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ular, or potentially restrictive, assumptions about the joint data distribution. Current methods
for testing spatial covariance are often intended for specialized inference scenarios, usually with
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covariance structure, which is valid for a variety of inference problems (including nonparametric
hypotheses) and applies to a large class of spatial sampling designs with irregular data loca-
tions. In this setting, spatial statistics have limiting distributions with complex standard errors
depending on the intensity of spatial sampling, the distribution of sampling locations, and the
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we develop the method for formally testing isotropy and separability in spatial covariance and
consider confidence regions for spatial parameters in variogram model fitting. A broad result
is also presented to justify the method for application to other potential problems and general
scenarios with testing spatial covariance. The approach uses spatial test statistics, based on an
extended version of empirical likelihood, having simple chi-square limits for calibrating tests.
We demonstrate the proposed method through several numerical studies.
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2 Van Hala et al.

1. Introduction

Frequency domain analysis is a well-known approach for examining covariance structures
of random fields [5, 12, 37, 36]. Recently, a variety of frequency domain methods have
been proposed for problems in assessing spatial covariance, particularly for spatial lattice
data. For example, [8, 9] developed a spectral method for testing for nonstationarity, [10]
considered an ANOVA-like test for covariance separability of spatio-temporal processes,
and [7] proposed goodness-of-fit tests based on the spectral density for spatial lattice data.
In contrast to regular time series and space lattice data [14, 16, 31, 35], the spectral
analysis of irregularly located spatial data has received less attention but is a topic
of increasing interest (see, [17] and [24] for spectral density estimation with Gaussian
processes, and [1, 4, 29] for spectral analysis under more general setup). However, testing
procedures for assessing spatial covariance structure are lacking in the frequency domain,
particularly with irregularly located spatial observations. To address this gap, we propose
a general spatial methodology for frequency domain estimation and testing of spatial
covariance structures which applies to a large class of spatial processes allowing arbitrary
stochastic patterns in spatial locations and various rates of infill sampling (i.e., spatial
sampling of differing intensity levels).

To describe the methodology, we highlight and explain some of its advantages for such
spatial data. Namely, the methodology

(a) is valid without stringent distributional assumptions on the underlying spatial pro-
cess, such as Gaussianity (e.g., [24]), or strong conditions on the generation of
spatial sampling locations, such as uniformity (e.g., isotropy tests of [13] and sta-
tionarity tests of [1, 4]).

(b) does not require any explicit variance estimation steps for test statistics, where the
latter is extremely difficult given the considerations to be described below.

(c) applies in a unified manner to different spatial sampling regimes which can be
hard to disambiguate in practice and between which the large sample properties
of spatial statistics often differ (i.e., pure increasing domain vs mixed increasing
domain structures in the following).

(d) has a flexible formulation that allows for several types of spatial estimation and
testing problems to be treated in the frequency domain, including assessments
about spatial covariance that may not be fully parametric in nature.

The first three points relate to challenges in the spectral analysis of spatial processes
observed at irregularly spaced locations, which do not exist for the more standard cases
of equi-spaced time series or spatial lattice data. For example, the latter data cases are
associated with a simple compact frequency region (e.g., [0, 2π] with time series), which
is not true for spatial data with irregular locations in Rd (i.e., the frequency regions
then becomes Rd). A more serious complication is the diversity of sampling schemes for
spatial data with irregular locations and its effect on the large sample properties of spatial
statistics. In contrast to spatial lattice data, different asymptotic structures can arise
with irregularly located spatial data, namely, pure increasing domain (PID) and mixed
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Spatial Empirical Likelihood Based Inference 3

increasing domain (MID) asymptotics (cf. [6]), depending on the relative size of a spatial
sampling region to the number n of spatial observations (see Section 2). The limiting
distributions of statistics, and in particular the form of their standard errors, often change
dramatically depending on the PID vs MID frameworks (see [20]) and further depend
intricately on additional factors, such as the (unknown) distribution of sampling locations
and the underlying process dependence structure. Spectral analysis may be simplified by
assuming a Gaussian process or a uniform distribution to spatial locations (see [24]),
but the standard errors involved remain complicated and difficult to estimate directly
without restrictive assumptions. Hence, a motivation for the proposed spatial method
with irregular spatial data is its application without direct variance estimation steps and
its robustness to the aforementioned spatial factors.

The main idea of the spatial method, related to the last point (d) above, is to pre-
scribe estimation and testing problems in the frequency domain by formulating spectral
estimating equations. In particular, if θ ∈ Rp denotes a spatial “parameter” (which may
not be model-based), then a practitioner specifies a set of r ≥ p estimating functions
Gθ(ω) to link frequencies ω ∈ Rd and values θ under a spectral moment condition∫
Rd Gθ(ω)φ(ω) = 0r, where φ(·) represents the process spectral density and d is the di-

mension of spatial sampling. The choice of functions Gθ(·) reflects the inference intended
in the frequency domain. The method’s generality stems from being able to formulate
estimating functions which satisfy a moment condition under an assumed spatial covari-
ance form that need not be parametric model-based, even if unknown spatial quantities
(as θ above) are involved. For stating such functions, the quantities θ can often be based
on the normalized spectral distribution

Φ0(t) =

∫
Rd

I(−∞,t](ω)φ(ω) dω

/∫
Rd

φ(ω) dω for t = (t1, ..., td)
′ ∈ Rd, (1.1)

where I(·) denotes the indicator function and (−∞, t] = (−∞, t1]× · · · × (−∞, td], or on
process autocorrelations ρ(h) = σ(h)/σ(0) where

σ(h) = Cov[Z(0), Z(h)] =

∫
Rd

cos(h
′
ω)φ(ω)dω, for h ∈ Rd. (1.2)

Hence, tests of spatial covariance are found by assessing whether generic spatial quantities
θ, related to spectral distributions or correlations, satisfy constraints

∫
Rd Gθ(ω)φ(ω) = 0r

imposed by Gθ(·) under a hypothesized covariance structure. For concreteness, we specif-
ically treat spatial problems in testing isotropy, testing separability, and variogram model
fitting in sections to follow; extensions to other problems are also given. Once estimat-
ing functions are prescribed, log-ratio-type test statistics are computed in a simple and
unified manner using an extended version of spatial empirical likelihood. These statistics
are shown to have chi-square limits for calibrating spatial tests, without specification of
a joint data distribution or explicit estimation of the confounding factors associated with
irregularly located spatial data.

The rest of the paper is organized as follows. Section 2 explains the spatial sampling
framework as well as an empirical likelihood (EL) scheme for processing estimating func-
tions. Sections 3-5 develop and numerically illustrate the frequency domain methodology,
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4 Van Hala et al.

respectively, for tests of isotropy, separability, and variogram parameters. In Section 6,
a broad and unified result is further provided to validate the general methodology for
testing spatial covariance structure over a wide range of potential problems. Section 7
highlights some important aspects of the proofs involved, and Section 8 provides conclud-
ing remarks. Proof details and extended numerical results can be found in [Supplement
A] and [Supplement B].

We end this section with background on EL, as a device here for assessing spatial
estimating functions in the frequency domain. EL is a resampling-type method that
formulates a likelihood function nonparametrically by probability profiling data [27, 28,
for iid data]. However, the application of EL for dependent data, particularly spatial
data, is challenging because EL formulations for independent data typically fail with
correlated data [19]. Data blocking is one approach known for extending EL to spatial
lattice data (see [18, 25]), but this does not extend readily to irregularly located spatial
data (outside of inference about the marginal distribution of spatial observations, [34]).
See [26] for a review of EL with dependent data. Recently, [3] (henceforth [BLN]) proposed
a frequency domain EL using a spatial periodogram. Our spatial testing methodology is
based on their initial EL approach, but differs by being grounded on point estimation
(i.e., EL maximization) as well as broader (i.e., potentially over-identified) estimating
functions. These aspects are crucial here for EL assessments of spatial structure, which
represent formal tests of spatial “moment conditions” and require normalizing EL-ratios
by their maximized values. The spatial EL framework of [BLN], in contrast, is restricted
to tests of parameter values; this approach lacks point estimation steps and is invalid
for performing moment tests of spatial structure. However, the proposed spatial method
additionally applies to both moment and parameter tests, where the point estimation
steps can also induce better performance for parameter testing compared to the EL
version of [BLN] (e.g., better power properties in Section 6). See Section 2.2 for some
further comparative details and Section 7 for an outline of technical arguments needed.

