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Abstract— This paper systematically decomposes a
quadrupedal robot into bipeds to rapidly generate walking
gaits and then recomposes these gaits to obtain quadrupedal
locomotion. We begin by decomposing the full-order, nonlinear
and hybrid dynamics of a three-dimensional quadrupedal
robot, including its continuous and discrete dynamics, into
two bipedal systems that are subject to external forces.
Using the hybrid zero dynamics (HZD) framework, gaits
for these bipedal robots can be rapidly generated (on the
order of seconds) along with corresponding controllers. The
decomposition is achieved in such a way that the bipedal
walking gaits and controllers can be composed to yield dynamic
walking gaits for the original quadrupedal robot — the result
is the rapid generation of dynamic quadruped gaits utilizing
the full-order dynamics. This methodology is demonstrated
through the rapid generation (3.96 seconds on average) of
four stepping-in-place gaits and one diagonally symmetric
ambling gait at 0.35 m/s on a quadrupedal robot — the Vision
60, with 36 state variables and 12 control inputs — both in
simulation and through outdoor experiments. This suggested a
new approach for fast quadrupedal trajectory planning using
full-body dynamics, without the need for empirical model
simplification, wherein methods from dynamic bipedal walking
can be directly applied to quadrupeds.

I. INTRODUCTION

The control of quadrupedal robots has seen great exper-

imental success in achieving locomotion that is robust and

agile, dating back to the seminal work of Raibert [26]. These

results have been achieved despite the fact that quadrupedal

robots have more legs, degrees of freedom, and more com-

plicated contact scenarios when compared to their bipedal

counterparts. Bipedal robots (while seeing recent successes)

still have yet to experimentally demonstrate the dynamic

walking behaviors in real-world settings that quadrupeds

are now displaying on multiple platforms. Yet, due to the

lower degrees of freedom and, importantly, simpler contact

interactions with the world, gait generation for bipedal robots

based upon the full-order dynamics has a level of rigor not

yet present in the quadrupedal locomotion literature (which

primarily leverages heuristic and reduced-order models). It

is this gap between bipedal and quadrupedal robots that this

paper attempts to address: can the formal full-order gait gen-

eration methods for bipeds be translated to quadrupeds while

preserving the positive aspects quadrupedal locomotion?

To achieve quadrupedal walking, controller design has

widely adopted model-reduction techniques. For example,
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Fig. 1: A conceptual illustration of the full body dynamics de-

composition, where the 3D quadruped — the Vision 60 — is

decomposed into two constrained 3D bipedal robots.

the massless leg assumption [6], [9], linear inverted pen-

dulum model [20], [10] and assuming the 3D quadrupedal

motion can be reduced to a planar motion [7], [11] are

often utilized to mitigate the computational complexity of

the quadrupedal dynamics so that online control techniques

such as QP, MPC, LQR can be applied [8]. While these

methods are effective in practice, it often requires some add-

on layers of parameter tuning due to the gap between model

and reality. This tuning is particularly prevalent for bigger

and heavier robots, whose “ignored” physical properties may

play a more significant role.

In the context of bipedal robots, due to their inherently

unstable nature, detailed model and rigorous controller de-

sign have been long been developed. A specific methodology

that leverages the full-order dynamics of the robot to make

formal guarantees is Hybrid Zero Dynamics (HZD) [31], [5],

[2] which has seen success experimentally for both walking

and running [29], [23], [27]. A key to this success has been

the recent developments in rapid HZD gait generation using

collocation methods [17], with the ability to generate gaits

for high-dimensional robots in some cases in seconds [19].

Recently, the HZD framework was translated to quadrupedal

robots both for gait generation and controller design [22], [3].

Although the end result was the ability generate walking,

ambling and trotting for the full-order model, the high

dimensional and complex contacts of the system made the

gait generation complex with the fast gait being generated in

43 seconds and hours of post-processing needed to guarantee

stability. The goal of this paper is, therefore, to translate the

positive aspects of HZD gait generation to quadrupeds while

mitigating the aforementioned drawbacks.

2020 IEEE International Conference on Robotics and Automation (ICRA)
31 May - 31 August, 2020. Paris, France

978-1-7281-7395-5/20/$31.00 ©2020 IEEE 4491

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 29,2021 at 22:49:56 UTC from IEEE Xplore.  Restrictions apply.



