
238 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 1, JANUARY 2021

Exploring Applications of STT-RAM in
GPU Architectures

Xiaoxiao Liu , Mengjie Mao , Xiuyuan Bi , Hai Li , Fellow, IEEE, and Yiran Chen , Fellow, IEEE

Abstract— Use of modern GPUs has been extended from
traditional 3D graphic processing to computing acceleration
of many scientific, engineering, and enterprise applications. In
modern GPUs, on-chip memory capacity keeps increasing to
support thousands of chip-resident threads. For example, a large
register file is needed in order to efficiently process highly-
parallel threads in single instruction multiple thread (SIMT)
fashion, and a large shared memory is often implemented to
allow data sharing among the threads on the chip. On-chip
memory capacity of GPUs, however, is highly constrained by
large memory cell area and high static power consumption of
conventional SRAM implementation. In this work, we propose
to utilize the emerging multi-level cell (MLC) spin-transfer torque
RAM (STT-RAM) technology to implement register file and
shared memory in GPUs. Compared to SRAM, MLC STT-
RAM (or MLC-STT) has a much smaller cell area as well as
ultra-low standby power, thanks to the non-volatility of MLC-
STT technology. Hence, the footprint and leakage power of
the implemented memory components are substantially reduced.
Moreover, in light of asymmetric performance of soft and hard
bits of a MLC-STT cell, we propose a dynamic data remapping
strategy in register file and shared memory implementations that
allows a flexible tradeoff between the memory access time and
the available capacity: frequently-accessed data is always mapped
to the fast rows built with the soft bits of the MLC-STT cells
while the slow rows composed of the hard bits are used only
when a larger capacity is critically needed. We also develop a
novel rescheduling scheme to minimize the waiting time of the
issued warps to access register banks in the register file, which is
induced by the long writeback operations through the reordering
of the issued warps. Finally, an early termination technology is
also applied to save the write energy of the shared memory
if the bits of the memory do not flip. Experimental results
on benchmarks of ISPASS2009, Rodinia, Parboil, and CUDA
show that on average, MLC-STT register file can achieve 3.28%
system performance improvement, 9.48% energy reduction, and
38.9% energy efficiency improvement compared to conventional
SRAM-based design. Meanwhile, MLC-STT shared memory

Manuscript received February 17, 2020; revised July 9, 2020 and Septem-
ber 3, 2020; accepted October 5, 2020. Date of publication November 16,
2020; date of current version December 21, 2020. This work was supported
in part by the National Science Foundation (NSF) under Grant 1955246,
Grant 1725456, and Grant 1910299 and in part by the U.S. Department of
Energy (DOE) under Grant DE-SC0018064. This article was recommended
by Associate Editor Y. Zhang. (Corresponding author: Xiaoxiao Liu.)
Xiaoxiao Liu is with AMD Inc., Santa Clara, CA 95054 USA (e-mail:

xiaoxiao.liu@amd.com).
Mengjie Mao is with Waymo LLC, Mountain View, CA 94043 USA

(e-mail: meng.j.mao@gmail.com).
Xiuyuan Bi is with Black Sesame Technologies, Santa Clara, CA 95050

USA (e-mail: xiuyuan.bi@bst.ai).
Hai Li and Yiran Chen are with the Department of Electrical and

Computer Engineering, Duke University, Durham, NC 27708 USA (e-mail:
hai.li@duke.edu; yiran.chen@duke.edu).
Color versions of one or more figures in this article are available at

https://doi.org/10.1109/TCSI.2020.3031895.
Digital Object Identifier 10.1109/TCSI.2020.3031895

leads to 3.45% system performance improvement, 49.3% energy
reduction, and 116% energy efficiency improvement.

Index Terms— STT-RAM, multi-level cell, GPGPU, register
file, shared memory.

I. INTRODUCTION

Graphic processing units (GPUs) have been widely adopted
in both graphic processing and general parallel com-

puting. Besides stand-alone GPU products (such as AMD’s
Radeon [1] and Nvidia’s Tegra [2]), GPU cores are often
integrated with CPU cores on the same die in heterogeneous
systems to accelerate the processing of streaming data [3].
Thousands of parallel threads are simultaneously processed to
achieve high throughput and computation efficiency. On the
one hand, the extremely high execution parallelism requires a
big register file in every GPU core to retain a large volume
of active threads. Once a thread is suspended by memory
accesses, the GPU can immediately switch to another context
with virtually zero latency as long as the required information
is held in the register file. On the other hand, GPU employs a
on-chip scratchpad memory, called shared memory (Nvidia’s
terminology) to reduce the costly round trip access to global
memory. This design offers short latency and high bandwidth
of the data sharing between the threads in a thread block.
In Nvidia’s Fermi GPU architecture, for example, a highly
banked shared memory is implemented with the same access
latency as that of the register file if there is no bank conflict [4].
Fig. 1 summarizes the deployment of on-chip memories in

four recent Nvidia GPU products [5]–[7]. All on-chip memory
sizes increase rapidly. Especially register file capacity almost
doubles per generation, significantly exceeding the growing
speed of any other memory types. Since Nvidia’s Fermi
architecture, a maximum 48KB shared memory has been
implement to support a large number of active threads that
are processed in parallel. Moreover, as the number of active
blocks depends on the number of registers totally requested
and the amount of shared memory per thread block required
for a given kernel [6], it is desirable to increase the number
of active blocks on an streaming multiprocessor (SM) as it
would increase the system performance by masking latency.
As such, the conventional on-chip memory implemented with
large and leaky SRAM cells results in significant area and
power consumption: previous research showed that register file
and shared memory in a GPU occupy 13.4% and 4.9% of chip
area [8], [9] and accounts for 18% and 6.7% of system power
consumption [10], [11], respectively. The capacity of register

1549-8328 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Duke University. Downloaded on July 29,2021 at 23:33:54 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: EXPLORING APPLICATIONS OF STT-RAM IN GPU ARCHITECTURES 239

Fig. 1. Deployment trend of register file and other on-chip memories in
GPUs.