2. Preliminaries

2.1. Spatial Sampling Scheme

We adopt a general spatial sampling framework as described in [15] and [BLN]. Suppose
that {Z(s) : s ∈ Rd} represents a mean zero, real-valued, second-order stationary process,
which is observed at n irregularly located locations s1, . . . , sn over a sampling region
Dn ⊂ Rd. The spatial region Dn = λnD0 is prescribed by inflating a fixed “template”
subset D0 ⊂ (1/2, 1/2]d (containing the origin) by sequence {λn} of scaling factors (λn →
∞ as n→∞). Note that, this formulation allows a variety of sampling region shapes, such
as polygonal, ellipsoidal, and star-shaped regions that can be non-convex. In practice, λn
can be determined by the diameter of a sampling region for use here (cf. [11, 15, 23, 24]).
Let Z = {0,±1,±2, . . .}. To avoid pathological cases, we require that for any sequence
of real numbers {bn}n≥1 such that bn → 0+ as n→∞, the number of cubes of the form
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bn(j + [0, 1)d), j ∈ Zd that intersect both D0 and Dc0 is of the order O([bn]−(d−1)) as
n→∞. This boundary condition holds for most regions of practical interest.

We next consider specification of the locations s1, . . . , sn within Dn. Independently
of {Z(s) : s ∈ Rd}, let {Xk}k≥1 ⊂ D0 be a sequence of independently and identically
distributed (iid) Rd-valued random vectors, with probability density function f(x) with
support on the closure of D0. The sampling locations s1, . . . , sn are then generated as
si = λnXi, i = 1, . . . , n. This stochastic sampling design allows sampling sites to have an
arbitrary and potentially non-uniform density over the sampling region, improving upon
the common approach of modeling irregularly spaced sites with a homogeneous Poisson
point process. Further, this formulation allows the number n of sampling sites to grow
at a different rate than the volume O(λdn) of the sampling region Dn = λnD0, leading to
different asymptotic structures (see [6, 20]). Suppose c∗ = limn→∞ n/λdn ∈ (0,∞]. The
case of c∗ ∈ (0,∞), in which the number of spatial observations is proportional to the
volume of the region, corresponds to pure increasing domain (PID) asymptotics. On the
other hand, the case c∗ = ∞ corresponds to sampling with a heavy infill component,
whereby the number of spatial observations grows at a faster rate than the size of the
sampling region; we refer to this as mixed increasing domain (MID). As a complication,
limit laws of even simple statistics, such as sample means, typically change with the type
of spatial asymptotic structure [20]; see also [6, 21, 24, 30] and the references therein for
further details. Note that neither the type of spatial sampling structure (PID/MID) nor
the density f(x) of locations need to be known or estimated in our testing approach to
follow.

The spatial testing method uses a periodogram for irregularly located spatial data,
which we define next. Denote the discrete Fourier transform (DFT) of the spatial data
{Z(s1), . . . , Z(sn)} at a frequency ω ∈ Rd as

dn(ω) = λd/2n n−1
n∑
j=1

Z(sj) exp (ıω
′
sj), ı ≡

√
−1

and define the (raw) periodogram as In(ω) = |dn(ω)|2. Unlike the (equi-spaced) time
series setting, the spatial periodogram here can have a nontrivial bias depending on the
spatial asymptotic structure and the spatial sampling density f (cf. [2]). Indeed, [24]
showed that

lim
n→∞

EIn(ω) = c−1∗ σ(0) +Kφ(ω) for ω ∈ Rd,

where φ(·) is the spectral density of the process Z(·), σ(·) denotes the process covariance
function, K = (2π)d

∫
Rd f

2 and limn→∞ n/λdn = c∗. Under PID (c∗ ∈ (0,∞)), there exists
a non-trivial bias component, which vanishes asymptotically in the MID case (c∗ =∞).
To address this, we use a bias-corrected periodogram as

Ĩn(ω) = In(ω)− n−1λdnσ̂n(0), ω ∈ Rd

where σ̂n(0) = n−1
∑n
j=1 (Z(sj)− Z̄n)2 is the sample variance with Z̄n = n−1

∑n
i=1 Z(si).
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6 Van Hala et al.

2.2. Spectral Estimating Functions

We next describe a framework for setting spectral estimating functions and the device for
assessing these with EL for later spatial testing. Suppose a spatial parameter θ ∈ Θ ⊂ Rp
is connected to the spectral density φ(·) of the process Z(·) through a system of estimating
equations. Specifically, let G : Rd×Θ→ Rr be a vector of r ≥ p estimating functions (i.e.,
functions of frequencies and parameters) such that Gθ(ω) ≡ G(ω; θ) satisfies a spectral
moment condition ∫

Rd

Gθ(ω)φ(ω) dω = 0r, (2.1)

at a true parameter θ0 ∈ Θ, where 0r ∈ Rr denotes the zero vector. Because the spec-
tral density φ(·) is symmetric, we assume that Gθ(·) is also symmetric, i.e., one may
replace Gθ(ω) with [Gθ(ω) + Gθ(−ω)]/2, ω ∈ Rd. The case of “over-identified” esti-
mating functions, with r functions for p < r parameters, will be used to assess whether
the spectral moment (2.1) holds for some parameter θ0 ∈ Θ, thereby providing tests of
spatial covariance structures. Sections 3-5 illustrate such testing problems.

To assess estimating functions satisfying (2.1), we compute the (bias-corrected) spatial
periodogram along a discretized set of frequencies in order to mimic the spectral mean
(2.1). Such frequencies are selected on a grid in a way that ensures the corresponding
periodogram variants are approximately uncorrelated. That is, by evaluating the spatial
periodogram on a frequency grid with appropriate frequency spacing, we may obtain an
important spatial analog of the independence (or “whitening”) property associated with
the typical periodogram for regular time series. At the same time, the frequency grid
needs to be large enough to adequately approximate the spatial integral in the spectral
moment (2.1). To formulate the frequency grid, for κ ∈ (0, 1), η ∈ (κ,∞), and C ∈ (0,∞),
define a set of Fourier frequencies as

N = Nn =
{
jλ−κn : j ∈ Zd, j ∈ [−Cληn, Cληn]d

}
.

Let N = |N | be the cardinality of N , and let ωkn, k = 1, . . . , N (with arbitrary ordering)
denote the elements of N . The set or grid N has two relevant properties. Firstly, the
frequencies {ωkn}Nk=1 form a regular lattice over the set [−Cλη−κn , Cλη−κn ] ↑ Rd as n→∞,
which expands to cover the entire frequency domain Rd asymptotically. Additionally,
any pair of frequencies ωkn,ωjn ∈ N in the set is asymptotically distant (i.e., λn‖ωkn −
ωjn‖ ≥ λ1−κn → ∞), implying their associated periodogram values are approximately
independent by results in [2]. It is also worth mentioning that from the above formulation,
it is evident that the frequency grid depends directly on the size of the spatial region
λn but not the spatial sample size n. That is, in large samples and with an increasing
sampling region (λn → ∞ as n → ∞), a grid specified on the basis of spatial region
size λn along with tuning parameters (e.g., C, κ , and η), should provide valid inference,
regardless of the ratio of n and λdn. Hence, our simulation studies presented in Sections
3-5 and in [Supplement B] are designed to reflect the theory where we always consider
basing the grid choice on the spatial region size (not given the sample size n).

imsart-bj ver. 2014/10/16 file: SFDEL-Testing2.tex date: June 4, 2019



Spatial Empirical Likelihood Based Inference 7

To assess the plausibility of a parameter θ, using an estimating function Gθ(·) fulfilling
(2.1), the corresponding (normalized) EL function for θ is defined as

Rn(θ) = sup

{
N∏
k=1

Npk :

N∑
k=1

pk = 1, pk ≥ 0,

N∑
k=1

pkGθ(ωkn)Ĩn(ωkn) = 0r

}
,

based on spatial periodogram along the frequency grid. The EL function is a multi-
nomial likelihood found by probability profiling the (approximately independent) pe-
riodogram variants under a constraint that imitates the moment condition (2.1). This
provides a nonparametric way of measuring the strength of evidence in support of θ,
analogously to parametric likelihood, and the numeric computation ofRn(θ) follows well-
known recipes (see [27, 28]). Maximizing the function Rn(θ) over the parameter space

Θ ⊂ Rp produces a point estimator θ̂n ∈ Θ (or the maximum EL estimator (MELE) of
θ). In what follows, our frequency domain tests are based on modified log-ratio statistics,

−2ân log[Rn(θ)/Rn(θ̂n)] and −2ân logRn(θ̂n), involving a simple scaling factor

ân =

∑N
j=1 ‖Gθ̂n(ωjn)‖2Ĩ2n(ωjn)∑N
j=1 ‖Gθ̂n(ωjn)‖2I2n(ωjn)

