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From Bipedal Walking to Quadrupedal Locomotion:
Full-Body Dynamics Decomposition for Rapid Gait Generation

Wen-Loong Ma! and Aaron D. Ames?.

Abstract—This  paper systematically decomposes a
quadrupedal robot into bipeds to rapidly generate walking
gaits and then recomposes these gaits to obtain quadrupedal
locomotion. We begin by decomposing the full-order, nonlinear
and hybrid dynamics of a three-dimensional quadrupedal
robot, including its continuous and discrete dynamics, into
two bipedal systems that are subject to external forces.
Using the hybrid zero dynamics (HZD) framework, gaits
for these bipedal robots can be rapidly generated (on the
order of seconds) along with corresponding controllers. The
decomposition is achieved in such a way that the bipedal
walking gaits and controllers can be composed to yield dynamic
walking gaits for the original quadrupedal robot — the result
is the rapid generation of dynamic quadruped gaits utilizing
the full-order dynamics. This methodology is demonstrated
through the rapid generation (3.96 seconds on average) of
four stepping-in-place gaits and one diagonally symmetric
ambling gait at 0.35 m/s on a quadrupedal robot — the Vision
60, with 36 state variables and 12 control inputs — both in
simulation and through outdoor experiments. This suggested a
new approach for fast quadrupedal trajectory planning using
full-body dynamics, without the need for empirical model
simplification, wherein methods from dynamic bipedal walking
can be directly applied to quadrupeds.

I. INTRODUCTION

The control of quadrupedal robots has seen great exper-
imental success in achieving locomotion that is robust and
agile, dating back to the seminal work of Raibert [26]. These
results have been achieved despite the fact that quadrupedal
robots have more legs, degrees of freedom, and more com-
plicated contact scenarios when compared to their bipedal
counterparts. Bipedal robots (while seeing recent successes)
still have yet to experimentally demonstrate the dynamic
walking behaviors in real-world settings that quadrupeds
are now displaying on multiple platforms. Yet, due to the
lower degrees of freedom and, importantly, simpler contact
interactions with the world, gait generation for bipedal robots
based upon the full-order dynamics has a level of rigor not
yet present in the quadrupedal locomotion literature (which
primarily leverages heuristic and reduced-order models). It
is this gap between bipedal and quadrupedal robots that this
paper attempts to address: can the formal full-order gait gen-
eration methods for bipeds be translated to quadrupeds while
preserving the positive aspects quadrupedal locomotion?

To achieve quadrupedal walking, controller design has
widely adopted model-reduction techniques. For example,
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Fig. 1: A conceptual illustration of the full body dynamics de-
composition, where the 3D quadruped — the Vision 60 — is
decomposed into two constrained 3D bipedal robots.

the massless leg assumption [6], [9], linear inverted pen-
dulum model [20], [10] and assuming the 3D quadrupedal
motion can be reduced to a planar motion [7], [11] are
often utilized to mitigate the computational complexity of
the quadrupedal dynamics so that online control techniques
such as QP, MPC, LQR can be applied [8]. While these
methods are effective in practice, it often requires some add-
on layers of parameter tuning due to the gap between model
and reality. This tuning is particularly prevalent for bigger
and heavier robots, whose “ignored” physical properties may
play a more significant role.

In the context of bipedal robots, due to their inherently
unstable nature, detailed model and rigorous controller de-
sign have been long been developed. A specific methodology
that leverages the full-order dynamics of the robot to make
formal guarantees is Hybrid Zero Dynamics (HZD) [31], [5],
[2] which has seen success experimentally for both walking
and running [29], [23], [27]. A key to this success has been
the recent developments in rapid HZD gait generation using
collocation methods [17], with the ability to generate gaits
for high-dimensional robots in some cases in seconds [19].
Recently, the HZD framework was translated to quadrupedal
robots both for gait generation and controller design [22], [3].
Although the end result was the ability generate walking,
ambling and trotting for the full-order model, the high
dimensional and complex contacts of the system made the
gait generation complex with the fast gait being generated in
43 seconds and hours of post-processing needed to guarantee
stability. The goal of this paper is, therefore, to translate the
positive aspects of HZD gait generation to quadrupeds while
mitigating the aforementioned drawbacks.
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Fig. 2: On the left is the the robot in MuJoCo, and on the right is
the illustration of the configuration coordinates for the robot. The
leg indices 1. are shown on the vertices of the body link. Each leg
has three actuated joints and equipped with a point contact toe.