TABLE I

CHARACTERISTICS AND REGISTER FILE USAGE STATISTICS OF THE
SELECTED GPU BENCHMARKS (SHM:SHARED MEMORY)

file and shared memory is anticipated to continue increasing
given by the rapidly growing active thread number in each
streaming multiprocessor (SM) [12].
Although the needed capacity of register file and shared

memory in GPU generally increases, the actual usage varies
significantly in different applications. We selected and simu-
lated ten popular GPU workloads from [10], [13], in which the
average register file usage ratio ranges from 27.2% to 92.9%,
and the shared memory usage ratio ranges from 0% to 99%,
as shown in Table I. A low usage ratio potentially leads to a
big waste of the capacity and leakage power.

Spin-transfer torque random access memory (STT-RAM) is
a promising technology to replace SRAM in on-chip memory
implementation. Its simple cell structure and non-volatility
enable much smaller cell area than SRAM and almost zero
standby power [14], [15]. Moreover, the recent invention of
multi-level cell (MLC) design [16] doubles the storage density
of STT-RAM. The use of MLC STT-RAM (MLC-STT) in last
level cache of CPUs has been widely investigated for energy
efficiency enhancement [17]–[19].
This work extends the application of MLC-STT to register

file and shared memory in GPUs. Thanks to the simple and
dense cell structure of STT-RAM, the memory area can be
cut down to 27.7% of SRAM implementation. Moreover, the
doubled storage capacity can effectively relax the limitation on
the number of active thread blocks due to insufficient register
file and shared memory size in memory-hungry applications

and hence improve system performance, as we shall show in
Section V. However, the hard and the soft bits in a MLC-STT
cell demonstrate very different access time requirements. Thus,
we propose a remapping strategy to relocate data based on
its access frequency and the memory usage requirement of
the application. Particularly, the frequently-accessed data is
always mapped to the fast rows built with the soft bits of
the MLC-STT cells while the slow rows composed of the
hard bits are used only when a larger capacity of the register
file or shared memory is needed. Moreover, for MLC-based
register file, a run-time warp rescheduling scheme is developed
to reorder the issuing of the ready warps to minimize the
access stall induced by the long write operations of MLC-STT.
Finally, a write termination scheme is designed to reduce
the useless write operation with high energy in the MLC-
based shared memory. Compared with the existing research on
the application of STT-RAM in micro-architecture, our major
contributions include:
1) We propose using MLC-STT to implement register files
and shared memory in GPUs – a highly scalable design
in terms of storage capacity (density) and area/power
cost;

2) A remapping strategy is designed to perform a flexible
tradeoff between the access time and the capacity of
the register file and shared memory based on the access
time difference between the soft and the hard bits of
a MLC-STT cell and the run-time register file access
patterns;

3) A novel warp rescheduling scheme is also developed to
minimize the access stall introduced by the slow write
access to the MLC-STT register banks.

4) An early write termination scheme is introduced to
reduce the redundant write to MLC-STT based shared
memory to save power and latency.

Our simulation results show that compared to conventional
SRAM-based register file and shared memory, our MLC-STT
designs respectively achieve on average 3.28% and 3.45%
system performance improvements on system performance
across selected benchmarks. The average energy efficiencies
of register file and shared memory are greatly enhanced about
38.9% and 116%, respectively.
The rest of our paper is organized as follows: Section II

introduces the basics of STT-RAM technology and major
design challenges of GPU register file and shared memory;
Section III presents the design details on the MLC-STT
on-chip memories with different configurations as well as the
remapping strategy, warp rescheduling scheme, and early write
termination; Section IV describes the experimental methodol-
ogy and system setup of our evaluations; Section V gives our
simulation results and discussions; Section VI summarizes the
related works; Section VII concludes our work.

II. PRELIMINARY

A. STT-RAM and MLC STT-RAM

In a single-level cell (SLC) STT-RAM cell, binary data
is represented by two resistive states of a magnetic tunning
junction (MTJ) device. As shown in Fig. 2(a-b), a MTJ

Authorized licensed use limited to: Duke University. Downloaded on July 29,2021 at 23:33:54 UTC from IEEE Xplore. Restrictions apply.

240 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 1, JANUARY 2021

Fig. 2. STT-RAM cell structure and operation diagram. (a,b) single level cell (SLC) represents “0” and “1”. (c) multi-level cell (MLC) using serial stacking
structure. (d) 2-step write transition diagram. (e) 2-step read operation.

consists of two ferromagnetic layers and one metal oxide
barrier (e.g., MgO) in between. One ferromagnetic layer has
a fixed magnetization direction and hence is referred to as
reference layer [20]. The magnetization direction of the other
ferromagnetic layer (named as free layer) can be flipped by a
spin-polarized current. When the magnetization directions of
the two ferromagnetic layers are parallel, the MTJ is at low
resistance state, representing logic “0”; when the magnetiza-
tion directions of the two layers are anti-parallel, the MTJ is
at high resistance state, corresponding to logic “1”. The data
stored in a STT-RAM cell can be read out by injecting a small
read current and comparing the generated sensing voltage on
the bit-line (BL) with a reference.
To further enhance the data storage density of STT-RAM,