. (2.2)

We mention some relevant EL context to compare our testing results to follow to the
spatial EL version of [BLN]. The latter method involves statistics based on the form
−2a(θ) logRn(θ) for testing claims about parameter values θ, where a(θ) is defined by

substituting θ for θ̂n in (2.2). These statistics are not valid, however, for testing mo-
ment conditions (i.e., testing if the spectral moment (2.1) holds for some θ0), for which

−2ân logRn(θ̂n) is valid in contrast. This is because their EL work does not consider

steps of point estimation/maximization θ̂n, which are essential to general test statistics

of spatial covariance (e.g., Rn(θ̂n)-based). The EL methodology changes dramatically

by involving maximizers θ̂n and Section 7 briefly outlines some issues in establishing
distributional theory for our frequency domain test statistics, where complications arise
in that correct “scaling” of test statistics depends intricately on the underlying type of
spatial sampling asymptotics (e.g., PID/MID). By using a single data-based factor ân
based on the MELE θ̂n in (2.2), test statistics self-adjust to any effect of the spatial
asymptotics and retain simple chi-square limits in both PID/MID sampling regimes. In

addition to tests of spatial structure, statistics based on θ̂n can also be formulated here
to test hypotheses about parameter values θ, where the EL approach of [BLN] is also

applicable. Compared to the latter method, however, test statistics based on θ̂n, given by
the log-ratio −2ân log[Rn(θ)/Rn(θ̂n)], can exhibit better performance (cf. Section 5.2)
and have increased power properties (cf. Section 6) in parameter testing cases.

3. Assessing Spatial Isotropy

Consider the problem of assessing whether the underlying process exhibits isotropy. Recall
the spatial process Z(·) is isotropic if its covariance is only a function of distance, i.e.,
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σ(h1) = σ(h2) if ‖h1‖ = ‖h2‖ or, alternatively its spectral density function φ(ω) ≡
φ(‖ω‖) is a function of frequency through ‖ω‖. Section 3.1 explains the methodology
and Section 3.2 numerically examines its performance.

3.1. Methodology

For testing purposes, we prescribe over-identified estimating functions which satisfy the
spectral moment condition (2.1) under assumptions of isotropy. We base these functions
on the normalized spectral distribution Φ0(·) from (1.1). To illustrate, for a vector t1 ∈
Rd, select r1 orthogonal d×d matrices, say Q1,1, . . . ,Q1,r1 (i.e., Q′1,iQ1,i = Id×d). Under

isotropy, it holds that θ1 = Φ0(Q1,it1) for each i = 1, . . . , r1, and the r1 functions

G∗θ1(ω) = [G̃θ1(ω)+G̃θ1(−ω)]/2 for G̃θ1(ω) = [I(−∞,Q11t1](ω)−θ1, . . . , I(−∞,Q1,r1
t1](ω)−

θ1] fulfill the moment condition (2.1) with p = 1 parameter θ1. In general, one may
choose p vectors t1, . . . , tp ∈ Rd and ri orthogonal matrices Qi,1, . . . ,Qi,ri for each ti to
formulate p parameters θ = (θ1, . . . , θp)

′ as

θi = Φ0(Qi,jti), j = 1, . . . , ri, i = 1, . . . , p

and analogously develop r =
∑p
i=1 ri > p estimating functions

Giso

θ (ω) = [G∗θ1(ω), . . . , G∗θp(ω)]′. (3.1)

Typically, one may choose small p and r (e.g., p = 1, r = 2 in Section 3.2). With

the estimating functions (3.1), a test statistic −2ân logRn(θ̂n) is formulated from EL
(Section 2.2) to test for isotropy (i.e., if

∫
Giso

θ (ω)φ(ω)dω = 0r holds at some θ0).
To state a formal result on the test’s validity, we require some mild assumptions on

the dependence of the mean zero, second-order stationary process {Z(s) : s ∈ Rd},
expressed in terms of mixing/moment conditions. For brevity, these regularity conditions
(denoted as Conditions (R.1)-(R.5)) are described in the [Supplement A]. For the result,

note that the distribution of the test statistic −2ân logRn(θ̂n) depends on two types
of randomness, due to the spatial process {Z(s) : s ∈ Rd} and the random sequence
X ≡ {Xi}i≥1 ⊂ Rd determining the spatial locations (Section 2.1). In the following,
P (·) ≡ P (·|X) denotes probability conditional on the collection of random vectors X,
while PX denotes the joint distribution of X1,X2, . . .

Theorem 1. (PID or MID cases) Suppose Conditions (R.1) - (R.5) hold, the estimat-
ing functions (3.1) are used, and limn→∞ n/λdn ∈ (0,∞]. Then, under H0 : “{Z(s) : s ∈
Rd} has an isotropic covariance structure,”

−2ân logRn(θ̂n)
d−→ χ2

r−p as n→∞, a.s. (PX).

That is, regardless of the spatial sampling locations X1,X2, . . ., the distribution of
the test statistic based on the MELE θ̂n is guaranteed to have a chi-square limit under
the null hypothesis. One can additionally establish that the test statistic diverges to
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+∞ if the estimating functions Giso

θ (ω) in (3.1) no longer satisfy the moment condition∫
Giso

θ (ω)φ(ω)dω = 0r (i.e., isotropy is violated). Importantly, this distributional result
for the test statistic holds equally for both PID and MID spatial sampling structures
(i.e., c∗ ∈ (0,∞) or c∗ = ∞ for c∗ = limn→∞ n/λdn), which is not often possible in the
frequency domain with irregularly located spatial data (cf. [24]), and again requires no
variance estimation steps. We next consider a numerical study of our test for isotropy.

Remark 1: Estimating functions could be based on correlations (1.2) to prescribe
tests of isotropy and the result in Theorem 1 would still hold. For example, by con-
sidering a single correlation θ1 = ρ(h1) (i.e., p = 1) and r > 1 lags h1, . . . ,hr ∈
Rd satisfying ‖hi‖ = ‖h1‖, i = 2, . . . , r, the resulting estimating functions Gθ1(ω) =[
cos(h

′

1ω)− θ1, · · · , cos(h
′

rω)− θ1
]′

would satisfy the moment condition (2.1). More

generally, one may formulate estimating functions Gθ(ω) based on p correlations θ =
(θ1, . . . , θp)

′ with lag sets for each θi. However, numerical studies (not shown here) indi-
cate that the estimating functions (3.1) have greater power for assessing isotropy than
those based on correlations. Intuitively, for our tests involving the spatial periodogram,
the spectral distribution function is more natural, without a translation step of the fre-
quency domain (spectral distribution) into the spatial domain (covariances).

Remark 2: In formulating results, we assume the process Z(·) has mean zero for simplic-
ity. In practice, observations {Z(si)}ni=1 can be replaced with sample centered versions
{Z(si)− Z̄n}ni=1, Z̄n = n−1

∑n
i=1 Z(si), in computing the periodogram In(·). The results

still hold and we implement this centering in simulation studies to follow.

3.2. Illustration

In this section we present a simulation study of the testing method for spatial isotropy.
Considering sampling regions Dn = λn[−1/2, 1/2)2, λn = 24, 36 and sample sizes n =
1200, 1800, 2400, 3600, we generated iid locations s1, . . . , sn ∈ Dn for si = λnXi with
Xi’s drawn from a uniform distribution on [−0.5, 0.5]2 and a Gaussian process {Z(s) :
s ∈ R2}. We evaluated the (sample mean-centered) periodogram on a frequency grid
Nn = {λ−κn j : j ∈ Z2∩ [−Cλn, Cλn]2}, with varying values C = 1, 1.5, 2 and κ = 0.05, 0.1,
where C and κ respectively control the number and spacing of frequencies for the EL
device (Section 2.2). These C, κ values induce a set of frequencies that is large but with
sufficient spacing to ensure periodogram variants are approximately independent (e.g.,
choices of κ roughly create spacings between frequencies of 0.5 in horizontal/vertical
directions).