Fig. 2: On the left is the the robot in MuJoCo, and on the right is

the illustration of the configuration coordinates for the robot. The

leg indices l∗ are shown on the vertices of the body link. Each leg

has three actuated joints and equipped with a point contact toe.

Pioneers in robotics have discerned the correlation be-

tween bipedal and quadrupedal locomotion. For example,

[26], [25] applied several bipedal gaits on quadrupedal

robots; [11], [12] provided stability analysis for a planar

abstract hopping robot. The ZMP condition of two bipeds

was used to synthesis stability criteria for a quadruped in

[21]. However, these results rely on model reduction methods

such as the 2D modeling and massless leg assumptions.

Additionally, the focus was on composing bipedal controllers

to stabilize quadrupedal locomotion rather than decompos-

ing the dynamics of quadrupeds to bipedal systems while

considering the evolution of the internal connection wrench.

Notably, they lack a systematic approach of producing tra-

jectories for the control of bipeds as a decomposed system

from the quadrupedal robots.

The main contribution of this paper is the exact decompo-

sition of quadrupeds into bipeds, wherein gaits can be rapidly

generated and composed to be realized on the quadruped

from which they were derived. Specifically, the main results

of this paper are twofold: 1) A systematic decomposition of

the three-dimensional full body dynamics of a quadruped,

which involved both the continuous and discrete dynamics,

into two bipedal hybrid systems subject to external forces; 2)

An optimization algorithm that generates gaits for the bipedal

system rapidly utilize the framework of HZD, wherein they

can then be composed to yield gaits on the quadruped. The

end result is that we are able to generate various bipedal

gaits that can be recomposed to quadrupedal behaviors within

seconds, and these behaviors are implemented successfully

in simulation and experimentally in outdoor environments.

This paper is organized as follows: Section II introduces

the general idea of decomposing the hybrid full-body dy-

namics of a quadrupedal robot into lower-dimensional half

body dynamics of two identical bipeds. Based on this, we

produced trajectories for stepping-in-place and ambling on

a quadrupedal robot Vision60 in Section III. An analysis of

its computation performance shows the efficiency compared

against the full-body dynamics optimization for gait gener-

ation. In Section IV, we validate the resultant trajectories in

MuJoCo [30] (a commercial simulation environment), and

five outdoor experiments to demonstrate the feasibility of

these trajectories that are built based on decomposed bipedal

dynamics. Section V concludes the paper and proposes

Fig. 3: The cyclic directed graph for the single-domain hybrid

dynamics of the diagonally supporting ambling behavior.

several future directions.

II. DYNAMICS DECOMPOSITION

In this section, we decompose the full body dynamics

and control of quadrupedal robots into two identical bipedal

systems. The nonlinear model of quadrupedal locomotion is

a hybrid dynamical system, which is an alternating sequence

of continuous- and discrete-time dynamics. The order of the

sequence is dictated by contact events.

A. Quadrupedal Dynamics

The full-body dynamics of quadrupedal robots have been

detailed in [22] and will be briefly revisited here to setup the

problem properly. Note that in this section, we only focus

on the most popular quadrupedal robotic behavior — the

diagonally supporting amble (see Fig. 3).

1) State space and inputs: The robot begin considered —

the Vision 60 V3.2 in Fig. 2 — is composed of 13 links: a

body link and 4 limb links, each of which has three sublinks

—the hip, upper and lower links. Utilizing the floating base

convention [15], the configuration space is chosen as q =
(q�b , θ

�
0 , θ

�
1 , θ

�
2 , θ

�
3 )

� ∈ Q ⊂ R
18, where qb ∈ R

3 × SO(3)
represents the Cartesian position and orientation of the body
linkage, and θi ∈ R

3 represents the three joints: hip roll,
hip pitch and knee on the leg i ∈ {0, 1, 2, 3}. All of these

leg joints are actuated, with torque inputs ui ∈ R
3. This

yields the system’s total DOF n = 18 and control inputs

u = (u�
0 , u

�
1 , u

�
2 , u

�
3 )

� ∈ R
m, m = 12. Further, we can

define the state space X = TQ ⊆ R
2n with the state vector

x = (q�, q̇�)�, where TQ is the tangent bundle of the

configuration space Q.

