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Explainability of Al systems is critical for users to take informed actions and hold systems accountable. While “opening the opaque
box” is important, understanding who opens the box can govern if the Human-AI interaction is effective. In this paper, we conduct a
mixed-methods study of how two different groups of whos—people with and without a background in Al—perceive different types of
Al explanations. These groups were chosen to look at how disparities in Al backgrounds can exacerbate the creator-consumer gap.
We quantitatively share what the perceptions are along five dimensions: confidence, intelligence, understandability, second chance,
and friendliness. Qualitatively, we highlight how the Al background influences each group’s interpretations and elucidate why the
differences might exist through the lenses of appropriation and cognitive heuristics. We find that (1) both groups had unwarranted
faith in numbers, to different extents and for different reasons, (2) each group found explanatory values in different explanations that
went beyond the usage we designed them for, and (3) each group had different requirements of what counts as humanlike explanations.
Using our findings, we discuss potential negative consequences such as harmful manipulation of user trust and propose design
interventions to mitigate them. By bringing conscious awareness to how and why Al backgrounds shape perceptions of potential

creators and consumers in XAlI, our work takes a formative step in advancing a pluralistic Human-centered Explainable Al discourse.
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1 INTRODUCTION

As Al-driven systems increasingly power high-stakes decision-making in public domains such as healthcare [22, 60, 69,
89], finance [98, 108], law [12, 136, 143], and criminal justice [56, 72, 122], their explainability is critical for end-users
to take informed and accountable actions [130]. Issues concerning explainability lie at the heart of Explainable Al
(XAI), a research area that aims to provide human-understandable justifications for the system’s behavior [2, 42, 55].
Explainability is not a new issue within AI [67, 105, 129], but the proliferation of Deep Learning and Reinforcement
Learning based approaches—models of which are considered hard to interpret, even by experts—has led to a remarkable
growth in techniques that aim to ‘open’ the Al opaque box [55].

While opening the opaque box is important, who opens the box also matters. Implicit in Explainable Al is the
question: “explainable to whom?” [41]. The who governs the most effective way of describing the why behind the
decisions. Getting a situated understanding of how different who’s with different user characteristics matter in XAI is

thus important. To give an illustrative example: riders (end-users) of a self-driving car have different user characteristics
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than its engineers (developers). Riders, many of whom are not Al experts, might not have the Al background that the
engineers have and thus have different explainability needs and goals.

One’s Al background is an impactful user characteristic in XAI because there is often disparity in this characteristic
between creators/developers and end-users, which can lead to inequities [26]. Many end-users are unlikely to have AI
backgrounds comparable to the creators of the technology [66]. Nonetheless, XAI developers tend to design explanations
as if people like them are going to use their systems [102]. In fact, a majority of current deployments of XAI technologies
serve Al engineers instead of end-users [4, 82]. This creates a consumer-creator gap, one between design intention and
reality— how developers envision the Al explanations to get interpreted and how users actually perceive them. If we
want to bridge this gap, we need to understand how user characteristics, such as Al background, impact it.!

In this paper, we share how and why one’s Al background (or lack thereof) shapes their perceptions of Al explanations.
Focusing on two groups, one with and one without an AI background, we found that (1) Both groups had unwarranted
faith in numbers, but exhibit it for different reasons and to differing degrees, with Al group showing higher propensity to
over-trust numerical representations and potentially be mislead by the presence of it. (2) The two groups found different
explanatory values beyond the usage that the explanations were designed for. (3) Even in their aligned appreciation for
humanlike-ness, each group had different requirements concerning what counts as humanlike explanations. These
insights have potential negative implications like susceptibility to harmful manipulation of user trust.

We found these insights through a mixed-methods study where we probed for user perceptions of three types of
Al-generated explanations: (1) natural language with justification (explaining the “why” behind the action), (2) natural
language without justification (describing “what” the action was), and (3) numbers that determine the agent’s actions
(akin to “transparent” AI). We measure perceptions along five dimensions: confidence, intelligence, understandability,
second chance, and friendliness, which are grounded in related work around HCI, HRI, and XAI [15, 30, 32, 42, 145]
and quantitatively share within- and between- group differences. Through qualitative analysis, we examined how Al
background shaped each group’s interpretation of explanations and highlight the reasons behind their perceptual
differences along three salient themes corresponding to the three aforementioned findings.

Beyond illustrating how Al background influences the groups’ perceptions, we also elucidate the why-possible
causes— behind the group differences using the conceptual lenses of of heuristics (mental short-cuts) [68, 127] and
appropriation (users’ repurposing of a design) [36, 107, 123]. In light of the findings, we share concrete design implications
around mitigating the risks of over-reliance on numbers which can potentially lead to negative consequences such as
over-trust on XAI systems. We share broader lessons around how our insights can help re-imagine AI education and
mitigate potential harmful manipulation with explanations. By bringing conscious awareness of the group differences to

human-centered design of XAI systems, we address the Al creator-consumer gap by making the following contributions:

e We quantify the user preferences (what) of three types of Al explanations along five dimensions of user percep-
tions.

e We qualitatively situate how one’s Al background (or lack thereof) influences one’s perception of the explanations.

o We elucidate why the group differences might exist and interpret them through the conceptual lenses of heuristics
and appropriation.

o Using our findings, we identify potentially negative consequences (like harmful manipulation of user perceptions

and over-trust in XAI systems) and propose mitigation strategies.

!By highlighting the creator-consumer gap in XAL we do not mean to undermine the diversity of stakeholders in the ecosystem. By calling attention to
extreme ends, we are highlighting the severity of the gap while fully acknowledging the ecosystem’s diversity. See, e.g.: [54, 101, 106, 117].

2



2 BACKGROUND

In this section, we review related work in the field of XAI salient to the paper, highlight the need to attend to XAI’s
sociotechnical dimensions and human-centered perspectives, and discuss HCI work studying how user background

shapes users’ perception of and needs for technology that motivated our work.

2.1 Explainable Al

While the origin of “explainable AI” can be traced back to expert systems in the 1980s [135], the field of XAI has been
undergoing a resurgence due to the proliferation of complex Deep Learning models. Although there is a current lack
of consensus on the meaning of explainability and related terms such as interpretability [7, 121], XAI work shares
a common goal of making the Al systems’ decisions or behaviors understandable by people [2, 42] Among other
dimensions to map the landscape of technical XAI approaches, the field differentiates between methods to build directly
interpretable model and methods to generate explanation for opaque-box models [49, 86, 120, 154] (for a detailed
overview see recent survey papers [2, 7, 55]). While simpler models such as linear regression and decision-tree are
typically considered directly interpretable but low-performing, recent work (e.g. [31, 150]) focuses on developing new
algorithms that “open” the opaque-box and allow “under the hood” inspection without sacrificing performance.

In contrast, explanation generation methods-used in this paper—aim to explain models that are not directly human-
understandable (e.g., deep neural networks). They are often post-hoc techniques [42, 87, 102, 120, 154] that could
be applied after model building. Typically, these methods rely on distilling a simpler model from the input and
output [96, 120] or meta-knowledge about the model [42] to generate explanations that approximate the model’s
behavior. While there is, by design, a loss of scrutability, these methods allow the flexibility to make any model
explainable, and thus have become popular and been applied to transforming simulation logs to explanations[142],
intelligent tutoring systems [27], transforming AI plans into natural language [141], and translating multi-agent
communication policies into natural language [6]. By privileging accessible understanding over revealing “under
the hood” model mechanisms, explanation generation methods can be geared towards non-Al experts. In this paper,
we focus on a specific explanation generation technique called rationale generation [42]—a process of producing a
natural language explanation for agent behavior as if a human had performed the behavior and verbalized their inner
monologue. While explanations can be in any modality, rationales are natural language-based, making it especially

accessible for non-Al experts [42].

2.2 Towards Human-Centered XAl

There has been a growing recognition that XAl systems are often developed without an understanding of the recipients’
needs and characteristics [41, 102]. For instance, many of the XAI techniques created to support explainability needs
during model development [120, 125] may break down when it comes to serving end-users with different needs [82]. It
is imperative to follow human-centered approaches to understand the “personal, social, and cultural aspects” [64] of
the recipients of Al explanations, especially since a monolithic view of the who may inadvertently risk dehumanization
[20, 73]. Given deployment in high-stakes settings, Al systems designed without attending to the needs and values of
different stakeholders may also risk marginalizing certain groups or exacerbating existing inequities [8, 114].

The need for human-centered approaches in XAI has inspired increasing efforts among HCI and CSCW researchers,
following the community’s long-standing tradition of designing and studying explainable computing systems [43,
46, 76, 84, 119]. Studies empirically evaluating XAI techniques in specific use contexts reveal the divergent needs

3



and preferences of users [4, 19, 24, 37, 58, 70]. For example, while data scientists might need multiple XAI tools for
comprehensive understanding [58], simple explanations are often sufficient for Al-novices [24]. User characteristics such
as cognitive load disposition [48] and general trust in AI [37] could moderate how users perceive Al explanations. Some
studies further reveal potential drawbacks of Al explanations— how explanations could impose undesired cognitive
burden [1], create a false sense of security and over-trust [48, 70], and how even placebic explanations (devoid of
justificatory content) can engender trust in Al systems [44].

Researchers have begun to examine people’s cognitive process of interpreting Al explanations, which could help us
understand atypical and misaligned user receptions of XAI. Recent work highlights the dual-process of cognition when
people process Al explanations [17]. The dual-process theory [68, 118, 148] posits that people’s cognitive processes
follow two systems: System 1 processes stimuli in a fast and automatic manner, whereas System 2 engages in deliberative
and analytical thinking. System 1 often relies on heuristics (rules-of-thumb or mental short-cuts) that can be developed
through past experiences. These heuristics, if applied inappropriately, should be considered cognitive biases [68]. In
XAL there is often an assumption that people engage in analytic System 2 thinking whereas there is emerging evidence
that people mostly engage in System 1 thinking [17]. Negative consequences of cognitive biases such as over-trust in
XAI could be attributed to a System 1 heuristic of associating explanations with Al competence [26, 113]. One way to
mitigate these biases would be to use Cognitive Forcing Functions (CFFs)-interventions that disrupt heuristic reasoning
and promote System 2 analytical thinking [28].

Human-centered XAI calls for pluralistic explanation design—for the who, not just the what, of XAI [41]. Recent XAI
work has begun to differentiate major categories of XAI consumers, from builders to regulatory bodies [7, 34, 104, 138].
While this work is informative, there is still a dearth of empirical insights and understanding on the differences between
these XAI users, nor actionable design guidelines.

A generative approach towards pluralistic design of XAI, we believe, is to develop a systematic understanding of
how and why users with different characteristics (e.g., with or without Al backgrounds) form different perceptions
(what) of XAI systems. Such insights can refine our understanding of who the humans are in XAI To our knowledge,
this has not yet been systematically explored in the specific context of XAIL Thus, our work adds to the discourse by
adding empirical insights through a systematic exploration of two different who’s in XAIL Our work is also motivated

by broader research studying individual differences that impact human-AlI interaction, as reviewed below.

2.3 Individual differences in human-Al interaction

There is a rich history of transforming insights of how individual differences impact technology perception into the
design of personalized, accessible, and inclusive technologies. For example, there is a large body of work on how various
types of epistemic background, including computer literacy [35], digital literacy [9], and numeracy [65], impact user
competency to use computing systems and ways to mitigate the competency gaps.

Recent work has paid attention to how user characteristics impact human-Al interaction. For example, studies on
human-robot [29, 79, 133] and human-agent interaction [81, 83] found that user’s schema, whether an agent is seen as
a utilitarian tool or a social entity, leads to noticeable difference in the interaction with and evaluation of the agent.
Research around Al fairness has identified various mediating factors such as users’ education level, fairness criteria, and
general trust in ML [37, 147]. In short, individual differences and user characteristics shape perceptions of Al systems
and should be appropriately understood and carefully accommodated when designing Al systems.

A commonly studied user characteristic in Human-Al interaction is users’ knowledge about Al, often operationalized

as Al programming experience [109], building ML models [48], or type of profession (e.g., data scientist) [58]. Recently
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Long and Magerko provided a concrete definition of Al literacy [95] with a set of core competencies to understand and
use Al and proposed design guidelines to mitigate the competency gaps. Recent work also examines the implications of
background in Al as a determining factor of one’s role in an Al ecosystem. Motivated to “problematize the asymmetric
relationship between technical experts and users”, Cheon and Su [25] highlighted the misalignment between the
creators’ (roboticists’) vision of how consumers (end-users) interpret and use the product-a salient theme in this paper
as well. McDonald and Pan [100] examined how CS students (likely to become AI developers) viewed ethical problems
in Al found substantial limitations, and called for a closer integration of ethics education with technical training.

Our understanding of how people’s Al backgrounds might impact their perceptions of Al explanations also draws
from a long line of social science research on the relations between sensemaking [151] and professional knowledge
[52]. Passi and Jackson [115], for instance, analyzed academic learning practices in the field of data science to show
how students start “seeing” the world differently once they learn to work with algorithms and numbers. Through
ethnographic fieldwork, they highlight how having a computational background enables students to gain actionable
forms of “data vision”—ways of seeing that allow them to approach and analyze the world as data.

A person’s Al background (or a lack thereof)—a focal point of this paper—in fact, directly impacts user perceptions.
In a recent ethnographic study [116], researchers found that data scientists and business analysts perceived an Al
system’s accuracy score differently: business analysts saw the score as a measure of overall performance (good vs. bad),
while data scientists perceived more granular insights into types of errors (false positives vs. false negatives). As people
learn specific ways of doing, it also changes their own ways of knowing—in fact, as we argue in this paper, people’s Al
background impacts their perception of what it means to explain something and how.

