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Abstract— With the goal of moving towards implementation
of increasingly dynamic behaviors on underactuated systems,
this paper presents an optimization-based approach for solving
full-body dynamics based controllers on underactuated bipedal
robots. The primary focus of this paper is on the development
of an alternative approach to the implementation of controllers
utilizing control Lyapunov function based quadratic programs.
This approach utilizes many of the desirable aspects from
successful inverse dynamics based controllers in the literature,
while also incorporating a variant of control Lyapunov func-
tions that renders better convergence in the context of tracking
outputs. The principal benefits of this formulation include a
greater ability to add costs which regulate the resulting behavior
of the robot. In addition, the model error-prone inertia matrix is
used only once, in a non-inverted form. The result is a successful
demonstration of the controller for walking in simulation, and
applied on hardware in real-time for dynamic crouching.

I. INTRODUCTION

Model based control methods can help enable dynamic
and compliant motion of robots while achieving remarkable
control accuracy. However, implementing such techniques on
floating base robots is non-trivial due to model inaccuracy,
underactuation, dynamically changing contact constraints,
and possibly conflicting objectives for the robot [3], [7].
Unlike their classical counterparts, optimization based ap-
proaches to handling these control problems allow for the
inclusion of physical constraints that the system is subject to
[9], [26]. Partially as a consequence of this feature, quadratic
programming (QP) based controllers have been increasingly
used to stabilize real-world systems on complex robotic
platforms without the need to algebraically produce a control
law or enforce convergence guarantees [11], [15], [19].

These examples, however, typically do not consider peri-
odic notions of stability for highly underactuated systems;
systems which often require additional convergence guaran-
tees in order to realize stability. It was shown in [6] that
through the use of a rapidly exponentially stable control
Lyapunov function (RES-CLF), coupled with hybrid zero
dynamics (HZD) [13], [30], a wide class of controllers can
be designed to create rapidly exponentially convergent hybrid
periodic orbits. It was also shown that this class of controllers
can be posed as a QP, in which the convergence is enforced
via an inequality constraint; forming a control Lyapunov
function based quadratic program (CLF-QP) [6] [7]. Often,
robotic systems cannot produce sufficient convergence to
dynamic motions without violating physical constraints. One
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Fig. 1. The Cassie biped, built by Agility Robotics, and used as an
experimental platform to demonstrate the controllers presented in this work.

approach to address this conflict is to relax convergence guar-
antees, which allows (local) drift in the control objectives to
accommodate feasibility. This class of controllers has since
been used to achieve dynamic locomotion on robotic systems
both in simulation [14], [18], [25], [31] and on hardware [12].

While high level task-space controllers based on inverse
dynamics approaches pose similar problems as CLF-QPs,
they have traditionally not been formulated in the same way.
In implementations of CLF-QPs the vector fields associated
with robotic systems are typically utilized, which involves
costly computations. Alternatively, in task based controllers,
the dynamics are an equality constraint. Here, objectives are
driven towards their targets through PD controllers in the cost
[11]. There have been several connections shown in related
research [20], [21], where control Lyapunov functions were
included in an inverse dynamics controller via an LQR in the
cost. In this work we aim to repurpose several of the more
mature concepts from inverse dynamics based approaches
and demonstrate a more efficient CLF inspired formulation.

The main result of this paper is an optimization-based
control framework that couples convergence constraints from
CLF-QPs with concepts from inverse dynamics based con-
trollers. The presented controllers documented and available
as part of a C++ open-source repository [1]. We begin
in Section II by the CLF framework which yields rapid
convergence. This is followed by Section III which explores
existing optimization based techniques for control. Section
IV details a new class of optimization based controllers
based on the CLF construction. Section V discusses how
to apply these methods practically. In Section VI the model
for the bipedal robot Cassie is shown and the controller is
demonstrated in both simulation for walking, and in real-time
on hardware for dynamic crouching.
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II. PRELIMINARIES ON CONTROL LYAPUNOV FUNCTIONS