2) Continuous dynamics: The continuous-time dynamics

in Fig. 3, when toe1 and toe2 are on the ground, are modelled

as constrained dynamics:⎧⎪⎨
⎪⎩
D(q) q̈ +H(q, q̇) = Bu+ J�

1 (q)λ1 + J�
2 (q)λ2

J1(q) q̈ + J̇1(q, q̇) q̇ = 0

J2(q) q̈ + J̇2(q, q̇) q̇ = 0

(1)

with the domain D � {x ∈ X : ḣ1(q, q̇) = ḣ2(q, q̇) =
0, hz1(q) = hz2(q) = 0}. In this formulation, we utilize

the following notation: D(q) ∈ R
n×n is the inertia-mass

matrix; H(q, q̇) ∈ R
n contains Coriolis forces and gravity

terms; h1(q), h2(q) ∈ R
3 are the Cartesian positions of toe1

and toe2, their Jacobians are J∗ = ∂h∗/∂q; hz1(q), hz2(q)
are these toes’ height; λ1, λ2 are the ground reaction force

on toe1 and toe2; B ∈ R
n×m is the actuation matrix.
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Essentially, we use a set of differential algebra equations

(DAEs) to describe the dynamics of the quadrupedal robot

that is subject to two holonomic constraints on toe1 and toe2.

3) The discrete dynamics: On the boundary of domain D
we impose discrete-time dynamics to encode the perfectly

inelastic impact dynamics as toe0 and toe3 impact the ground

(and suppressing the dependence of D and J∗ on q and q̇):⎧⎪⎨
⎪⎩
D(q̇+ − q̇−) = J�

0 Λ0 + J�
3 Λ3

J0q̇
+ = 0

J3q̇
+ = 0

(2)

by using conservation of momentum while satisfying the next

domain’s holonomic constraints, which is that toe0 and toe3

stay on the ground after the impact event. We denoted q̇− and

q̇+ as the pre- and pose-impact velocity terms, Λ0,Λ3 ∈ R
3

are the impulses exerted on toe0 and toe3.

B. Continuous dynamics decomposition

We now decompose the quadrupedal full body dynamics

into two bipedal robots. First, as shown in Fig. 1, the open-

loop dynamics can be equivalently written as:

OL-Dyn �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Df q̈f +Hf = J�
f2λ2 +Bfuf − J�

c λc (3)

Jf2 q̈f + J̇f2 q̇f = 0 (4)

Drq̈r +Hr = J�
r1λ1 +Brur + J�

c λc (5)

Jr1 q̈r + J̇r1 q̇r = 0 (6)

q̈br − q̈bf = 0 (7)

wherein we utilized the following notation: qbr , qbf ∈ R
3 ×

SO(3) are the coordinates for the body linkages of the

front and rear bipeds (see Fig. 1); qf = (q�bf , θ
�
0 , θ

�
2 )

� and

qr = (q�br , θ
�
1 , θ

�
3 )

� are the configuration coordinates for

the front and rear bipeds; Df(qf), Dr(qr) ∈ R
12×12 are the

inertia-mass matrices of the front and rear bipedal robots;

The Jacobians Jf2 = ∂hf2/∂qf , Jr1 = ∂hr1/∂qr with the

Cartesian positions of toe2 — hf2(qf) and toe1 — hr1(qr);
The Jacobian matrix for the connection constraint (7) is Jc =
∂(qbr−qbf )/∂qf ; uf = (u�

0 , u
�
2 )

� and ur = (u�
1 , u

�
3 )

�. Note

that the Cartesian position of toe2 only depends on qf , which

is due to the floating base coordinate convention.

Proposition 1. The dynamical system (OL-Dyn) is equivalent
to the system (1).