Thus, the who questions are important, because people tend to interpret technologies differently, leading to different
usages of those technologies [5, 16, 36, 107, 123]. The process of differential interpretation, followed by different usage,
has been called appropriation—e.g., usage patterns that go beyond the original designers’ expectations [75, 139]. Dix
listed six principles of user appropriation of technologies, including support for interpretive flexibility [36]. In this
paper, we extend the discourse of user characteristics and individual differences in XAI by studying how AI background

shapes the interpretation and appropriation of Al explanations.

3 RESEARCH DESIGN AND METHODS

We begin by sharing the research questions (RQs) followed by how we operationalize key aspects of the research design.

e RQ1: Quantitatively, what are the effects of different types of explanations on how people with or without an AI
background perceive Al agents?

e RQ2: Qualitatively, how and why do differences in AI background result in different perceptions of explanations?

We address these RQs by conducting a within-subjects experiment in which two groups of participants, with or
without an Al background, see three versions of Al agents (depicted as robots in our study, Fig. 1) with different types of
explanation. We quantitatively measure the perceptions of the Al explanations and compare the differences between the
two participant groups to address RQ1 (Section 4). Participants rank their preferences and justify their choices through
open-ended text responses, which we qualitatively analyze to to understand the underlying differences between the
two groups to address RQ2 (Section 5). Below, we unpack how we operationalize three things: (1) explanation types,

(2) user perceptions, and (3) backgrounds in Al.



3.1 Explanation Generation Method and Types

We begin with the task environment to situate the design of the Al agents. In the user study (task details in Section 3.4),
participants watched 3 robots (AI agents) carry out an identical sequence of actions which differed only in the way that
the AT agent "thinks out loud” about its actions. The robots need to navigate through a sequential decision-making
environment—a field of rolling boulders and a river of flowing lava-to retrieve essential food supplies for trapped
space explorers (Fig. 1). The robots thus need to observe a dynamic environment and to think ahead in order to
complete an objective. We chose a sequential environment because explainability of sequential tasks is under-explored
while prior XAI work has explored non-sequential tasks (e.g., classification, captioning, etc. [146, 153, 155]). To solve
the navigation problem, the agent used a Reinforcement Learning (RL) algorithm called tabular Q-learning [149].
Reinforcement Learning is both a promising technology for autonomous Al systems but also challenging from an
explanation perspective. Tabular Q-learning agents attempt to learn the utility (called a Q-value for “quality” of the
action) of different actions in different situations. Once learning is complete, the agent makes decisions by picking
the action with the highest Q-value. In our case, the fully trained agent solved the environment, generating an action
trace that contains the sequence of steps needed to reach the goal (food supplies) without failure. Recall that our study
has 3 robots (Al agents) with different types of explanation. In order to standardize their actions across experimental
conditions, all robots use the same trace. This means that the decision-making mechanism underlying each robot is the

same RL-based one. They only differ in how they explain their actions.

Fig. 1. The three robots navigating the task environment and explaining their actions. From left to right, the robots and their colors
are: Rationale-Generation (in blue), Action-Declaring (in purple), and Numerical-Reasoning (in green). In the screenshot, each robot is
taking the same action, but they are explaining it differently. The explanation text accompanying each robot is taken verbatim from
from the videos participants watched. To improve legibility, the text has been remastered to a higher resolution.
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Explanation generation: The three different types of explanation is the within-subject variable in our study comparing
perception differences between the Al and non-Al groups. Based on review of related work, we chose three types of
explanation that vary in their justification quality and representation modality (e.g., textual, numerical). With these
considerations in mind, we set up the robots to express themselves in three ways: (1) natural language with justification
(explaining the “why” behind the action; Fig 1, left), (2) natural language without justification (describing “what” the
action was, Fig 1, center), and (3) numbers that determine the agent’s actions (akin to “transparent” Al in this case

showing Q-values, Fig 1, right). We share the explanation mechanisms and the attributes of the three robots below.

o The Rationale-Generating (RG) robot (Robot A in the study): this robot “thinks out loud” in natural language
rationales explaining the “why” behind the action (#1 above). Our generation approach is similar to prior work in
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XAI and HRI [30, 39] where they use a neural machine translation (NMT) [97] approach to produce satisfactory
and plausible rationales to explain sequential behavior. We build on this technique and adapt it to fit our sequential
environment depicting a space mission. The RG robot’s expressions are designed to give people a functional
understanding of the actions by appealing to functions or goals of the agent (e.g., Fig 1, left) [93, 94]. The RG
robot has language and justification.

The Action-Declaring (AD) robot (Robot B in the study): this robot “thinks out loud” by stating its action in natural

language without any justification. It’s a neutral option that simply states “what” the action is (#2 above). For
instance, it states “I will move right” as it moves right. These outputs are generated from pre-fixed expressions
that are triggered based on the agent’s action.

e The Numerical-Reasoning (NR) robot (Robot C in the study): this robot “thinks out loud” by simply outputting
the numerical Q-values for the current state with no language component (#3 above). It is akin to a “transparent
AT” where we directly look inside the opaque RL-box by observing its Q-values. Q-values can provide some
transparency into the agent’s beliefs about each action’s relative utility (“quality”). However, Q-values themselves
do not contain information on “why” one action has a higher utility than another. Note that we do not indicate

that the numbers are Q-values in our study nor indicate which value is associated with with action.

While all robots “think out loud”, only the RG robot is designed to have any justificatory quality—it is designed
to provide a functional understanding [93] of the “why” behind a robot’s action. The other two conditions provide
baselines that should be considered as lacking justificatory qualities by-design. The AD robot merely states “what”
the action was (a neutral option) . While NR could, in theory, provide a mechanistic understanding [94] of the "how”,
the unlabelled numerical format should make its meaning difficult to access, if not impossible. While AD and NR do
not have explanatory qualities by-design, we do not know if or how participants will interpret them. Through the

experiment, we are interested in whether and how these explanations invoke different perceptions in the two groups.

3.2 Measurements: Dimensions of user perceptions

We now motivate the dimensions of user perceptions. To scope dimensions (measures/metrics) of perceptions appropriate
for our use case, we engaged in an iterative filtering process—this process included (1) a systematic review of related
work around trust, acceptance, and engagement of autonomous or Al systems followed by (2) informal interviews with
six experts spanning HCI, Al, and HRI. The aforementioned process informed the adaptation of the following dimensions
from classical technology acceptance models and emerging work in HRI and XAl literature [15, 30, 32, 42, 145].

One of the core goals of XAl is to make Al systems more understandable. The improved understandability (or lack
thereof) can impact one’s trust or confidence on the system. In line with these facets, we adapted understandability
and confidence from TAM & UTAUT [32, 145]. Prior work in HRI and AI shows that tolerance to failure [33] and
perceived capability of the Al system [74] are impacted by how one perceives how intelligent the agent is; thus we
added intelligence to our list of user perceptions. Recent work in autonomous system acceptance [131] shows that
sociability factors are core markers of user adoption [85]. We adapted the dimension of friendliness or how friendly an
agent appears because of its impact on relationship development [61, 137] and partnership [13, 18], which is essential
for human-AlI collaboration [110-112]. Emerging work in XAI and HRI [77, 80, 103, 128] suggests that how an Al agent
communicates failure governs future collaboration relationships with humans. Thus, we add the notion of a second
chance to understand how past failures impact future collaboration chances for XAI agents. In our study, participants
ranked the robots along these five perception dimensions and justified their choices using open-ended text responses:
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(1) Understandability: I found each robot’s explanation of its actions understandable in the following order

(2) Confidence: Based on their explanations, I would rank my confidence in each robot’s ability to do its task in the
following order

(3) Intelligence: Based on their explanations, I would rank each robot’s intelligence in the following order

(4) Friendliness: Based on their explanations, I would rank the friendliness of each robot in the following order

(5) Second chance: Each robot failed. Based on their explanations, I'd rank my willingness to give another chance to

each robot in the following order

3.3 Participants: Operationalizing User Backgrounds in Al

We now address how we operationalized the user background in our study.

Overview. While Al background can be operationalized in multiple ways, as a formative first step we use a “high
contrast” approach. By "high contrast,’ we mean that we set up the user groups such that they have a stark difference
between their underlying characteristics. In our study, we focus on people with and without an Al background. The
goal is to examine how their background affects their interpretation of three different sets of explanatory messages.
Before making granular operationalizations (e.g., years of Al experience), our high contrast approach gives us a baseline
understanding of the differences and similarities between the groups. This, in turn, provides the foundation for granular
operationalizations in the future. Recall that, as a first step, we want to know how the perceptions of XAI systems differ

and align in two groups. To achieve this goal, we make a series of assumptions that inform the formation of our groups.

3.3.1 The Al Background Group.

For the AI group, we recruited participants who are students enrolled in CS programs and taking Al courses. Granted
there are other ways to operationalize this group (e.g., recruiting Al practitioners), as a first step, we chose students
because it allows us to explore how their Al coursework impacts the way they make sense of explanations from Al
systems. Since professionalization starts with academic training [115], investigating the roots of one’s Al background
and the impact on how students make sense of Al systems is important. In fact, as we show in this paper, especially
during their learning phase, Al students adopt reasoning artifacts that impact their perceptions of explanations from Al
systems in very specific ways, which has core implications on the future of XAI design (a point we elaborate in Section
6.3). Granted not every Al student will go on to build Al systems, with the proliferation of Al systems in the workplace,
a majority of these students could become stakeholders residing on the creation or development end of the technology
spectrum—as potential developers, designers, and managers of Al-based systems. As potential creators of Al systems,

their perceptions matter in bridging the creator-consumer gap in XAL

3.3.2  The Non-Al Background Group.

For the non-Al group, we recruited participants from Amazon Mechanical Turk (AMT). Carefully screened AMT
participants have been shown to be representative of consumer research [11, 51, 71], which facilitates our goals
of comparing potential creators (the Al group) with potential end-users (the non-AI group). We acknowledge that
consumers too can and do have significant Al backgrounds, which is why we systematically screen out people in
the non-AlI group with any level of Al knowledge (using the screening process outlined in 3.3.3). Non-AlI students,
albeit an intuitive comparison group, would be a subset of the larger consumer base making them a good candidate for
future granular investigations. Multi-disciplinary research has also shown how AMT participants can be reasonable

alternatives to a university participant pool in terms of data integrity [10, 57, 132]. Weighing the affordances and
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limitations, AMT participants are thus a reliable and accessible comparison group, one that reasonably satisfies our
initial desire to create a high contrast comparison between potential creators and end-users of Al systems.

Our operationalization of the Al backgrounds aligns closely to human-grounded evaluation proposed in [38], in which
participants conduct controlled tasks to get a formative sense of the affordances of the explanations. We acknowledge
that there are limitations to this experimental setup and that our insights should be scoped accordingly (more in
Section 7). However, as we will see later, even with a carefully controlled task, we discover surprising, non-intuitive

insights about how different groups interpret explanations.?

3.3.3  Recruitment and Screening Methods.

For members of the AI background group, we recruited undergraduate students enrolled in an Al course at a large
public research university located in the US. Typically taken in the 3rd year, this is a keystone course in an Al degree
specialization track, implying that a significant number of students have expressed longitudinal interest in AL While
there is no guarantee that all students will be future Al creators, the faculty believes that we can reasonably assume that
many students aspire to have careers in the development of Al technology. In the course, students learn and implement
many foundational Al concepts; for instance, Markov Decision Processes and Reinforcement Learning. Our study was
deployed after students had taken exams on these concepts.

For members of the non-AI background group, we recruited participants from Amazon Mechanical Turk (MTurk).
The initial screening was done at the TurkPrime [88] platform level, where the system screened out participants based
on their occupation (no engineers or computer scientists) and field of secondary education study.

To ensure that the two groups were measurably different along the dimension of our investigation—AlI background—
we performed additional screening using a questionnaire with three components—(1) a knowledge test to get a baseline
understanding of programming and Al competency. This test was collaboratively developed with the course’s teaching
staff to calibrate the content relevancy and question difficulty. (2) Self-reported knowledge levels in (a) computer
programming and (b) Al using two 5-point Likert-scales. (3) confirmation of whether they have ever taken an Al class.
More details on screening mechanism along with survey instruments are provided in A.2 in the Appendix.

To get empirically ground the cut-off points, we piloted the screener with 10 participants from each group to get a
baseline understanding of the scores and completion time. For the AI group, a score 4 or more on the knowledge test
along with self-reports of having “Moderate knowledge” or more [>= 4] in programming and some knowledge or more
[>= 3] in Al were required. For the non-AI group, self-report of having “No knowledge” [= 1] in both programming
and Al along with no prior Al classes were required. Using these criteria we formed the two groups.

The AI background group consisted of 96 adult students taking an Al class. On average, the task duration was 31.1
minutes. Participants received US $10 for their time ($20/hr rate). 39% of the participants self-identified as females
while the rest identified as males. Participants reported an average education level of 5.25 (5= “Associate’s degree”,
6= “Bachelor’s Degree”). By design, all of them currently reside in the US. On the screening criteria, the Al students
scored an average of 4.73 (out of 5) [SD = 0.45] on the knowledge test, self-reported “moderate knowledge” on
programming (M = 4.53,SD = 0.52) [4= “Moderate Knowledge”, 5= “A lot of knowledge”] and “some knowledge”
onAl (M = 3.74,SD = 0.49) [3= “Some knowledge”, 4= “Moderate Knowledge” ].