In classical nonlinear control design, analysis is typically
performed on a dynamical system of the form:

i = f(x) +g(x)u, (1)

where x € X C R"™ is the set of controllable states and
u € U C R™ is the control input. The mappings f : R™" —
R™, g : R® — R™ ™ are assumed to be locally Lipschitz
continuous functions of z. Let us consider a feedback control
system which tracks a set of desired trajectories of the form:

y(z) =y (z) —y*(r(x)), 2)

where y* : X — R™ and y? : R x R* — R™ are smooth
functions encoding the desired behavior to be realized via
control. We assume that y(z) has (vector) relative degree r
[28]. It is often the case in robotic systems that r = 1 if
y(z) depends on position and velocity and r = 2 if it only
depends on position, i.e., configuration variables. Taking the
derivatives of the outputs along f(x) and g(x) we obtain,

Yy (z) = Ly(x) + Ly LY Vy() u, 3)
————
A

where A is called the decoupling matrix which is invertible
in the case of a (vector) relative degree. This implies that
the system (1) is feedback linearizable, and we can then
prescribe the following control law:

u(z) = A" ( - Ly)y(m) + v) =y =y, 4)

where v is an auxiliary feedback control value.

To motivate later constructions, we consider a mechanical
system with configuration space Q, (local) coordinates ¢ €
Q, and states * = (¢7,¢")T € TQ = X. Suppose that
for (1) there is a set of outputs y(x) = (y1(q, ¢, y2(¢)T)T
of vector relative degree 1 and 2, respectively, on a region
of interest; that is for y;1(q,¢) € R™! and y2(q) € R™2
with m = m; + mgo we assume the vector relative degree
is 1 for y; and the 2 for yo, ie., (1,...,1,2,...,2) with
1’s appearing m; times and 2’s appearing ms times. We can
then write an output tracking problem:

vi(2:4,1) = yi (0, d) — 91 (7(t. q)) (5)

y2(a,t) = 3 (a) — 3 (7(t,9)), (6)

where y® and y? are the actual and desired outputs, and
7(t,q) is some parameterization of time for the desired

outputs to evolve on. Assuming that the preliminary feedback
(4) has been applied to (1), we will render a linear system for

the output dynamics with coordinates 1 := (y, 32, 93)7,
nl o o I 0
i= || =0 I{n+]0 0w %
il oo 0 T
——

F G
A valid choice of v which stabilizes this system is:

where 0 < e < 1 is a tunable parameter, and Ky, Kp,
Kp are control gains for the relative degree 1 and relative
degree 2 output errors, respectively. While this controller
yields convergence to the target outputs, it does not leverage
the natural dynamics of the system, and disregards torque and
feasibility constraints by which the system must abide. Thus,
for practical systems, additional considerations for selecting
our control input are often required.

The exponentially stabilizing control Lyapunov function
[5] (ES-CLF) and rapidly exponentially stabilizing control
Lyapunov function (RES-CLF) frameworks [6] were intro-
duced as methods for achieving stability in the output dy-
namics. In the context of the control system (7), we consider
the continuous time algebraic Riccati equations (CARE):

F'P+ PF - PGGTP+Q =0, ©)

for @ = QT > 0 and with solution P = PT > 0. The
method presented in [6] can then be employed to construct
a (R)ES-CLF,

1
V(n) =n"1.PI.n, withI, := diag (I, -1, 1) ., (10)
~— €
Pe
where the selection of 0 < ¢ < 1 creates a RES-CLF, and

¢ = 1 instead renders an ES-CLFE. We can find the derivative
of (10) to be:

V(n) = LrV(n)+ LaV(n)v, (1)

where the Lie derivatives of V. along the linear output
system’s dynamics (7) are

LpV(n) =n" (F' P. + P.F)n,
LgV(n) =2n"P.G.

12)
13)

An exponential convergence constraint can then be pre-
scribed as,

)\min (Q)

A (P, 1
————

LrV(n) +LeV(nv < - V(z),
il

where -y is related to the convergence rate. This constraint is

in terms of our auxiliary control input v and not the actual

feedback control u. In order to convert back into a form

which can be represented in terms of the control input, we

can use the previous relationship between u and v
Al@)u+ Ly(x) = v, (15)

to obtain the CLF constraint stated in terms of z since 7
depends on z (via y1, Y2 and 9o):

LpV(z) + LeV (2) LY y(x) + LaV (2)A(z) u < —V ().