Proof. We can write (3) and (5) as:⎡
⎣Dbf Db0 Db2

D�
b0

D0 0
D�

b2
0 D2

⎤
⎦
⎡
⎣q̈bfq̈0
q̈2

⎤
⎦+

⎡
⎣Hbf

H0

H2

⎤
⎦ = Bfuf + J�

f2λ2 − J�
c λc

⎡
⎣Dbr Db1 Db3

D�
b1

D1 0
D�

b3
0 D3

⎤
⎦
⎡
⎣q̈brq̈1
q̈3

⎤
⎦+

⎡
⎣Hbr

H1

H3

⎤
⎦ = Brur + J�

r1λ1 + J�
c λc

where each entry has a proper dimension to make the

equations consistent. Expanding them yields:⎡
⎢⎢⎢⎣

Dbf Db0 0 Db2 0
D�

b0
D0 0 0 0

0 0 0 0 0
D�

b2
0 0 D2 0

0 0 0 0 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
q̈bf
q̈0
q̈1
q̈2
q̈3

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣
Hbf

H0

0
H2

0

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣
−λc

u0

0
u2

0

⎤
⎥⎥⎥⎦+J�

2 λ2,

Fig. 4: The full body dynamics are composed of two invert

pendulum carts, both rotational joints are actuated with inputs

uf , ur. The mass of the cart is 2M and each of the pendulum

weights m with length l.

⎡
⎢⎢⎢⎣

Dbr 0 Db1 0 Db3

0 0 0 0 0
D�

b1
0 D1 0 0

0 0 0 0 0
D�

b3
0 0 0 D3

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
q̈br
q̈0
q̈1
q̈2
q̈3

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣
Hbr

0
H1

0
H3

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣
λc

0
u1

0
u3

⎤
⎥⎥⎥⎦+J�

1 λ1.

Combining these two equations, and using the fact that qbf −
qbr ≡ 01 (holonomic constraint) yields the dynamics given

in (1). It is worthwhile to note that all the terms appeared

in these equations can be verified using traditional rigid

body dynamics and the corresponding details of the structure

and necessary properties of the inertia-mass matrices can be

found from the branch induced sparsity [13].

Note that (7) can be equivalently replaced by summating

the first 6 equations of (3) and (5):

(Dbf +Dbr)q̈bi +

3∑
j=0

Dbj q̈j +Hbf +Hbr = J�
r1,bλ1 + J�

f2,bλ2

Denoted by: hc(qf , q̇f , q̈f , λ2, qr, q̇r, q̈r, λ1) = 0 (8)

where i = f, r and Jr1,b, Jf2,b are the corresponding subma-

trices: Jr1 =
[
Jr1,b Jr1,θ

]
, Jf2 =

[
Jf2,b Jf2,θ

]
.

Consider a system obtained from (3), (4), and (8) which

defines the dynamics of the front biped (see Fig. 1):

(f) �

⎧⎪⎨
⎪⎩
Df q̈f +Hf = J�

f2
λ2 +Bfuf − J�

c λc

Jf2 q̈f + J̇f2 q̇f = 0

hc(qf , q̇f , q̈f , λ2, qr, q̇r, q̈r, λ1) = 0

(9)

which is a dynamical system with feedforward terms

(qr, q̇r, q̈r, λ1). The dynamics of the rear biped (r), can be

similarly obtained using (5), (6), and (8). We have thus

decomposed the dynamics of a quadrupedal robot (1) to two

bipedal dynamical systems (f) and (r), as shown in Fig. 1.

Example 1. The idea of dynamics decomposition can be
illustrated using a simple example in Fig. 4. Note that each
subsystem is not subject to any constraints. The half-body
dynamics of a single cart with an inverted pendulum are:[

M +m −ml cos θi
−ml cos θi ml2

] [
ẍi

θ̈i

]
+

[
mlθ̇i sin θi
−mgl sin θi

]
=

[±λc

ui

]

where i ∈ {f, r}. The sign for λc is negative for the front
system and positive for the rear system. We can use a
joint-space PD controller uf(θf , θ̇f), ur(θr, θ̇r) to achieve a
desired behavior such that the two invert pendulums vibrate
symmetrically, i.e., θf = −θr. Then using (8) we have

1 X ≡ Y means: X(t) = Y (t) for all t they are defined on.
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(2M + 2m)ẍi = 0 ⇒ ẍi = 0, which yields the internal
connection force λc = −ml cos θf θ̈f+mlθ̇f sin θf . In another
word, when the two invert pendulums move symmetrically,
both carts have zero acceleration. This physics example is
rather trivial, but it suggested an insight on why a bipedal
system (or a single invert pendulum) is difficult to stabilize
while a quadrupedal system (or a parallel double invert
pendula) is easy to remain stationary despite its higher DOF.