The Non-AlI background group with MTurk participants consisted of 53 adults , who were recruited from Amazon

Mechanical Turk (AMT) through a management service called TurkPrime [88]. On average, the task duration was 29.8

2 Practices for better data: We share some strategies that helped us gather high quality data and maintain rapport with our participants throughout the
study (e.g., fair payment structure, active engagement participants, etc.) in the Appendix (A.1)
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minutes. Participants received US $10 for their time ($20/hr). 46% of the participants self-identified as females while the
rest identified as males. Participants reported an average education level of 4.8 (4= “Vocational Training”, 5= Associate’s
degree). We screened for participants who reside in the US. On the screening criteria, MTurk participants scored an
average of 0.91 (out of 5) [SD = 0.32] on the knowledge test. By design, for programming and Al we screened for people
who reported as having “No knowledge” [=1] as well as never taking an Al class.

To establish that these two groups are measurably different, we performed statistical tests. For the CS knowledge
test, the two groups were significantly different based on a two-sample Mann Whitney U-test (even after Bonferroni
correction, p < 2.2 X 10716). Since the non-Al group systematically had only people with “No knowledge” [=1]
in programming or Al, we performed one-sample Mann Whitney U-tests on the Al-group to compare its means
against 1[=“No knowledge”]. Even after Bonferroni correction, we found strong evidence that the two groups are
different (p < 2.2 X 10719, for both programming and Al scores). These results indicate that our screening criteria has

successfully established two groups that are measurably different in terms of their Al background.

3.4 Procedure: Task Details

We now discuss study mechanics— after providing informed consent, participants watched an orientation video outlining
the scenario. Participants were asked to imagine themselves as space explorers faced with search-and-rescue mission
involving robots. They faced a life and death situation where they are stuck in a different planet and must remain inside
a protective dome. Their only source of survival is a remote supply depot, which they cannot reach. They must rely
on autonomous robots, ones they cannot control, to navigate through a field of boulders and a river of flowing lava
to retrieve the essential food supplies (See Fig 1). Participants could only see a non-interactive video stream of their
activities through their "space visors". This non-interactiveness aimed to heighten their sense of lack of control (and
thereby reliance on the robots). Since the robots took identical actions during the task, participants were asked to pay
special attention to the only differentiating factor— the way each robot explained its actions.

After orientation, participants watched 6 counterbalanced and randomized videos showing the three robots succeeding
and failing to retrieve the essential supplies using identical sequences of actions. To mitigate effects of preconceived
notions, we did not use any descriptive names for the robots; instead, we introduced the robots as “Robot A”, “Robot
B”, and “Robot C” for the RG, AD, and NR robots respectively. Participants, by design, had no idea about how each
robot generated its expressions; for instance, participants were not informed that NR’s numbers are Q-values. To them,
it was just another different way of explaining the actions. As mentioned in 3.1, the goal was to see how and if how
people can make sense of them even if they are unlabelled. After watching all the videos, participants ranked the robots
(1st, 2nd, and 3rd- no ties allowed) along the five (5) dimensions of user perceptions highlighted above (in 3.2). After

ranking on a dimension, participants justified and contextualized their ranking using a mandatory free-text response.

4 QUANTITATIVE RESULTS

We conducted within-group and between-group analyses. The within-group analyses give a sense of which robot’s
explanation was preferred along each dimension of user perception. The between-group analyses tell us how the two
groups are the same or different when considering the robots across multiple dimensions and sets the stage for the
qualitative analysis in Section 5. Taken together, the quantitative results address RQ1 around quantifying the relative

perceptions and preferences of the two groups along the five dimensions.
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4.1

Figure 2 shows how each robot was ranked in each dimension. The “violin chart” visualization makes similarities and
differences easier to distinguish. For example, large differences are exemplified in the Friendliness rankings given by
the non-Al group participants (bottom, second left). A wide area at the top of the blue plot shows that the Rational
Generating (RG) robot was ranked first by most. In contrast, the plot for the Intelligence dimension by the non-AI group
(bottom, middle) shows that all robots received the first, second, or third rank comparably similar number of times.
For each group, we conducted five Friedman tests [156] of differences among repeated measures (one for each of the
five dimensions). We used the maximum-type (max T) implementation of the Friedman test, which controls for the
family-wise error rate [156] to determine whether any preferences between robots was detectable. To determine which
robot was preferred, we used the Wilcoxon-Nemenyi-McDonald-Thompson test [59] to make pairwise comparisons

between the robots, for each participant group, and within each dimension. The results are summarized in Table 1.

Within-group Comparisons

Fig. 2. Distributions of rankings for each robot, in each dimension, separated by participant group
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Note: The black horizontal bars indicate whether a pair of distributions is significantly different. ns = not significant, “p < .05, *p < .01,
p < .001. The width of each violin plot at each ranking level indicates the proportion of people who assigned that rank to that robot.
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The black bullet (s) refers to the median rank.

From the within-group analysis (Table 1 and Figure 2), we have some notable insights: across each dimension, the
Al-background group unambiguously preferred RG to the other robots, particularly over AD. However, RG robot is not

the unanimous winner across each dimension for the non-Al group- here, participants show no preference between
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Table 1. Summary of p-values for pairwise comparisons, showing which robots were preferred.

Dimension Al background Non- Al background
Robot p-value Robot p-value

RGvs AD <0.001 RG vs AD 0.362

Confidence RGvsNR <0.001 RGvsNR <0.001

AD vs NR 0.869 AD vs NR 0.014
RGvs AD <0.001 RGvs AD <0.001
Friendliness RGvsNR <0.001 RGvsNR <0.001
ADvsNR <0.001 ADvsNR <0.001
RGvs AD <0.001 RGvs AD -
Intelligence RG vs NR 0.021 RG vs NR -
AD vs NR 0.011 AD vs NR -
RGvs AD <0.001 RG vs AD 0.083
Second Chance RGvsNR <0.001 RGvsNR <0.001
AD vs NR 0.902 AD vs NR 0.003
RGvs AD <0.001 RGvs AD 0.187
Understandability RGvsNR <0.001 RGvsNR <0.001
AD vs NR 0.002 ADvsNR <0.001

Note: Favored robot and significant p-values are in bold for each pairwise comparison.

RG and AD in 4 out of the 5 dimensions (RG wins over AD in Friendliness). For the non-Al group, AD wins over NR
across all dimensions except for Intelligence, which is a noteworthy dimension- on one hand, the non-AI group showed
no preferences between the robots, the Al group felt NR was more intelligent than AD. This is the only time where
NR wins over AD, highlighting an important point which we explore in our qualitative findings (Section 5.1 and 5.2)

around the Al group’s preference for numerical representations.

4.2 Between-group Comparisons

To detect group differences in the preference for the robots, we used Ordinal Logistic Regression (OLR) [3, 99, 140, 144],
an extension of Logistic Regression when the response variable is ordinal. To model a 3-level categorical variable (Robot
Type), OLR requires us to analyze two variables holding one as a reference (constant): in our case, we analyzed AD
and NR, holding RG constant. We investigate the interaction effects as well as changes in reference levels in the OLR
analysis that reveals the relative impact in ranking the robots between the groups. To investigate the effect of the
dimensions, we explore the interaction effects between Robot Type (RG, AD, and NR) and the Participant Group (AI vs.
non-Al) into the OLR model. Changing the reference levels of Robot Type and Participant Group allows us to isolate the
interaction effects, which we interpret similar to [63]. A full list of OLR tables is provided in the Appendix (Table 5- 10).

If we group everyone regardless of their Al backgrounds, we find that Rankrg > Rankap > Rankngr. The odds of
receiving a higher ranking for the RG robot is 5.5 times that of the AD robot, whose odds are 2.66 times that of the NR
robot (see Tables 3 and 4 in the Appendix (A.3)).

Between the groups, there is no significant difference in ranking RG Robot—it is always the top choice across all
dimensions (Table 2, top row). However, the groups exhibit differences in their preferences when it comes to AD and
NR. The Non-AI group shows more preference to the AD Robot (odds ratio= 1.986) while the AI group shows more
preference to the NR Robot (odds ratio= 1.0/0.465 = 2.15).
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Table 2 also provides the odds ratio and the p-value for each Robot Type per dimension. For the RG Robot, all of its
p-values are greater than 0.05 for each of the five dimensions resulting in no significant pattern of preference between
the groups. Conversely, the p-values of AD Robot are all smaller than 0.05 meaning that, when it comes to ranking
the AD Robot, there is a significant difference between the Non-Al group and the AI group. Moreover, all odds ratios
related to AD Robot in Table 2 are greater than 1.0 indicating the Non-AI group shows stronger preference to the AD
Robot than the AI group for each of the five dimensions.

Last, for the NR robot, the p-values related to Confidence, Second Chance, and Understandability are also significant.
The odds ratios for these dimensions are less than 1.0 indicating that the Al-group is more likely to rank the NR robot
higher than the non-Al-group on these dimensions. There is no significant difference between the Non-AI group and

the AI group when it comes to ranking the dimensions of Friendliness and Intelligence.

Table 2. Robot Preference Summary across Dimensions (Non-Al [baseline] vs. Al)

RG Robot AD Robot NR Robot
Dimension Odds ratio p-value Oddsratio p-value Oddsratio p-value
All dimensions 0.855 0.323 1.986 < 0.001 0.465 < 0.001
Confidence 0.971 0.930 2.003 0.026 0.487 0.029
Friendliness 0.280 0.051 2.827 0.017 0.436 0.160
Intelligence 0.717 0.315 1.959 0.031 0.646 0.178
Second Chance 1.369 0.356 1.965 0.028 0.375 0.005
Understandability 0.659 0.255 3.088 0.005 0.114 0.006

Note: Odds ratios > 1.0 indicate the non-Al group prefers the robot more than the AI group.

4.3 Conclusions of Quantitative Analyses

Overall, while we find that Rankrg > Rankap > Rankng, there are significant differences in the Al and the Non-AI
ranking behaviors. In other words: Al background does change perceptions of explanations along the dimensions we
identified. In particular, having a background in Al correlates with having a greater preference for the NR Robot over
the AD Robot. While AD wins over NR in most head-to-head comparisons, NR wins it on Intelligence for the Al group.
The two groups are indistinguishable concerning Friendliness. The next section helps us understand why these trends

are present in the quantitative results and their implications.

5 QUALITATIVE ANALYSIS & FINDINGS

While quantitative analysis tells us what is different between groups, qualitative analysis sheds light on how and why
those differences manifest, addressing RQ2. Quantitative analysis puts RG as the clear winner; however, as we show in
this section, the story is more nuanced and interesting, especially the underlying reasons behind the group differences
between AD and NR. Below we describe the process of our qualitative analysis before moving on to the findings.

The qualitative data was coded according to principles of grounded theory analysis [21, 134]. Coding and analysis
of the qualitative data was done by the first and second author in two stages, each consisting of multiple rounds of
iteration. In the first round, the authors separately performed coding using in-vivo codes, which involves generating

codes from the data (e.g., using participant phrases such as ‘the robot knew what it was doing” and ‘easier to understand’
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as codes). Through discussion, the authors generated a merged open coding scheme. In the second round, the authors
analyzed the data using axial codes. Axial coding involves finding connections between open codes, classifying them
into different categories (e.g., potential actionability of numbers). In the last step, the authors analyzed the different sets
of axial codes, unified them into high-level themes and consolidated them to selective codes (e.g., humanlike-ness).

After this, we grouped the data along the two groups (AI vs. non-Al) and our five (5) analytic perception dimensions
that we motivated in Section 3.2 and also used for quantitative analysis (confidence, friendliness, intelligence, second
chance, and understandability), allowing us to compare our findings across dimensions and groups. Finally, based on the
grounded theory heuristic of “constant comparison” [50, 134], the authors frequently compared and contrasted axial
codes across perception dimensions to tease out the similarities and differences between the different reasonings used
by the AI and non-AI groups to make sense of the explanations provided by the three robots.

Below, we report on the three most salient themes (selective codes) from our analysis. In particular, we showcase
(1) how irrespective of their Al background both groups exhibited unwarranted faith in numbers for different reasons,
(2) how each group saw explanatory value in explanations that were not designed with justificatory qualities, and
(3) how even when the groups aligned in their appreciation for humanlike-ness, they had different ideas about what
counts as humanlike explanations. For each theme, we highlight distinct categories of reasoning (axial codes) used by

the groups to justify their choice of robots across the different perception dimensions.

5.1 Unwarranted Faith in Numbers

Participants in both groups had unwarranted faith in numbers. However, their extent and reasons for doing
so were different. On the one hand, Al group participants often ascribed more value to numbers than was justified.
On the other hand, some non-Al group participants believed that numbers signaled intelligence even if they could not
capture their meaning. Below we highlight two major ways in which participants misplaced faith in numbers.

The mere presence of numbers was associated with an algorithmic thinking process in the robot even
when the meaning of numbers was unclear. Both groups exhibit this perception of algorithmic thinking. We will
begin with the AI group—this group ascribed higher-order cognitive abilities to the robot with numerical representations.
Between AD and NR, the AI group found AD more understandable (Table 1) but deemed the NR robot as the more
intelligent of the two (the only time NR wins over AD across all dimensions— (Table 1)). It seems contradictory that
the AI group found the less understandable robot to be more intelligent!—a main reason for this is that the presence of
numbers fostered the “assumption that [the NR robot] uses some sort of [an] algorithm” (A50) in the AI group. The
perception of “under-the-hood math, boosted [NR’s] trustworthiness” (A49). Some explicitly compared AD and NR

robots and concluded that the mathematical representation demonstrated a method to the NR robot’s behavior:

“With [the NR robot], while I did not understand its methodology, I could see that it was using some
mathematical calculations to determine which way to move. [...] With [the AD robot], I could not see

any methodology or signs of decision making” (A23).