LyV ()

LyV(x)
(16)

In the context of (R)ES-CLF, we can then define the set

K(z)={ueU:L;V(z)+ L,V(x)u+~V(x) <0},
(17)

: 1
v = [Zﬂ] = [ L _EKT’yll 1, (8)  consisting of the control values which result in (rapidly)
Y2 —=Kpy2 — cKpYo exponential convergence, wherein V(n(x)) < —yV (n(z)).
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III. OPTIMIZATION BASED CONTROLLERS

The dynamics of robotic systems can be formulated using
the method of Lagrange, with positional constraints on the
system incorporated via D’ Alembert’s principle [23],

D(q)i+ H(q,q) = Bu+ J" (q)A
J(q)i + J(g,4)q =0,

where D(q) is the inertia matrix, H(q,q) = C(q,q4)q +
G(q) + F is the vector sum for the Coriolis, centripital,
gravitational, and additional non-conservative generalized
forces, B is the actuation matrix, and the Jacobian of the
holonomic constraints is J(q) = 0h/dq with its correspond-
ing constraint wrenches A € R™*. This can be converted to
an ODE in the form of (1) as:

(18)
19)

B q
fle) = [_qu) (I (@A~ H(g,9))]"

0= | by 18]

We begin the derivation of our controller for this system by
again considering the outputs (5) and (6), and taking the
necessary derivatives of the outputs:

(20)

J % Ay
1| q . g | =
L = us -\ | G+ | &L |4 20
i l (%) ]
————
Jy Jy

This can equivalently be done by taking the derivatives along
the vector fields (20), where the dependencies have been
dropped for the sake of clarity, we can write:

. u1
[..]— 5 ;w, 6;2 f(z)+ ﬁ g(x)u, (22)
Y2 g\ 9q4) “oq 9q

Lyy(x) A

now in the form of (4). This can then be combined with the
convergence constraint given for a CLF (16) and posed as
an optimization problem to find a satisfactory input wu.

Control Lypaunov Function Quadratic Programs: In its
traditional implementation [6], the inequality constraint (16)
can be posed in a QP optimization based controller to find

a torque in the set (17), where ||v]|? is minimized, as:
CLF-QP:
u*(z) = argmin ||A(x)u + L(fr)y(m)H2

ueUCR™
sit. LyV(z)+ LgV(x)u < vV (x)

and substitute back into the expression (20). However, even
if A is included as an additional optimization variable, (23)
must be evaluated in order to apply feasibility constraints
such as the friction cone to the problem. Additionally, Feath-
erstone showed in previous work that the condition number
of the joint space inertia matrix increases quartically with the
length of a kinematic chain [10]. This points to an obvious
source of numerical stiffness, and can lead to controller
degradation on hardware [24]. For complex multi-link robots,
such as bipedal robots, these condition numbers are often
exceptionally large (for full humanoids sometimes on the
order of 10®). In addition, performing the required inversions
for evaluating the vector fields (20) are very computationally
expensive, and can often violate strict timing requirements
when implementing these controllers on hardware.

Inverse Dynamics Approaches to Locomotion: Inverse
dynamics is a widely used method to approaching controller
design for achieving a variety of motions and force interac-
tions, typically in the form of task-space objectives. Given
a target behavior, the dynamics of the robotic system are
inverted to obtain the desired torques. In most formulations,
the system dynamics are mapped onto a support-consistent
manifold using methods such as the dynamically consistent
support null-space [29], linear projection [4], and orthogonal
projection [22]. When prescribing behaviors in terms of
purely task space objectives, this is commonly referred to as
task- or operational-space control (OSC) [17]. In many recent
works, variations of these approaches have been shown
to allow for high-level tasks to be encoded with intuitive
constraints and costs in optimization based controllers, some
examples being [8], [11], [15], [16], [19]-[21].