MLC-STT technology was proposed by integrating two MTJs
in a cell [21], [22]. Fig. 2(c) illustrates a popular serial
MLC-STT cell structure which is composed of a small MTJ
and a larger MTJ. The combination of the resistance states
of the two MTJs constructs four different resistance levels,
representing a 2-bit data. The bits determined by the resistance
states of the large and small MTJs are normally denoted as
“hard bit” and “soft bit”, respectively.
As the two MTJs are connected in serial and driven by

the same NMOS access transistor, the same current passes
through both MTJs during read and write operations. When
applying a large switching current to program the large MTJ,
the small MTJ encounters an even larger switching current
density and hence will turn to the same resistance state as the
large MTJ. In other words, programming the hard bit enforces
both the hard and soft bits to be aligned and eventually switch
to the destination value of the hard bit, no matter what is the
original value of the soft bit. If the target value of the soft-bit is
different from the one of the hard-bit during a write operation,
an additional programming step with a small write current
is required to program only the soft-bit to the target value.
During the programming of soft-bit, however, a small current
shall be applied in order to flip only the resistance state of the
small MTJ. Such a 2-step write operation of MLC-STT cells
is depicted in Fig. 2(d). Similarly, a 2-step read operation is
required to detect the soft and hard bits in sequence, as shown
in Fig. 2(e). Notably, programming or detecting only the soft
bit can be completed in one step.

When implementing memory with MLC-STT cells, the hard
and soft bits can be separated into different data sets [19]. For
instance, a row of MLC-STT cells in a physical array can be
regarded as two logic rows that respectively consist of the hard
bits and soft bits of these MLC-STT cells. As such, reading
or writing the soft-bit row requires only one step. Accessing a
hard-bit row, in contrast, need to take two-step operations,
resulting in much longer access latency and higher energy
consumption. Such performance difference between hard-bit
and soft-bit rows motivates our remapping strategy in the
designs of MLC-STT GPU register file and shared memory.

B. Modern GPU Architecture

Threads are executed in single instruction multiple thread
(SIMT) fashion in GPUs to achieve high computing paral-
lelism and throughput. Without loss of generality, in this work,
we adopt the terminologies of Nvidia and use GTX480 [23]
in Fermi family as our baseline model.
A GPU is composed of 16 streaming multiprocessors (SMs),

each of which includes one GPU processing pipeline. GPU
kernel is instantiated with a grid of parallel thread blocks.
Each SM in Fermi architecture can support up to 8 parallel
thread blocks. The maximum number of the threads that can
be concurrently executed in one thread block is 1024 with
maximum 63 32-bit registers assigned to each thread. 32
threads in one block are grouped as a warp to issue. As
illustrated in Fig. 3(a), a GPU processing pipeline includes
Instruction Unit, Register Address Unit, Register File Unit, and
Execution Unit [24]. Instruction Unit decodes instructions, and
schedules the execution of the instructions based on additional
information like priority and date dependency. The instructions
selected in a round-robin fashion are sent to Register Address
Unit at the end of each clock cycle. Accordingly, Register
Address Unit accesses the registers in Register File Unit.
Register File Unit in a SM contains 32,768 32-bit regis-

ters to hold instruction operands. Highly banked architecture
is usually utilized to realize multi-port access in Register
File Unit implementation. In Fermi architecture, one SM
integrates 16 banks, each of which contains 64 entries of
1,024 single-port SRAM cells (i.e., 32 registers). As shown
in Fig. 3(b), an operand collector in Register File Unit is used

Authorized licensed use limited to: Duke University. Downloaded on July 29,2021 at 23:33:54 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: EXPLORING APPLICATIONS OF STT-RAM IN GPU ARCHITECTURES 241

Fig. 3. GPU architecture and register file design in GPUs.

to collect and dispatch the active warps to available banks.
When all the operands have been acquired, instructions and
operands are sent to Execution Unit.
As shown in Fig. 3(a), shared memory is implemented with

L1 Cache together and shares 64KB memory capacity based
on configuration. Shared memory is composed of 16 banks,
and each bank is designed to support 4 byte read/write per
cycle. The data shared by threads in the same block can be
stored in share memory for quick access, and programmers are
in charge of the use of shared memory and also the avoidance
of bank conflict. Before launching a thread block, the CUDA
compiler checks the number of available registers and also
the usage of shared memory: if the the total usable memory
resource is smaller than memory request, the launching will
suspend.

III. MLC STT-RAM BASED REGISTER FILE AND
SHARED MEMORY

In this section, we will describe the proposed MLC-STT
register file and shared memory designs in GPU architecture.
Besides replacing SRAM cell with MLC-STT cell, we also
propose address remapping strategy for register file and shared
memory, and warp rescheduling scheme for register file and
MLC early write termination for shared memory separately
to mitigate the impacts of the slow read and write accesses
of MLC-STT and hence improve the performance and energy
efficiency.

A. Overview of MLC STT-RAM Based Memory Bank

The memory banks of register file and shared memory in
Fermi GPUs share a similar design [4], [25]. As the main
difference is only the size of the memory bank, we use MLC
STT-RAM based register file as an example to introduce our
design.
Fig. 4 illustrates a memory bank of the proposed MLC-

STT based register file (MLC-RF) in Fermi architecture. Each
register file array has 64 physical entries which are supported
by a programmable row decoder with 6-bit address. 1,024
MLC-STT cells are contained in each row, corresponding to
2,048 data bits. The capacity of each row is doubled from that
of the SRAM or SLC-STT design, allowing more registers to
be accessed at a time. Considering the fact that having inactive

Fig. 4. MLC STT-RAM-based register file.