Pioneers in robotics have discerned the correlation be-
tween bipedal and quadrupedal locomotion. For example,
[26], [25] applied several bipedal gaits on quadrupedal
robots; [11], [12] provided stability analysis for a planar
abstract hopping robot. The ZMP condition of two bipeds
was used to synthesis stability criteria for a quadruped in
[21]. However, these results rely on model reduction methods
such as the 2D modeling and massless leg assumptions.
Additionally, the focus was on composing bipedal controllers
to stabilize quadrupedal locomotion rather than decompos-
ing the dynamics of quadrupeds to bipedal systems while
considering the evolution of the internal connection wrench.
Notably, they lack a systematic approach of producing tra-
jectories for the control of bipeds as a decomposed system
from the quadrupedal robots.

The main contribution of this paper is the exact decompo-
sition of quadrupeds into bipeds, wherein gaits can be rapidly
generated and composed to be realized on the quadruped
from which they were derived. Specifically, the main results
of this paper are twofold: 1) A systematic decomposition of
the three-dimensional full body dynamics of a quadruped,
which involved both the continuous and discrete dynamics,
into two bipedal hybrid systems subject to external forces; 2)
An optimization algorithm that generates gaits for the bipedal
system rapidly utilize the framework of HZD, wherein they
can then be composed to yield gaits on the quadruped. The
end result is that we are able to generate various bipedal
gaits that can be recomposed to quadrupedal behaviors within
seconds, and these behaviors are implemented successfully
in simulation and experimentally in outdoor environments.

This paper is organized as follows: Section II introduces
the general idea of decomposing the hybrid full-body dy-
namics of a quadrupedal robot into lower-dimensional half
body dynamics of two identical bipeds. Based on this, we
produced trajectories for stepping-in-place and ambling on
a quadrupedal robot Vision60 in Section III. An analysis of
its computation performance shows the efficiency compared
against the full-body dynamics optimization for gait gener-
ation. In Section IV, we validate the resultant trajectories in
MulJoCo [30] (a commercial simulation environment), and
five outdoor experiments to demonstrate the feasibility of
these trajectories that are built based on decomposed bipedal
dynamics. Section V concludes the paper and proposes
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Fig. 3: The cyclic directed graph for the single-domain hybrid
dynamics of the diagonally supporting ambling behavior.

several future directions.

II. DYNAMICS DECOMPOSITION

In this section, we decompose the full body dynamics
and control of quadrupedal robots into two identical bipedal
systems. The nonlinear model of quadrupedal locomotion is
a hybrid dynamical system, which is an alternating sequence
of continuous- and discrete-time dynamics. The order of the
sequence is dictated by contact events.

A. Quadrupedal Dynamics

The full-body dynamics of quadrupedal robots have been
detailed in [22] and will be briefly revisited here to setup the
problem properly. Note that in this section, we only focus
on the most popular quadrupedal robotic behavior — the
diagonally supporting amble (see Fig. 3).

1) State space and inputs: The robot begin considered —
the Vision 60 V3.2 in Fig. 2 — is composed of 13 links: a
body link and 4 limb links, each of which has three sublinks
—the hip, upper and lower links. Utilizing the floating base
convention [15], the configuration space is chosen as ¢ =
(g ,04,0],05.,0])" € Q C R¥, where g, € R? x SO(3)
represents the Cartesian position and orientation of the body
linkage, and 0; € R3 represents the three joints: hip roll,
hip pitch and knee on the leg i € {0,1,2,3}. All of these
leg joints are actuated, with torque inputs u; € R3. This
yields the system’s total DOF n = 18 and control inputs
u = (ug,uj,ug,u;s )’ € R™ m = 12. Further, we can
define the state space X =TQ C R2?" with the state vector
x = (q",¢")7, where TQ is the tangent bundle of the
configuration space Q.