C. Control decomposition

We now design a control law to track the desired trajec-

tories representing quadrupedal behaviors. The algorithm to

produce these trajectories will be detailed in the next section.

We define outputs (virtual constraints) for the biped i with

i ∈ {f, r} as yi = yai (qi) − Bi(t), with t the time and B(t)
a 5th order Beźier polynomial. For a simple case study, we

chose yai (qi) as the actuated joints: yaf = (θ�0 , θ
�
2 )

�, yar =
(θ�1 , θ

�
3 )

�. By imposing that the output dynamics of yi act

like those of a linear system (as can be enforced through

control law uc
i ), we have the closed-loop dynamics of the

decomposed bipeds subject to control as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Df q̈f +Hf = J�
f2
λ2 +Bfu

c
f − J�

c λc

Jf2 q̈f + J̇f2 q̇f = 0

ÿf = k1ẏf + k2yf
hc(qf , q̇f , q̈f , λ2, qr, q̇r, q̈r, λ1) = 0

(10)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Drq̈r +Hr = J�
r1λ1 +Bru

c
r + J�

c λc

Jr1 q̈r + J̇r1 q̇r = 0

ÿr = k1ẏr + k2yr
hc(qf , q̇f , q̈f , λ2, qr, q̇r, q̈r, λ1) = 0

(11)

In particular, the output dynamics implemented here is

an implicit version of input-output feedback linearization,

details of this implementation can be found in [16], [4].

However, to design trajectories and determine the control

inputs for a biped such as (f), we need to know all of the

feedforward terms (qr, q̇r, q̈r, λ1) for the time t ∈ [0, T ],
with T the time duration of a step. Therefore, the following

equation is used to encode the desired correlation between

the front and rear bipeds:

Br(t) = MBf(t) + b. (12)

Further, we consider a widely used motion of quadrupedal

robots — the diagonally symmetric gait, where the joints

of leg3 is a mirror of leg0 and those of leg1 is a mirror

of leg2. In this case we have M a diagonal matrix whose

diagonal entries are −1, 1, 1,−1, 1, 1 and b = 0. Note

that one can specify other motions as well, for example, a

torso-leaned motion can be achieved by offsetting b. Since

the connection constraint qbf ≡ qbr is always satisfied by

mechanical wrenches λc, then on the zero dynamics (ZD)
surface [28], i.e., yi(qi)= yai (qi)− Bi(t) ≡ 0, we have the

following correlation between the two bipeds:

qr ≡ Aqf + b, where A =

[
I

M

]
. (13)

Additionally, to determine λ1 of the biped (r), we also need to

impose the constraint (6) to the system in (10). Then subtract

the dynamics of biped (f) from (8) to have the closed-loop

dynamics of the front biped subject to the connection wrench

λc as:

CL-Dyn-f �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Df q̈f +Hf = J�
f2λ2 +Bfu

c
f − J�

c λc (14)

ÿf = k1ẏf + k2yf ≡ 0 (15)

Jf2 q̈f + J̇f2 q̇f = 0 (16)

Jr1Aq̈f + J̇r1Aq̇f = 0 (17)

D̂fAq̈f + Ĥr = J�
r1,bλ1 (18)

with D̂f ∈ R
6×12, Ĥf ∈ R

6 the first 6 rows of Df and

Hf , respectively. We now have the decomposed dynamics of

system (f) that is independent from the feedforward terms.

We can view this system as a dynamical system (14) subject

to virtual constraint (15) with inputs uc
f and mechanical

constraints (16), (17), and (18) with inputs λ1, λ2, and λc.