Here we present a minimal implementation of an inverse
dynamics controller. First, let us consider a set of variables
X = [T, uT, \T]T € Xext := R™ x U x R™~, which are
linear with respect to (18),

[D(@) —B —J"(¢)] X +H(q,4)=0. (24
We can pose the holonomic constraints (19) as:
[J(a) 0 0] X+.J(g)i=0. (25)

Also consider a positional objective in the task space of the
robot, which can be characterized using (21) as

Jy(q,4)d + Jy(q.d)d — §3 = 0, (26)

where 5 = Kpys + Kpys is a PD control law which can
be tuned to achieve convergence. In it’s most basic case,
not considering physical limitations on torque and frictional
contact, we can pose this tracking problem as:

Where in the case of a RES-CLF, « depends on e. For the
holonomic constraints to be satisfied in the dynamics (20),
and thus in the QP constraint (16), we must either augment
u with A\ as an additional decision variable [7], [14], or solve
for the generalized force explicitly, assuming the holonomic
constraint is satisfied:

A= (J.D1jT)"1 (JCD*(H — Bu) - ch) . (23)

ID-QP:

X" (x) = argmin [y (a, d)d + Jy(a,d)d — i3]|* + oW (X)
€Xext

st. D(q)§+ H(g,q) = Bu+J" (g)A
J(@)i+ J(@)g=0

where W (X') is included as a regularization term with a
small weight o such that the problem is well posed.

2446

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 29,2021 at 22:43:56 UTC from IEEE Xplore. Restrictions apply.



IV. CONTROLLER FORMULATION

In this section, a new controller is presented that combines
aspects of ID and CLF based control. The resulting opti-
mization only requires a single use of the mass matrix, in its
uninverted form, and incentivizes fast convergence rates.

A Combined Approach. Taking inspiration from inverse
dynamics approaches, we return to (15) where the auxiliary
control input v is set to equal the second time derivative
of the output. Rather than directly choosing an input u, a
¢ is solved for that generates an equivalent response in the
outputs. Using (21), ¢ can be chosen to satisfy

[y;] = Jyq+ Jyd=v. 27)
By constraining:
G =Jy(=Jyi+v), (28)

where JJ is a right pseudo inverse of the full rank matrix
Jy, with Jy J,J = I, and the outputs evolve as:

HE

More formally, we have shown the following result:

G + Jy T3 (—Jyd +v) = v. (29)

Theorem 1. For a robotic system with dynamics (18) and
outputs of the form (5) and (6), any controller in the set:

K(g,q) ={ueU:g=Ji(-Jyqg+v)},  (30)

elicits the same response in the output dynamics as the 10
feedback linearizing controller,

u= A" (~Ly(x) +v).

As discussed in Section II, feedback linearizing controllers
fail to take advantage of the natural dynamics of a system.
Therefore, we introduce the Inverse Dynamics Control Lya-
punov Function Quadratic Program (ID-CLF-QP) a parallel
to (CLF-QP), which similarly enables the system to evolve
in a more natural way, while still enforcing convergence
guarantees.

€2y

ID-CLF-QP
. 2
X* = argmin H@q + (@) qH +oW(X)
X EXext 9q 9q

dq dq
Bu 4 JT(g)A

st LpV(x)+ LeVi(e )(ayq+ ay(q)q) < V(z)

D(q)i+ H(q,q) =
J@)§+J(q)g=0

This formulation imposes an equivalent convergence con-
dition as (CLF-QP). However, using ¢ as an optimization
variable leads to a formulation that is less numerically stiff
and less sensitive to estimation errors in the mass matrix.

Incentivized Convergence. A second weakness of the stan-
dard (CLF-QP) is that it does not incentivize faster con-
vergence rates than the chosen v if control bandwidth is

available. This lead to chattering as the system intermittently
triggers the inequality. When the outputs are written as in
(21), the derivative of the Lyapunov function is only in terms
of the decision variable ¢ and scalar functions of the states.
Therefore, we add the ¢-dependent portion to the cost.