2) Continuous dynamics: The continuous-time dynamics
in Fig. 3, when toel and toe2 are on the ground, are modelled
as constrained dynamics:

D(a) G+ H(g,4) = Bu+ T (@)M + I3 (q) Ao
g+ Ii(g.d) i =0 1)
J2(q) G+ J2(q,4) ¢ =0

with the domain D £ {z € X : hl(q,(j) = hg(q,(j) =
0,h:,(q) = h.,(q) = 0}. In this formulation, we utilize
the following notation: D(g) € R™*™ is the inertia-mass
matrix; H(q,q¢) € R™ contains Coriolis forces and gravity
terms; h1(q), ha(q) € R? are the Cartesian positions of toel
and toe2, their Jacobians are J, = 0h./dq; h.,(q), h=,(q)
are these toes’ height; A1, Ao are the ground reaction force
on toel and toe2; B € R™ ™ is the actuation matrix.
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Essentially, we use a set of differential algebra equations
(DAESs) to describe the dynamics of the quadrupedal robot
that is subject to two holonomic constraints on toel and toe2.

3) The discrete dynamics: On the boundary of domain D
we impose discrete-time dynamics to encode the perfectly
inelastic impact dynamics as toe(0 and toe3 impact the ground
(and suppressing the dependence of D and .J, on g and ¢):

DGt —¢7) = Jg Ao+ J5 As
JogT =0 2
J3¢t =

by using conservation of momentum while satisfying the next
domain’s holonomic constraints, which is that toeQ and toe3
stay on the ground after the impact event. We denoted ¢~ and
¢t as the pre- and pose-impact velocity terms, Ag, Az € R?
are the impulses exerted on toe0Q and toe3.

B. Continuous dynamics decomposition

We now decompose the quadrupedal full body dynamics
into two bipedal robots. First, as shown in Fig. 1, the open-
loop dynamics can be equivalently written as:

Dt + Hy = Jy Ao + Brug — J Ae (3)

Jt, G + ij g =0 4)
OL-Dyn £ § Do 4+ H, = J. M + Bowr + JS Ae (5)
Jeybis + JeyGe =0 (6)
Gb, — Gby =0 @)

wherein we utilized the following notation: g, , gp, € R? x
SO(3) are the coordinates for the body linkages of the
front and rear bipeds (see Fig. 1); ¢t = (g, .07 ,0; )" and
¢ = (g, .0],03)" are the configuration coordinates for
the front and rear bipeds; D¢ (gr), D;(q:) € RY2*'2 are the
inertia-mass matrices of the front and rear bipedal robots;
The Jacobians Jy, = Ohg,/0qs, J;, = Ohy, /Oq. with the
Cartesian positions of toe2 — hg, (¢¢) and toel — hy, (gr);
The Jacobian matrix for the connection constraint (7) is .J. =
(qb, — v )/ Ogqs; ug = (ug ,uq )T and u, = (uf ,uq )". Note
that the Cartesian position of toe2 only depends on g¢, which
is due to the floating base coordinate convention.

Proposition 1. The dynamical system (OL-Dyn) is equivalent
to the system (1).

Proof. We can write (3) and (5) as:
Dljrf Doy Doy | | ey Hy, . .
DIZIO Do 0 Ggo | + | Ho | = Brug + Jf2 Ao — J. Ae
Dy, 0 Do g2 Ho,
Dy, Db, Dug| |, Hy,
%;Dl 0| |a|+|Hi| =B+ 0+ I X
Dy, 0 D3 g3 Hs

where each entry has a proper dimension to make the
equations consistent. Expanding them yields:

Dy, Dy, 0 Dy, O éjbf Hbf —Ae
DII) D() 0 0 0 q'() H() uo

0 0 0 0 Off[d@l|+]| 0 ]|=| 0 |+ X,
D;rz 0 0 Dy 0]]|¢d H, U2

0 0 0 0 0] Lds 0 0

Fig. 4: The full body dynamics are composed of two invert
pendulum carts, both rotational joints are actuated with inputs
ug, ur. The mass of the cart is 20 and each of the pendulum
weights m with length (.