D. Impact dynamics of the decomposed system

With the continuous dynamics written as (OL-Dyn), we

can similarly expand the impact dynamics (2) as:

Δ �

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Df(q̇
+
f − q̇−f ) = J�

f2
Λ2 − J�

c Λc

Jf2 q̇
+
f = 0

Dr(q̇
+
r − q̇−r ) = J�

r1Λ1 + J�
c Λc

Jr1 q̇
+
r = 0

Jc(q̇
+
r − q̇+f ) = 0

(19)

The proof is similar to that of continuous dynamics decom-

position, thus omitted. On the ZD surface, where both of

the bipedal systems (f) and (r) have zero tracking errors

before and after the impact dynamics Δ (we will use an

optimization algorithm to determine those gaits that are

hybrid invariant, [14], [24], [4]), we have the correlation:

q−r = Aq−f + b, q+r = Aq+f + b. Plug into (19) to get the

impact dynamics of the decomposed system as:⎡
⎢⎢⎣

Df −J�
f2

0 J�
c

Jf2 0 0 0
DrA 0 −J�

r1 −J�
c

Jr1A 0 0 0

⎤
⎥⎥⎦
⎡
⎢⎣
q̇+f
Λ1

Λ2

Λc

⎤
⎥⎦ =

⎡
⎢⎣

Df q̇
−
f

0
DrAq̇−f

0

⎤
⎥⎦ (20)

Note that although system (20) is an overdetermined system,

removing the redundant equations is not desirable in practice,

as it may result in an ill-posed problem. This issue can

be more severe for robots with light legs. Moreover, the

implicit optimization method in the latter section can solve

this system accurately and efficiently.

III. DECOMPOSITION-BASED OPTIMIZATION

Past work has investigated the formal analysis and con-

troller design for the full-body dynamics of quadrupeds [3],

[22]. Although we were able to produce trajectories that are

stable solutions to the closed-loop multi-domain dynamics

for walking, ambling, and trotting, the computational com-

plexity makes realizing these methods difficult in practice: it

typically takes minutes to generate a trajectory and hours to

post-process the parameters to guarantee dynamic stability.

However, by using the dynamics decomposition method, we

can produce bipedal walking gaits that can be composed

to obtain quadrupedal locomotion while maintaining the

4494

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 29,2021 at 22:49:56 UTC from IEEE Xplore.  Restrictions apply.



0.0 0.2 0.4

time (s)

0.0

0.1

0.2

p
o
s
it
io

n
 (

ra
d
)

q

HR0

b

HR0

q

HR2

b

HR2

0.0 0.2 0.4

time (s)

0.4

0.6

0.8

p
o
s
it
io

n
 (

ra
d
)

q

HP0

b

HP0

q

HP2

b

HP2

0.0 0.2 0.4

time (s)

1.0

1.2

1.4

p
o
s
it
io

n
 (

ra
d
)

q

K0

b

K0

q

K2

b

K2

0 0.2 0.4

time (s)

120

130

140

150

160

170

fo
rc

e
 (

N
m

)

2,z

quad

2,z

biped

0 0.2 0.4

time (s)

120

130

140

150

160

170

fo
rc

e
 (

N
m

)

1,z

quad

1,z

biped

Fig. 5: A comparison between the solution of bipedal walking dynamics obtained from the decomposition-based optimization and a

simulated step of the full-order quadrupedal dynamics using the composed bipedal gaits; here MATLAB ODE45 was used.

efficiency of computing the lower-dimensional dynamics of

bipedal robots. In this section, we detail this process using

nonlinear programming (NLP).
Given the constrained bipedal dynamics (CL-Dyn-f) and

the impact dynamics (20), the target is to find a solution to

the closed-loop dynamical system efficiently. The nonlinear

program is formulated as:

min
Z

2N+1∑
j=1

‖q̇bf ‖22 (21)

s.t. C1. dynamics (CL-Dyn-f) j = 1, 3, ...2N + 1

C2. collocation constraints j = 2, 4, ...2N

C3. impact dynamics(20) j = 2N + 1

C4. periodic continuity j = 1, 2N + 1

C5. physical feasibility j = 1, 2, ...2N + 1

with the following notation: 2N+1 = 11 is the total number

of collocation grids; the decision variable is defined as

Z = (α, tj , qjf , q̇
j
f , u

j
f , λ

j
1, λ

j
2, λ

j
c,Λ

j
1,Λ

j
2,Λ

j
c);

