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Abstract— With the goal of moving towards implementation
of increasingly dynamic behaviors on underactuated systems,
this paper presents an optimization-based approach for solving
full-body dynamics based controllers on underactuated bipedal
robots. The primary focus of this paper is on the development
of an alternative approach to the implementation of controllers
utilizing control Lyapunov function based quadratic programs.
This approach utilizes many of the desirable aspects from
successful inverse dynamics based controllers in the literature,
while also incorporating a variant of control Lyapunov func-
tions that renders better convergence in the context of tracking
outputs. The principal benefits of this formulation include a
greater ability to add costs which regulate the resulting behavior
of the robot. In addition, the model error-prone inertia matrix is
used only once, in a non-inverted form. The result is a successful
demonstration of the controller for walking in simulation, and
applied on hardware in real-time for dynamic crouching.

I. INTRODUCTION

Model based control methods can help enable dynamic

and compliant motion of robots while achieving remarkable

control accuracy. However, implementing such techniques on

floating base robots is non-trivial due to model inaccuracy,

underactuation, dynamically changing contact constraints,

and possibly conflicting objectives for the robot [3], [7].

Unlike their classical counterparts, optimization based ap-

proaches to handling these control problems allow for the

inclusion of physical constraints that the system is subject to

[9], [26]. Partially as a consequence of this feature, quadratic

programming (QP) based controllers have been increasingly

used to stabilize real-world systems on complex robotic

platforms without the need to algebraically produce a control

law or enforce convergence guarantees [11], [15], [19].

These examples, however, typically do not consider peri-

odic notions of stability for highly underactuated systems;

systems which often require additional convergence guaran-

tees in order to realize stability. It was shown in [6] that

through the use of a rapidly exponentially stable control
Lyapunov function (RES-CLF), coupled with hybrid zero
dynamics (HZD) [13], [30], a wide class of controllers can

be designed to create rapidly exponentially convergent hybrid

periodic orbits. It was also shown that this class of controllers

can be posed as a QP, in which the convergence is enforced

via an inequality constraint; forming a control Lyapunov

function based quadratic program (CLF-QP) [6] [7]. Often,

robotic systems cannot produce sufficient convergence to

dynamic motions without violating physical constraints. One
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Fig. 1. The Cassie biped, built by Agility Robotics, and used as an
experimental platform to demonstrate the controllers presented in this work.

approach to address this conflict is to relax convergence guar-

antees, which allows (local) drift in the control objectives to

accommodate feasibility. This class of controllers has since

been used to achieve dynamic locomotion on robotic systems

both in simulation [14], [18], [25], [31] and on hardware [12].

While high level task-space controllers based on inverse

dynamics approaches pose similar problems as CLF-QPs,

they have traditionally not been formulated in the same way.

In implementations of CLF-QPs the vector fields associated

with robotic systems are typically utilized, which involves

costly computations. Alternatively, in task based controllers,

the dynamics are an equality constraint. Here, objectives are

driven towards their targets through PD controllers in the cost

[11]. There have been several connections shown in related

research [20], [21], where control Lyapunov functions were

included in an inverse dynamics controller via an LQR in the

cost. In this work we aim to repurpose several of the more

mature concepts from inverse dynamics based approaches

and demonstrate a more efficient CLF inspired formulation.

The main result of this paper is an optimization-based

control framework that couples convergence constraints from

CLF-QPs with concepts from inverse dynamics based con-

trollers. The presented controllers documented and available

as part of a C++ open-source repository [1]. We begin

in Section II by the CLF framework which yields rapid

convergence. This is followed by Section III which explores

existing optimization based techniques for control. Section

IV details a new class of optimization based controllers

based on the CLF construction. Section V discusses how

to apply these methods practically. In Section VI the model

for the bipedal robot Cassie is shown and the controller is

demonstrated in both simulation for walking, and in real-time

on hardware for dynamic crouching.
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II. PRELIMINARIES ON CONTROL LYAPUNOV FUNCTIONS

In classical nonlinear control design, analysis is typically

performed on a dynamical system of the form:

ẋ = f(x) + g(x)u, (1)

where x ∈ X ⊆ R
n is the set of controllable states and

u ∈ U ⊆ R
m is the control input. The mappings f : Rn →

R
n, g : Rn → R

n×m are assumed to be locally Lipschitz

continuous functions of x. Let us consider a feedback control

system which tracks a set of desired trajectories of the form:

y(x) = ya(x)− yd(τ(x)), (2)

where ya : X → R
m and yd : R × R

a → R
m are smooth

functions encoding the desired behavior to be realized via

control. We assume that y(x) has (vector) relative degree r
[28]. It is often the case in robotic systems that r = 1 if

y(x) depends on position and velocity and r = 2 if it only

depends on position, i.e., configuration variables. Taking the

derivatives of the outputs along f(x) and g(x) we obtain,

y(r)(x) = L
(r)
f y(x) + LgL

(r−1)
f y(x)︸ ︷︷ ︸

A

u, (3)

where A is called the decoupling matrix which is invertible

in the case of a (vector) relative degree. This implies that

the system (1) is feedback linearizable, and we can then

prescribe the following control law:

u(x) = A−1
(
− L

(r)
f y(x) + v

)
⇒ y(r) = v, (4)

where v is an auxiliary feedback control value.

To motivate later constructions, we consider a mechanical

system with configuration space Q, (local) coordinates q ∈
Q, and states x = (qT , q̇T )T ∈ TQ = X . Suppose that

for (1) there is a set of outputs y(x) = (y1(q, q̇)
T , y2(q)

T )T

of vector relative degree 1 and 2, respectively, on a region

of interest; that is for y1(q, q̇) ∈ R
m1 and y2(q) ∈ R

m2

with m = m1 + m2 we assume the vector relative degree

is 1 for y1 and the 2 for y2, i.e., (1, . . . , 1, 2, . . . , 2) with

1’s appearing m1 times and 2’s appearing m2 times. We can

then write an output tracking problem:

y1(q, q̇, t) = ya1 (q, q̇)− yd1(τ(t, q)) (5)

y2(q, t) = ya2 (q)− yd2(τ(t, q)), (6)

where ya and yd are the actual and desired outputs, and

τ(t, q) is some parameterization of time for the desired

outputs to evolve on. Assuming that the preliminary feedback

(4) has been applied to (1), we will render a linear system for

the output dynamics with coordinates η := (yT1 , y
T
2 , ẏ

T
2 )

T ,

η̇ =

⎡
⎣ẏ1ẏ2
ÿ2

⎤
⎦ =

⎡
⎣0 0
0 I
0 0

⎤
⎦

︸ ︷︷ ︸
F

η +

⎡
⎣I 0
0 0
0 I

⎤
⎦

︸ ︷︷ ︸
G

v. (7)

A valid choice of v which stabilizes this system is:

v =

[
ẏ1
ÿ2

]
=

[ − 1
εKv̄y1

− 1
ε2KP y2 − 1

εKDẏ2

]
, (8)

where 0 < ε ≤ 1 is a tunable parameter, and Kv̄ , KP ,

KD are control gains for the relative degree 1 and relative

degree 2 output errors, respectively. While this controller

yields convergence to the target outputs, it does not leverage

the natural dynamics of the system, and disregards torque and

feasibility constraints by which the system must abide. Thus,

for practical systems, additional considerations for selecting

our control input are often required.
The exponentially stabilizing control Lyapunov function

[5] (ES-CLF) and rapidly exponentially stabilizing control
Lyapunov function (RES-CLF) frameworks [6] were intro-

duced as methods for achieving stability in the output dy-

namics. In the context of the control system (7), we consider

the continuous time algebraic Riccati equations (CARE):

FTP + PF − PGGTP +Q = 0, (9)

for Q = QT > 0 and with solution P = PT > 0. The

method presented in [6] can then be employed to construct

a (R)ES-CLF,

V (η) = ηT IεP Iε︸ ︷︷ ︸ η
Pε

, with Iε := diag

(
I,

1

ε
I, I

)
, (10)

where the selection of 0 < ε < 1 creates a RES-CLF, and

ε = 1 instead renders an ES-CLF. We can find the derivative

of (10) to be:

V̇ (η) = LFV (η) + LGV (η)v, (11)

where the Lie derivatives of Vε along the linear output

system’s dynamics (7) are

LFV (η) = ηT (FTPε + PεF )η, (12)

LGV (η) = 2ηTPεG. (13)

An exponential convergence constraint can then be pre-

scribed as,

LFV (η) + LGV (η)v ≤ − λmin(Q)

ελmax(Pε)︸ ︷︷ ︸
γ

V (x), (14)

where γ is related to the convergence rate. This constraint is

in terms of our auxiliary control input v and not the actual

feedback control u. In order to convert back into a form

which can be represented in terms of the control input, we

can use the previous relationship between u and v

A(x)u+ L
(r)
f y(x) = v, (15)

to obtain the CLF constraint stated in terms of x since η
depends on x (via y1, y2 and ẏ2):

LFV (x) + LGV (x)L
(r)
f y(x)︸ ︷︷ ︸

LfV (x)

+LGV (x)A(x)︸ ︷︷ ︸
LgV (x)

u ≤ −γV (x).