For the simulation study presented below we considered an isotropic exponential cor-
relation function σ(h) = exp(−‖h‖), h = (h1, h2)′ ∈ R2 or a directional (anisotropic)
correlation σ(h) = exp(−2h2); the results are invariant to the mean and variance of
the process. We applied the spectral distribution-based estimating functions Giso

θ (·) from
(3.1) with vector sets of the form {±t1} for t1 = (1,−1)′ (vector set B1) or t1 = (2,−2)′
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(vector set B2); these provide r = 2 functions with p = 1 parameter under isotropy
(corresponding to two orthogonal matrices Q1,1,Q1,2 in (3.1) as the identity matrix and
a 180◦ rotation). We also considered a further vector set (B3) by combining B1/B2 sets.
Empirical size and power results for the tests of isotropy with vector sets B1 and B2
appear in Tables 1-2. It should be noted again that the EL testing methodology is fully
non-parametric (i.e., no assumptions required about joint distributions or even the spatial
pattern of locations), which can add distortion to test calibrations under spatial depen-
dence for moderate sample sizes. However, better sizes and powers resulted from using
small vector sets (e.g., B1 and B2) compared to larger, more complicated sets (e.g., B3).
In general, regardless of the vector set, size and power improved for larger sampling re-
gions and the power often improved as the sample size n increased. The testing method’s
sensitivity to choices of κ, C seemingly decreased as n increased.

Table 1. Empirical size for tests of isotropy based on the spectral distribution function (vector
sets B1 and B2); based on 1000 runs with nominal size 0.1

B1 B2

λn C κ
n n

1200 1800 2400 3600 1200 1800 2400 3600

24

1
0.05 0.193 0.203 0.194 0.173 0.224 0.259 0.295 0.256
0.1 0.185 0.179 0.156 0.125 0.266 0.245 0.207 0.164

1.5
0.05 0.168 0.186 0.198 0.181 0.190 0.230 0.266 0.254
0.1 0.169 0.192 0.161 0.133 0.206 0.238 0.223 0.182

2
0.05 0.179 0.150 0.187 0.187 0.204 0.187 0.231 0.243
0.1 0.172 0.155 0.193 0.125 0.190 0.208 0.222 0.198

36

1
0.05 0.163 0.142 0.173 0.196 0.169 0.173 0.211 0.227
0.1 0.169 0.156 0.171 0.175 0.172 0.202 0.216 0.189

1.5
0.05 0.150 0.130 0.160 0.169 0.155 0.148 0.177 0.181
0.1 0.157 0.133 0.157 0.142 0.166 0.145 0.180 0.182

2
0.05 0.129 0.142 0.132 0.144 0.139 0.143 0.148 0.147
0.1 0.145 0.141 0.142 0.139 0.161 0.154 0.163 0.162

Table 2. Empirical power for tests of isotropy based on the spectral distribution function
(vector sets B1 and B2); based on 1000 runs with nominal size 0.1

B1 B2

λn C κ
n n

1200 1800 2400 3600 1200 1800 2400 3600

24

1
0.05 0.973 0.972 0.959 0.896 0.920 0.954 0.960 0.885
0.1 0.978 0.972 0.958 0.898 0.963 0.966 0.957 0.892

1.5
0.05 0.967 0.968 0.962 0.891 0.890 0.949 0.964 0.885
0.1 0.979 0.967 0.956 0.891 0.947 0.962 0.954 0.895

2
0.05 0.963 0.970 0.953 0.892 0.851 0.940 0.950 0.888
0.1 0.981 0.977 0.955 0.887 0.931 0.968 0.952 0.893

36

1
0.05 0.901 0.958 0.949 0.903 0.745 0.889 0.927 0.898
0.1 0.971 0.971 0.959 0.909 0.868 0.954 0.951 0.903

1.5
0.05 0.846 0.949 0.944 0.894 0.675 0.834 0.898 0.894
0.1 0.946 0.965 0.958 0.898 0.793 0.934 0.942 0.904

2
0.05 0.807 0.913 0.933 0.893 0.593 0.779 0.869 0.893
0.1 0.904 0.957 0.960 0.893 0.729 0.894 0.937 0.893

For comparison, we also evaluated the test of isotropy from [23] (hereafter [MS]),
which involves a kernel estimator σ̂(h) of the process covariances σ(h) (cf. [15]). The
[MS] method computes standard errors for σ̂(h) using a spatial block bootstrap [22],
which is computationally quite demanding. Because of this, we considered this method
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Spatial Empirical Likelihood Based Inference 11

only for a sample size n = 600; [Supplement A] provides implementation details. Based
on a lag set {(0, 1), (1, 0), (0, 5), (5, 0)} (i.e., lags for evaluating the kernel estimator σ̂(·)
which differ from the vectors ti in (3.1)), the [MS] method had empirical size and power of
0.128 and 1, respectively, at a nominal level α = 0.1. However, the size and power of our
tests based on the spectral distribution could often perform comparably, for example, size
0.147 and power 0.927 with vector set B1 and (C, κ) = (1.5, 0.1) when n = 600. Further,
our method has far greater computational advantages with a better capacity to scale to
large data; using a computer with a 3.00 GHz processor, our tests were approximately
40 and 100 times faster those of for sample sizes n = 600 and n = 1200. Note the [MS]
method is specifically designed for tests of isotropy, while our frequency domain approach
is not tailored to a particular spatial testing problem.

4. Assessing Spatial Covariance Separability

To illustrate a different problem in spatial testing, consider the common issue of assessing
whether the process covariance function σ(·) from (1.2) is separable, i.e., whether there

exist valid functions σi(·), i = 1, 2, such that σ(h) =
∏d
i=1 σi(hi) for h = (h1, . . . , hd)

′ ∈
Rd, or alternatively whether the process spectral density φ(ω) =

∏d
i=1 φi(ωi) ω =

(ω1, . . . , ωd)
′ ∈ Rd factors component-wise for appropriate functions φi(·). Section 4.1

presents our test, with numerical illustration in Section 4.2.

4.1. Methodology

We base test assessments on the feature that, under separability, the normalized spectral
distribution, for t = (t1, . . . , td)

′ ∈ Rd, factors into d univariate integrals

Φ0(t) =

d∏
i=1

Φ0
i (ti), Φ0

i (ti) =

∫ ti

−∞
φi(ω)dω

/∫ ∞
−∞

φi(ω)dω, i = 1, . . . , d,

satisfying Φ0
i (−ti) = 1 − Φ0

i (ti) by the evenness of φi(·) ≥ 0. For a given t ∈ Rd, one
can define p = d parameters as θi = Φ0

i (ti), i = 1, . . . , d, for which the component-
wise indicator Ii,t(ω) ≡ I(ωi ≤ ti) fulfills

∫
[Ii,t(ω) − θi]φ(ω)dω =

∫
[Ii,−t(ω) − (1 −

θi)]φ(ω)dω = 0 for each i = 1, . . . , d under separability. This leads to a general class of

estimating functions given as Gsep

θ (ω) = [G̃θ(ω) + G̃θ(−ω)]/2 for

G̃θ(ω) =

[
d∏
i=1

g∗1,i(ω)−
d∏
i=1

θ∗1,i, . . . ,

d∏
i=1

g∗r,i(ω)−
d∏
i=1

θ∗r,i

]′
, ω ∈ Rd, (4.1)

defined by r > p components of the form
∏d
i=1 g

∗
j,i(ω) −

∏d
i=1 θ

∗
j,i; here each g∗j,i(ω) is

chosen as either Ii,t(ω), Ii,−t(ω), or 1 and, correspondingly, each θ∗j,i is set to θi, 1−θi or
1, respectively. This construction (4.1) ensures that the spectral moment condition (2.1)
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12 Van Hala et al.

holds under separability, i.e.,
∫
Gsep

θ (ω)φ(ω)dω = 0r at some θ0. For illustration, with
spatial sampling in R2 (d = 2), we follow (4.1) for a given t = (t1, t2)′ ∈ R2 and define
two different forms of r = 3 > p = 2 estimating functions, given in (4.2)-(4.3), as

G̃θ(ω) =
[
I(−∞,(t1,t2)](ω)− θ1θ2, I(−∞,(−t1,t2)](ω) (4.2)

−(1− θ1)θ2, I(−∞,(t1,−t2)](ω)− θ1(1− θ2)
]′

G̃θ(ω) =
[
I (ω1 ≤ t1)− θ1, I(−∞,(−t1,t2)](ω) (4.3)

−(1− θ1)θ2, I(−∞,(t1,−t2)](ω)− θ1(1− θ2)
]′
.

where θi = Φ0(ti), i = 1, 2. Estimating functions may also be extended to incorporate
further vector sets t.

To test for separability, we create a test statistic −2ân logRn(θ̂n), as in Section 2.2,
using estimating functions Gsep

θ (·). The following result establishes the test’s validity.

Theorem 2. (PID or MID cases) Suppose Conditions (R.1) - (R.5) hold, the estimat-
ing functions based on (4.1) are used, and limn→∞ n/λdn ∈ (0,∞]. Then, under H0 :
“{Z(s) : s ∈ Rd} has a separable covariance structure,”

−2ân logRn(θ̂n)
d−→ χ2

r−p as n→∞, a.s. (PX).