and α ∈ R
36 are the coefficients for the Beźier polynomial

that defines the desired trajectory Bf(t); �j is the corre-

sponding quantities at time tj with t2N+1 = T . In short,

the cost function is to minimize the body’s vibration rate to

achieve a more static torso movement. The constraints C1-

C3 solve the hybrid dynamics of bipedal robots subject to

external forces. Details regarding the numerical optimization

can be found in [16]. In particular, the Hermite-Simpson

collocation formulation can be found in equations (C1,C2)

in [16]. Here, the periodic continuity constraint C4 enforces

state continuity through an edge, i.e., the post-impact states

q+, q̇+, are equivalent to the initial states q1, q̇1. Therefore,

the resultant trajectory is a periodic solution to the bipedal

dynamics. C5 imposed some feasibility conditions on the

dynamics, including torque limits ‖ui‖∞ ≤ 50, joint feasible

space (qi, q̇i) ∈ X , foot clearance and the friction pyramid

conditions. Note that we posed these constraints conserva-

tively to reduce the difficulties implementing the optimized

trajectories in experiments.
To solve the optimization problem (21) efficiently, we used

a toolbox FROST [17], [18], which parses a hybrid control

problem as a NLP based on direct collocation methods,

in particular, Hermite-Simpson collocation. It is worthwhile

to mention that a critical reason for the high efficiency

of FROST comes from the implicit formulation of the

dynamics. Matrix inversion is avoided in every step due to its

computational complexity: O(n3), with n the dimension of a

matrix. Inspired by this, we remark the dynamics decomposi-

tion method proposed in this paper also only used differential

algebra equations (DAEs) instead of ordinary differential

equations (ODEs), which requires matrix inversion both for

the inertia matrix and the closed-loop controller formulation.

Once the optimization (21) converged to a set of param-

eters α for the front bipedal robots’ walking gait Bf(t),
we can use (12) to obtain the trajectory for the rear biped

Br(t) and then recompose them to get the parameters for

the quadrupedal locomotion. For validation, we simulated

an ambling step of the quadrupedal dynamics using the

composed bipedal gaits. As shown in Fig. 5, we have the

joint angles and constraint wrench (ground reaction force)

on toe1 λ1,z , and toe2 λ2,z of the quadruped matched with

those corresponding external force to the bipedal dynamics.

We now take advantage of the efficient, decomposition-

based optimization to generate several walking patterns for

the front biped, then recompose them to obtain quadrupedal

stepping-in-place behaviors. By adjusting the constraint

bounds in the NLP (21), such as the upper and lower

bound Tmax, Tmin of time duration T , or the the bounds

of the nonstance foot height δmin ≤ hnsf,z(qf) ≤ δmax,

we can obtain gaits with different stepping frequency and

foot clearance. Further, we remove the constraint that the

nonstance foot lands at the origin to generate a diagonally
ambling gait with a speed of 0.35 m/s. See Fig. 6 for the

tiles of these gaits. The result of the methods presented is the

ability to generate quadrupedal gaits rapidly. We benchmark

the performance by considering computing speed for each of

the quadrupedal locomotion patterns generated, as is shown

in Table I. In summary, with the objective tolerance and

equality constraint tolerance configured as 10−8 and 10−5

respectively, we have the average computation time as 3.96
second, and time per iteration averages 0.039 second. In

comparison with the regular full-model based optimization

methods from [22], the decomposition-based optimization is

an order of magnitude faster.

IV. SIMULATION AND EXPERIMENTS

One of the motivations for realizing rapid gait generation

using the full-body dynamics of the quadruped, i.e., without

TABLE I: Computing performance of gait generation. This is

performed on a Linux machine with an i7-6820HQ CPU @2.70

GHz and 16 GB RAM.

Behaviors gait1 gait2 gait3 gait4 amble
frequency (Hz) 2.5 2.3 2.2 2.6 2.83
clearance (cm) 11 12 15 13 13
# of iterations 96 122 98 46 147

time of IPOPT (s) 1.60 2.10 1.62 0.81 2.59
time of evaluation (s) 1.94 3.24 2.10 0.94 2.86

NLP time(s) 3.54 5.34 3.72 1.75 5.45
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Fig. 6: Comparison between MuJoCo simulation (animated) and

experiments. The upper two are for stepping in place, gait4; the

lower two are logged for a full step of the ambling gait.
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Fig. 7: Tracking performance of the optimal ambling gait (in red)

vs. the MuJoCo simulated result (in green) vs. the experimental

data (in cyan) in the form of phase portrait using 18 seconds’ data.