(16)

In the context of (R)ES-CLF, we can then define the set

K(x) = {u ∈ U : LfV (x) + LgV (x)u+ γV (x) ≤ 0},
(17)

consisting of the control values which result in (rapidly)

exponential convergence, wherein V̇ (η(x)) ≤ −γV (η(x)).
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III. OPTIMIZATION BASED CONTROLLERS

The dynamics of robotic systems can be formulated using

the method of Lagrange, with positional constraints on the

system incorporated via D’Alembert’s principle [23],

D(q)q̈ +H(q, q̇) = Bu+ JT (q)λ (18)

J(q)q̈ + J̇(q, q̇)q̇ = 0, (19)

where D(q) is the inertia matrix, H(q, q̇) = C(q, q̇)q̇ +
G(q) + F is the vector sum for the Coriolis, centripital,

gravitational, and additional non-conservative generalized

forces, B is the actuation matrix, and the Jacobian of the

holonomic constraints is J(q) = ∂h/∂q with its correspond-

ing constraint wrenches λ ∈ R
mh . This can be converted to

an ODE in the form of (1) as:

f(x) =

[
q̇

−D−1(q)
(
JT (q)λ−H(q, q̇)

)] ,
g(x) =

[
0

D(q)−1B

]
. (20)

We begin the derivation of our controller for this system by

again considering the outputs (5) and (6), and taking the

necessary derivatives of the outputs:[
ẏ1
ÿ2

]
=

[ ∂y1

∂q

∂
∂q

(
∂y2

∂q q̇
)]

︸ ︷︷ ︸
J̇y

q̇ +

[
∂y1

∂q̇
∂y2

∂q

]
︸ ︷︷ ︸

Jy

q̈. (21)

This can equivalently be done by taking the derivatives along

the vector fields (20), where the dependencies have been

dropped for the sake of clarity, we can write:[
ẏ1
ÿ2

]
=

[ ∂y1

∂q
∂y1

∂q̇

∂
∂q

(
∂y2

∂q q̇
)

∂y2

∂q

]
f(x)

︸ ︷︷ ︸
Lfy(x)

+

[
∂y1

∂q̇
∂y2

∂q

]
g(x)

︸ ︷︷ ︸
A

u, (22)

now in the form of (4). This can then be combined with the

convergence constraint given for a CLF (16) and posed as

an optimization problem to find a satisfactory input u.

Control Lypaunov Function Quadratic Programs: In its

traditional implementation [6], the inequality constraint (16)

can be posed in a QP optimization based controller to find

a torque in the set (17), where ‖v‖2 is minimized, as:

CLF-QP:

u∗(x) = argmin
u∈U⊂Rm

||A(x)u+ L
(r)
f y(x)||2

s.t. LfV (x) + LgV (x)u ≤ γV (x)

Where in the case of a RES-CLF, γ depends on ε. For the

holonomic constraints to be satisfied in the dynamics (20),

and thus in the QP constraint (16), we must either augment

u with λ as an additional decision variable [7], [14], or solve

for the generalized force explicitly, assuming the holonomic

constraint is satisfied:

λ = (JcD
−1JT

c )−1
(
JcD

−1(H −Bu)− J̇cq̇
)
, (23)

and substitute back into the expression (20). However, even

if λ is included as an additional optimization variable, (23)

must be evaluated in order to apply feasibility constraints

such as the friction cone to the problem. Additionally, Feath-

erstone showed in previous work that the condition number

of the joint space inertia matrix increases quartically with the

length of a kinematic chain [10]. This points to an obvious

source of numerical stiffness, and can lead to controller

degradation on hardware [24]. For complex multi-link robots,

such as bipedal robots, these condition numbers are often

exceptionally large (for full humanoids sometimes on the

order of 108). In addition, performing the required inversions

for evaluating the vector fields (20) are very computationally

expensive, and can often violate strict timing requirements

when implementing these controllers on hardware.

