able-bodied subjects consisted of walking
trials lasting five minutes each. The format of each trial is shown
in Fig. 6 and is as follows. First, 90 seconds of walking with
full assistance, then 30 s of transitioning to the desired level of
assistance and finally 180 s of walking at that desired assistance
factor. “Full Assistance” corresponds to an assistance factor
Ξ = 1, which is equivalent to the baseline controller without
the proposed framework. “Partial Assistance” corresponds to
Ξ = 0.5, i.e. qbound = ±4 deg (cf. Fig. 7). Beside the patient
model parameters, the gait parameters were the same for all
subjects. The step length and duration were chosen to be 0.16 m
and 0.8 s respectively.

In order to demonstrate the effectiveness of the framework,
four trials were conducted per subject. The first two trials were
one with Full Assistance and one with Partial Assistance, where
the subjects were asked to be completely passive and let the
exoskeleton do the work. The same two trials were then repeated

Fig. 7. Comparison at the joint level between a subject actively trying to walk
and being passive under both full and partial assistance of the exoskeleton.
Because of early striking, most steps ended before the phase variable reached 1,
unlike in Fig. 5 where the exoskeleton was in the air.

but this time asking the subjects to: “Do whatever feels necessary
to track the nominal gait”.

The required assistive torque, as well as the trajectory track-
ing, for the four trials of one subject are presented in Fig. 7. It
can be observed that when the subject is passive under partial
assistance, the joint trajectories tend to group near the virtual
guides as expected. Alternatively, when the subject is active
under partial assistance the actual joint trajectories tend to span
more of the virtual guide as the subject is actively trying to avoid
hitting the bounds of the guide. In all cases, the trajectories stay
contained within the virtual guides.

Human metabolic expenditure was recorded for all subjects as
it provides critical insight into how much effort the user is exert-
ing. The metabolic rate was determined from oxygen and carbon
dioxide exchange rates as measured by a COSMED K4b2. The
exchange rates were converted to a metabolic rate using the
equation developed by Brockway et al. [33]. When calculating
the metabolic rate, the average metabolic rate recorded over the
baseline part of every trial was subtracted from the average rate
of the exercise part to isolate the part of the total metabolic power
used for compensating for the varying levels of assistance.

The results for all eight subjects are summarized in Fig. 8. This
figure shows that when the subject was passive, the metabolic
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Fig. 8. Comparison between tracking accuracy and subject power consump-
tion. The passive data correspond to the subject not doing anything. The active
data correspond to the subject trying to follow the nominal gait. Full assist
correspond to nominal PID control around the gait, whereas partial assist
corresponds to ±4 deg wide virtual guides.

rate remained consistent between full assistance and partial
assistance. The metabolic rate when passive also is consistently
lower than the metabolic rate of the subjects when active at par-
tial assistance. An interesting observation is that the metabolic
rate of the subjects when active at full assistance is not much
different from that of the subjects when passive. This suggests
that the subjects do not feel the need to provide more energy
than necessary when the exoskeleton is already providing full
assistance. On the other hand, partial assistance incentivises
users to contribute to the tracking of the gait which translates
into an increase in metabolic rate as expected. Finally, note that
on average, the subjects were able to improve the accuracy of
tracking in Partial Assist when actively trying.

Varying Assistance Factors for One Subject: The testing pro-
cedure for the final experiment was the same as discussed pre-
viously and shown in Fig. 6 but was repeated with a larger set of
assistance factors. The trials were done, in order, with assistance
factors Ξ ∈ {1.0, 0.75, 0.5, 0.25, 0.0, 0.25, 0.5, 0.75, 1.0}. A
five minute break was taken in between each trial to let the
subject return to a resting metabolic rate. The subject also
completed one five minute trial while walking on the treadmill
at the same velocity as during the trials to compare the subject’s
nominal walking metabolic rate with that of the exoskeleton
testing. This entire procedure was repeated on three consecutive
days with the same subject.

The metabolic power consumption as well as the average
tracking error for each segment is reported in Fig. 9. The sub-
ject’s average resting oxygen and carbon dioxide exchange rates,
measured at the start of testing, are subtracted from the recorded
exchange rates of each trial. Interestingly, it can be seen that the
baseline metabolic rate is relatively consistent between all trials
and that the data is symmetric around the 0.00 assistance factor
trial. This confirms that the increase in exercise metabolic rate
for lower assistance factors is due to the lowered assistance and
not exhaustion of the subject.

Fig. 10 presents the metabolic rates of the exercise part
normalized by the baseline ones for the different values of
assistance factor, as well as the corresponding tracking errors.
These normalized values indicate a clear trend: The normalized
metabolic rate and the normalized tracking error increase as the
assistance factor decreases.

V. CONCLUSION

In this letter we have presented and demonstrated a framework
to achieve variable assistance with a lower body exoskeleton.

Fig. 9. Raw metabolic rate and tracking error in chronological order for the
baseline and exercise segments as defined in Fig. 6. The step length and duration
are, respectively, 0.16 m and 0.8 s.

Fig. 10. Comparison between tracking accuracy and subject normalized power
consumption.

This result was achieved using tools from controlled set invari-
ance that yield performance guarantees via a virtual guide filter.
Through experimental results (cf. video [34]), it was found that
the size of the virtual guide had a direct correlation with the
amount of power subjects had to provide to track a nominal gait.
The authors would also like to note a few additional takeaways.
First, it was found that as the assistance factor Ξ was decreased,
the operator standing behind the exoskeleton had to help with the
stability of the exoskeleton. The authors plan on addressing this
issue by adding an active stabilization layer into the framework.
Second, it was hard for subjects to track the generated gaits.
This is mostly attributed to the fact that the gaits are not very
anthropomorphic. Additionally, the proposed haptic feedback
was sometimes hard to interpret and act upon by the user, so
better feedback strategies are being investigated. Future work
includes adapting the walking gaits to match that of the user, as
well as investigating how the variable assistance can be used in
a true clinical rehabilitation setup.
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