Dy, 0 Dy, 0 Dy G, ] [He: Ae
0 0 0 0 0 || 0 0

Dl;rl 0 D1 O 0 G |+ | Hi|=|w +J1T>\1
0 0 0 0 0 g2 0 0

Dy, 0 0 0 Ds]lds] LHs] L[us

Combining these two equations, and using the fact that g, —
@, = 0' (holonomic constraint) yields the dynamics given
in (1). It is worthwhile to note that all the terms appeared
in these equations can be verified using traditional rigid
body dynamics and the corresponding details of the structure
and necessary properties of the inertia-mass matrices can be
found from the branch induced sparsity [13]. O

Note that (7) can be equivalently replaced by summating
the first 6 equations of (3) and (5):

3

(Do, + Dy, )iis, + > Dojliy + Hop + Hy, = Joy M1+ Jg pho
j=0

Denoted by hC(Qfa qs, G, )‘27 qr» Grs Gr, )‘1) =0 (¥

where i = f,r and J,, 3, J;, » are the corresponding subma-

trices: Jr1 = [Jrhb Jrl)g] R Jf2 = l:Jf27b Jf2)9] .
Consider a system obtained from (3), (4), and (8) which

defines the dynamics of the front biped (see Fig. 1):

Dy + Hy = J{ Ay + Brug — J A

Ji, Gt + Ji,qr = 0 9

hc(Qfa qfa dfv A2a qr, Qra dra )\1) =0

(H =

which is a dynamical system with feedforward terms
(qvy Gry Gry A1). The dynamics of the rear biped (r), can be
similarly obtained using (5), (6), and (8). We have thus
decomposed the dynamics of a quadrupedal robot (1) to two
bipedal dynamical systems (f) and (r), as shown in Fig. 1.

Example 1. The idea of dynamics decomposition can be
illustrated using a simple example in Fig. 4. Note that each
subsystem is not subject to any constraints. The half-body
dynamics of a single cart with an inverted pendulum are:

—ml cos 0;] [ N ml;sin@; | [£Ae
ml? 0; —mglsinf;| | us
where i € {f,r}. The sign for \. is negative for the front
system and positive for the rear system. We can use a
Joint-space PD controller ug (b, 0f), u, (6, 0,) to achieve a

desired behavior such that the two invert pendulums vibrate
symmetrically, ie., 0 = —0,. Then using (8) we have

M+ m
—ml cos 6;

I' X =Y means: X(t) = Y(t) for all ¢ they are defined on.
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(2M + 2m)i; = 0 = &; = 0, which yields the internal
connection force \. = —ml cos 0¢0¢ +mlb; sin 0s. In another
word, when the two invert pendulums move symmetrically,
both carts have zero acceleration. This physics example is
rather trivial, but it suggested an insight on why a bipedal
system (or a single invert pendulum) is difficult to stabilize
while a quadrupedal system (or a parallel double invert
pendula) is easy to remain stationary despite its higher DOF.

C. Control decomposition

We now design a control law to track the desired trajec-
tories representing quadrupedal behaviors. The algorithm to
produce these trajectories will be detailed in the next section.
We define outputs (virtual constraints) for the biped ¢ with
i€ {f,r} as y; = y?(¢;) — Bi(t), with t the time and B(¢)
a bth order Bezier polynomial. For a simple case study, we
chose y¢(g:) as the actuated joints: y¢ = (6, ,05 )", y@ =
(67,65 )T. By imposing that the output dynamics of y; act
like those of a linear system (as can be enforced through
control law u{), we have the closed-loop dynamics of the
decomposed bipeds subject to control as follows:

Dre + Hy = Jg, A2 + Bruf — J ] Ac

{ngf + tfoQf =0 (10)
Ur = k1ys + kayr

hc((]f,qt‘,q-f, )\Q,Qr,qh(jry)\l) =0

Dir + Hy = J) A1 + Beug + J Ae

{“fr; Trale =0 (1)
yr — 1yr + kar

hc((]f, qf7 qfa )‘25 qr, qrvq.h )\1) =0

In particular, the output dynamics implemented here is
an implicit version of input-output feedback linearization,
details of this implementation can be found in [16], [4].