HR: hip roll joint; HP: hip pitch joint; K: knee joint.

model simplifications, is to allow for the seamless translation

of gaits from theoretical simulation to hardware. In this

context, we first validated the dynamic stability of the gaits

produced by the decomposition-based optimization problem

using a third party physics engine — MuJoCo. These gaits

include a diagonally symmetric ambling and four stepping in

place behaviors. Then we conducted experiments, walking on

a a outdoor tennis court, using the same control law as that in

simulation in outdoor environments. In particular, we used a

PD approximation of the input-output linearizing controllers

to track the time-based trajectories given by the optimization,

u(qa, q̇a, t) = −k1
(
ẏa − Ḃ(t))− k2

(
ya − B(t)). (22)

Note that the event functions (switching detection) are also

given by the optimized trajectories, meaning the walking

controller switches to the next step when t = T . We report

that for all given optimal gaits, the PD gains are picked as

kp = 230, 230, 300, kd = 5 for the hip roll, hip pitch,

knee joints, respectively. The averaged absolute joint torque

inputs are logged in Table II, all of which are well within

the hardware limitations. The tracking of the ambling gait in

simulation and experiment are shown in Fig. 7.

The result is that the Vision 60 quadruped can step and

amble in an outdoor tennis court in a sustained fashion. Im-

portantly, this is without any add-on heuristics and achieved

TABLE II: Average torque inputs in experiments and simulations.

Experiments gait1 gait2 gait3 gait4 amble
ūHR(N·m) 5.04, 4.83 4.16 5.14 7.11
ūHP(N·m) 3.65 5.24 5.26 3.77 6.28
ūK(N·m) 16.45 16.50 16.86 16.95 18.36
MuJoCo
ūHR(N·m) 7.80 9.23 10.27 8.68 8.06
ūHP(N·m) 6.78 9.14 10.71 6.64 7.27
ūK(N·m) 18.49 18.38 18.45 18.61 19.03

by only uploading different gait parameters α for each

experiment (obtained from the different NLP optimization

problems with different constraints). See [1] for the video

of Vision 60 in both simulation and experiments. As demon-

strated in the video, we remark that the proposed method has

rendered a good level of robustness against rough terrain with

slopes, wet dirt and surface roots. Hence periodic stability

has been obtained in both simulation and experiment. Fig. 6

shows a side to side comparison of the simulated amble and

experimental snapshots. In addition, it is interesting to note

that time-based control law (22) normally does not provide

excellent robustness against uncertain terrain dynamics, due

to its open-loop nature. However, the fact that all of the

trajectory-based controllers achieved dynamic stability in

simulations and experiments with an unified control law

speaks to the benefits of generating gaits using the full-

body dynamics of the quadruped: even with an open-loop

controller that does not leverage heuristics, the quadruped

remains stable.

V. CONCLUSION

In this paper, we decomposed the full-body dynamics of

a quadrupedal robot — the Vision 60 with 18 DOF and 12

inputs — into two lower-dimensional bipedal systems that

are subject to external forces. We are then able to solve

the constrained dynamics of these bipeds quickly through

the HZD optimization method, FROST, wherein the gaits

can be recomposed to achieve locomotion on the original

quadruped. The result is the ability to generate walking

gaits rapidly. Specifically, by changing a constraint, we can

produce different bipedal and, thus, quadrupedal walking

behaviors from stepping to ambling in 3.9 seconds on

average. Furthermore, the implementation in simulation and

experiments used a single simple controller, without the need

for additional heuristics.

Without sacrificing the model fidelity of the full-body

dynamics of the quadruped, the ability to exactly decom-

pose these dynamics into equivalent bipedal robots makes

it possible to rapidly generate gaits that leverage the full-

order dynamics of the quadruped. Importantly, this allows for

the rapid iteration of different gaits necessary for bringing

quadrupeds into real-world environments. Moreover, the fact

that these gaits can be generated on the order of seconds

suggests that with code optimization on-board and real-

time gait generation may be possible soon. The goal is to

ultimately use this method to realize a variety of different

dynamic locomotion behaviors on quadrupedal robots.
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