Again, for any outcome of the spatial sampling locations X1,X2, . . ., the test statistic
based on the MELE θ̂n has a simple chi-square limit for assessing separability, which
holds in a unified manner for both PID and MID spatial sampling structures. One could
alternatively formulate test statistics for separability based on estimating functions de-
fined by process correlations ρ(·). For example, for some h = (h1, . . . , hd)

′ ∈ Rd, define

p = d parameters θ = (θ1, . . . , θd)
′ ≡ [ρ1(h1), . . . , ρd(hd)]

′ where ρ(h) =
∏d
i=1 ρi(hi)

under covariance separability and set r = p + 1 estimating functions as Gθ(ω) =[
cos (h1ω1)− θ1, . . . , cos (hrωr)− θr, cos(h′ω)−

∏d
i=1 θi

]′
, ω = (ω1, . . . , ωd)

′ ∈ Rd. Such

functions satisfy the moment condition (2.1) under separability, and variations are pos-
sible by adding further correlation parameters for other lags h ∈ Rd. However, similarly
to Remark 1, test statistics based on the normalized spectral distribution (4.1) typically
exhibited better power than those based on correlations in our numerical studies. The
next section demonstrates the tests for separability using the estimating functions Gsep

θ (·)
from Theorem 2.

4.2. Illustration

We provide a numerical study of our tests for separability using the basic simulation
design from Section 3.2 (d = 2). For this study we considered a separable exponential
correlation function σ(h) = exp(−2h1) exp(−h2) for size calculations and a non-separable
exponential correlation σ(h) = exp(−0.01‖h‖) for power determination. The test statis-
tics were based on the estimating functions from (4.2)-(4.3) (i.e., r = 3 functions for p = 2
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Spatial Empirical Likelihood Based Inference 13

parameters) using the normalized spectral distribution. We refer to these as Type 1 and
Type 2 functions, respectively, and consider two different vector sets for implementing
each: t = (t1, t2)′ as (2, 1) or (1, 2). Tables 3-4 show the sizes and power, respectively, for
tests of separability based on Type 2 functions.

In assessing separability, Type 2 functions emerged better than Type 1 in both size and
power, though performances became similar for larger sampling regions. To explain this
performance difference, note the Type 1 and 2 functions in (4.2)-(4.3) differ in their first
components, where Type 2 functions estimate a parameter (i.e., θ1, a marginal spectral
distribution value) that exists even when separability assumptions are violated. This well-
defined parameter is then used to set the remaining Type 2 functions in (4.3) for checking
separability, which produced better outcomes in our simulations. From Tables 3-4, the
separability tests with Type 2 functions were fairly insensitive to the frequency grid used
in the EL device (e.g., (C, κ)) and to the vector set used for t. Power generally improved
for increasing sample sizes n, regardless of the size (λn = 24, 36) of the sampling region.

Table 3. Empirical size for tests of separability based on normalized spectral distribution
(Type 2 functions with t = (1, 2) or (2, 1)); from 1000 runs with nominal size 0.1

(1, 2) (2, 1)

λn C κ
n n

1200 1800 2400 3600 1200 1800 2400 3600

24

1
0.05 0.114 0.123 0.150 0.149 0.122 0.140 0.134 0.133
0.1 0.109 0.150 0.133 0.165 0.116 0.129 0.125 0.179

1.5
0.05 0.111 0.116 0.115 0.124 0.120 0.113 0.101 0.127
0.1 0.113 0.125 0.121 0.144 0.111 0.120 0.112 0.144

2
0.05 0.111 0.109 0.121 0.133 0.110 0.119 0.111 0.133
0.1 0.118 0.131 0.111 0.152 0.120 0.134 0.110 0.141

36

1
0.05 0.068 0.092 0.105 0.088 0.061 0.090 0.107 0.096
0.1 0.075 0.109 0.075 0.104 0.074 0.108 0.080 0.102

1.5
0.05 0.073 0.090 0.094 0.101 0.075 0.099 0.106 0.106
0.1 0.076 0.099 0.085 0.101 0.072 0.102 0.091 0.105

2
0.05 0.106 0.085 0.093 0.102 0.113 0.098 0.094 0.099
0.1 0.084 0.093 0.093 0.088 0.083 0.099 0.088 0.097

Table 4. Empirical power for tests of separability based on normalized spectral distribution
(Type 2 functions with t = (1, 2) or (2, 1)); from 1000 runs with nominal size 0.1

(1, 2) (2, 1)

λn C κ
n n

1200 1800 2400 3600 1200 1800 2400 3600

24

1
0.05 0.772 0.866 0.881 0.902 0.766 0.868 0.874 0.902
0.1 0.792 0.881 0.909 0.908 0.783 0.879 0.901 0.908

1.5
0.05 0.669 0.797 0.856 0.892 0.663 0.798 0.856 0.890
0.1 0.697 0.820 0.876 0.906 0.681 0.819 0.872 0.903

2
0.05 0.584 0.718 0.792 0.871 0.590 0.715 0.798 0.873
0.1 0.612 0.745 0.829 0.884 0.603 0.748 0.834 0.877

36

1
0.05 0.599 0.729 0.781 0.879 0.601 0.738 0.793 0.873
0.1 0.598 0.732 0.798 0.884 0.598 0.727 0.808 0.886

1.5
0.05 0.467 0.622 0.711 0.830 0.462 0.617 0.706 0.831
0.1 0.470 0.644 0.689 0.825 0.474 0.643 0.692 0.827

2
0.05 0.429 0.544 0.634 0.768 0.436 0.545 0.635 0.776
0.1 0.399 0.530 0.584 0.769 0.406 0.520 0.572 0.761
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5. Variogram Model Fitting

In contrast to previous sections (e.g., Sections 3-4), here we illustrate our method for
testing spatial parameter values rather than for assessing a spatial covariance form. Sec-
tion 5.1 describes the methodology applied to variogram model fitting and Section 5.2
numerically demonstrates its performance.

5.1. Methodology

Variogram estimation plays an important role in spatial prediction. Suppose {2γ∗(·; θ) :
θ ∈ Θ}, Θ ⊂ Rp denotes a class of variogram models for the true variogram 2γ∗(h) ≡
Var(Z(h)− Z(0)), h ∈ Rd of the process Z(·). Let 2γ(·; θ) ≡ 2γ∗(·; θ)/σ(0) and 2γ(·) ≡
2γ∗(·)/σ(0) denote their scale-invariant versions. Least squares estimation (cf. [6]) is a
common approach for fitting variogram models, but the resulting point estimators can
have complex limiting distributions. As an alternative, our frequency domain testing
method can be applied to least squared-type fitting, without requiring such limit laws.
Motivated by the consideration that the population criterion

∑m
i=1{2γ(hi)− 2γ(hi; θ)}2

(based on some fixed lags h1, . . . ,hm ∈ Rd) is minimized at the true parameter θ = θ0,
we can define r = p estimating functions

Gvar

θ (ω) =

m∑
i=1

{1− cos(h′iω)− γ(hi; θ)}∇ [2γ(hi; θ)], ω ∈ Rd, (5.1)

where∇[2γ(h; θ)] denotes the p×1 vector of first order partial derivatives of 2γ(h; θ) with
respect to θ. Under mild conditions on the variogram model, these estimating functions
fulfill the moment condition (2.1) at θ = θ0, i.e.,

∫
Gvar

θ0
(ω)φ(ω)dω = 0p.

Using the EL scheme (Section 2.2) with functions (5.1), we formulate a test statistic

−2ân log[Rn(θ)/Rn(θ̂n)] for the parameter hypothesis H0 : θ = θ0 ∈ Rp. The form of
this test statistic resembles a log-ratio similar to parameter assessments with parametric
likelihood and also differs slightly from previous test statistics for evaluating moment
conditions (e.g., −2ân logRn(θ̂n) in Theorems 1-2).

Theorem 3. (PID or MID cases) Suppose Conditions (R.1) - (R.5) hold, the estimat-
ing functions based on (5.1) are used, and the variogram 2γ(·; θ) is twice continuously
differentiable in a neighborhood of θ0. Then, under H0 : θ = θ0 ∈ Θ ⊂ Rp,

−2ân log[Rn(θ0)/Rn(θ̂n)]
d−→ χ2

p as n→∞, a.s. (PX).

Hence, the frequency domain test for variogram model parameters involves a simple
chi-square calibration, without difficult variance estimation steps as common to alter-
native approaches for fitting variograms with irregular spatial observations in PID/MID
sampling schemes (cf. [11], kernel variogram estimators). By inverting the test in Theo-
rem 3, an approximate 100(1 − α)% confidence region for variogram model parameters
is given as

{θ ∈ Θ : −2ân log[Rn(θ)/Rn(θ̂n)] ≤ χ2
p,1−α} (5.2)
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using a (1−α) chi-square percentile χ2
p,1−α. We next demonstrate such confidence regions

through numerical studies.