A small minority in the Al group indeed figured out that “the numbers 0-4 represented different actions, and [NR]
would choose the action with the highest numerical value” (A23). An even smaller minority even guessed the numbers’
correct meaning—a “utility function and reward systems” (A64). despite the fact that the numbers were unlabelled.
These participants projected meaning on the numbers, lending further credence to the role of data vision [52, 115].

What is surprising is their faith in numbers arose even when Al group participants did not “fully understand the
logic behind [...NR robot’s] decision making.” (A43). The AI group seems to have followed heuristic reasoning
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that associates mathematical representations with logic and intelligence, e.g.: "logic must have been derived
from a formula, [...which is] intelligent” (A54), or “Math [...had] an aura of intelligence" and “exact values” made the NR
robot “feel smarter” (A16, A77, A75). This perception of logical thinking engendered unwarranted trust and made the
NR robot seem like it "should theoretically succeed more than the others, making him more intelligent” (A37). The
linkage between perceived logical thinking and higher cognitive abilities can elucidate why the AI group prefers NR
over AD when it comes to Intelligence (Table 1). A few participants even claimed that they could “actually see the math
that [the NR robot] was making decisions off of, [...making it feel] more real” (A9). In fact, to them it appeared as if the
NR robot “clearly had an algorithm that worked [...and] seemed to know what it was doing” even if they “did not know
what it was going to do in the future” (A91, emphasis added).

Participants with Al background also viewed numbers as potentially actionable even when their meaning
was unclear. Actionability refers to what one might do with the information to make sense of the robot’s behavior—
“debug its faulty behavior, or predict its future behavior” (A76). While many highlighted that they could not “make
sense of numbers right now, [they believed that] in principle, [they] should be able to act on them in the future” (A39).
The potential explanatory value in numbers was better than the vacuous statements of AD: “[The NR] robot gave
mathematical results as explanation while [the AD robot] gave no explanation” (A19).

Many participants connected their Al background to their ability to work with numbers. They mentioned how

«

their current “Al course [helped them] to “understand what [NR robot] is doing and what the numbers might mean”
(A52). Some even highlighted that if they “had a pen and some paper, writing down information, [they] could gleam
[sic] some information based off the [numerical] patterns” (A28). But how actionable were NR’s numbers in actuality?
The numbers were Q-values, which only indicate the relative strength of one action versus the others. Specifically,
Q-values indicate the agent’s belief that certain actions lead to greater or lesser future reward, affording some amount
of explanatory power. However, they cannot indicate why the agent has come to believe that one action is better than
another—this information is not retained by the agent nor conveyed through the numbers. This did not deter the Al
group from deferring to the authority of numbers. After all, while all the robots used the same Al algorithm to make
decisions, NR robot’s expressions seemed most ‘Al-like’.

These insights can help us understand why, even though both groups have misplaced faith in numbers, the AI group
shows a higher inclination towards numbers (as evidenced in the quantitative results (Section 4.1, Table 1), the only
time NR wins over AD happens when the Al group judges Intelligence).

Unable to access their meaning, the non-Al group associated numbers with the presence of a higher,
more intelligent expression that, they argued, could only come from an intelligent agent. Since the NR robot was
“communicating in a numerical language that’s too hard to understand”, the numbers had a "mystery and aura of
higher intelligence" (NA22, NA33). The “language of numbers”, because of its “cryptic incomprehensibility”, signalled
higher-order thinking (NA6, NA1):

“Because I could not understand [NR’s] output, I deemed it to be intelligent” (NA30, emphasis added).

This can explain why the non-Al group showed no preferences between AD and NR when judging Intelligence,
despite favoring AD over NR across all other dimensions (Table 1). To them, numbers signaled “precision”—an important
quality of intelligence (NAS, 16, 21, 30, 34). Numbers gave the impression that the NR robot “was more technical” than
others—its “precise numerical explanations” resulted from it “calculating everything” (NA53, NA21, NA12). To these
participants, “anything that uses pure numbers is going to be more intelligent” because “numerical outputs are likely to
be more precise [...] whereas textual representations involve a degree of uncertainty and subjectivity” (NA41, NA30).
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Such perceptions point to how the modality of expression—numeric vs. textual—impacts perceptions of explanations

from AI agents, where we see projections of normative notions (e.g., objective vs. subjective) in judging intelligence.

5.2 Unanticipated Explanatory Value

As designers, we had specific goals behind each robot’s mode of expression. As discussed in Section 3.1, RG was the
only robot designed to have the justificatory quality to explain the why behind the robot’s actions, while AD and NR (as
baselines) should be considered as lacking justificatory qualities by-design. RG won the overall competition (as discussed
in Section 4.2), but what was surprising was that both AI and non-AI groups found unanticipated explanatory
value in AD’s declarative statements and NR’s numerical representations. As we will show below, qualitative
analysis revealed that the two groups had different explanatory intent (what they wanted to do with the explanation),
which was closely associated with their Al background. On the one hand, the non-AI group found affirmatory value
(confirmation of stable performance) in AD’s statements. On the other hand, the AI group overly ascribed diagnostic
value (to debug in case of failure) to NR’s numbers even when they could not make sense of them.

For the non-Al group, their desire for affirmation — confirming the action without necessarily explaining it— played
a key part in finding value in AD’s explanations. The affirmatory value manifests most clearly in their comparison
between AD and NR in the dimensions of Confidence and Understandability. For both dimensions, the non-Al group
preferred AD over NR (Table 1). Recall that AD merely declared its action, stating the what, not the why. Despite this,
the non-AI group found value in the confirmatory information because there was alignment between what AD was
doing and saying. It showed that “[AD] is consistent and nothing crazy is going on where it says it went right but in
actuality it went down” (NA34). For both dimensions, the non-Al group attributed greater value to AD’s declarative
statements (compared to NR’s numbers) because it “at least said what its movements were going to be" (NA7). Its “brief;’
“un-embellished," and “easier to understand” language that got "straight to the point" boosted its understandability (NA14,
NA23, NA28, NA7). In fact, AD’s “just the facts” (NA38) declarative and succinct nature were signs of confidence itself. It
did not need to say much because “it knew what it was doing”, evident in its lack of “any hesitation" and "business-like
[style] focused on performing the task at hand" (NA17, NA41, NA11). In contrast, NR’s numbers were inaccessible
to the non-Al group, thereby, in-actionable and valueless. In short, when we designed AD, there was no intention
of offering value through confirmation; yet, through their explanatory intent of affirmation, the non-AI group
found value in AD’s explanations by interpreting them as signals for stable system performance.

The AI group overly ascribed diagnostic value in NR’s numbers even when their meaning was unclear—
they felt NR’s numbers had “diagnostic information that can be used to debug [the robot] in case of failure” (A39). The
explanatory intent of diagnosis is a consequence of the Al group’s unwarranted faith in numbers and related to their
perceived actionability—what one might do with the information (as discussed above in 5.1). Analysis of the open-ended
text responses for the perception dimensions of Intelligence, Second Chance, and Confidence exhibits this explanatory
intent most clearly. Recall that the Al group preferred NR over AD for Intelligence and felt there were no difference
between them for Second Chance and Confidence (Table 1). This is in contrast to the non-Al group that preferred AD
over NR for both of these dimensions. Al group members perceived NR’s numbers to have more explanatory value
simply because they felt they could do “more with numbers” (A30) in “cases of failure and troubleshooting”(A78).

For Intelligence, NR’s numerical representation and "exact values" made it appear more “valuable” than AD’s “inert”
statements (A23, A51, A42) . Even when it came to giving NR a second chance, numbers helped because the NR robot
appeared to be “trying very hard since it provided [...] mathematical evidence of its moves” (A79).“Math-based decisions”

(A2) made the NR robot appear “more reliable” (A8, A42) and worthy of another chance. Numbers inspired confidence
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because they signaled the existence of a "concrete methodology"—-"the higher the number, the more optimal the move"
(A66, A67), which added to the perceived explanatory value in them. Moreover, if there were a method, an algorithm, or

a formula behind the NR’s actions, the Al group participants believed that they could deduce it using the numbers:

"[The NR robot] returned the most amount of data, and if I were to understand what that numbers mean, it
would be the most useful robot to debug on repeating runs as I can analyze what it is doing and why"

(A91, emphasis added).

The Al group participants connected their background to a desire to troubleshoot and repair things. Numbers, they

felt, were more manipulable than language, which catalyzed over-ascription of diagnostic value in them:

“As an engineer, I want to fix things. Numbers are concrete and objective, language is not. But you can

manipulate numbers [...] With the AT stuff I'm learning, I can use it to diagnose [NR]. (A49)

Thus, we see, what Eriksson called the "seductive allure" [45, 92] exhibited through the perception of numbers in the
Al group. This diagnostic intent showcases how the Al group over-ascribed explanatory value in numbers, highlighting

how its unwarranted faith in numbers can manifest in potentially negative ways—a point we discuss in Sections 6.

5.3 Language Use & Humanlike-ness

So far, we have discussed how the two groups differed. Here, we highlight an area of similarity: Both groups desired
engaging with robots that communicated in a human-like manner and connected humanlike-ness to one’s
command of language. They operationalized the notion of command of language (how language is used to convey
and justify actions) along two main concepts — explanatory power (depth of reasoning) and variety (style and length)
of explanations. However, when we reflect on the underlying reasons, we find differences, which we unpack below.
The dimension where this alignment for humanlike communication manifests strongly is Friendliness— the only
dimension where both groups are identical in their preference as Rankrg > Rankap > Rankngr (Table 1, Fig 2).
Both groups favored the RG Robot whose communication was relatable, socially relevant, and exhibited a
personality that made one feel included, even if the interaction is passive. The RG robot was the friend everyone
wanted. It was “social,” “engaging” (A2, NA31) and expressed itself in a relatable manner. “Having human-like qualities”
helped the RG robot appear friendlier than other robots because it “talked to you; its thoughts seemed exciting and
interactive” (A74, A84). It appeared to “include you in its thought process,” making you feel “as if you could talk
to it” (NA11, NA46, NA17). With RG robot, many felt “like you are having a conversation with a friend, analyzing
some problem, and making the best decision for this problem.” (NA36) As RG navigated the terrain, its expressions
included phrases like T'm not just winning at life, 'm biwinning!’, which participants found humorous and engaging.
By combining “humor and reasoning in its explanations” (NA15), the RG robot seemed to have a “real personality”
that made it appear as “the most human” robot (A1, A23). Since participants felt RG was “the most humanlike in its
explanations” (A35), they attributed emotional intelligence to it, which garnered empathy and support. Most people
“root[ed...] for [the RG robot because they] liked its personality[,...] felt connected to it and wanted it to succeed.” (NA27).
The lack of natural language generated the perception of non-humanlike unfriendliness. Both groups rejected the
idea of collaborating with NR as an unfriendly entity that “spoke in numbers” (A72, NA23). Therefore NR robot
was considered “unfriendly,”“cold, and calculating” (A30, NA1). The ‘cold’ numbers garnered the least empathy and
relatability. For several participants, the NR robot failed to even qualify to be in the race for friendliness, who argued
that the NR robot “simply doesn’t count here”—it “cannot be friendly because it doesn’t speak our language” (A14, A43).
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Even when the interaction paradigm is passive and one-way (humans cannot “talk” back to the robots), sociability
factors (and lack thereof) matter. These findings not only bridge prior work that highlight humanlike qualities as markers
for collaboration with AI systems [13, 18, 85, 111, 131], but also extend them by showcasing how humanlike-ness
matters even in passive interactions between the human and Al

While both groups appreciated humanlike communication, each group had different requirements of what
counts as a humanlike explanation. On the one hand, the non-Al group showed no preference between RG and AD
for Intelligence, potentially because they lacked the background knowledge to “see through” (A89) AD’s mechanism of
language generation or appreciate the complexity of the RG robot’s justificatory statements.

On the other hand, to the AI-group, the mere use of natural language was not enough to suffice for humanlike-
communication. This explains why, especially along the Intelligence dimension, the Al group preferred RG over AD
even though both robots use natural language (Table 1). The Al group saw the RG robot as a clear winner as it “seemed
to think and talk like a human, [while] the other two seemed to be like machines” (A3). The command of language, often
conveyed by having “had the longest explanations”, signalled that RG “had a complex thought process” and “seemed
more sophisticated” (A43, A4, A67). They felt that RG must have “a great deal of intelligence to be able to talk like
[that]” (A49), which requires a certain level of familiarity with Al techniques to appreciate the complexity. In contrast,
the Al group were not impressed with AD’s declarative “statements of intent” (A8). They deduced that AD “operate([d]
with very simple mechanisms” (A23, A54). They recognized that AD’s declarative statements of actions (e.g., I am going
up) could easily be generated using “print-statements triggered by an action” (A63). While they recognize that AD
“speaks in English...its thinking is too simple, definitely not like a human” (A73).

These findings highlight the crucial insight that humanlike-ness is not a monolithic construct. When we design for
humanlike XAI agents, we need to not only need remain cognizant of the pluralistic notions of humanlike-ness, but

also pay attention to how one’s Al background influences these notions.

6 DISCUSSION & IMPLICATIONS

Although both Al-background and non-Al-background groups had a clear preference for the Rationale Generating agent,
the qualitative analysis revealed nuanced differences in how they interpret different types of explanations, especially
their preference for the NR Robot showing numbers. In this section, we discuss possible causes of the observed
differences, then discuss implications for designing XAI systems by accounting for users’ background differences to

bridge the AI creator-consumer gaps, then the broader implications for explainable and responsible Al

6.1 Discussion: User background impacting perception of XAl

Below we highlight two ways to interpret the potential causes behind group differences. First, we use the notion of
heuristics based on the dual-process theory (reviewed in Section 2.2) to understand how unwarranted faith in numbers
(Section 5.1) can emerge from different lines of thinking affected by one’s Al background. Second, we incorporate the

lens of appropriation to the unanticipated ways in which people find explanatory value (Section 5.2).