TABLE II

COMPARISON OF SRAM AND STT-RAM BASED REGISTER BANKS

threads in one warp is considerably high [26], a wider row may
lower the efficiency of register bank accesses. In this work,
we tend to keep the same capacity per row to maintain the
same effectiveness of bank access as the SRAM register file
design. Hence, we divide a row of 1,024 MLC-STT cells into
a fast row with 1,024 soft-bits and a slow row with 1,204 hard-
bits. Such a design leads to a register bank with total 128 logic
rows, which requires 7-bit address control. Here, address bits
[5 : 0] are used for address decoding while address bit [6]
decides the access to the soft or the hard bits of the physical
entry.
Table II summarizes the design parameters of register

banks built with SRAM, SLC-STT, and MLC-STT at 32nm
technology node. The results are simulated by CACTI [27]
and HSpice with PTM [28] under 32nm technology. In the
MLC-STT design, we assume the area of the big MTJ (hard
bit) is twice as that of the small MTJ (soft bit), which achieves
the best robustness in read and write operations [16]. The
timing information of sense amplifier is derived from SPICE
simulations. The adopted register file configuration and area
information are obtained through a modified NVsim [29]. The
areas of the SLC-STT and MLC-STT designs are only about
27% of that of SRAM design while the bit capacity of the
MLC-STT design is 2× that of the SLC-STT and SRAM
designs. The read and write access times of the SLC-STT
and MLC-STT designs are longer than that of the SRAM

Authorized licensed use limited to: Duke University. Downloaded on July 29,2021 at 23:33:54 UTC from IEEE Xplore. Restrictions apply.

242 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 1, JANUARY 2021

Fig. 5. (a) The register bank address remapping algorithm. (b) The hardware implementation diagram of remapping. (c) Warp rescheduling.

design. Due to the 2-step operation, the hard-bit rows require
much longer time to complete a read or write access than the
SLC-STT design. In contrast, accessing the soft-bit rows is
very similar to the SLC-STT design and their read and write
performances are also very close.
Write Buffers are adopted in Arbiters to alleviate the impact

of slow access time of the MLC-STT design. Each register
bank requires one Write Buffer. The Write Buffer temporally
holds the writeback data until the former write is completed
and releases write port. The needed number of entries in
a write buffer is determined by the MLC-STT write access
cycles and the access frequency. In this work, we set the
operating frequency of the GPU core to 700MHz. As a
result, the write accesses to the soft- and hard-bit rows of
the MLC-STT register files take 6 and 12 cycles, respectively.
To find the minimum required write buffer size, we carefully
increase the number of write buffer entries and rerun the
selected benchmarks until overflow disappears. Based on the
evaluation, a 4-entry Write Buffer is sufficient to remove
the overflow since writebacks occur infrequently and the
register file is highly banked.
In the original arbiter design of Fermi architecture, a read

queue is assigned to each register bank to arrange all the read
requests from different Operand Collectors in a row. The Read
Queue structure remains unchanged in our proposed MLC-
RF, holding read requests when awaiting the slow MLC write
operations to finish. The introduction of Write Buffer incurs
15% increase in MLC-RF bank area. Nonetheless, the overall
area of a MLC-RF bank is still less than 30% of the one of
SRAM implementation, mainly benefiting from the high data
storage density of MLC-STT.

B. MLC-Aware Remapping Strategy

Write Buffers shorten the response time of register files but
can not help on reducing the long read and write latency’s
of MLC-STT banks. As aforementioned in Section II-A,
MLC-STT contains soft- and hard-bit rows which have very
distinctive read and write performance. It can be beneficial
if the GPU maximizes the usage of soft-bit rows for sake of
system performance and energy consumption. In other words,
the data (especially the one being accessed frequently) shall
be mapped to the soft-bit rows before considering the hard-bit

rows. In the implementation, run-time information such as
how many registers to be accessed and how many times they
will be accessed can be obtained from the compiler. During
compilation, we first perform profiling on the access frequency
of all the registers involved during the execution of a kernel.
A bitmap vector is then generated to record whether a register
will be placed in a soft-bit row or a hard-bit row. Once the
kernel is offloaded to SMs, such a bitmap vector is copied to
a special register and guide the register mapping.
Fig. 5(a) depicts the corresponding register file remapping

algorithm, which requires the support of two mapping tables
and one register address unit (RAU), as shown in Fig. 5(b).
Remapping is activated only when the register demand exceeds
the half capacity of the MLC-STT register bank. Otherwise,
hard-bit rows will not be utilized so that the register bank
works virtually with the same capacity as the SRAM/SLC-STT
design, offering an uniformed fast access time of soft-bit rows.
When more than half capacity (i.e., 2,048 registers) of the
MLC-STT register bank is requested, the first 2,048 registers
with frequency accesses will be mapped to the soft-bit rows
while the rest will go to the hard-bit rows. The relationship
between the original address and the mapped physical address
is retained in a remapping table. Each remapping table entry
corresponds to one row in the register bank, including 1 valid
bit and 7-bit mapped address. Hence, the size of the remapping
table is small and the incurred area overhead is negligible.