Remark 1: For evaluating parameter claims H0 : θ = θ0, an alternative EL test statis-
tic of [BLN] can also be applied. This approach does not involve EL maximizers θ̂n and,
rather than (5.2), a confidence region is set as {θ ∈ Θ : −2an(θ) logRn(θ) ≤ χ2

p,1−α} with

a factor an(θ) defined by substituting θ for θ̂n in (2.2). However, by using an extended ver-
sion of EL with point estimation, the proposed confidence region (5.2) is computationally

less involved (i.e., ân ≡ an(θ̂n) is evaluated only once at θ̂n) and can improve perfor-
mance, as considered next in simulation studies for the variogram. Theoretical results in
Section 6 also show that test statistics based on θ̂n generally have better large-sample
power compared to the counterpart statistics from [BLN] for parameter testing.

5.2. Illustration

We next study the test statistic −2ân log[Rn(θ)/Rn(θ̂n)] and the confidence region (5.2)
for variogram model fitting and we also include the EL approach from [BLN] (cf. Re-
mark 1). Using the simulation design of Section 3.2 (d = 2), we considered processes
having variograms defined by either (a) an exponential correlation model with range pa-
rameter r = 1 or (b) a Matérn correlation model (cf. [32]) with smoothness parameter
ν = 1 and range parameter r = 1.5. We computed coverage probabilities of 90% con-
fidence regions for these model parameters using the proposed approach (5.2) and the
method of [BLN]. For variogram fitting, we applied estimating functions Gvar

θ (·) from (5.1)
based on a lag set {h1,h2,h3,h4} = {(1, 1), (2, 2), (3, 3), (4, 4)} to span a sequence of dis-
tances. The resulting empirical coverages appear in Tables 5 and 6. The proposed testing
approach produced confidence sets with generally better accuracy than those without
point estimation, irrespective of the frequency grid (C, κ) and sampling configuration.
This provides evidence supporting the new frequency domain approach for parameter
testing considered here.

Table 5. Coverages of 90% confidence regions for variogram parameters with (5.2) or without
[BLN] point estimation; using exponential correlation (r = 1) and 1000 simulation runs.

λn C κ
n

1200 1800 2400 3600
with w/o with w/o with w/o with w/o

24

1
0.05 0.905 0.944 0.892 0.923 0.897 0.914 0.897 0.897
0.10 0.889 0.923 0.892 0.915 0.890 0.910 0.869 0.873

1.5
0.05 0.910 0.952 0.904 0.941 0.895 0.919 0.911 0.926
0.10 0.892 0.938 0.898 0.936 0.893 0.917 0.887 0.896

2
0.05 0.910 0.946 0.916 0.957 0.916 0.953 0.903 0.939
0.10 0.886 0.940 0.920 0.954 0.901 0.921 0.904 0.919

36

1
0.05 0.910 0.970 0.912 0.950 0.901 0.951 0.892 0.932
0.10 0.888 0.945 0.902 0.940 0.907 0.939 0.901 0.937

1.5
0.05 0.901 0.950 0.923 0.972 0.908 0.955 0.888 0.941
0.10 0.888 0.947 0.911 0.958 0.924 0.959 0.903 0.940

2
0.05 0.887 0.952 0.910 0.953 0.906 0.960 0.884 0.941
0.10 0.891 0.953 0.895 0.964 0.909 0.962 0.906 0.960
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Table 6. Coverages of 90% confidence regions for variogram parameters with (5.2) or without
[BLN] point estimation; using Matérn correlation (ν = 1, r = 1.5) and 1000 simulation runs.

λn C κ
n

1200 1800 2400 3600
with w/o with w/o with w/o with w/o

24

1
0.05 0.807 0.860 0.792 0.854 0.848 0.880 0.815 0.869
0.10 0.806 0.855 0.801 0.861 0.840 0.879 0.824 0.871

1.5
0.05 0.801 0.854 0.793 0.837 0.867 0.911 0.850 0.903
0.10 0.788 0.832 0.782 0.827 0.875 0.902 0.840 0.877

2
0.05 0.870 0.908 0.894 0.931 0.861 0.901 0.843 0.887
0.10 0.879 0.918 0.859 0.913 0.873 0.909 0.838 0.883

36

1
0.05 0.869 0.926 0.862 0.910 0.894 0.940 0.893 0.931
0.10 0.877 0.914 0.860 0.922 0.905 0.945 0.867 0.905

1.5
0.05 0.848 0.897 0.852 0.909 0.898 0.930 0.915 0.957
0.10 0.855 0.905 0.851 0.902 0.905 0.936 0.886 0.921

2
0.05 0.867 0.929 0.882 0.939 0.895 0.940 0.896 0.947
0.10 0.871 0.934 0.897 0.947 0.899 0.939 0.885 0.930

6. Extensions to General Frequency Domain Tests

While previous sections have treated several spatial testing scenarios, the proposed fre-
quency domain method has the potential to be extended to other testing problems about
spatial dependence forms or parameters. For the testing issue of interest, the central idea
is to stipulate spatial estimating functionsGθ(·) that fulfill a spatial expectation condition
(2.1) in the frequency domain. Then, the EL scheme of Section 2.2 provides two types of

test statistics. The test statistic −2ân logRn(θ̂n) can be applied to assess the null hypoth-
esis H0 : “functions Gθ(·), at some parameter θ0, satisfy the moment condition (2.1).”
This provides a general basis for assessing spatial covariance structures, using r > p esti-
mating functions for p spatial parameters. To test a hypothesis about specific parameter
values H0 : θ = θ0, the test statistic −2ân log[Rn(θ0)/Rn(θ̂n)] can be used and subse-

quently inverted to set confidence regions {θ ∈ Θ : −2ân log[Rn(θ)/Rn(θ̂n)] ≤ χ2
p,1−α}.

The following theorem establishes the validity of these frequency domain tests. Due
to its generality, the result requires additional conditions on the estimating functions
(denoted as Conditions (R.6)-(R.8) in the [Supplement A]) which hold for functions in
Theorem 1-3 based on the spectral distribution or autocorrelations.

Theorem 4. (PID or MID cases) Suppose Conditions (R.1) - (R.8) hold; the r ≥ p es-
timating functions satisfy the moment (2.1) at a true θ0 ∈ Θ ⊂ Rp; Dθ0 ≡

∫
Rd [∂Gθ0(ω)/∂θ]φ(ω) dω

has full column rank p; and limn→∞ n/λdn ∈ (0,∞]. Then, as n→∞,

−2ân log[Rn(θ0)/Rn(θ̂n)]
d−→ χ2

p and − 2ân logRn(θ̂n)
d−→ χ2

r−p a.s. (PX).

Without stringent assumptions on the underlying process or spatial sampling design,
the proposed frequency domain approach allows for a wide range of moment and param-
eter assessments with irregularly located spatial data, as tools for diagnosing dependence
structures with such data.

We mention two further properties related to parameter tests based on the log-ratio
statistic−2ân log[Rn(θ)/Rn(θ̂n)] in Theorem 4. The first is that profile log-ratio statistics
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can be specified for testing parameter subsets of θ in an analogous way to parametric
likelihood. Decomposing the spatial parameter θ = (θ1, θ2) ∈ Θ ∈ Rp into a q × 1
subvector θ1 and a (p− q)× 1 subvector θ2, the profile EL statistic for a specified value
of θ1 ∈ Rq is given as

−2ân log[Rn(θ1, θ̂
θ1
2,n)/Rn(θ̂n)]

where, given θ1, the estimator θ̂θ12,n maximizes Rn(θ1, θ2) with respect to θ2 ∈ Rp−q.
Corollary 1 establishes that this profile statistic is valid with an intuitive limit.

Corollary 1. Suppose the conditions of Theorem 4 hold. Then, under H0 : θ1 = θ01 ∈
Rq,

−2ân log[Rn(θ01, θ̂
θ01
2,n)/Rn(θ̂n)]

d−→ χ2
q as n→∞ a.s. (PX).