Heuristics and Faith in Numbers: As reviewed in Section 2.2, recent work began to understand people’s perception
and interpretation of Al explanations through the lens of dual-process theory [17, 48]: while XAl is often developed
with an implicit assumption that the recipient will process each explanation through analytical System 2 thinking, in
reality people are more likely to rely on System 1 thinking by invoking heuristics-rules-of-thumb or mental short cuts,
which leads to biases and errors if applied inappropriately [68, 118, 148].
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The notion of heuristics can help us understand the potential reasons behind the two groups’ different faith in
numbers. On the one hand, the AI group seemed to have an instinctual response to numerical values; they assumed
that the numbers possess all the information needed to manipulate, diagnose, and reverse engineer. There appears to
be heuristics that strongly associate mathematical reasoning with not only logic and intelligence, but also something
that could be acted upon (e.g., diagnosis). Such heuristics are likely formed and validated from their past experience
working with numbers and algorithms. This heuristic is risky because, as we noted in Section 3.1, the numbers are
Q-values and do not contain a lot of actionable information beyond a relative assessment of the quality of the actions
available. We return to this risk and highlight design implications to address this in the next subsection.

On the other hand, lacking the Al background, some participants in the non-Al group seemed to have different
heuristics to ascribe value in numbers. To them, the very inability to understand numbers signaled the presence of a
higher-order intelligence. Here, the heuristic can arise from associating numbers with complex reasoning abilities and,
thereby, higher intelligence. The non-AI group also lacks the requisite Al background to deliberatively think through
NR’s numbers (System 2 thinking). Thus, we see how different heuristics, tied to one’s Al background, can lead people
to the same outcome—faith in numbers. Note that these heuristics are not an exhaustive list, but a starting point to
understand how group differences connect to their Al backgrounds.

Appropriation and Unexpected Explanatory Value: A second lens for understanding why participants found explanatory
value in unexpected places is that of appropriation. As we shared in Sections 2.3 and 5.2, appropriation happens when
end-users interpret and use technologies in ways not envisioned by designers [36, 107, 123, 139]. People do not
passively absorb information—they interpret it, often processing it in unanticipated ways. This is what happened to
AD’s declarative statements and NR’s numbers. Driven by different explanatory intents, each group appropriated
the explanations in unanticipated ways. These different appropriations were, in part, a function of each group’s Al
background that led participants to develop their own sense of how they can and cannot use explanations. What is
striking is that the appropriation took place even in a controlled experiment like ours where the participants were
not explicitly asked to take actions based on explanations. Even in passive interactions (robots engaged in one-way
communication), participants envisioned themselves using the explanations in hypothetical scenarios. On the one hand,
Al group’s intent of diagnosis led many to envision scenarios where they would troubleshoot the robot. As a result they
might have misplaced or over-placed diagnostic value in NR’s numbers—even when they cannot fully understand them.
On the other hand, for non-AlI group’s, NR’s numbers are inaccessible, thus in-actionable. Their affirmatory intent
drives them to find value in the confirmatory statements of AD, appropriating it as a signal for stable system behavior.

Our discussion extends the conversation around individual differences and heuristics-based processing of XAI [17,
438, 113] in two ways: first, we explicitly highlight what heuristics people might use, how their Al background influences
their thinking, and posit the why (underlying reasons) behind them. Second, we add the lenses of appropriation to the
conversation, which has implications on user agency in design (points we touch below). For both, we connect it to an
important user characteristic—one’s Al background.

Both points around heuristics and appropriation highlight an important yet overlooked point around the duality of
explanations. Explanations are both products and processes [90]. The product-centered view, common in psychology and
XAl often ignores the essential processes through which people make sense of explanations. However, the sensemaking
process is as important as the explanation itself [91, 152]. Recent work calls for guiding the process of of understanding
explanations, especially for non-Al experts [26]. By investigating both AI and non-Al groups, our work extends
the current XAI discourse- it directly speaks to the duality of explanations by focusing on both products (types of
explanations from 3 robots) and processes (how one’s Al background influences the interpretation of explanations).
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Taken together, these findings reveal that the design and use of Al explanations is as much in the eye of the beholder
as it is in the minds of the designer— the user’s explanatory intent and common heuristics matter just as much as the
designer’s intended goal. Users might find explanatory value where designers never intended to be and use them based
on their explanatory intent. Contextually understanding the misalignment between designer goals and user intent is
key to fostering effective human-AlI collaboration, especially in XAI systems [47, 104]. We demonstrated how different
groups find meaning in different places—even when the meaning is misplaced. The ‘ability’ in explain-ability depends

on who is looking at it and emerges from the meaning-making process between humans and explanations.

6.2 Implications: Designing XAl for background differences

Here we discuss implications for designing XAI systems that accommodate users’ Al background differences. We
focus on mitigating the risks of over-reliance on numbers which can potentially lead to negative consequences such as
over-trust on Al systems. Moreover, as those in the Al group are likely to be on the creation end while those in the
non-Al group are likely to be towards the consumption and interaction end, our results have implications for bridging
the AI creator-consumer gaps by bringing conscious awareness of the group differences to the design of XAI systems.

Our discussion around heuristics carries design implications for both groups. We noticed how the Al and non-Al
groups utilize different heuristics (mental short-cuts) in System 1 (fast, automatic) thinking to ascribe misplaced faith in
them. Shifting people’s thinking from System 1 to System 2 (slow, deliberative) is not only an active area of research
but is also a challenging one [23, 78]. There can be two major ways to tackle biases resulting from cognitive heuristics—
first, locally at the time of decision-making, we can lean on Cognitive Forcing Functions (CFFs) [28] (prompts, delays,
etc.) that can interject the heuristic reasoning, potentially allowing the person to engage in deliberative analytical
thinking. Second, globally for future decision-making, we can utilize metacognitive strategies, often called cognitive
forcing strategies, that include simulation training, increasing awareness of potential pitfalls of heuristics, etc.

To potentially prevent over-trust in numbers, we can do design interventions at the local and global levels. At a local
design level, we can introduce CFFs that can break instinctive thinking patterns and promote mindful ones. What if
the AI group members were prompted to reflect on their instinctive thinking through a combination of prompts and
multi-modal explanations (blend between RG and NR)? Situating numbers in the context of language and vice versa can
act as a CFF that could prompt the AI group members to reflect deliberatively (using System 2) and realize the limited
nature of the numbers. At a global level, we can introduce simulation training that provides counterfactual (what-if)
scenarios highlighting cases where numbers from the robots are erroneous or faulty (vs. correct Q-values). For the
non-Al group members who associate the opacity of numbers to higher intelligence, we can introduce scenario-based
examples that explicitly highlight how indecipherable numbers can also be gibberish and useless. The goal here is
not to eliminate heuristic reasoning but to mitigate blind faith in a certain modality of explanation. Exposure to these
scenarios can facilitate long-term calibration of trust in numbers.

Given the negative impact of cognitive biases, it might be tempting to exclusively design explanations that only
promote System 2 thinking. This is also risky because it forces users to constantly engage in deliberative thinking, their
satisfaction suffers due to higher cognitive friction [17]. We need to strike a balance between System 1 and 2 thinking
to appropriately calibrate trust. To do so, we can bridge existing work in non-XAI settings (e.g., balancing System 1 and
2 thinking in clinical decision-making) and translate them to XAI use cases in a contextually relevant manner.

The appropriation of explanatory intent we saw from both groups also have important design implications. Our
findings highlight a crucial design insight—if we ignore the interpretive flexibility [14] of different user groups in

how they appropriate explanations, we will likely remain severely limited in our design of XAI systems. Even if we
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carefully design explanations, however, it is impossible to preemptively exhaust all the interpretations from users,
especially since their goals and needs are dynamic. Once we recognize that users will make their own interpretations
(i.e., appropriations) of XAI statements, then we center our design around user agency by shiting our intention from
control of users’ understanding, toward providing resources through which users can construct their own understanding.

To aid our appropriation-aware design of XAI systems and expand the design space, we can build on work in HCI
(e.g., Reflective Design [126]) and software engineering [124]. In particular, we can draw on Dix’s influential design
guidelines for appropriation [36]. Particularly in the context of explanations, certain guidelines stand out- guidelines
like exposing intentions of what the system’s goals and aims can help the appropriator be explicitly aware if they are
using the explanation in unintended ways. By potentially bringing unconscious aspects of experience to conscious
awareness, even if users appropriate explanations in novel ways, it is done in an informed manner. Most importantly,
we should support, not control our end-users—we need to strike the right balance between automation and control. The
goal is not to overly control the user’s interpretation but to support the flexibility in ways that promote one’s agency
in the system. For example, the Al group’s explanatory intent of diagnosis drove them to ascribe too much value to
numbers. Here, if we could provide visibility around what the numbers can and cannot do, including exposing the
intentions behind them, we might calibrate their intent in ways that mitigate over-trust. Similarly, if we were aware of
the affirmatory intent of the non-Al group, we could have designed AD differently. These insights bring us to the most
important part of designing for appropriation, which is about learning from appropriation. Feedback loops from users
can not only improve our XAI systems, but they can also highlight our intellectual blind spots and calibrate the balance

between support and control in user interpretations.

6.3 Broader lessons: Explainable and Responsible Al

Our work has broader implications beyond the immediate design of XAI systems, especially around the discourse of
responsible and explainable Al Below we share three main takeaways—how the perceptual differences have knock-on
effects that require a sociotechnical approach, how our insights can help re-imagine Al education, and how our insights
can mitigate potential harmful manipulation with explanations.

First, our work illustrates that merely producing well-designed explanations is not enough to guarantee people would
perceive them as designed— the same explanation can lead to divergent experiences between groups. Perception drives
action, and misplaced perceptions (e.g., over-reliance on numbers) can lead to negative effects such as inappropriate
user trust in Al systems. Such misalignments can add to disparity and inequities in XAI design.

The solution to the potential disparity should neither be on expecting every user to perfectly understand Al systems
nor does it lie solely in “opening” the opaque-box of Al in more creative ways. Our problems are sociotechnical: Al
systems do not exist in vacuums. They are situated in environments and are inherently sociotechnical in nature. Thus, we
can take advantage of the organizational affordances to address issues around explainability. For example, recent work
on Social Transparency exhibits how incorporating things outside the model, such as the socio-organizational context,
into the decision-making process can augment the holistic explainability of Al systems [40]. More importantly, we can
introduce reliable and trustworthy AI behavior through value-sensitive practices and organizational infrastructure
(e.g., audits, independent oversight, safety practices, etc.). In short, even the “perfect” explanation cannot solve all the
problems around explainability; we need to take a sociotechnically informed approach.

Second, our insights call attention to wider challenges with academic practices of Al learning. Al students exhibited
unwarranted faith in and preference for numbers even when they were not readily comprehensible. In light of the

importance of quantitative practices in Al this bias is not surprising. One effective way to address this would be to
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critically reflect on the way we educate students in AL How do we ensure that students have a more critical eye towards
the working and outputs of Al systems? This is where we see the impact of our focus on Al students (vs. fully formed
Al practitioners)— by investigating how Al background can lead to the formation of certain heuristics, we have crucial
insights on how we might address the issues from an academic training perspective. For instance, the need to introduce
courses like critical data studies and human-centered data science that can provide the much-needed reflective lenses
to students to understand not only their own cognitive biases but also the importance of thinking about the user
during system design and development. By addressing the issues during the formation of their Data Vision [115], and
Professional Vision [52] more generally, we can revolutionize how we train the next generations of Al creators and
mitigate the creator-consumer gap. If we are asking today’s Al students to become future creators for consumers that
think drastically differently from themselves, we need to empower our students with the lenses such that the gap
between them and the stakeholders they would serve is less than what it is today.

Last, our work can inform how we might preemptively mitigate harmful manipulation of the perceptual differences of
explanations. We have highlighted the heuristics behind the misplaced trust in numbers from the AI group (Section 6.1).
As these students go on to become designers, engineers, and managers of Al systems, their faith in numbers may deepen,
leading them to potentially over-rely on numbers—even professional data scientists are often overconfident about their
metrics [70]. The Al group not only associated numbers with higher-order intelligence but also exhibited confidence
to act on them despite lack of comprehension. What might have happened if the NR robot made an error or due to
faulty logic produced erroneous Q-values? Would Al group participants still exhibit a strong faith in numbers and their
potential actionability, ascribing higher intelligence to the agent? The AI group participants, students taking an Al
class, are still in the process of gaining “data vision” [115]—an important attribute of which is the systemic exposure
to quantified reasoning. While some can interpret numbers, we cannot—and should not—expect Al students (or even
experts) to always work out the differences between correct and faulty Q-values; indeed, it is impossible to differentiate
between them without investigating traces of the agent during learning. Moreover, we published the Q-values in good
faith; however, we can imagine bad-faith actors manipulating numbers for nefarious means, potentially manifesting
dark patterns [53] in XAI design. Imagine an XAI system that explains in numbers (ones that are manipulated to induce
trust); given the faith in numbers from the Al group, how might that impact the trust in the system? Furthermore, as
government regulations require explainability—such as the European Union’s GDPR—we observe that it may be possible
to design explanations that are not only devoid of justificatory power but are still perceived by certain groups as having
value (like how the non-AI group found explanatory value in AD’s justification-less statements). In Section 6.2, we
share mitigation strategies that could potentially counteract these negative effects.