ID-CLF-QP™*

X* = argmin

‘ ’ dy . . oy(q)
X eXext

2
=4+ ——=q|| +oW(X)+V(z,X)
dq dq

st LFV<w>+LGV<x>< +‘9ya(q)q> <

Bu+ JT(g)A

-V (2)

D(q)§+ H(q,q) =
J(@)§+J(q)g=0

Theorem 2. Through the addition of a Lyapunov term in
the cost, (ID-CLF-QP*) will induce an equal or faster
convergence rate than (ID-CLF-QP). Concretely, given so-
lutions to these optimization problems, denoted by X+ and

X, respectively, for:

V(z, X1

\ - —yTV(z) +
Vix, X) (

<
=7 = <97
< —AV(z)

Proof: We begin by noting that (ID-CLF-QP) and (ID-CLF-
QP™) have the same solution space. The cost of (ID-CLF-
QP) as will be denoted:

oy, Oylq) .. ?
0= S| <ome e

For a given feasible point X'* of (ID-CLF-QP™), the unique
instantaneous convergence rate y* is defined as solving:

09 0v(a) . ) = V()

LpV(z)+ LeV (x) ( g+ —F7—=
(33)

dq dq
and the cost is given by:

9y(q) p

oq *
Larger values of v imply a faster convergence rate. Denoting
the solution to (ID-CLF-QP) as X, then by definition:

C(X) < C(X*), YX*eX, (35)
and additionally, for the solution to (ID-CLF-QP*), X+ :
J(XxT) < J(X), (36)

as the two problems have the same feasible space. This can
be expanded to:

9(a)
dq

J(X*)=C(X")+ LaV(x)

(34)

LV () i+ C(X).

gr+Cxt) < LGV(I)G%‘D“

T(x+) T(X)

If we solve for the Lyapunov portion of each side using (33),
this reduces to:

TV (z) + C(XT) < =3V (z) + C(X).
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This can be rearranged, and (35) can be leveraged to find
V(@) =7V (@) < C(R) - C(A+) <0
(F=7")V(x) <0
F<aT
Which proves that the solution to (ID-CLF-QP™) will have
an equal or faster convergence rate as (ID-CLF-QP).

V. IMPLEMENTABLE METHODS

In order to implement these methods on robotic systems,
there must be a discussion on practicality and how to better
encode and satisfy the physical limitations of the system at
hand. In this section, some of the barriers to implementation
are presented as well as methods for mitigating them.

Holonomic Constraints. For robotic systems, two types of
holonomic constraints are commonly considered, external
contact constraints depending on the current configuration
of the robot and it’s interactions with the world, and internal
kinematic constraints resulting from the robot geometry.

1) Contact Constraints: When the robot is in contact with
the world, its motion can be restricted. This results in force
terms in the equations of motion ((18) and (19)). These
contacts are often required to follow friction models. Ideally,
a classical Amontons-Coulomb model of (dry) friction is
used to avoid slippage and is represented as a friction cone
constraint. For a friction coefficient 14 and a surface normal,
the space of valid reaction forces is,

c={ 0w h) eR 20+ <) 67

However, this constraint is nonlinear, and cannot be imple-
mented as a linear constraint. An alternative solution is to
use a pyramidal friction cone approximation [13],

P = {(Ax,,\y,Az) € R A > 0; [Aal, [Ay] < ixz}. (38)
V2
This is a more conservative model than the friction cone,
but is advantageous in that it is a linear inequality constraint.
When a surface is in contact with the outside world, addi-
tional constraints are introduced to prevent it from rolling
over the contact edge in the form:

l l
—=A <Az < A 3
5 < < 5 (39)

w w
_*)\z )\m *)\z 40

where | and w are the lengths and widths of the surface.

2) Internal Constraints: It is common practice to model
robotic manipulators in tree structures. When the mechanism
has parallel manipulators, this is managed by cutting the loop
and enforcing a holonomic constraint [27], or by solving for
the closed-loop dynamics explicitly. These constraints add
further degrees of complexity to the optimization problem.