As a second property, the log-ratio statistic −2ân log[Rn(θ)/Rn(θ̂n)] from Theorem 4
can generally be shown to have better local power than an alternative EL statistic
−2a(θ) logRn(θ) from [BLN] for testing hypotheses about a spatial parameter θ ∈ Θ ⊂
Rp. As described in Section 2.2, both test statistics are based on r ≥ p estimating func-
tions and a frequency grid for the spatial periodogram, though the statistic of [BLN] lacks

point estimation and the adjustment an(θ) is defined by θ in place of θ̂n in (2.2); see also
Remark 1. To describe local power properties, we require a factor b2n ≡ (λdn/n)2Nn +λκdn
that depends on the number n of sampling sites, the volume λdn of spatial sampling re-
gion, the number N ≡ Nn of frequency grid spacings and the volume λ−κdn between such
spacings. While the size of bn changes with the spatial asymptotic scheme (e.g., PID
vs. MID), it holds that bn → ∞ with bnλ

−κd
n → 0 as n → ∞. If θ0 ∈ Rp denotes the

true parameter value, Corollary 2 next determines the asymptotic power of both test
statistics along a sequence of alternative parameters as shifts of θ0 by O(bnλ

−κd
n ).

Corollary 2. Suppose Theorem 4 conditions hold and define θn ≡ θ0+bnλ
−κd
n v, n ≥ 1,

in terms of the true parameter θ0 ∈ Rp and an arbitrary vector v ∈ Rp. Then, given any
sub-sequence {nj} ⊂ {n}, there exists a further sub-sequence {nk} ⊂ {nj} along with a
positive definite r × r matrix U2 and a constant a ∈ {1, 2} such that, as nk →∞,

−2ânk
log[Rnk

(θnk
)/Rnk

(θ̂nk
)]

d−→ χ2
p(τ) and − 2a(θnk

) logRnk
(θnk

)
d−→ χ2

r(τ)

hold a.s. (PX), where τ ≡ a−1v′U−12 v is a non-centrality parameter. As described in
Proposition 7.1, values of U2, a vary by the spatial asymptotic structure (PID-MID/slow
infill vs. MID/fast infill) and U2 may further depend on the sub-sequence {nk}.

The statement of Corollary 2 is complicated by the issue that the estimating functions
determine if the non-centrality parameter τ (through U2) can potentially vary with the
sub-sequence {nk}; see also Proposition 7.1 and its proof. For many estimating func-
tions though, including those of Sections 3-5, the value τ does not change with the
sub-sequence; in which case, Corollary 2 implies convergence to non-central chi-squared
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distributions. However, regardless of the exact subsequence, Corollary 2 gives that p-
values from the test statistic −2ân log[Rn(θn)/Rn(θ̂n)] will be smaller than those from
the counterpart statistic −2a(θn) logRn(θn) along local alternatives θn = θ0 + bnλ

−κd
n v:

for any constant c > 0, the probability that the latter test statistic exceeds a thresh-
old c is asymptotically given by P (χ2

r(τ) > c), which exceeds the asymptotic p-value

P (χ2
p(τ) > c) of the first statistic (e.g., χ2

r(τ)
d
= χ2

p(τ) + χ2
r−p(τ) for an independent

sum). Hence, the spatial EL version with point estimation θ̂n can have power advantages

for parameter tests over the EL analog without estimation θ̂n. Additionally, as shown in
Corollary 1, such point estimation also leads to natural profile test statistics for spatial
parameters, which are not possible in the EL framework lacking maximization steps.

7. Overview of theoretical development and proofs

This section aims to briefly outline technical details in showing chi-square limit laws
for the spatial EL test statistics based on point maximization θ̂n. Section 7.1 sets up
ingredients for establishing these asymptotic distributions. At issue, the testing method
is again intended to be unified and valid across differing asymptotic forms for spatial
sampling, and Proposition 7.1 indicates the rather complex large-sample behavior of
periodogram-based quantities important to the method. This result culminates with
the distributional feature that appropriate scaling for maximized EL log-ratio statis-
tics (in Proposition 7.1(ii)) varies with the underlying spatial asymptotics. Section 7.2
then proves the general testing result in Theorem 4 for assessing spatial structure, show-
ing that estimated scaling factors automatically adjust to the asymptotic type of spatial
sampling and also previewing some intricacies of the spatial periodogram. A complete de-
scription of regularity conditions and technical supporting lemmas appear in [Supplement
A] along with proofs of Corollaries 1-2.

7.1. A key result for the spatial test statistics

Proposition 7.1 collects some basic components for establishing the distributional limits
of spatial test statistics based on EL. To describe the result, recall that the differing
PID or MID spatial sampling forms correspond respectively to limn→∞ n/λdn ∈ (0,∞) or
limn→∞ n/λdn =∞, where n is the number of sampling sites and λdn is the sampling region
volume. The asymptotic type of spatial sampling turns out to impact the properties of
test statistics, as can the volume Nλ−κdn of the frequency grid used in the testing method
(cf. Section 2.2), where N ≡ Nn and λ−κdn denote the number of, and volume between,
frequency grid spacings. In particular, additional complexities arise in establishing the
spatial statistics under MID sampling where two distributional subcases merge depending
how fast n grows relative to λdn(Nnλ

−κd
n )1/2. Note that, under MID (i.e., limn→∞ n/λdn =

∞), the sample size n already grows faster than the volume λdn of the spatial sampling
region but the subcases require further considering whether or not n grows faster than
λdn expanded by a factor involving the frequency grid volume Nλ−κdn ↑ ∞ as n → ∞.
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When n increases faster than λdn(Nnλ
−κd
n )1/2, this corresponds a MID subcase with a

“fast rate” of infill sampling, where n that grows substantially faster than the sampling
region volume λdn (increased by a factor (Nλ−κdn )1/2); a MID subcase with a slower
infill rate results when λdn(Nnλ

−κd
n )1/2 dominates n. These differences impact the testing

method through the spatial periodogram, which has a bias that decreases at a rate
λdn/n. To summarize the effects of different spatial asymptotics on the EL-based testing
method, Proposition 7.1(i) first describes a stochastic expansion of the point estimator

θ̂n, which is used for establishing the main outcome of maximized EL test statistics
in Proposition 7.1 (ii). Appropriate “scaling” is an issue in both Proposition 7.1(i)-(ii),

where scaling for the estimator θ̂n involves a factor b2n ≡ (λdn/n)2Nn + λκdn that varies in
size by the case of spatial asymptotics. Details on the proof appear in [Supplement A].

Proposition 7.1. Assume Theorem 4 conditions. Further, define a constant a ∈ {1, 2}
where a = 2 if either limn→∞ n/λdn ∈ (0,∞) (PID) or if limn→∞ n/λdn = ∞ with n �
λdn(Nnλ

−κd
n )1/2 (MID/slow infilling); and where a = 1 if limn→∞ n/λdn = ∞ with n �

λdn(Nnλ
−κd
n )1/2 (MID/fast infilling).

(i) Then, given any sub-sequence {nj} ⊂ {n}, there exists a further sub-sequence {nk} ⊂
{nj} and a positive definite r × r matrix V (possibly depending on {nk} and a ∈ {1, 2})
such that

bnk
Jnk,θ0 ≡

1

b2nk

Nnk∑
j=1

Gθ0(ωjnk
)Ĩnk

(ωjnk
)

d−→ N(0r, aV ) a.s. (PX),

holds with b2nk
≡ (λdnk

/nk)2Nnk
+ λκdnk

→ ∞ and λκdnk
/bnk

→ ∞ as nk → ∞, and the

maximizer θ̂nk
∈ Rp along the sub-sequence satisfies bnk

tθ̂nk

(θ̂nk
− θ0)

λκdnk

bnk

 =

(
U1

−U2D
′
θ0
V −1

)
bnk

Jnk,θ0 + op(1) a.s. (PX)

for a random vector tθ̂nk
∈ Rr (an EL Langrange multiplier for θ̂nk

) and non-singular

matrices U1 = V −1 − V −1Dθ0U2D
′
θ0
V −1 and U2 = (D′θ0V

−1Dθ0)−1.

(ii) As n→∞, it holds that

−2

a
log[Rn(θ0)/Rn(θ̂n)]

d−→ χ2
p and

−2

a
logRn(θ̂n)

d−→ χ2
r−p a.s. (PX).