We view our findings as a call-to-action to proactively investigate how we might prevent harmful manipulation of
explanations by abusing certain heuristics common in people with and without Al backgrounds. More broadly, the
implication of perceptual and interpretive differences has the potential to have further knock-on effects on pertinent

aspects such as fairness, trust, and accountability of Al systems.

7 LIMITATIONS & FUTURE WORK

This research is a first step towards understanding how AI background—an important user characteristic—impacts
user perceptions of Al explanations. As highlighted in Section 6.3, a focus on Al students helped to understand how
enculturation into Al alters people’s perceptions of Al explanations and makes visible the presence of other kinds of -
often similar — interpretations within a heterogeneous set of non-Al group participants. In this initial effort, we scoped

our study in the context of three types of Al explanations— while they are informative, they are not exhaustive of
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the different types of explanations. While we were able to explore the what and how of the differences between the
two groups through our mixed-methods study, we postulated on the why using conceptual lenses of heuristics and
appropriation. Future work could empirically explore these mechanisms behind the group differences and expand on
our findings. We also did not explore how users with two or more different user characteristics (e.g., comparison with
multiple facets of one’s background) or more homogeneous and striated Al backgrounds (e.g., years of Al programming
experience) perceive explanations in different ways, which restricts our ability to make claims about these areas. With
these insights in mind, our findings are circumscribed by the scope of the study and should be interpreted as such.
In the future, we want to move to a multi-stakeholder scenario and explore how Al background differences between

homogeneous stakeholder groups (e.g., data scientists vs. business analysts) impact interpretations of Al explanations.

8 CONCLUSIONS

In this paper, we focus on the who of XAI by investigating how two different groups of whos—people with and
without a background in Al—perceive different types of Al explanations. Through a mixed-methods user study, we
demonstrate how one’s Al background, or lack thereof, shapes their interpretations and perceptions. Our mixed-methods
analysis provides different levels of insights. What people prefer is relatively clear—they prefer natural language-based
justificatory rationales. While the what is somewhat straightforward, the why and how behind their preferences
is nuanced. Different perceptions (e.g., unanticipated explanatory value) sometimes arise from different forms of
appropriation (e.g., diagnosis vs. affirmatory intent). The same perception (unwarranted faith in numbers) sometimes
arises from different types of heuristics (associating numerical vs. incomprehensible reasoning with intelligence) And,
finally, both groups were very similar in their desire to engage with natural-language based explanations.
Explainability of Al systems is crucial to instil appropriate user trust and facilitate recourse. Disparities in Al
backgrounds have the potential to exacerbate the challenges arising from the differences between how designers
imagine users will appropriate explanations vs. how users actually interpret and use them. We provided concrete design
implications to mitigate the risk of over-reliance of numbers and broader lessons about the need for re-imagining
Al education. By focusing on the who and not just the what of XAl our work takes a formative step in advancing a

pluralistic human-centered XAI discourse to help bridge the creator-consumer gap.
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A APPENDIX
A.1 Best practices for data integrity and participant engagement

Data quality and engagement with user study participants are integral to research. Below we share how previous
guidelines for fair and equitable work treatment for MTurk workers [62] helped us decide the payment structure, tips
on engagement with participants, design motivations behind the task environment, and how we deployed and reviewed
the task catering for a global audience. While these insights are transferable to other contexts, most of these practices

are geared towards MTurk participants given one has less control on the platform.

(1) Payment: our study was not a micro-task that is traditionally deployed in MTurk. As a result, we calibrated
our payment to reflect the task duration and expected effort. We tried our best to structure our study based on
previous guidelines for fair and equitable work treatment for MTurk workers [62]. We strived to pay equal to or
more than a minimum wage [at the time of deployment, the local minimum wage was $8.5/hour]. We paid $10
for a task budgeted for 45 minutes, making the hourly pay $13.3. However, almost all participants took 30 mins
to complete the task on average, making the effective hourly rate around $20/hour.

As a policy, we disbursed payments within 48 hours of task completion. This robust turnaround time helped our
reputation on Turkopticon, a forum for MTurk workers to engage in peer-to-peer assistance on job information
and hold employers accountable for fair treatment [62]. Moreover, one researcher regularly engaged with workers
on Turkopticon, answering questions and returning compliments. This engagement built rapport throughout the
study. As a platform, TurkPrime allows internal messages between MTurk workers and employers by using a
proxy userID and protecting the privacy of the worker. This feature allowed participants to communicate if they
had internet issues or were running out of time. In such cases, we sent them a one-time link for completion. The
same applied for participants in the Al background group who were not bound by AMT rules.

Every payment of a HIT had a thank you message attached to it. Every rejection had custom justifications backed
by evidence. The research team created message templates based on major issues, which allowed for a quick
turnaround time even with a custom message. For participants who failed to do the task despite best efforts, we
paid them for their time even if we could not use their data. This equitable policy also made our HITs one of the
most sought after in the marketplace.

(2) Task environment and setup:

(a) Task orientation: Pilot testing showed that participants preferred a multi-modal (e.g., video) orientation
compared to a textual description of it. Therefore, we provided both modalities.

(b) Task engagement: Participant had to successfully pass attention checks and/or explicitly acknowledge they
understood the instructions in a given module. On the backend, we had timers to evaluate if a participant
spent a reasonable amount of time on a particular section. For instance, if the video was 2 minutes long and a
participant clicked through that section in 30 seconds, it triggered a review of their responses. These steps
augment the quality of the experimental data. Moreover, for tasks that had to be rejected, these metrics also

served as justificatory evidence.

(c

~

Design of the robots: To mitigate effects of preconceived notions, we did not use any descriptive names for
the robots; instead, we introduced the robots as “Robot A” [= the Rationale-Generation robot], “Robot B”
[= the Action-Declaring robot], and “Robot C” [= the Numerical robot] (details on each of their attributes
are below/above). To reduce any preferential treatment of robots based on their appearances, we need to
standardize their appearances without sacrificing their distinctness. That is, the robots needed to look similar,
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but not to the point of indistinguishability. This insight came from pilot testing which indicated that if we made
the robots identical in appearance but different in color, the cognitive load for recall was too high. Therefore,
we iterated and struck a balance where all robots had wheels with a “car-like” structure (see Fig. 1) while they
differed in color and shape.

(3) Deployment and Review: Across both groups, we manually reviewed every response in the survey, especially
the qualitative justifications provided by the participants. We deployed 10-15 tasks per day to allow for manual
reviews. To facilitate outreach of our task to all time zones, using an automated scheduling system, we released 3
tasks every 3 hours over a 24-hour cycle. This improved the potential for global participation in our task.
Spamming is a serious issue when it comes to survey data. Here, the qualitative responses served a secondary
screening purpose. Participants with good-faith efforts always had reasonable qualitative justifications. Those
who had spamming intentions shared non-sensical and even comical qualitative responses; e.g., Movie titles and

plots, snippets from Wikipedia, etc.

While all of these steps required considerable time, and effort, they paid off in the high data quality we received for a

task lasting 30 minutes on average.
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A.2 Participant Screening

The following aspects of the selection criteria facilitated formation of the two user groups:

The Al knowledge questionnaire: We developed the knowledge questionnaire iteratively using a participatory process
involving Teaching Assistants for the class along with Graduate students familiar with the area. There are five (5)
multiple-choice questions in total equalling 5 points. The first two questions are programming questions: the first
being a question asking for the output of a simple print-statement, the second being one that asks for the output of a
for-loop. The remaining three covered concepts in Al such as Markov Decision Processes, Reinforcement Learning, and
Unsupervised Learning. By the time of deployment, the Al students had already gone through lectures covering the Al
topics in the questionnaire. All the questions are inspired by or directly taken from past exam questions on various
topics. For further details, please refer to section A.2.1 for the Al knowledge questionnaire.

To calibrate the relative difficulty of the knowledge test, we used a collaborative and iterative process until consensus
between the researchers and the teaching staff was reached. We expected that most students with satisfactory prerequi-
sites (that contain fundamentals of programming) and current knowledge from the class should at least get 4 out of the
5 correct. This calibration appears to have been a reasonable one since all students naturally passed these thresholds.
On the other hand, in order to be assigned to the non-Al background group, participants had to score less than or equal
to 1 (out of 5). We expected that some participants, without any Al background, might be able to guess the output of
the “print” statement question. However, it was unlikely that someone without basic programming understanding
would be able to answer the “for-loop” output question. Therefore, if someone correctly answers more than one, their

Al knowledge background is not the type we needed for members of the non-Al background group.

Al background measurement: The knowledge test was followed by two 5-point Likert-scale questions measuring
the AI background for computer programming and AI concepts. The range of self-reported knowledge goes from "No
knowledge"[= 1] to "A lot of knowledge" [= 5]. Each level of knowledge has a sentence clarifying the meaning behind
the label. For illustrative purposes, here is an example from the Al scale: "No knowledge: I might be aware of Al but
have no knowledge about it" Both scales had similar construction and wording. For further details, please refer to section

A.2.1 for the Al background knowledge Likert-scales.
AlI class: Finally, participants answer if they have ever taken any classes on Artificial Intelligence.

A.2.1 Screening questionnaire.

Here we share the survey instruments used to screen participants. Knowledge test questionnaire

(1) What would be the output of the following python program?

name = "Peter"

print("Hello " + name)

(a) Peter

(b) Hello Peter

(c) Hello + Peter
(d) "Hello" + name
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(2) What would be the output of the following python program?

numbers = [2, 4]
for i in range(len(numbers)):

print(numbers[i] + i)

(a) 2

(b) 2

(c) 2

d) 2
4
10
(3) Which of the following is an unsupervised learning task?
(a) Distinguishing pictures containing cats from pictures not containing cats
(b) Flagging text messages as appropriate or inappropriate
(c) Divide data points into different clusters without any labels available
(d) Predict the value of a house after training on a dataset with house features and values
(4) What is the general goal of reinforcement learning?
(a) Maximize potential or expected punishment
(b) Maximize potential or expected reward
(c) Get to the goal as soon as possible
(d) Avoid the most obstacles in any given state
(5) In MDPs, the Markov assumption is that:
(a) The current state is independent of all other states
(b) The current state depends only on the history of previous states and actions
(c) The current state depends on the full sequence of states and actions (past and future)

(d) The current state only depends on the immediate previous state and action

Computer Programming Background Knowledge.

When it comes to computer programming or coding, I believe I have

(1) No knowledge: I might be aware of computer programs, but have never coded before

(2) A little knowledge: I know basic concepts in programming, but have never applied it

(3) Some knowledge: I have applied programming concepts by coding at least once before

(4) Moderate knowledge: I apply programming concepts somewhat frequently for my work, class, or leisure

(5) A lot of knowledge: I apply programming concepts very frequently or create cutting edge software

Al Background Knowledge.
When it comes to Artificial Intelligence (AI), I believe I have
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(1) No knowledge: I might be aware of Al but have no knowledge about it

(2) Alittle knowledge: I know basic concepts in Al but have never applied it

(3) Some knowledge: I have applied Al concepts by coding at least once before

(4) Moderate knowledge: I apply Al concepts somewhat frequently for my work, class, or leisure

(5) A lot of knowledge: I apply Al concepts very frequently or create cutting edge software

Al class.

Have you ever taken or are currently taking any classes on Artificial Intelligence?

e Yes
e No
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A.3 OLR Summary Tables

Table 3. Summary of OLR with Ranking as Response and Robot Type as Predictor

Value Std. Error t-value p-value Odds Ratio

AD Robot  -1.711 0.104 -16.473 < 0.001 0.181
NR_Robot -2.691 0.115 -23.393 < 0.001 0.068
12 -2.366 0.093 -25.567 < 0.001 0.094
2|3 -0.598 0.077 -7.799 < 0.001 0.5501

Note: RG_Robot is the reference level.

Table 4. OLR Summary with Robot Type

Value  Std. Error tvalue pvalue Odds Ratio

Rationale-Generation Robot  1.7105 0.1038 16.4728 0 5.5319
Numerical-Reasoning Robot  -0.9807 0.1001 -9.7980 0 0.3751
12 -0.6550 0.0695 -9.4282 0 0.5195
2|3 1.1129 0.0734 15.1592 0 3.0433

Note: Action-Declaring Robot is the reference level.