However, to design trajectories and determine the control
inputs for a biped such as (f), we need to know all of the
feedforward terms (¢, ¢y, Gr, A1) for the time ¢t € [0,77],
with 7' the time duration of a step. Therefore, the following
equation is used to encode the desired correlation between
the front and rear bipeds:

B.(t) = MB(t) + b. (12)

Further, we consider a widely used motion of quadrupedal
robots — the diagonally symmetric gait, where the joints
of leg3 is a mirror of leg0 and those of legl is a mirror
of leg2. In this case we have M a diagonal matrix whose
diagonal entries are —1,1,1,—1,1,1 and b = 0. Note
that one can specify other motions as well, for example, a
torso-leaned motion can be achieved by offsetting b. Since
the connection constraint g,, = qp, is always satisfied by
mechanical wrenches A., then on the zero dynamics (ZD)
surface [28], i.e., yi(q:)= y§'(q;) — Bi(t) = 0, we have the
following correlation between the two bipeds:

¢ = Agr + b, where A = [I (13)

"
Additionally, to determine \; of the biped (r), we also need to
impose the constraint (6) to the system in (10). Then subtract

the dynamics of biped (f) from (8) to have the closed-loop
dynamics of the front biped subject to the connection wrench
Ao as:

Dris + Hy = Jiy Ao + Beu§ — J) Ao (14)

U = k1ys + koys =0 (15)
CL-Dyn-f 2 { Ji,ds + Jeyge = 0 (16)
Joy A + Jey Age = 0 (17)
DiAge + H, = J.) )\ (18)

with Dy € R6%12 H; € RS the first 6 rows of Dy and
Hy, respectively. We now have the decomposed dynamics of
system (f) that is independent from the feedforward terms.
We can view this system as a dynamical system (14) subject
to virtual constraint (15) with inputs uf and mechanical
constraints (16), (17), and (18) with inputs Aj, Ao, and A..

D. Impact dynamics of the decomposed system

With the continuous dynamics written as (OL-Dyn), we
can similarly expand the impact dynamics (2) as:

De(4f — ) = J Ae — JT A

szq?— =0
A2 D¢ —dr) = T A+ T A (19)
Jrlq:r =0

The proof is similar to that of continuous dynamics decom-
position, thus omitted. On the ZD surface, where both of
the bipedal systems (f) and (r) have zero tracking errors
before and after the impact dynamics A (we will use an
optimization algorithm to determine those gaits that are
hybrid invariant, [14], [24], [4]), we have the correlation:
g = Ag; +0b, ¢f = Aq?' + b. Plug into (19) to get the
impact dynamics of the decomposed system as:

Dy —Jg 0 Jl ][ Drg;

Jt, 0 0 0 Al 0 20)
DA 0 —J) —Jl| |A2| T |DeAgy

J, A 0 0 0 Ac 0

Note that although system (20) is an overdetermined system,
removing the redundant equations is not desirable in practice,
as it may result in an ill-posed problem. This issue can
be more severe for robots with light legs. Moreover, the
implicit optimization method in the latter section can solve
this system accurately and efficiently.

III. DECOMPOSITION-BASED OPTIMIZATION

Past work has investigated the formal analysis and con-
troller design for the full-body dynamics of quadrupeds [3],
[22]. Although we were able to produce trajectories that are
stable solutions to the closed-loop multi-domain dynamics
for walking, ambling, and trotting, the computational com-
plexity makes realizing these methods difficult in practice: it
typically takes minutes to generate a trajectory and hours to
post-process the parameters to guarantee dynamic stability.
However, by using the dynamics decomposition method, we
can produce bipedal walking gaits that can be composed
to obtain quadrupedal locomotion while maintaining the
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Fig. 5: A comparison between the solution of bipedal walking dynamics obtained from the decomposition-based optimization and a
simulated step of the full-order quadrupedal dynamics using the composed bipedal gaits; here MATLAB ODE45 was used.

efficiency of computing the lower-dimensional dynamics of
bipedal robots. In this section, we detail this process using
nonlinear programming (NLP).