Inverse Dynamics Approaches to Locomotion: Inverse
dynamics is a widely used method to approaching controller

design for achieving a variety of motions and force interac-

tions, typically in the form of task-space objectives. Given

a target behavior, the dynamics of the robotic system are

inverted to obtain the desired torques. In most formulations,

the system dynamics are mapped onto a support-consistent

manifold using methods such as the dynamically consistent

support null-space [29], linear projection [4], and orthogonal

projection [22]. When prescribing behaviors in terms of

purely task space objectives, this is commonly referred to as

task- or operational-space control (OSC) [17]. In many recent

works, variations of these approaches have been shown

to allow for high-level tasks to be encoded with intuitive

constraints and costs in optimization based controllers, some

examples being [8], [11], [15], [16], [19]–[21].
Here we present a minimal implementation of an inverse

dynamics controller. First, let us consider a set of variables

X = [q̈T , uT , λT ]T ∈ Xext := R
n × U × R

mh , which are

linear with respect to (18),[
D(q) −B −JT (q)

]X +H(q, q̇) = 0. (24)

We can pose the holonomic constraints (19) as:[
J(q) 0 0

]X + J̇(q)q̇ = 0. (25)

Also consider a positional objective in the task space of the

robot, which can be characterized using (21) as

Jy(q, q̇)q̈ + J̇y(q, q̇)q̇ − ÿ∗2 = 0, (26)

where ÿ∗2 = KP y2 +KDẏ2 is a PD control law which can

be tuned to achieve convergence. In it’s most basic case,

not considering physical limitations on torque and frictional

contact, we can pose this tracking problem as:

ID-QP:
X ∗(x) = argmin

X∈Xext

||J̇y(q, q̇)q̈ + Jy(q, q̇)q̇ − ÿ∗2 ||2 + σW (X )

s.t. D(q)q̈ +H(q, q̇) = Bu+ JT (q)λ

J(q)q̈ + J̇(q)q̇ = 0

where W (X ) is included as a regularization term with a

small weight σ such that the problem is well posed.

2446

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 29,2021 at 22:43:56 UTC from IEEE Xplore.  Restrictions apply.



IV. CONTROLLER FORMULATION

In this section, a new controller is presented that combines

aspects of ID and CLF based control. The resulting opti-

mization only requires a single use of the mass matrix, in its

uninverted form, and incentivizes fast convergence rates.

A Combined Approach. Taking inspiration from inverse

dynamics approaches, we return to (15) where the auxiliary

control input v is set to equal the second time derivative

of the output. Rather than directly choosing an input u, a

q̈ is solved for that generates an equivalent response in the

outputs. Using (21), q̈ can be chosen to satisfy[
ẏ1
ÿ2

]
= J̇y q̇ + Jy q̈ = v. (27)

By constraining:

q̈ = J†
y(−J̇y q̇ + v), (28)

where J†
y is a right pseudo inverse of the full rank matrix

Jy , with JyJ
†
y = I , and the outputs evolve as:[
ẏ1
ÿ2

]
= J̇y q̇ + JyJ

†
y(−J̇y q̇ + v) = v. (29)

More formally, we have shown the following result:

Theorem 1. For a robotic system with dynamics (18) and
outputs of the form (5) and (6), any controller in the set:

K(q, q̇) = {u ∈ U : q̈ = J†
y(−J̇y q̇ + v)}, (30)

elicits the same response in the output dynamics as the IO
feedback linearizing controller,

u = A−1(−Lfy(x) + v). (31)

As discussed in Section II, feedback linearizing controllers

fail to take advantage of the natural dynamics of a system.

Therefore, we introduce the Inverse Dynamics Control Lya-
punov Function Quadratic Program (ID-CLF-QP) a parallel

to (CLF-QP), which similarly enables the system to evolve

in a more natural way, while still enforcing convergence

guarantees.

ID-CLF-QP

X ∗ = argmin
X∈Xext

∣∣∣∣
∣∣∣∣∂ẏ∂q q̇ + ∂y(q)

∂q
q̈

∣∣∣∣
∣∣∣∣2 + σW (X )

s.t. LFV (x) + LGV (x)

(
∂ẏ

∂q
q̇ +

∂y(q)

∂q
q̈

)
≤ −γV (x)

D(q)q̈ +H(q, q̇) = Bu+ JT (q)λ

J(q)q̈ + J̇(q)q̇ = 0

This formulation imposes an equivalent convergence con-

dition as (CLF-QP). However, using q̈ as an optimization

variable leads to a formulation that is less numerically stiff

and less sensitive to estimation errors in the mass matrix.