C. Warp Rescheduling for MLC STT-RAM Based Register
File

The long write latency of STT cells (even in the soft-
bit rows of MLC-STT) may severely degrade the system
performance by blocking other accesses to the same register
bank. Fig. 5(c) describes such an example, where two warps
– W0 and W1, are waiting in the instruction buffer in a serial
Round Robin manner. Their register requests are mapped to
different banks and they do not have data dependency with the
current warps being executed. When the access to the register
bank that W0 requests is held by a writeback from the previous
warp, the operand fetching of W0 has to wait. Since all the
available entries in Scoreboard, Operand Collector, and Read
Queue have been held by W0, the processing of W1 is stalled
at the issue stage even the register bank to be accessed by W1

Authorized licensed use limited to: Duke University. Downloaded on July 29,2021 at 23:33:54 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: EXPLORING APPLICATIONS OF STT-RAM IN GPU ARCHITECTURES 243

is free. In such a case, we may swap the issue sequence of
W0 and W1 to avoid the stalling of W1.
Based on the above observation, we propose a warp

rescheduling scheme to minimize the waiting time of the
issued warps for register bank access. The warp rescheduling
tends to rearrange the issue order of the ready warps by priori-
tizing the accesses to the free register banks. The effectiveness
of rescheduling is mainly determined by the availability’s of
the free register banks and the warps ready to be issued, which
are generally large in GPU execution. A parameter named
timescore for each warp is defined to guide warp rescheduling
as:
timescore = Max[busy_cycle[bank_idi]&valid[bank_idi]

(i = 0, .., 15)]. (1)

Here busy_cycle indicates the remaining cycles to complete
the current write operation of the register bank, and valid
denotes whether the warp has a register request from this bank.
bank_idi labels the register bank and is determined by the
identifier of the register (reg_id) by:

bank_id = reg_id % bank_number. (2)

Here bank_number is the total number of register banks in
one SM. In Fermi architecture, a SM includes 16 register
banks. As shown in Fig. 5(c), a bank status table is added
in Instruction Unit to assist acquiring the busy_cycle of each
register bank. busy_cycle is updated by Register File Unit
whenever new write requests arrive and automatically counts
down every cycle.
During scheduling, timescore will be checked whenever

warps are going to scoreboard for data dependency check. As
shown in Eq. (1), the maximum busy_cycle will be chosen
as the timescore of a warp. The warp will be managed to
issue only when its timescore is smaller than a threshold. If
a warp failed to pass the timescore checking, it will remain
in Instruction Buffer and wait for the next round check. The
scheduler will continue to check the next available warp until
one is issued successfully. Note that data dependency checking
and timescore checking can be performed simultaneously.
Hence, no timing overhead on scheduling step is introduced.
We run extensive experiments and found that 5 is the optimal
value of the timescore threshold which maximizes the system
performance and energy efficiency of our design.

D. MLC STT-RAM Based Shared Memory

1) Overview: Shared memory per SM in Fermi architecture
is composed of 32 banks of memories with 4 bytes bit-width
in each bank. The capacity of shared memory is configurable
as 16KB or 48KB in total in SRAM implementation. We keep
the same memory bank width and peripheral circuit design as
MLC-RF shown in Fig. 4. Similar to MLC-RF, a Write Buffer
is implemented in each memory bank to hold the write data
while waiting for the former write completes. Unlike register
file, which already has a read queue corresponding to each
register bank, a Read Buffer is also applied for read requests
while waiting slow write process to complete.

Fig. 6. Actual write bit flip in MLC-STT based shared memory and write
access ratio.

2) MLC Remapping Strategy: Like in MLC-RF, we also
implement the MLC remapping strategy with the same hard-
ware implementation as shown in Fig. 5(b) in MLC-based
shared memory to maximize the utilization of soft-bit row
to obtain better performance and efficiency. As most of the
read/write to shared memory is tile-based [25], the read/write
access to each row is more balanced than register file which
has warp-based request. So we only use the required memory
capacity of shared memory to determine whether the remap-
ping is activated. If more than half of the MLC shared memory
is required, the hard-bit row will be accessed. Otherwise, only
soft-bit row will be used.

3) MLC Early Write Termination: The performance of
MLC-STT based shared memory is benefiting from its high
density, but the high write energy still serves as a major
challenge for STT-RAM, especially in MLC-STT which
requests 2-step write in its regular write operation. The
2-step write operation consumes about 4× more energy
than the read operation in MLC-STT in our evaluation (see
Table II). Ping el at. [30] designed an early write termination
for SLC-STT to shut down the redundant write operation if
a same value is going to be written in the STT-RAM cell.
Inspired by this work, we propose an early write termination
to reduce the costly and unnecessary writes for MLC-STT
shared memory(MLC-EWT). After the remapping of soft bit
rows and hard bit rows is applied, either only soft bit rows
or both soft bit and hard bit rows are used. If only the soft
bit of a MLC cell is used, the operation of MLC-EWT is
similar to [30]: the programming current of soft bit is cut
when the stored data is detected as the same as the data being
written. But if both soft bit and hard bit of the MLC cell
are used, it becomes much more complex as the 2 bits new
data could be 2 bits different, only 1 bit different or 2 bits
the same compared to the stored data. We note that soft bit is
detected first but hard bit is programmed first during the 2-step
read and write access of MLC. Hence, to shorten the latency
of decision making and simplify the control logic, we limit
read operation to only soft bit to the greatest extent possible,
then choose the proper operation from continuing 2-step write,
only hard bit write, or no write at all. The details of MLC-
EWT cases are summarized in Table III, and the design of
MLC-EWT circuit is shown in Fig. 7. The MLC-EWT circuit
generates 2 cut signals for turning off programming current

Authorized licensed use limited to: Duke University. Downloaded on July 29,2021 at 23:33:54 UTC from IEEE Xplore. Restrictions apply.