Given the constrained bipedal dynamics (CL-Dyn-f) and
the impact dynamics (20), the target is to find a solution to
the closed-loop dynamical system efficiently. The nonlinear
program is formulated as:

2N+1

min > e I3
Z 112
j=1

s.t. C1. dynamics (CL-Dyn-f)

2L

j=1,3,.2N+1

C2. collocation constraints 71 =2,4,..2N
C3. impact dynamics(20) j=2N+1
C4. periodic continuity j=12N+1

CS. physical feasibility j=12.2N+1

with the following notation: 2N +1 = 11 is the total number
of collocation grids; the decision variable is defined as
Z = (a,tj7qg,qg7uf7A{,A&Ai,A{,A%,Ai);

and o € R36 are the coefficients for the BeZier polynomial
that defines the desired trajectory B(t); [J7 is the corre-
sponding quantities at time ¢; with t*¥*! = T In short,
the cost function is to minimize the body’s vibration rate to
achieve a more static torso movement. The constraints C1-
C3 solve the hybrid dynamics of bipedal robots subject to
external forces. Details regarding the numerical optimization
can be found in [16]. In particular, the Hermite-Simpson
collocation formulation can be found in equations (C1,C2)
in [16]. Here, the periodic continuity constraint C4 enforces
state continuity through an edge, i.e., the post-impact states
qt,¢", are equivalent to the initial states ¢', ¢'. Therefore,
the resultant trajectory is a periodic solution to the bipedal
dynamics. C5 imposed some feasibility conditions on the
dynamics, including torque limits ||u; ||, < 50, joint feasible
space (g, q;) € X, foot clearance and the friction pyramid
conditions. Note that we posed these constraints conserva-
tively to reduce the difficulties implementing the optimized
trajectories in experiments.

To solve the optimization problem (21) efficiently, we used
a toolbox FROST [17], [18], which parses a hybrid control
problem as a NLP based on direct collocation methods,
in particular, Hermite-Simpson collocation. It is worthwhile
to mention that a critical reason for the high efficiency
of FROST comes from the implicit formulation of the
dynamics. Matrix inversion is avoided in every step due to its
computational complexity: O(n?), with n the dimension of a
matrix. Inspired by this, we remark the dynamics decomposi-
tion method proposed in this paper also only used differential

algebra equations (DAEs) instead of ordinary differential
equations (ODEs), which requires matrix inversion both for
the inertia matrix and the closed-loop controller formulation.

Once the optimization (21) converged to a set of param-
eters « for the front bipedal robots’ walking gait B(t),
we can use (12) to obtain the trajectory for the rear biped
B.(t) and then recompose them to get the parameters for
the quadrupedal locomotion. For validation, we simulated
an ambling step of the quadrupedal dynamics using the
composed bipedal gaits. As shown in Fig. 5, we have the
joint angles and constraint wrench (ground reaction force)
on toel Aq , and toe2 A, . of the quadruped matched with
those corresponding external force to the bipedal dynamics.

We now take advantage of the efficient, decomposition-
based optimization to generate several walking patterns for
the front biped, then recompose them to obtain quadrupedal
stepping-in-place behaviors. By adjusting the constraint
bounds in the NLP (21), such as the upper and lower
bound Tinax, Timin of time duration 7', or the the bounds
of the nonstance foot height dmin < hner2(¢r) < Omaxs
we can obtain gaits with different stepping frequency and
foot clearance. Further, we remove the constraint that the
nonstance foot lands at the origin to generate a diagonally
ambling gait with a speed of 0.35 m/s. See Fig. 6 for the
tiles of these gaits. The result of the methods presented is the
ability to generate quadrupedal gaits rapidly. We benchmark
the performance by considering computing speed for each of
the quadrupedal locomotion patterns generated, as is shown
in Table I. In summary, with the objective tolerance and
equality constraint tolerance configured as 108 and 107°
respectively, we have the average computation time as 3.96
second, and time per iteration averages 0.039 second. In
comparison with the regular full-model based optimization
methods from [22], the decomposition-based optimization is
an order of magnitude faster.

IV. SIMULATION AND EXPERIMENTS
One of the motivations for realizing rapid gait generation

using the full-body dynamics of the quadruped, i.e., without

TABLE I: Computing performance of gait generation. This is
performed on a Linux machine with an i7-6820HQ CPU @2.70
GHz and 16 GB RAM.