Incentivized Convergence. A second weakness of the stan-

dard (CLF-QP) is that it does not incentivize faster con-

vergence rates than the chosen γ if control bandwidth is

available. This lead to chattering as the system intermittently

triggers the inequality. When the outputs are written as in

(21), the derivative of the Lyapunov function is only in terms

of the decision variable q̈ and scalar functions of the states.

Therefore, we add the q̈-dependent portion to the cost.

ID-CLF-QP+

X ∗ = argmin
X∈Xext

∣∣∣∣
∣∣∣∣∂ẏ∂q q̇ + ∂y(q)

∂q
q̈

∣∣∣∣
∣∣∣∣2 + σW (X ) + V̇ (x,X )

s.t. LFV (x) + LGV (x)

(
∂ẏ

∂q
q̇ +

∂y(q)

∂q
q̈

)
≤ −γV (x)

D(q)q̈ +H(q, q̇) = Bu+ JT (q)λ

J(q)q̈ + J̇(q)q̇ = 0

Theorem 2. Through the addition of a Lyapunov term in
the cost, (ID-CLF-QP+) will induce an equal or faster
convergence rate than (ID-CLF-QP). Concretely, given so-
lutions to these optimization problems, denoted by X+ and
X̃ , respectively, for:

V̇ (x,X+) ≤ −γ+V (x)

V̇ (x, X̃ ) ≤ −γ̃V (x)
⇒ γ̃ ≤ γ+.

Proof: We begin by noting that (ID-CLF-QP) and (ID-CLF-
QP+) have the same solution space. The cost of (ID-CLF-
QP) as will be denoted:

C(X ) =

∣∣∣∣
∣∣∣∣∂ẏ∂q q̇ + ∂y(q)

∂q
q̈

∣∣∣∣
∣∣∣∣2 + σW (X ) (32)

For a given feasible point X ∗ of (ID-CLF-QP+), the unique

instantaneous convergence rate γ∗ is defined as solving:

LFV (x) + LGV (x)

(
∂ẏ

∂q
q̇ +

∂y(q)

∂q
q̈∗
)

= −γ∗V (x),

(33)

and the cost is given by:

J (X ∗) = C(X ∗) + LGV (x)
∂y(q)

∂q
q̈. (34)

Larger values of γ imply a faster convergence rate. Denoting

the solution to (ID-CLF-QP) as X̃ , then by definition:

C(X̃ ) ≤ C(X ∗), ∀X ∗ ∈ X , (35)

and additionally, for the solution to (ID-CLF-QP+), X+ :

J (X+) ≤ J (X̃ ), (36)

as the two problems have the same feasible space. This can

be expanded to:

LGV (x)
∂y(q)

∂q
q̈+ + C(X+)︸ ︷︷ ︸

J (X+)

≤ LGV (x)
∂y(q)

∂q
˜̈q + C(X̃ )︸ ︷︷ ︸

J (X̃ )

.

If we solve for the Lyapunov portion of each side using (33),

this reduces to:

−γ+V (x) + C(X+) ≤ −γ̃V (x) + C(X̃ ).
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This can be rearranged, and (35) can be leveraged to find

γ̃V (x)− γ+V (x) ≤ C(X̃ )− C(X+) ≤ 0

(γ̃ − γ+)V (x) ≤ 0

γ̃ ≤ γ+.

Which proves that the solution to (ID-CLF-QP+) will have

an equal or faster convergence rate as (ID-CLF-QP).

V. IMPLEMENTABLE METHODS

In order to implement these methods on robotic systems,

there must be a discussion on practicality and how to better

encode and satisfy the physical limitations of the system at

hand. In this section, some of the barriers to implementation

are presented as well as methods for mitigating them.

Holonomic Constraints. For robotic systems, two types of

holonomic constraints are commonly considered, external

contact constraints depending on the current configuration

of the robot and it’s interactions with the world, and internal

kinematic constraints resulting from the robot geometry.