Table 5. OLR Summary - Ref. Levels: Rationale-Generation Robot and Al Group

Value  Std. Error tvalue pvalue Odds Ratio

Action-Declaring Robot -2.0246  0.1302  -15.5462  0.0000 0.1320
Numerical-Reasoning Robot -2.5072  0.1391 -18.0221  0.0000 0.0815
Non-Al Group -0.1563 0.1582 -0.9879  0.3232 0.8553
Action-Declaring Robot:Non-AI Group 0.8422 0.2093 4.0243  0.0001 2.3214

Numerical-Reasoning Robot:Non-AI Group -0.6088 0.2264 -2.6892  0.0072 0.5440

12 -2.4515 0.1104 -22.2009  0.0000 0.0862
23 -0.6507 0.0965 -6.7413  0.0000 0.5217
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Table 6. OLR Summary - Ref. Levels: Rationale-Generation Robot and Non-Al Group

Value  Std. Error tvalue pvalue Odds Ratio
Action-Declaring Robot -1.1824  0.1674 -7.0614  0.0000 0.3065
Numerical-Reasoning Robot -3.1160 0.1893 -16.4636  0.0000 0.0443
Al Group 0.1564 0.1582 0.9881 0.3231 1.1692
Action-Declaring Robot:AI Group -0.8422 0.2093 -4.0245  0.0001 0.4308
Numerical-Reasoning Robot:Al Group  0.6087 0.2264 2.6889  0.0072 1.8381
1)2 -2.2952  0.1362 -16.8540  0.0000 0.1007
23 -0.4944 0.1258 -3.9305  0.0001 0.6099

Table 7. OLR Summary - Ref. Levels: Action-Declaring Robot and Al Group
Value  Std. Error tvalue pvalue Odds Ratio

Rationale-Generation Robot 2.0246 0.1302 15.5462  0e+00 7.5732

Numerical-Reasoning Robot -0.4826  0.1224 -3.9421  1le-04 0.6172

Non-AI Group 0.6859 0.1368 5.0127 0e+00 1.9855

Rationale-Generation Robot:Non-AI Group  -0.8422 0.2093 -4.0243  1le-04 0.4308

Numerical-Reasoning Robot:Non-AI Group -1.4510  0.2125 -6.8278  0e+00 0.2343

1)2 -0.4269  0.0836 -5.1091  0e+00 0.6526

23 1.3739 0.0904 15.2045  0e+00 3.9507

Table 8. OLR Summary - Ref. Levels: Action-Declaring Robot and Non-Al Group

Value  Std. Error tvalue pvalue Odds Ratio
Rationale-Generation Robot 1.1824 0.1674 7.0613 0e+00 3.2622
Numerical-Reasoning Robot -1.9336 0.1750 -11.0468  0e+00 0.1446
Al Group -0.6859 0.1368 -5.0127 0e+00 0.5037
Rationale-Generation Robot:AI Group ~ 0.8422 0.2093 4.0245 le-04 2.3215
Numerical-Reasoning Robot:AI Group  1.4510 0.2125 6.8278 0e+00 4.2672
12 -1.1127 0.1147 -9.6973 0e+00 0.3287
23 0.6880 0.1123 6.1249 0e+00 1.9898
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Table 9. OLR Summary - Ref. Levels: Numerical-Reasoning Robot and Al Group

Value  Std. Error tvalue pvalue Odds Ratio
Rationale-Generation Robot 2.5072 0.1391 18.0222  0.0000 12.2708
Action-Declaring Robot 0.4826 0.1224 3.9422  0.0001 1.6203
Non-AI Group -0.7651 0.1620 -4.7240  0.0000 0.4653
Rationale-Generation Robot:Non-AI Group  0.6088 0.2264 2.6891  0.0072 1.8382
Action-Declaring Robot:Non-AI Group 1.4510 0.2125 6.8278  0.0000 4.2672
12 0.0557 0.0923 0.6037  0.5460 1.0573
2|3 1.8565 0.1033 17.9798  0.0000 6.4012

Table 10. OLR Summary - Ref. Levels: Numerical-Reasoning Robot and Non-Al Group

Value  Std. Error tvalue pvalue Odds Ratio
Rationale-Generation Robot 3.1160 0.1893 16.4637  0.0000 22.5559
Action-Declaring Robot 1.9336 0.1750 11.0468  0.0000 6.9141
Al Group 0.7651 0.1620 4.7240  0.0000 2.1492
Rationale-Generation Robot:AI Group -0.6088 0.2264 -2.6891  0.0072 0.5440
Action-Declaring Robot:AI Group -1.4510 0.2125 -6.8279  0.0000 0.2343
12 0.8208 0.1336 6.1447  0.0000 2.2724
2|3 2.6216 0.1444 18.1523  0.0000 13.7575

Table 11. OLR Summary - Confidence - Ref. Levels: Type Rationale-Generation Robot and Group Al Group

Value  Std. Error tvalue pvalue OddsRatio
Action-Declaring Robot -1.3753 0.2740  -5.0185  0.0000 0.2528
Numerical-Reasoning Robot -1.2607 0.2815 -4.4783  0.0000 0.2835
Non-AI Group -0.0290 0.3297 -0.0879  0.9299 0.9714
Action-Declaring Robot:Non-AI Group 0.7232 0.4545 1.5913  0.1115 2.0610
Numerical-Reasoning Robot:Non-AI Group -0.6906 0.4668 -1.4795  0.1390 0.5013
12 -1.6705 0.2164 -7.7194  0.0000 0.1882
2|3 -0.1251 0.1996 -0.6268  0.5308 0.8824
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Table 12. OLR Summary - Confidence - Ref. Levels: Type Rationale-Generation Robot and Group Non-Al Group

Value  Std. Error tvalue pvalue OddsRatio

Action-Declaring Robot -0.6521 0.3654  -1.7845 0.0743 0.5210
Numerical-Reasoning Robot -1.9513 0.3800  -5.1343  0.0000 0.1421
Al Group 0.0290 0.3297 0.0879  0.9299 1.0294
Action-Declaring Robot:AI Group -0.7232 0.4545 -1.5913  0.1115 0.4852

Numerical-Reasoning Robot:AI Group  0.6906 0.4668 1.4795  0.1390 1.9949

12 -1.6415 0.2777 -5.9112  0.0000 0.1937
2|3 -0.0961 0.2651 -0.3626  0.7169 0.9083

Table 13. OLR Summary - Confidence - Ref. Levels: Type Action-Declaring Robot and Group Al Group

Value  Std. Error tvalue pvalue OddsRatio

Rationale-Generation Robot 1.3753 0.2740 5.0185  0.0000 3.9561
Numerical-Reasoning Robot 0.1146 0.2678 0.4279  0.6687 1.1214
Non-AI Group 0.6942 0.3127 2.2203 0.0264 2.0021

Rationale-Generation Robot:Non-AI Group -0.7232 0.4545 -1.5913  0.1115 0.4852
Numerical-Reasoning Robot:Non-AI Group -1.4138 0.4561 -3.0995  0.0019 0.2432

12 -0.2952 0.1873 -1.5759  0.1150 0.7444
2|3 1.2501 0.1979 6.3175  0.0000 3.4908

Table 14. OLR Summary - Confidence - Ref. Levels: Type Action-Declaring Robot and Group Non-Al Group

Value  Std. Error tvalue pvalue OddsRatio

Rationale-Generation Robot 0.6521 0.3654 1.7845  0.0743 1.9196
Numerical-Reasoning Robot -1.2992 0.3688 -3.5230  0.0004 0.2727
Al Group -0.6942 0.3127 -2.2203  0.0264 0.4995

Rationale-Generation Robot:AI Group ~ 0.7232 0.4545 1.5913  0.1115 2.0609
Numerical-Reasoning Robot:AI Group  1.4138 0.4561 3.0995  0.0019 4.1115

12 -0.9894 0.2603 -3.8015  0.0001 0.3718
2|3 0.5560 0.2566 2.1668  0.0303 1.7436
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Table 15. OLR Summary - Confidence - Ref. Levels: Type Numerical-Reasoning Robot and Group Al Group

Value  Std. Error tvalue pvalue OddsRatio
Rationale-Generation Robot 1.2607 0.2815 4.4783  0.0000 3.5278
Action-Declaring Robot -0.1146  0.2678 -0.4279  0.6687 0.8918
Non-AI Group -0.7196 0.3304 -2.1778  0.0294 0.4870
Rationale-Generation Robot:Non-AI Group  0.6906 0.4668 1.4795  0.1390 1.9949
Action-Declaring Robot:Non-AI Group 1.4138 0.4561 3.0995  0.0019 4.1115
12 -0.4098 0.1999 -2.0501  0.0404 0.6638
23 1.1356 0.2076 5.4701  0.0000 3.1130

Table 16. OLR Summary - Confidence - Ref. Levels: Type Numerical-Reasoning Robot and Group Non-Al Group

Value  Std. Error tvalue pvalue Odds Ratio
Rationale-Generation Robot 1.9513 0.3800 5.1343  0.0000 7.0377
Action-Declaring Robot 1.2992 0.3688 3.5230  0.0004 3.6664
Al Group 0.7196 0.3304 2.1778  0.0294 2.0536
Rationale-Generation Robot:AI Group -0.6906 0.4668 -1.4795  0.1390 0.5013
Action-Declaring Robot:AI Group -1.4138 0.4561 -3.0995  0.0019 0.2432
1|2 0.3098 0.2666 1.1620  0.2452 1.3631
23 1.8552 0.2812 6.5966  0.0000 6.3927

Table 17. OLR Summary - Friendliness - Ref. Levels: Type Rationale-Generation Robot and Group Al Group

Value  Std. Error tvalue pvalue Odds Ratio
Action-Declaring Robot -5.8425 0.6241 -9.3621  0.0000 0.0029
Numerical-Reasoning Robot -9.1613 0.6886 -13.3037  0.0000 0.0001
Non-AI Group -1.2732 0.6531 -1.9494  0.0512 0.2799
Action-Declaring Robot:Non-AI Group 2.3121 0.7844 2.9477  0.0032 10.0953
Numerical-Reasoning Robot:Non-AI Group  0.4423 0.8811 0.5021  0.6156 1.5564
12 -7.4844 0.6292 -11.8956  0.0000 0.0006
23 -3.1140 0.5110 -6.0945  0.0000 0.0444
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Table 18. OLR Summary - Friendliness - Ref. Levels: Type Rationale-Generation Robot and Group Non-Al Group

Value  Std. Error tvalue pvalue Odds Ratio

Action-Declaring Robot -3.5301 0.5314 -6.6431  0.0000 0.0293
Numerical-Reasoning Robot -8.7179 0.7549 -11.5482  0.0000 0.0002
AI Group 1.2734 0.6531 1.9497  0.0512 3.5730
Action-Declaring Robot:Al Group -2.3128 0.7844 -2.9485  0.0032 0.0990

Numerical-Reasoning Robot:AI Group  -0.4435 0.8809 -0.5035  0.6146 0.6418

12 -6.2112 0.5476 -11.3434  0.0000 0.0020
23 -1.8407 0.4068 -4.5247  0.0000 0.1587

Table 19. OLR Summary - Friendliness - Ref. Levels: Type Action-Declaring Robot and Group Al Group

Value  Std. Error tvalue pvalue OddsRatio

Rationale-Generation Robot 5.8429 0.6241 9.3622  0.0000 344.7825
Numerical-Reasoning Robot -3.3185 0.3827 -8.6712  0.0000 0.0362
Non-AI Group 1.0394 0.4342 2.3940  0.0167 2.8274

Rationale-Generation Robot:Non-AI Group  -2.3129 0.7844  -2.9486  0.0032 0.0990
Numerical-Reasoning Robot:Non-AI Group -1.8692 0.7336 -2.5481  0.0108 0.1542

12 -1.6417 0.2599 -6.3158  0.0000 0.1936
2|3 2.7288 0.3585 7.6120  0.0000 15.3144

Table 20. OLR Summary - Friendliness - Ref. Levels: Type Action-Declaring Robot and Group Non-Al Group

Value  Std. Error tvalue pvalue OddsRatio

Rationale-Generation Robot 3.5301 0.5314 6.6431  0.0000 34.1267
Numerical-Reasoning Robot -5.1877  0.6660  -7.7898  0.0000 0.0056
Al Group -1.0394 0.4341 -2.3941 0.0167 0.3537

Rationale-Generation Robot:AI Group ~ 2.3125 0.7844 2.9483  0.0032 10.1000
Numerical-Reasoning Robot:AI Group  1.8692 0.7336 2.5481  0.0108 6.4832

12 -2.6811 0.4164 -6.4392  0.0000 0.0685
2|3 1.6894 0.3421 4.9375  0.0000 5.4160
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Table 21. OLR Summary - Friendliness - Ref. Levels: Type Numerical-Reasoning Robot and Group Al Group

Value  Std. Error tvalue pvalue Odds Ratio

Rationale-Generation Robot 9.1614 0.6887 13.3033  0.0000  9522.2302
Action-Declaring Robot 3.3185 0.3827 8.6712 0.0000 27.6181
Non-AI Group -0.8299 0.5912 -1.4038  0.1604 0.4361
Rationale-Generation Robot:Non-AI Group  -0.4436 0.8809 -0.5036  0.6146 0.6417
Action-Declaring Robot:Non-AI Group 1.8693 0.7336 2.5481  0.0108 6.4835
12 1.6768 0.2812 5.9620  0.0000 5.3482
2|3 6.0473 0.4618 13.0936  0.0000 422.9598

Table 22. OLR Summary - Friendliness - Ref. Levels: Type Numerical-Reasoning Robot and Group Non-Al Group

Value  Std. Error tvalue pvalue Odds Ratio

Rationale-Generation Robot 8.7179 0.7549 11.5480  0.0000  6111.4635
Action-Declaring Robot 5.1879 0.6660 7.7897  0.0000 179.0894
Al Group 0.8301 0.5912 1.4041 0.1603 2.2934
Rationale-Generation Robot:AI Group ~ 0.4434 0.8809 0.5033  0.6148 1.5579
Action-Declaring Robot:Al Group -1.8695 0.7336 -2.5483  0.0108 0.1542
12 2.5068 0.5200 4.8208  0.0000 12.2655
2|3 6.8773 0.6364 10.8059  0.0000 970.0040

Table 23. OLR Summary - Intelligence - Ref. Levels: Type Rationale-Generation Robot and Group Al Group

Value  Std. Error tvalue pvalue OddsRatio

Action-Declaring Robot -1.8632 0.2799  -6.6555  0.0000 0.1552
Numerical-Reasoning Robot -0.9546 0.2801 -3.4088  0.0007 0.3850
Non-AI Group -0.3321 0.3304 -1.0053  0.3147 0.7174
Action-Declaring Robot:Non-AI Group 1.0047 0.4542 2.2120  0.0270 2.7310

Numerical-Reasoning Robot:Non-AI Group -0.1047 0.4626 -0.2262  0.8210 0.9006

12 -1.7485 0.2186 -7.9976  0.0000 0.1740
2|3 -0.2121 0.2011 -1.0547  0.2916 0.8089
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Table 24. OLR Summary - Intelligence - Ref. Levels: Type Rationale-Generation Robot and Group Non-Al Group