Relaxed CLF-QP. Due to these constraints, as well as limits
on feasible torques, it is not always possible for the system
to converge according to the bound [12]. The accepted way
of dealing with this is to add a relaxation term, ¢, to the

convergence constraint with an associated weight, p. In our
formulation, this transforms the problem to:

ID-CLF-QP™ §
. 2
X* = argmin H%qﬂrayi(q)ij + W(X) + V(x,X) + ps?
XEXext,0€R || Og 9q
st LpV(@)+ LaV() (*’yq + wq) < V(@) 48
9q dq

D(q)§+ H(q,q) = Bu+ J" (q)A
J(@)i+ J(q)g=0

In practice it can be seen that if we take away the hard
constraint in (ID-CLF-QPY), we are left with a relaxation

ID-CLF-QP™ relaxed
99, W,

2

X* =argmin + W(X) +V(z,X)

X EXoxt Haq J0q
st. D(q)i+ H(q,q) = Bu+ JT(g)A
J(@)g+J(q)g=0

that still incentivizes fast convergence and penalizes slow
convergence. Further, whenever it is feasible to do so,
this problem will render V as negative as possible. In the
simulation results we show how these methods compare and
we implement the final approach on hardware.

Hard and Soft Constraints. When implementing on hard-
ware, often holonomic constraints are not satisfied precisely.
The analytical solutions presented thus far make the problem
more prone to infeasibility. To solve this, we once again look
to the inverse dynamics community where it has become
practice to differentiate between hard and soft constraints.
Hard constraints are formulated as traditionally seen in Sec-
tion IV, they cannot be violated. Soft constraints, however,
refer to an addition to the cost function which penalizes
violation of a preferred relationship. These are frequently

added as the norm of a least squares problem:
w||AX — b||? (41)

where X is as in (24) and w is a weight. On hardware,
holonomic constraints for footholds are the perfect candidate
to be implemented as soft constraints
J(@)i+Ji=0=[J(g) 0 0]x=—Jg
———— SN~~~
A b

(42)

The formulation of holonomic constraints in this way voids
the need to explicitly compute reaction forces (as in (23)) and
allows for small violations, which is necessary in practice.
Additional soft constraints that are beneficial for robotic
walking include specifying force distributions (weight per
foot or in different places on the foot). In this case the
A matrix represents the fractional representation and the
b matrix is all zeros. Finally, direct tracking of decision
variables is possible by making A the identity and b the
desired values. In each of these cases, a desirable cost is
the exact satisfaction of the output dynamics. The benefit of
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Fig. 2. The configuration coordinates of the Cassie robot, on the left is a
side view of the robot, which highlights the compliant mechanism, and on
the right is the front view of the robot model.

using soft constraints is two-fold; as previously mentioned it
allows for small violations of constraints and, it speeds up
computation time as the problem becomes better posed.

VI. APPLICATION TO THE CASSIE BIPED

In this section the robot model will be introduced, followed
by a presentation of simulation results for walking with each
of the controllers mentioned, as well as real-time hardware
results on crouching and standing behaviors.

Robot Model. The bipedal robot Cassie was designed and
manufactured by Agility Robotics'. The design of the robot
encompasses the physical attributes of the spring loaded
inverted pendulum (SLIP) model dynamics. The primary
characteristic being a pair of light-weight legs with a heavy
torso so that the system is approximated by a point-mass
with virtual springy legs. On Cassie, a compliant multi-link
mechanism is used to transfer power from higher to lower
limbs without allocating the actuators’ weight onto the lower
limbs, and effectively acts as a pair of springy legs. Contacts
with the ground are assumed to be rigid and only occurring
at specified points on the feet of the robot. This allows for
the equations of motion for the robot to be described as (18).

A. Walking in Simulation

The simulation presents a side-by-side comparison of the
traditional (CLF-QP) with the new controllers proposed.
Two walking gaits are generated using the partial hybrid
zero dynamic framework as presented in [30]. Both gaits
use a single continuous domain, and progress is dictated by
7(t,q), a parameterization of time either by the gait duration
(time-based) or by the relative degree 1 output (state-based):

t—tt

6y1(q) — oy1(q™)
T(t) = m or T(q) = p
where to and t; are the start and end times of the current
domain, respectively, dy1(¢™) is the initial value of the
velocity modulating output and v is a parameter for the
desired velocity of the output.