1) Contact Constraints: When the robot is in contact with

the world, its motion can be restricted. This results in force

terms in the equations of motion ((18) and (19)). These

contacts are often required to follow friction models. Ideally,

a classical Amontons-Coulomb model of (dry) friction is

used to avoid slippage and is represented as a friction cone

constraint. For a friction coefficient μ and a surface normal,

the space of valid reaction forces is,

C =
{
(λx, λy, λz) ∈ R

3
∣∣λz ≥ 0;

√
λ2
x + λ2

y ≤ μλz

}
. (37)

However, this constraint is nonlinear, and cannot be imple-

mented as a linear constraint. An alternative solution is to

use a pyramidal friction cone approximation [13],

P =

{
(λx, λy, λz) ∈ R

3
∣∣λz ≥ 0; |λx|, |λy| ≤ μ√

2
λz

}
. (38)

This is a more conservative model than the friction cone,

but is advantageous in that it is a linear inequality constraint.

When a surface is in contact with the outside world, addi-

tional constraints are introduced to prevent it from rolling

over the contact edge in the form:

− l

2
λz <λmx <

l

2
λz (39)

−w

2
λz <λmy <

w

2
λz (40)

where l and w are the lengths and widths of the surface.

2) Internal Constraints: It is common practice to model

robotic manipulators in tree structures. When the mechanism

has parallel manipulators, this is managed by cutting the loop

and enforcing a holonomic constraint [27], or by solving for

the closed-loop dynamics explicitly. These constraints add

further degrees of complexity to the optimization problem.

Relaxed CLF-QP. Due to these constraints, as well as limits

on feasible torques, it is not always possible for the system

to converge according to the bound [12]. The accepted way

of dealing with this is to add a relaxation term, δ, to the

convergence constraint with an associated weight, ρ. In our

formulation, this transforms the problem to:

ID-CLF-QP+ δ

X ∗ = argmin
X∈Xext,δ∈R

∣∣∣∣
∣∣∣∣∂ẏ∂q q̇ + ∂y(q)

∂q
q̈

∣∣∣∣
∣∣∣∣2 +W (X ) + V̇ (x,X ) + ρδ2

s.t. LFV (x) + LGV (x)

(
∂ẏ

∂q
q̇ +

∂y(q)

∂q
q̈

)
≤ −γV (x) + δ

D(q)q̈ +H(q, q̇) = Bu+ JT (q)λ

J(q)q̈ + J̇(q)q̇ = 0

In practice it can be seen that if we take away the hard

constraint in (ID-CLF-QP+), we are left with a relaxation

ID-CLF-QP+ relaxed

X ∗ =argmin
X∈Xext

∣∣∣∣
∣∣∣∣∂ẏ∂q q̇ + ∂y(q)

∂q
q̈

∣∣∣∣
∣∣∣∣2 +W (X ) + V̇ (x,X )

s.t. D(q)q̈ +H(q, q̇) = Bu+ JT (q)λ

J(q)q̈ + J̇(q)q̇ = 0

that still incentivizes fast convergence and penalizes slow

convergence. Further, whenever it is feasible to do so,

this problem will render V̇ as negative as possible. In the

simulation results we show how these methods compare and

we implement the final approach on hardware.

Hard and Soft Constraints. When implementing on hard-

ware, often holonomic constraints are not satisfied precisely.

The analytical solutions presented thus far make the problem

more prone to infeasibility. To solve this, we once again look

to the inverse dynamics community where it has become

practice to differentiate between hard and soft constraints.

Hard constraints are formulated as traditionally seen in Sec-

tion IV, they cannot be violated. Soft constraints, however,

refer to an addition to the cost function which penalizes

violation of a preferred relationship. These are frequently

added as the norm of a least squares problem:

w||AX − b||2 (41)

where X is as in (24) and w is a weight. On hardware,

holonomic constraints for footholds are the perfect candidate

to be implemented as soft constraints

J(q)q̈ + J̇ q̇ = 0 ⇒ [
J(q) 0 0

]︸ ︷︷ ︸
A

X = −J̇ q̇︸︷︷︸
b

(42)

The formulation of holonomic constraints in this way voids

the need to explicitly compute reaction forces (as in (23)) and

allows for small violations, which is necessary in practice.