Value  Std. Error tvalue pvalue OddsRatio

Action-Declaring Robot -0.8585 0.3631 -2.3643  0.0181 0.4238
Numerical-Reasoning Robot -1.0593 0.3716  -2.8510  0.0044 0.3467
Al Group 0.3321 0.3304 1.0053  0.3148 1.3939
Action-Declaring Robot:AI Group -1.0046 0.4542 -2.2119  0.0270 0.3662

Numerical-Reasoning Robot:AI Group  0.1047 0.4626 0.2263  0.8210 1.1104

12 -1.4164 0.2748 -5.1533  0.0000 0.2426
2|3 0.1200 0.2651 0.4528  0.6507 1.1275

Table 25. OLR Summary - Intelligence - Ref. Levels: Type Action-Declaring Robot and Group Al Group

Value  Std. Error tvalue pvalue OddsRatio

Rationale-Generation Robot 1.8631 0.2799 6.6555  0.0000 6.4440
Numerical-Reasoning Robot 0.9085 0.2704 3.3604  0.0008 2.4806
Non-AI Group 0.6725 0.3110 2.1623 0.0306 1.9592

Rationale-Generation Robot:Non-AI Group  -1.0047 0.4542 -2.2120  0.0270 0.3662
Numerical-Reasoning Robot:Non-AI Group -1.1093 0.4502 -2.4641  0.0137 0.3298

12 0.1147 0.1878 0.6106  0.5415 1.1215
2|3 1.6511 0.2051 8.0509  0.0000 5.2125

Table 26. OLR Summary - Intelligence - Ref. Levels: Type Action-Declaring Robot and Group Non-Al Group

Value  Std. Error tvalue pvalue OddsRatio

Rationale-Generation Robot 0.8585 0.3631 2.3642  0.0181 2.3596
Numerical-Reasoning Robot -0.2008  0.3593 -0.5589  0.5762 0.8181
Al Group -0.6725 0.3110 -2.1623  0.0306 0.5104

Rationale-Generation Robot:AI Group ~ 1.0047 0.4542 2.2120  0.0270 2.7310
Numerical-Reasoning Robot:AI Group  1.1093 0.4502 2.4641  0.0137 3.0323

12 -0.5579 0.2530 -2.2047  0.0275 0.5724
2|3 0.9785 0.2566 3.8132  0.0001 2.6605
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Table 27. OLR Summary - Intelligence - Ref. Levels: Type Numerical-Reasoning Robot and Group Al Group

Value  Std. Error tvalue pvalue OddsRatio

Rationale-Generation Robot 0.9546 0.2801 3.4088  0.0007 2.5977
Action-Declaring Robot -0.9085 0.2704  -3.3604  0.0008 0.4031
Non-AI Group -0.4368 0.3244 -1.3467  0.1781 0.6461
Rationale-Generation Robot:Non-AI Group  0.1047 0.4626 0.2263  0.8210 1.1104
Action-Declaring Robot:Non-AI Group 1.1093 0.4502 2.4641  0.0137 3.0323
12 -0.7939 0.2021 -3.9274  0.0001 0.4521
23 0.7425 0.2016 3.6836  0.0002 2.1013

Table 28. OLR Summary - Intelligence - Ref. Levels: Type Numerical-Reasoning Robot and Group Non-Al Group

Value  Std. Error tvalue pvalue Odds Ratio

Rationale-Generation Robot 1.0593 0.3716 2.8510  0.0044 2.8844
Action-Declaring Robot 0.2008 0.3593 0.5589  0.5763 1.2224
Al Group 0.4368 0.3244 1.3467  0.1781 1.5477
Rationale-Generation Robot:AI Group -0.1047 0.4626 -0.2263  0.8210 0.9006
Action-Declaring Robot:AI Group -1.1093 0.4502 -2.4641  0.0137 0.3298
1|2 -0.3571 0.2628 -1.3587  0.1742 0.6997
23 1.1793 0.2693 4.3787  0.0000 3.2522

Table 29. OLR Summary - Potential - Ref. Levels: Type Rationale-Generation Robot and Group Al Group

Value  Std. Error tvalue pvalue OddsRatio

Action-Declaring Robot -1.4669 0.2736  -5.3619  0.0000 0.2306
Numerical-Reasoning Robot -1.4049 0.2855 -4.9210  0.0000 0.2454
Non-AI Group 0.3139 0.3403 0.9226  0.3562 1.3688
Action-Declaring Robot:Non-AI Group 0.3615 0.4584 0.7888  0.4303 1.4355

Numerical-Reasoning Robot:Non-AI Group  -1.2945 0.4854  -2.6667 0.0077 0.2740

12 -1.7680 0.2168 -8.1558  0.0000 0.1707
2|3 -0.1478 0.1969 -0.7505  0.4530 0.8626
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Table 30. OLR Summary - Potential - Ref. Levels: Type Rationale-Generation Robot and Group Non-Al Group

Value  Std. Error tvalue pvalue OddsRatio
Action-Declaring Robot -1.1053 0.3729  -2.9642  0.0030 0.3311
Numerical-Reasoning Robot -2.6994  0.4039  -6.6836  0.0000 0.0672
Al Group -0.3139 0.3403 -0.9224  0.3563 0.7306
Action-Declaring Robot:AI Group -0.3616 0.4584 -0.7889  0.4302 0.6966
Numerical-Reasoning Robot:AI Group  1.2944 0.4854 2.6666  0.0077 3.6489
12 -2.0820 0.2966 -7.0203  0.0000 0.1247
2|3 -0.4617 0.2792 -1.6534  0.0983 0.6302

Table 31. OLR Summary - Potential - Ref. Levels: Type Action-Declaring Robot and Group Al Group

Value  Std. Error tvalue pvalue OddsRatio
Rationale-Generation Robot 1.4668 0.2736 5.3616  0.0000 4.3354
Numerical-Reasoning Robot 0.0620 0.2728 0.2271  0.8203 1.0639
Non-AI Group 0.6755 0.3077 2.1950  0.0282 1.9649
Rationale-Generation Robot:Non-AI Group -0.3614  0.4584  -0.7885  0.4304 0.6967
Numerical-Reasoning Robot:Non-AI Group -1.6561 0.4643 -3.5668  0.0004 0.1909
12 -0.3012 0.1880 -1.6022  0.1091 0.7399
2|3 1.3191 0.2005 6.5806  0.0000 3.7401

Table 32. OLR Summary - Potential - Ref. Levels: Type Action-Declaring Robot and Group Non-Al Group

Value  Std. Error tvalue pvalue OddsRatio
Rationale-Generation Robot 1.1053 0.3729 2.9641  0.0030 3.0201
Numerical-Reasoning Robot -1.5941 0.3754  -4.2465 0.0000 0.2031
Al Group -0.6755 0.3077 -2.1951  0.0282 0.5089
Rationale-Generation Robot:AI Group  0.3616 0.4584 0.7889  0.4302 1.4356
Numerical-Reasoning Robot:AI Group  1.6560 0.4643 3.5667  0.0004 5.2385
12 -0.9767 0.2543 -3.8407  0.0001 0.3766
2|3 0.6436 0.2510 2.5639  0.0104 1.9034
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Table 33. OLR Summary - Potential - Ref. Levels: Type Numerical-Reasoning Robot and Group Al Group

Value  Std. Error tvalue pvalue OddsRatio

Rationale-Generation Robot 1.4049 0.2855 4.9210  0.0000 4.0752
Action-Declaring Robot -0.0620  0.2728 -0.2271  0.8203 0.9399
Non-AI Group -0.9806 0.3456 -2.8371  0.0046 0.3751
Rationale-Generation Robot:Non-AI Group  1.2945 0.4854 2.6667  0.0077 3.6491
Action-Declaring Robot:Non-AI Group 1.6560 0.4643 3.5667  0.0004 5.2386
12 -0.3631 0.2060 -1.7628  0.0779 0.6955
23 1.2571 0.2162 5.8156  0.0000 3.5154

Table 34. OLR Summary - Potential - Ref. Levels: Type Numerical-Reasoning Robot and Group Non-Al Group

Value  Std. Error tvalue pvalue Odds Ratio

Rationale-Generation Robot 2.6994 0.4039 6.6837  0.0000 14.8709
Action-Declaring Robot 1.5941 0.3754 4.2466  0.0000 4.9238
Al Group 0.9806 0.3456 2.8371  0.0046 2.6659
Rationale-Generation Robot:AI Group  -1.2945 0.4854  -2.6667 0.0077 0.2740
Action-Declaring Robot:AI Group -1.6560 0.4643 -3.5667  0.0004 0.1909
1|2 0.6174 0.2798 2.2063  0.0274 1.8541
23 2.2377 0.2983 7.5020  0.0000 9.3718

Table 35. OLR Summary - Understandability - Ref. Levels: Type Rationale-Generation Robot and Group Al Group

Value  Std. Error tvalue pvalue Odds Ratio

Action-Declaring Robot -2.6153 0.3274 -7.9873  0.0000 0.0731
Numerical-Reasoning Robot -4.2054 0.3661 -11.4866  0.0000 0.0149
Non-AI Group -0.4175 0.3664 -1.1393  0.2546 0.6587
Action-Declaring Robot:Non-AI Group 1.5455 0.4949 3.1227  0.0018 4.6903

Numerical-Reasoning Robot:Non-AI Group -1.7585 0.7309 -2.4059  0.0161 0.1723

12 -3.5627 0.3026 -11.7746  0.0000 0.0284
23 -1.0644 0.2358 -4.5135  0.0000 0.3449
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Table 36. OLR Summary - Understandability - Ref. Levels: Type Rationale-Generation Robot and Group Non-Al Group

Value  Std. Error tvalue pvalue OddsRatio
Action-Declaring Robot -1.0698  0.3807 -2.8100  0.0050 0.3431
Numerical-Reasoning Robot -5.9638  0.6824  -8.7391  0.0000 0.0026
Al Group 0.4175 0.3664 1.1393  0.2546 1.5182
Action-Declaring Robot:AI Group -1.5455 0.4949 -3.1227  0.0018 0.2132
Numerical-Reasoning Robot:AI Group  1.7584 0.7309 2.4058  0.0161 5.8032
12 -3.1452 0.3361 -9.3583  0.0000 0.0431
2|3 -0.6469 0.2808 -2.3041  0.0212 0.5237

Table 37. OLR Summary - Understandability - Ref. Levels: Type Action-Declaring Robot and Group Al Group

Value  Std. Error tvalue pvalue OddsRatio
Rationale-Generation Robot 2.6151 0.3274 7.9869  0.0000 13.6684
Numerical-Reasoning Robot -1.5903 0.2993 -5.3142  0.0000 0.2039
Non-AI Group 1.1277 0.3316 3.4009  0.0007 3.0884
Rationale-Generation Robot:Non-AI Group -1.5454  0.4949 -3.1226  0.0018 0.2132
Numerical-Reasoning Robot:Non-AI Group -3.3039 0.7154  -4.6183  0.0000 0.0367
12 -0.9474 0.2107 -4.4964  0.0000 0.3877
2|3 1.5506 0.2308 6.7170  0.0000 4.7143

Table 38. OLR Summary - Understandability - Ref. Levels: Type Action-Declaring Robot and Group Non-Al Group

Value  Std. Error tvalue pvalue OddsRatio
Rationale-Generation Robot 1.0698 0.3807 2.8099  0.0050 2.9147
Numerical-Reasoning Robot -4.8941 0.6646  -7.3645  0.0000 0.0075
Al Group -1.1281 0.3316 -3.4020  0.0007 0.3237
Rationale-Generation Robot:AI Group  1.5456 0.4949 3.1229  0.0018 4.6909
Numerical-Reasoning Robot:AI Group ~ 3.3039 0.7153 4.6190  0.0000 27.2187
12 -2.0755 0.2980 -6.9645  0.0000 0.1255
2|3 0.4228 0.2591 1.6321  0.1027 1.5263
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Table 39. OLR Summary - Understandability - Ref. Levels: Type Numerical-Reasoning Robot and Group Al Group

Value  Std. Error tvalue pvalue Odds Ratio

Rationale-Generation Robot 4.2054 0.3661 11.4867  0.0000 67.0472
Action-Declaring Robot 1.5901 0.2993 5.3136  0.0000 4.9043
Non-AI Group -2.1759 0.6325 -3.4403  0.0006 0.1135
Rationale-Generation Robot:Non-AI Group  1.7584 0.7309 2.4058  0.0161 5.8031
Action-Declaring Robot:Non-AI Group 3.3039 0.7153 4.6189  0.0000 27.2188
12 0.6427 0.2166 2.9667  0.0030 1.9015
2|3 3.1410 0.2846 11.0345  0.0000 23.1261

Table 40. OLR Summary - Understandability - Ref. Levels: Type Numerical-Reasoning Robot and Group Non-Al Group

Value  Std. Error tvalue pvalue OddsRatio

Rationale-Generation Robot 5.9638 0.6824 8.7390  0.0000 389.0826
Action-Declaring Robot 4.8940 0.6646 7.3643  0.0000 133.4890
Al Group 2.1759 0.6325 3.4403  0.0006 8.8105
Rationale-Generation Robot:Al Group -1.7584 0.7309 -2.4058  0.0161 0.1723
Action-Declaring Robot:AI Group -3.3039  0.7153 -4.6189  0.0000 0.0367
1|2 2.8186 0.5943 4.7431  0.0000 16.7534

23 5.3169 0.6257 8.4981  0.0000 203.7525
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