;o (43)

Thttp://www.agilityrobotics.com/

Planar Walking Simulation. The first gait we consider
is state-based and is designed on a planar, rigid model of
Cassie. One relative degree 1 input, the linearized forward

hip velocity, is used and five relative degree 2 outputs:

H(ﬂsw ‘ |52 swing leg length
H’(/JSt ‘ | 02 stance leg length
y5(q) := |atan2 (1/);“’, 1#2“’) swing leg pitch (44)
(;5y pelvis pitch
@Y (q) swing foot pitch
where ¢¥(6y,) is the ankle Cartesian pitch, and
st/sw _ _st/sw 45
Vo (q) = prp(a) — Py (a), (45)

represents the Cartesian distance from the hip pitch joints to
each of the feet.

Four controllers are then applied to the model; (CLF-QP-
0), AD-CLF-QP §), (ID-CLF-QP+ §), and (ID-CLF-QP+
relaxed). In Fig. 3 the convergence of the Lyapunov function
can be seen for a system that is perturbed to start from rest
(not started on its periodic orbit) and must converge onto
the periodic gait. It can be seen that the more traditionally
formulated controllers do not converge quickly enough in the
first step, causing an amplification of error in the second,
while the two cases with the Lyapunov term in the cost
do. It is also interesting to note that when the Lyapunov
term is in the cost, the existence of the hard convergence
constraint does not significantly affect the response. While
the performance differs between the four controllers, the
torque applied from each is similar in magnitude and form,
as can be seen in Fig. 3. The inverse dynamics torques
are overall smoother, and the controllers with the Lyapunov
derivative term in the cost have the smoothest torque profiles
and best convergence performance.

3D Compliant Walking Simulation. The second simulation
case is a time-based walking gait on the 3D compliant model
of the robot [27]. For this formulation the relative degree 1
output is disregarded and four new relative degree 2 outputs -
both hip yaws (6}, ), the swing hip roll (6,,.) and the floating
base roll (¢,) - are added. The gait generated is tracking with
the controllers directly on the nominal walking gait motions
from an offline trajectory optimization.

1.4 — CLF-QP-5 2px10*
= = ID-CLF-QP-4¢
ID-CLF-QP-+-§
1.2 — = ID-CLF-QP relaxed

— a
E 08 \ =

0.6 \,

0.4 .
0.2 ™~
o o o= 0
40 80 120 160 200 40 80 120 160 200
(a) Percent Stride (%) (b)
Fig. 3. Performance of the planar simulated walking gait over two steps,

started from rest. Improvement is seen when the Lyapunov term is added
to the cost. (a) Lyapunov function, V'(n) (b) Torque squared, |lu||?.
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Fig. 4. Time series motion tiles for simulated walking in 3D (left) and on hardware for the crouching experiment (right).

The Lyapunov function convergence and motor torques
for each of the controllers can be seen in Fig. 5 and 6,
respectively. The theory referenced in this work assumes
purely continuous control, however, in reality torques are ap-
plied at a discrete intervals. We thus included the simulation
results when the controllers are applied at 500 Hz and 5 kHz.
An animation of the resulting simulation is also shown in
[2]. While the traditional (CLF-QP-§) and (ID-CLF-QP-))
controllers see a marked degradation as loop rates decreases,
the controllers which have Lyapunov derivative terms in the
cost, (ID-CLF-QP+-6), and (ID-CLF-QP+-relaxed), seem
minimally affected. Because this controller is run on the
compliant model, the ODE is much more numerically stiff
than in the rigid planar case. As such, we see that (CLF-QP-
0), which uses the inverted form of the mass inertia matrix,
is much more sensitive when applied at coarse frequencies.

Crouching in Real-Time on Hardware.