Behaviors gaitl | gait2 | gait3 | gait4 | amble
frequency (Hz) 2.5 2.3 22 2.6 2.83
clearance (cm) 11 12 15 13 13
# of iterations 96 122 98 46 147

time of IPOPT (s) 1.60 | 2.10 1.62 | 0.81 2.59
time of evaluation (s) 1.94 3.24 2.10 0.94 2.86
NLP time(s) 354 | 534 | 372 1.75 5.45
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Fig. 6: Comparison between MuJoCo simulation (animated) and
experiments. The upper two are for stepping in place, gait4; the
lower two are logged for a full step of the ambling gait.
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model simplifications, is to allow for the seamless translation
of gaits from theoretical simulation to hardware. In this
context, we first validated the dynamic stability of the gaits
produced by the decomposition-based optimization problem
using a third party physics engine — MuJoCo. These gaits
include a diagonally symmetric ambling and four stepping in
place behaviors. Then we conducted experiments, walking on
a a outdoor tennis court, using the same control law as that in
simulation in outdoor environments. In particular, we used a
PD approximation of the input-output linearizing controllers
to track the time-based trajectories given by the optimization,

W(qarGart) = —k1 (o — B(t)) — k2(ya — B(t)).

Note that the event functions (switching detection) are also
given by the optimized trajectories, meaning the walking
controller switches to the next step when ¢ = 7. We report
that for all given optimal gaits, the PD gains are picked as
k, = 230, 230, 300,kq = 5 for the hip roll, hip pitch,
knee joints, respectively. The averaged absolute joint torque
inputs are logged in Table II, all of which are well within
the hardware limitations. The tracking of the ambling gait in
simulation and experiment are shown in Fig. 7.

The result is that the Vision 60 quadruped can step and
amble in an outdoor tennis court in a sustained fashion. Im-
portantly, this is without any add-on heuristics and achieved

(22)

TABLE II: Average torque inputs in experiments and simulations.

Experiments | gaitl gait2 | gait3 gait4 | amble
upr(N-m) 5.04, | 4.83 4.16 5.14 7.11
upp(N-m) 3.65 5.24 5.26 3.77 6.28
ug (N-m) 16.45 | 16.50 | 16.86 | 16.95 | 18.36
MuJoCo

ugRr (N-m) 7.80 9.23 10.27 | 8.68 8.06
upp(N-m) 6.78 9.14 10.71 | 6.64 7.27
ug (N-m) 18.49 | 18.38 | 18.45 | 18.61 | 19.03

by only uploading different gait parameters « for each
experiment (obtained from the different NLP optimization
problems with different constraints). See [1] for the video
of Vision 60 in both simulation and experiments. As demon-
strated in the video, we remark that the proposed method has
rendered a good level of robustness against rough terrain with
slopes, wet dirt and surface roots. Hence periodic stability
has been obtained in both simulation and experiment. Fig. 6
shows a side to side comparison of the simulated amble and
experimental snapshots. In addition, it is interesting to note
that time-based control law (22) normally does not provide
excellent robustness against uncertain terrain dynamics, due
to its open-loop nature. However, the fact that all of the
trajectory-based controllers achieved dynamic stability in
simulations and experiments with an unified control law
speaks to the benefits of generating gaits using the full-
body dynamics of the quadruped: even with an open-loop
controller that does not leverage heuristics, the quadruped
remains stable.

V. CONCLUSION

In this paper, we decomposed the full-body dynamics of
a quadrupedal robot — the Vision 60 with 18 DOF and 12
inputs — into two lower-dimensional bipedal systems that
are subject to external forces. We are then able to solve
the constrained dynamics of these bipeds quickly through
the HZD optimization method, FROST, wherein the gaits
can be recomposed to achieve locomotion on the original
quadruped. The result is the ability to generate walking
gaits rapidly. Specifically, by changing a constraint, we can
produce different bipedal and, thus, quadrupedal walking
behaviors from stepping to ambling in 3.9 seconds on
average. Furthermore, the implementation in simulation and
experiments used a single simple controller, without the need
for additional heuristics.

Without sacrificing the model fidelity of the full-body
dynamics of the quadruped, the ability to exactly decom-
pose these dynamics into equivalent bipedal robots makes
it possible to rapidly generate gaits that leverage the full-
order dynamics of the quadruped. Importantly, this allows for
the rapid iteration of different gaits necessary for bringing
quadrupeds into real-world environments. Moreover, the fact
that these gaits can be generated on the order of seconds
suggests that with code optimization on-board and real-
time gait generation may be possible soon. The goal is to
ultimately use this method to realize a variety of different
dynamic locomotion behaviors on quadrupedal robots.
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