244 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 1, JANUARY 2021

TABLE III

WRITE OPERATIONS OF MLC SHARED MEMORY WHEN BOTH SOFT
BIT AND HARD BIT ARE USED. HW–ONLY WRITE HARD BIT,

AND 2W – 2-STEP WRITE

Fig. 7. MLC-EWT circuit.

of hard bit (HW_CUT) and soft bit (SW_CUT) separately
during programming of hard bit. The MLC-EWT circuit first
detects if the 2 bits of the new data are the same, then uses
the result as SW_CUT to turn off soft bit write. Hard bit
write is only cut when the stored 2-bit data is the same as the
new value. We estimated the area and energy overheads of the
MLC-EWT circuit using PTM 32nm HP models in HSPICE.
As this circuit is added on each column (e.g., 256 memory
cells per column), the average energy overhead of generating
the write cut signals is about 2.12 f J per column and the
area overhead per column is only 16.32um2, which are both
marginal compared to the write energy of MLC-STT and the
total area of memory (Table II).
When writing a line of shared memory, however, it is less

likely that the overall processing time of the write can be
terminated early because most likely at least one cell requires
both steps. Nonetheless, the early terminated write process
still substantially reduces the total energy consumption of
MLC write operations. Our execution analysis shows that the
flipping bits are not the majority of all the bits during write
operations, as shown in Fig. 6. On average, only 6% MLC-
STT cells actually need 2-step write. Benefit from remapping
scheme, some applications only need soft bit write which use
less than half of shared memory size, like HOT, PF, DCT, and
BP. Thus, we designed an early write termination circuit in
the MLC shared memory to avoid useless writes.

IV. EVALUATION SETUP

We implement all the designs on GPGPU-sim [10], a cycle-
accurate GPU performance simulator, for system functionality
verification and performance evaluation. The baseline GPU
is configured as Nvidia GTX480 [23]. Table IV summarizes
the parameters of our system configuration. Loose round-

TABLE IV

GPGPU-SIM CONFIGURATION

robin (LRR) scheduler, which is widely adopted in GPU
warp scheduling, is selected as the basic scheduler in the
simulated system. The SM operating frequency is set to
700MHz. We assume a fixed capacity of 64Kb for both
SRAM and SLC-STT register banks. When MLC-STT is
applied for same-area policy, the bank capacity is raised to
128Kb. The parameters of MLC memory bank are generated
from a modified NVsim [29] at 32nm technology node. The
STT device parameters from [14] are adopted for cell area
estimation. The detailed configurations of register banks can
be found in Table II.
Ten GPU workloads from [7], [10], [13] [31] are selected in

our performance evaluation. Table I shows that the register file
usage of the selected workloads varies from 27.2% to 92.9%
and the shared memory usage varies from 0% to 99%, offering
a good coverage on all representative cases.

V. EVALUATION RESULTS AND DISCUSSION

In this section, we evaluate the effectiveness of MLC-STT
register file and shared memory implementations in improv-
ing GPU runtime performance and energy consumption, and
compare it with SRAM and SLC-STT options.

A. MLC-STT Based Register File

1) System Performance: Fig. 8 summarizes the GPU per-
formance with different register file configurations over the
selected benchmarks. All the results are normalized to that
of the baseline with SRAM register file (“SRAM”). It shows
that simply replacing SRAM with SLC-STT or MLC-STT
without any optimizations (“SLC” and “MLC”, respectively)
results in on average 7.23% and 6.89% performance degrada-
tion, respectively. In particular, significant system performance
degradation (>14%) was observed in the applications that have
intensive register file accesses, e.g., MRI-Q, STO and BLK,
due to the long read and write access latencies of SLC-STT
and MLC-STT. However, some benchmarks with high reg-
ister file usage (i.e., HOT, LBM, and BP) outperform the
SRAM baseline, thanks to the doubled register file capacity.
Interestingly, NN also shows performance improvement even
its register file usage is only 27.2% across all kernels. Our
detailed analysis found that the register file usage of NN is

Authorized licensed use limited to: Duke University. Downloaded on July 29,2021 at 23:33:54 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: EXPLORING APPLICATIONS OF STT-RAM IN GPU ARCHITECTURES 245

Fig. 8. System performance comparison under different register file configurations. All the results are normalized to that of SRAM baseline design.

Fig. 9. Register usage of the first 4 kernels in each benchmark.

concentrated on only one kernel, as shown in Fig. 9. Hence,
the increased register file capacity greatly raises the number
of the threads that can be issued on that kernel, resulting in
considerable performance improvement.
When remapping strategy is applied (“MLC+RM”), the

two-step read and write operations of MLC-STT register file
are minimized, introducing on average 4.17% enhancement
in system performance compared to “MLC”. Remapping is
particularly effective in the benchmarks that are sensitive to
register file access latency: In SC and HOT, for example, the
performance improvements w.r.t. “MLC” are as high as 7.5%
and 7.01%, respectively.
Note that rescheduling scheme can be applied to both

SLC-STT and MLC-STT register file designs to alleviate the
impact of the long access latency on GPU performance. Hence,
we simulated the performances of the GPUs that have 1) the
SLC-STT register file with rescheduling scheme (“SLC+RS”)
and 2) the MLC-STT register file with both remapping strat-
egy and rescheduling scheme (“MLC+RM+RS”), respec-
tively. Simulation results show that the GPU performance
of “SLC+RS” or “MLC+RM+RS” substantially improves
by 4.47% or 5.89% compared to “SLC” or “MLC+RM”,
respectively. Compared to SLC-STT, the benefit of reschedul-
ing scheme is more prominent in MLC-STT because of
the longer access latency of MLC-STT cells. Among five
register-hungry benchmarks (MRI-Q, HOT, NN, LBM, and BP),
MLC+RM+RS even outperforms SRAM baseline signifi-
cantly, say, on average 10.4% speedup. Across all benchmarks,
MLC+RM+RS still outperforms SRAM baseline by 2.51%.

2) Effectiveness of Remapping and Rescheduling: To further
evaluate the effectiveness of the proposed remapping strategy,
we compare the ratio of the accesses to the hard-bit and soft-
bit rows and the usage of these two types of rows in different

Fig. 10. The statistics of soft-/hard-bit row accesses with/without remapping.