Finally, the inverse dynamics motivated control Lyapunov
based controller, (ID-CLF-QP+ relaxed), was implemented
on hardware, as Cassie went through a dynamic crouching
motion (Fig. 4). The prescribed motion was a repeated crouch
which moved the pelvis vertically from 0.9 m to 0.5 m
and back, with each segment being 2 s in duration. The
source code to run a Gazebo simulation or directly implement
the code on hardware is provided online [1]. In addition,

3 500 HZ 0.1 5 kHZ
—— CLF-QP-3
= = ID-CLF-QP-§
25 0.08 ID-(ZLF-%P+-6
;5 = = ID-CLF-QP relaxed|
£’ 0.06
51‘5
0.04f (!
= i
o.02ff !
0.5 ‘ \ Y
ol ol L
0 0.05 0.1 015 02 025 0.3 0.35 0.05 0.I 0.5 0.2 025 0.3 0.35
Time (s)
Fig. 5. Lyapunov function convergence on the 3D compliant robot for a
time based step at 500 Hz and 5 kHz control frequencies.
x10° 500 Hz 5 kHz
5 —— CLF-QP-0
= = ID-CLF-QP-0
ID-CLF-QP+-0
4 — = ID-CLF-QP relaxed

N\

0.05 0.1 015 0.2 025 0.3 0.35

0

N
0 005 0. 015 02 025 03 035 0

Time (s)
Fig. 6. Torque of the 3D compliant robot for time based step at 500 Hz
and 5 kHz control frequencies.

a video of the experiment, along with animations of the
previous simulations are provided in [2]. Six relative degree
two outputs for standing were prescribed, the base positions
and rotations, y(q) = [py, ®»)T. They were then specified
as high level targets on hardware. Because we are using
a task-space approach, it is not necessary to encode these
objectives as combinations of the actuated joint angles, and
no joint level stabilization (i.e. individual joint tracking or
control) was used. The controller was run on the secondary
Intel NUC computer aboard Cassie, and was implemented
in C++. The controller ran at a frequency of 1 kHz, with
approximately 6% timing jitter. There were only three sets
of hard constraints; the dynamics as in (18), torque bounds
for each joint, and the friction constraints as in (38) and
(39). The cost included soft constraints for the remaining
holonomic constraints as well as on torque smoothness
(ur — ug—1), in addition to the costs explicitly prescribed
in (ID-CLF-QP™-relaxed). The resulting QP was solved
with the qpOASES package and had 49 variables, and 41
constraints. As can be seen in Fig. 8, the height was smoothly
tracked to within several centimeters for the entirety of the
motion. The norm of torque applied to all motors can be
seen in Fig. 7, which are smooth and satisfying all torque
limitations. In addition, in Fig. 9 the contact forces are shown
to adhere to the friction cone (37).

180 7 — mean
160 6 w1/ — 1 std. dev.
140 5
—= 120
g 4
Z. 100 =
—= =~ 3
= 80
= % 2
40 1
20 0
0 05 1 15 2 25 3 35 4 0 05 1 15 2 25 3 35 4
(a) Time (s) (b)

Fig. 7. Torque and Lyapunov function values over 45 crouches on hardware
with the shaded areas as +/— one std. deviation.
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Fig. 8. Height, velocity, and acceleration over 45 crouches. Desired outputs
shown as dashed, mean as black, and shaded blue as 4+/— one std. deviation.
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Fig. 9. Contact forces for the left foot adhering to the pyramidal friction
constraints over three consecutive crouches on hardware.

VII. CONCLUSIONS

This paper presented an optimization based controller
which leverages the desirable convergence results provided
by control Lyapunov functions combined with implementa-
tion concepts from inverse dynamics based controllers. The
approach was shown to be successful both in simulation
and on hardware in real time. Further, the inclusion of
a Lyapunov term in the cost helped incentive the system
to converge more rapidly (as was proved in Theorem 2)
and improved performance with respect to discretization
and model inaccuracy/stiffness. This was demonstrated in
simulation with walking, and experimentally with crouching.

Future work will explore improving the efficiency of
the control method, with the intention of demonstrating
walking in real-time on hardware. Additionally, it opens to
door to providing more implementable methods for safety
critical systems through control barrier functions. Finally,
the controllers provided in this work are documented and
available as part of a C++ open-source code repository, which
can be used in simulation or directly on hardware [1].
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