Additional soft constraints that are beneficial for robotic

walking include specifying force distributions (weight per

foot or in different places on the foot). In this case the

A matrix represents the fractional representation and the

b matrix is all zeros. Finally, direct tracking of decision

variables is possible by making A the identity and b the

desired values. In each of these cases, a desirable cost is

the exact satisfaction of the output dynamics. The benefit of
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Fig. 2. The configuration coordinates of the Cassie robot, on the left is a
side view of the robot, which highlights the compliant mechanism, and on
the right is the front view of the robot model.

using soft constraints is two-fold; as previously mentioned it

allows for small violations of constraints and, it speeds up

computation time as the problem becomes better posed.

VI. APPLICATION TO THE CASSIE BIPED

In this section the robot model will be introduced, followed

by a presentation of simulation results for walking with each

of the controllers mentioned, as well as real-time hardware

results on crouching and standing behaviors.

Robot Model. The bipedal robot Cassie was designed and

manufactured by Agility Robotics1. The design of the robot

encompasses the physical attributes of the spring loaded

inverted pendulum (SLIP) model dynamics. The primary

characteristic being a pair of light-weight legs with a heavy

torso so that the system is approximated by a point-mass

with virtual springy legs. On Cassie, a compliant multi-link
mechanism is used to transfer power from higher to lower

limbs without allocating the actuators’ weight onto the lower

limbs, and effectively acts as a pair of springy legs. Contacts

with the ground are assumed to be rigid and only occurring

at specified points on the feet of the robot. This allows for

the equations of motion for the robot to be described as (18).

A. Walking in Simulation

The simulation presents a side-by-side comparison of the

traditional (CLF-QP) with the new controllers proposed.

Two walking gaits are generated using the partial hybrid
zero dynamic framework as presented in [30]. Both gaits

use a single continuous domain, and progress is dictated by

τ(t, q), a parameterization of time either by the gait duration

(time-based) or by the relative degree 1 output (state-based):

τ(t) :=
t− t1

t2 − t1
or τ(q) :=

δy1(q)− δy1(q
+)

v̄
, (43)

where t0 and tf are the start and end times of the current

domain, respectively, δy1(q
+) is the initial value of the

velocity modulating output and v̄ is a parameter for the

desired velocity of the output.

1http://www.agilityrobotics.com/

Planar Walking Simulation. The first gait we consider

is state-based and is designed on a planar, rigid model of

Cassie. One relative degree 1 input, the linearized forward

hip velocity, is used and five relative degree 2 outputs:

ya2 (q) :=

⎡
⎢⎢⎢⎢⎣

||ψsw||�2
||ψst||�2

atan2
(
ψsw
x , ψsw

z

)
φy

φy(q)

⎤
⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎝

swing leg length

stance leg length

swing leg pitch

pelvis pitch

swing foot pitch

⎞
⎟⎟⎟⎟⎠ (44)

where φy(θtp) is the ankle Cartesian pitch, and

ψst/sw(q) = php(q)− p
st/sw
tp (q), (45)

represents the Cartesian distance from the hip pitch joints to

each of the feet.

Four controllers are then applied to the model; (CLF-QP-
δ), (ID-CLF-QP δ), (ID-CLF-QP+ δ), and (ID-CLF-QP+
relaxed). In Fig. 3 the convergence of the Lyapunov function

can be seen for a system that is perturbed to start from rest

(not started on its periodic orbit) and must converge onto

the periodic gait. It can be seen that the more traditionally

formulated controllers do not converge quickly enough in the

first step, causing an amplification of error in the second,

while the two cases with the Lyapunov term in the cost

do. It is also interesting to note that when the Lyapunov

term is in the cost, the existence of the hard convergence

constraint does not significantly affect the response. While

the performance differs between the four controllers, the

torque applied from each is similar in magnitude and form,

as can be seen in Fig. 3. The inverse dynamics torques

are overall smoother, and the controllers with the Lyapunov

derivative term in the cost have the smoothest torque profiles

and best convergence performance.

3D Compliant Walking Simulation. The second simulation

case is a time-based walking gait on the 3D compliant model

of the robot [27]. For this formulation the relative degree 1

output is disregarded and four new relative degree 2 outputs -

both hip yaws (θhy), the swing hip roll (θhr) and the floating

base roll (φr) - are added. The gait generated is tracking with

the controllers directly on the nominal walking gait motions

from an offline trajectory optimization.