Fig. 11. Rescheduling influence on timescore of issued warps (x-axis: the
number of timescore, y-axis:percentage of issued warps).

benchmarks before and after the remapping strategy is applied.
Fig. 10 shows the statistical results. Without remapping,
on average 53% of accesses fall on soft-bit rows, accounting
for 50.2% of register bank entries in use. The observation
indicates the register file accesses are evenly distributed to the
soft-bit and hard-bit rows. The situation changes dramatically
after applying the remapping strategy: the accesses to soft-bit
rows are greatly promoted to 97.3%. Accordingly, averagely
95.1% of overall soft-bit rows are occupied.
Moreover, for the five benchmarks with less register usage

(BLK, BFS, PF, SC, DCT, STO, and NQU), the soft-bit rows
are sufficient to supply all the register demand, leading to
100% of access and usage ratios. The other five register-
hungry benchmarks, however, need to activate more thread
blocks. We attempt to maximize the use of the soft-bit rows
and allocate the rest to the hard-bit rows. On average, only
7.5% of hard-bit rows are taken by 11.8% of total register
accesses among the five register-hungry benchmarks.
The effectiveness of the proposed rescheduling scheme can

be represented by timescore of each warp after it is issued. The
statistical results before and after applying the rescheduling

Authorized licensed use limited to: Duke University. Downloaded on July 29,2021 at 23:33:54 UTC from IEEE Xplore. Restrictions apply.

246 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 1, JANUARY 2021

Fig. 12. Register Energy consumption under different register file configurations. All the results are normalized to that of SRAM baseline design.

Fig. 13. Normalized energy efficiency.

scheme are compared in Fig. 11. Before scheduling is applied,
majority (>80%) of issued warps need to wait for more
than one cycle before successfully retrieving the operands
from register file. After applying the scheduling, more than
50% warps can immediately access the register file while
the maximum timescore of all the warps reduces from more
than 12 cycles down to 5 cycles.

3) Energy Consumption and Energy Efficiency: Fig. 12
shows the energy consumption of register files with different
configurations, including both dynamic and leakage energies.
Again, all the results are normalized to the SRAM baseline.
Thanks to the non-volatility of STT-RAM, the leakage energy
consumption of register files dramatically reduces when SLC-
STT and MLC-STT are applied. However, directly applying
SLC-STT and MLC-STT without any optimizations incurs
considerable increase in dynamic energy consumption. The
higher dynamic power consumption in MLC is due to the
complex 2-step write and read operations: On average, SLC
achieves approximately 17.6% of energy reduction compared
to SRAM baseline while MLC achieves 5.3% total energy
saving. In general, the dynamic energy of both SLC-STT and
MLC-STT register files dramatically reduces when remapping
strategy is applied: On average, MLC+RM consumes 15.0%
less energy than SRAM, which is very close to that of SLC. In
the benchmarks which have less execution time and require a
small amount of register file (e.g., NQU and STO), less energy
saving is achieved in both SLC and MLC RF implementations.
Note that rescheduling scheme does not reduce the number of
write operations. Hence, it does not affect energy dissipation
visibly. All the simulations above have taken into account the
energy consumed on the additional control circuits.
In this work, we use the ratio of the normalized performance

over energy from [32] to measure the energy efficiency of our
proposed MLC-STT register file design. Fig. 13 shows the

normalized energy efficiency of various register file configura-
tions with and without optimizations. Our design, i.e., MLC-
STT register file with remapping strategy and rescheduling
scheme (“MLC+RM+RS”), achieves the best energy effi-
ciency in 7 out of 10 benchmarks. On average, it is 40.0%
more efficient than SRAM baseline and 14.9% better than the
design of SLC+RS.

B. Evaluation of MLC-STT Shared Memory

Our evaluation also shows that SLC-based shared memory
design introduces on average 15.4% performance degradation
due to the its long write latency, as shown in Fig. 14. The
memory write dominant workloads suffer from significant
performance loss: NQU and STO show more than 30% per-
formance degradation in the SLC implementation. The naïve
MLC implementation even show larger performance degrada-
tion in the workloads that do not need a large shared memory,
such as PF, BP, HOT, and DCT. However, in STO and NQU
which request large shared memory space to enable frequent
on-chip data accesses, the system performance benefits from
the increased shared memory capacity introduced by MLC.
The introduced average performance improvement is 19.4%
compared to SLC. Similar to MLC-RF, remapping strategy
(MLC+RM) helps to minimize the costly two-step MLC
read and write operations. The performance of 6 benchmarks
averagely increases by 14.3%, and is close to that of SRAM
baseline. When write termination is applied, the performance
will be further improved by 3.45%.
Fig. 14(b) compares the energy consumption of various

configurations. Over all 6 GPGPU workloads, SLC-STT based
shared memory design averagely saves 49.3% total energy
compared to SRAM baseline. MLC-STT based shared memory
averagely saves only 24.4% total energy compared to SRAM

Authorized licensed use limited to: Duke University. Downloaded on July 29,2021 at 23:33:54 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: EXPLORING APPLICATIONS OF STT-RAM IN GPU ARCHITECTURES 247

Fig. 14. (a) Performance, (b) Energy consumption, and (c) Normalized
energy efficiency of MLC-based shared memory(_D means dynamic energy
consumption, _L meas leakage energy consumption).

baseline due to the costly 2-step read/write accesses. Non-
optimized MLC implementation introduces significant energy
overhead in the workloads that are write intensive: In STO,
MLC-based shared memory does not save any energy and
indeed consumes 19.5% more energy than the SRAM baseline.
When applying remapping algorithm, the power consumption
is reduced a lot for HOT, PF, DCT, and BP as they require
less than half of the available shared memory capacity and all
their requests are mapped into soft-bit rows. The application
of write termination further reduces the power consumption
of all the benchmarks. NQU, which has the highest ratio of
the unchanged-data write accesses, achieves the largest energy
reduction (43.7%) among all 6 benchmarks.
As shown in Fig. 14(c), MLC-STT shared memory with

remapping strategy and write termination (“MLC+RM+WT”)
achieves the best energy efficiency in all 6 benchmarks. It is
116% more energy-efficient than SRAM baseline and 48%
than the SLC design.