In Proposition 7.1(ii), note that the appropriate scaling (i.e, −1 or −2) for test statis-
tics changes with the asymptotic form of spatial sampling. Similarly to EL theory in
[BLN], a dichotomy in scaling exists according to whether n grows substantially faster
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than λdn (“fast infill” MID) or not (i.e., PID or “slow infill” MID cases). The estimator

θ̂n in the spatial test statistics here creates challenges compared to the EL form of [BLN]

that lacks point estimation. The spatial peridogram Ĩn(·) and estimating functions Gθ(·)
induce the large-sample properties of the point estimator θ̂n in Proposition 7.1(i), which
in turn play an essential role in the main distributional limits of Proposition 7.1(ii).
However, in contrast to other EL applications with estimating functions (cf. [19, 28]),

the spatial point estimator θ̂n is not asymptotically guaranteed to have a normal limit.
That is, the behavior of θ̂n (particularly its limit variance) can vary across different sam-

ple sub-sequences so that a corresponding limit distribution may not even exist for θ̂n,
though the estimator remains consistent. This aspect owes in part to the unbounded
frequency domain in the analysis of irregularly located spatial data, as described in [33].
However, while the large-sample behavior of point estimators in Proposition 7.1(i) de-
pends on sub-sequences, the limit distribution of test statistics in Proposition 7.1(ii) does
not, which is of main interest here. However, correct scaling for such test statistics still
depends on the underlying spatial asymptotics.

Ultimately, the general test statistics −2ân log[Rn(θ0)/Rn(θ̂n)] or −2ân logRn(θ̂n) in
Theorem 4 need to automatically adjust to the spatial sampling structure with estimated
scaling ân from (2.2). We show this to be true and provide a proof of Theorem 4 from
Proposition 7.1(ii) next.

7.2. Proof of Theorem 4

In the following, all probabilistic convergence (e.g., op, Op,
p−→) refers to probability

conditional P (·) ≡ P (·|X) for the spatial process {Z(s) : s ∈ Rd} given a collection of
random vectors X ≡ {Xi}i≥1 ⊂ Rd determining spatial locations (Section 2.1); we gen-
erally suppress that such convergence holds a.s. (PX), where again PX denotes the joint
distribution of X1,X2, . . . (cf. Section 3.1). From Proposition 7.1(ii) and the constant

a ∈ {1, 2} there, Theorem 4 will follow by establishing 2ân
p−→ 2/a for ân from (2.2) or

equivalently that

ân
p−→

{
1
2 for PID or MID with n� λdn(Nnλ

−κd
n )1/2

1 MID with n� λdn(Nnλ
−κd
n )1/2

as n → ∞ (a.s. (PX)). Set cn = n/λdn and b2n = c−2n N + λκdn (with N ≡ Nn), where

b−1n +λ−κdn bn → 0 holds, and recall In(·) and Ĩn(·) = In(·)− c−1n σ̂(0) denote the ordinary
and bias corrected periodograms (Section 2.1). We shall refer to some Conditions (e.g.,
(R.3)) and Lemmas appearing in the [Supplement A], and write sn ∼ tn to denote
limn→∞(sn/tn) = 1 for generic positive sequences {sn}, {tn}.
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As ‖θ̂n − θ0‖ = Op(λ
−κd
n bn) = op(1) by Proposition 7.1(i), we have∣∣∣∣∣∣b−2n

N∑
j=1

(‖Gθ̂n(ωjn)‖2 − ‖Gθ0(ωjn)‖2)I2n(ωjn)

∣∣∣∣∣∣
≤ C‖θ̂n − θ0‖b−2n

N∑
j=1

(
Ĩ2n(ωjn) + σ̂(0)2c−2n

)
= op(1)Op(1 + b−2n Nc−2n ) = op(1)

using the differentiability of Gθ(·) in a neighborhood of θ0 under Condition (R.7) along

with b−2n
∑N
j=1 Ĩ

2
n(ωjn) = Op(1) (cf. Lemma 3), b−2n Nc−2n = O(1), and the fact that

σ̂n(0) ≡ n−1
∑n
j=1 (Z(sj)− Z̄n)2 = Op(1); it also follows that∣∣∣∣∣∣b−2n

N∑
j=1

(‖Gθ̂n(ωjn)‖2 − ‖Gθ0(ωjn)‖2)Ĩ2n

∣∣∣∣∣∣ = op(1).

From these, we have

(7.1)

b−2n

N∑
j=1

‖Gθ̂n(ωjn)‖2Ĩ2n(ωjn) = b−2n

N∑
j=1

‖Gθ0(ωjn)‖2
(
An(ωjn)2 +K2φ(ωjn)2

)
+ op(1)

b−2n

N∑
j=1

‖Gθ̂n(ωjn)‖2I2n(ωjn) = b−2n

N∑
j=1

‖Gθ0(ωjn)‖22An(ωjn)2 + op(1)

using periodogram expansions (cf. Lemma 2) given by

N∑
j=1

Gθ0(ωjn)2
[
Ĩ2n(ωjn)−

(
An(ωjn)2 +K2φ(ωjn)2

)]
= op(b

2
n),

N∑
j=1

Gθ0(ωjn)2
[
I2n(ωjn)− 2An(ωjn)2

]
= op(b

2
n),

whereAn(ω) = c−1n σ(0)+Kφ(ω), ω ∈ Rd forK = (2π)d
∫
f2. Because λ−κdn

∑N
j=1 φ(ωjn)→∫

Rd φ(ω) dω from
∫
Rd φ(ω) dω <∞ and Condition (R.3), we also have bounds

N∑
j=1

φ(ωjn) = O(λκdn ) = O(b2n),

N∑
j=1

φ2(ωjn) = O(λκdn ) = O(b2n), (7.2)

by sup1≤j≤N |φ(ωjn)| ≤ C from (R.3).
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Under PID (i.e., limn→∞ cn ∈ (0,∞)) or under MID (i.e., limn→∞ cn = ∞) with
n � λdn(Nnλ

−κd
n )1/2, it holds that b2n ∼ Nc−2n . In these cases, it follows from the

definition of scaling ân from (2.2), upon using (7.1)-(7.2) with Condition (R.3) (i.e.,

lim infn→∞N−1
∑N
j=1 ‖Gθ0(ωjn)‖2 > 0), that

ân =
b−2n

∑N
j=1 ‖Gθ̂n(ωjn)‖2Ĩ2n(ωjn)

b−2n
∑N
j=1 ‖Gθ̂n(ωjn)‖2I2n(ωjn)

=
b−2n

∑N
j=1 ‖Gθ0(ωjn)‖2c−2n σ(0)2 + op(1)

b−2n
∑N
j=1 ‖Gθ0(ωjn)‖22c−2n σ(0)2 + op(1)

=
1

2
+ op(1).

Under MID with n� λdn(Nnλ
−κd
n )1/2, it holds instead that b2n ∼ λκdn with c−1n → 0. Using

these rates along with (7.1)-(7.2) and Condition (R.3) (i.e., limn→∞
∑N
j=1 ‖Gθ0(ωjn)‖2φ(ωjn)2 >

0), we have

ân =
b−2n

∑N
j=1 ‖Gθ̂n(ωjn)‖2Ĩ2n(ωjn)

b−2n
∑N
j=1 ‖Gθ̂n(ωjn)‖2I2n(ωjn)

=
b−2n

∑N
j=1 ‖Gθ0(ωjn)‖22K2φ(ωjn)2 + op(1)

b−2n
∑N
j=1 ‖Gθ0(ωjn)‖22K2φ(ωjn)2 + op(1)

= 1 + op(1)

in this case. This completes the proof. �

8. Conclusions

We have developed a general spatial frequency domain method for irregularly spaced
data, which is applicable to a broad class of spatial processes and to a variety of inference
problems about spatial covariance. Using an extended empirical likelihood device, test
statistics were shown to have simple chi-square limits under mild conditions, without
explicit assumptions or estimation concerning the process distribution, the concentration
of sampling locations, or the exact nature of the spatial asymptotics (e.g., the amount
of infill sampling). Depending on the spatial inference problem of interest, the testing
method requires specification of appropriate estimating functions. For concreteness, we
formally treated examples for testing isotropy or separability as well as fitting variogram
models, but general extensions (cf. Section 6) make further applications possible. These
include, for example, potentially novel goodness-of-fit assessments for the parametric
form of variogoram models or spectral densities (e.g. Whittle estimation). In this sense,
the proposed methodology provides a unified platform for inference across many scenarios
of spatial covariance assessment.

Open questions remain for the testing method about the best choices of estimating
functions for inference problems of interest (e.g., the number and structure of such func-
tions). This issue requires investigation through further applications. We have found that,
where possible, the formulation of spectral estimating functions based on the normalized
spectral distribution, rather than process correlations directly, often produced tests with
better robustness properties in performance and implementation.
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Supplementary Material

[Supplement A]: Supplement A: “A general frequency domain method for
assessing spatial covariance structure”
(doi: To BE COMPLETED BY THE TYPESETTER). Details of regularity conditions
and proofs of distributional results, along with additional numerical results.

[Supplement B]: Supplement B: “A general frequency domain method for
assessing spatial covariance structure”
(doi: To BE COMPLETED BY THE TYPESETTER). Discussion and extended simu-
lation results under further spatial sampling designs.
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