Fig. 3. Performance of the planar simulated walking gait over two steps,
started from rest. Improvement is seen when the Lyapunov term is added
to the cost. (a) Lyapunov function, V (η) (b) Torque squared, ‖u‖2.
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Fig. 4. Time series motion tiles for simulated walking in 3D (left) and on hardware for the crouching experiment (right).

The Lyapunov function convergence and motor torques

for each of the controllers can be seen in Fig. 5 and 6,

respectively. The theory referenced in this work assumes

purely continuous control, however, in reality torques are ap-

plied at a discrete intervals. We thus included the simulation

results when the controllers are applied at 500 Hz and 5 kHz.

An animation of the resulting simulation is also shown in

[2]. While the traditional (CLF-QP-δ) and (ID-CLF-QP-δ)

controllers see a marked degradation as loop rates decreases,

the controllers which have Lyapunov derivative terms in the

cost, (ID-CLF-QP+-δ), and (ID-CLF-QP+-relaxed), seem

minimally affected. Because this controller is run on the

compliant model, the ODE is much more numerically stiff

than in the rigid planar case. As such, we see that (CLF-QP-
δ), which uses the inverted form of the mass inertia matrix,

is much more sensitive when applied at coarse frequencies.

Crouching in Real-Time on Hardware.
Finally, the inverse dynamics motivated control Lyapunov

based controller, (ID-CLF-QP+ relaxed), was implemented

on hardware, as Cassie went through a dynamic crouching

motion (Fig. 4). The prescribed motion was a repeated crouch

which moved the pelvis vertically from 0.9 m to 0.5 m

and back, with each segment being 2 s in duration. The

source code to run a Gazebo simulation or directly implement

the code on hardware is provided online [1]. In addition,

Fig. 5. Lyapunov function convergence on the 3D compliant robot for a
time based step at 500 Hz and 5 kHz control frequencies.

Fig. 6. Torque of the 3D compliant robot for time based step at 500 Hz
and 5 kHz control frequencies.

a video of the experiment, along with animations of the

previous simulations are provided in [2]. Six relative degree

two outputs for standing were prescribed, the base positions

and rotations, y(q) = [pb, φb]
T . They were then specified

as high level targets on hardware. Because we are using

a task-space approach, it is not necessary to encode these

objectives as combinations of the actuated joint angles, and

no joint level stabilization (i.e. individual joint tracking or

control) was used. The controller was run on the secondary

Intel NUC computer aboard Cassie, and was implemented

in C++. The controller ran at a frequency of 1 kHz, with

approximately 6% timing jitter. There were only three sets

of hard constraints; the dynamics as in (18), torque bounds

for each joint, and the friction constraints as in (38) and

(39). The cost included soft constraints for the remaining

holonomic constraints as well as on torque smoothness

(uk − uk−1), in addition to the costs explicitly prescribed

in (ID-CLF-QP+-relaxed). The resulting QP was solved

with the qpOASES package and had 49 variables, and 41
constraints. As can be seen in Fig. 8, the height was smoothly

tracked to within several centimeters for the entirety of the

motion. The norm of torque applied to all motors can be

seen in Fig. 7, which are smooth and satisfying all torque

limitations. In addition, in Fig. 9 the contact forces are shown

to adhere to the friction cone (37).

Fig. 7. Torque and Lyapunov function values over 45 crouches on hardware
with the shaded areas as +/− one std. deviation.

Fig. 8. Height, velocity, and acceleration over 45 crouches. Desired outputs
shown as dashed, mean as black, and shaded blue as +/− one std. deviation.
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Fig. 9. Contact forces for the left foot adhering to the pyramidal friction
constraints over three consecutive crouches on hardware.

VII. CONCLUSIONS

This paper presented an optimization based controller

which leverages the desirable convergence results provided

by control Lyapunov functions combined with implementa-

tion concepts from inverse dynamics based controllers. The

approach was shown to be successful both in simulation

and on hardware in real time. Further, the inclusion of

a Lyapunov term in the cost helped incentive the system

to converge more rapidly (as was proved in Theorem 2)

and improved performance with respect to discretization

and model inaccuracy/stiffness. This was demonstrated in

simulation with walking, and experimentally with crouching.

Future work will explore improving the efficiency of

the control method, with the intention of demonstrating

walking in real-time on hardware. Additionally, it opens to

door to providing more implementable methods for safety

critical systems through control barrier functions. Finally,

the controllers provided in this work are documented and

available as part of a C++ open-source code repository, which

can be used in simulation or directly on hardware [1].
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