C. Overall Energy and Performance Impacts

We also evaluate the overall performance and power saving
of a streaming multiprocessor having both MLC-RF and
MLC-SM in the 6 benchmarks. As shown in Fig. 15, on aver-
age, the MLC-based streaming multiprocessor design achieves
5.47% performance improvement and 3.2% energy saving
across all 6 benchmarks. Positive energy saving is achieved in
all the benchmarks compared to SRAM baseline because of the
near-zero leakage current of STT-RAM. NQU, STO, and HOT
achieve large performance improvement (i.e., 12.1%, 14.7%
and 19.5%, respectively) by using MLC implementation. Such

Fig. 15. Overall performance and energy consumption of MLC-based GPU
streaming multiprocessor.

improvement comes from the increased parallel thread blocks
introduced by the large capacity of MLC-STT. On the contrary,
the workloads that do not need large register file or shared
memory show even slight performance degradation (i.e., 4.2%,
6.83%, and 2.2%, respectively) due to the long write latency
of MLC-STT.

VI. RELATED WORKS

MLC-STT was invented to replace SRAM in the implemen-
tation of last level cache in general-purpose microprocessors
for capacity and energy improvement [17], [21], [33], [34]. To
alleviate the impact of the long read/write latency of MLC-
STT, line pairing and line swapping schemes were proposed by
Jiang et al. to optimize the usage of the read-fast-write-slow
and read-slow-write-fast regions in parallel MLC-STT [18].
In [19], Bi et al. improved the access performance of the
cache implemented with serial MLC-STT that is composed
of the reversely connected MTJs by grouping the bits of the
cache cells into fast and slow entries.
In modern GPU designs, on-chip memory size rapidly

grows. Register file quickly takes the place of cache and
becomes the largest on-chip memory component to support
large volume of parallel threads and fast context switching; the
capacity of shared memory has been increased generation by
generation to provide enough memory space for data sharing
among the threads in one thread block [4], [6], [35], [36].
Many studies have been conducted to enhance the efficacy of
register file and shared memory, such as unifying the memory
space of register file, shared memory and L1 cache to provide
dynamic re-configurable memory size based on application
requirement [25], adding an extra cache to reduce the access
number of register file [37], and turning off unallocated
register file entries by a tri-modal access control unit for
leakage power reduction [26].
As the on-chip memory capacity is severely constrained by

the large cell area of SRAM, embedded DRAM (eDRAM) [32]
and SRAM-DRAM hybrid structure [38] were introduced into
the register file design in GPGPUs. Recently, Goswami et al.
proposed using SLC-STT to implement register file and
shared memory in GPUs for power and performance improve-
ments [9]. To mitigate the read disturbance of STT-RAM,
Hang et al. applied a software-hardware co-designed solution
to reduce the performance loss and energy overhead caused
by restore operations while maintaining the reliability of

Authorized licensed use limited to: Duke University. Downloaded on July 29,2021 at 23:33:54 UTC from IEEE Xplore. Restrictions apply.

248 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 1, JANUARY 2021

read [39]. Some studies have been focused on addressing the
costly write of STT-RAM for GPU register file, such as [40]
and [41]. As GPU becomes the primary compute processor for
AI and tensor core is added in SM for matrix multiplication
running with other math units together in parallel [42], more
register file and shared memory capacity are desired. Our
MLC-STT-based design further explores the improvement
space of performance and power through higher integration
density and more flexible tradeoff between access performance
and effective storage capacity. We note that MLC-STT is also
facing the endurance and read disturbance as SLC, some even
more serious. As we focus on mitigating the impact of long
latency and high energy of hard bit write in this work, we plan
to address the bit-level disturbance and endurance issues at
architecture level next, as well as consider other types of
MTJ devices have less program current, like perpendicular
MTJ [43].

VII. CONCLUSION

In this work, we propose a MLC-STT register file design
to overcome the limited scalability of SRAM-based register
file and shared memory in GPU architecture. By leveraging
high integration density and non-volatility of MLC-STT, our
design dramatically reduces the area and leakage power of
GPU register file and shared memory. To overcome the per-
formance degradation due to the slow access to the hard bits
of MLC-STT cells, we propose a remapping strategy that
allocates frequently-accessed registers into soft-bit rows with
faster access speed and less energy consumption whenever
it is possible. A bank-status-aware-scheduling scheme is also
invented to reorder the warp issuing to minimize the access
stalls induced by the long write accesses. Experimental results
show that the MLC-STT designs deliver better system perfor-
mance than that of conventional SRAM baseline while achiev-
ing significant area reduction and system energy efficiency
improvement.

REFERENCES

[1] AMD. Radeon. Accessed: 2000. [Online]. Available: http://www.
amd.com/us/products/notebook/graphics/Pa-ges/notebook-graphics.aspx

[2] Nvidia. Tegra. Accessed: 2008. [Online]. Available: http://www.nvidia.
com/object/tegra.html

[3] AMD. Heterogeneous Computing. Accessed: 2012. [Online]. Available:
http://developer.amd.com/resources/he-terogeneous-computing

[4] Nvidia. Fermi. Accessed: 2010. [Online]. Available: http://www.nvidia.
com/object/fermi-architecture.html

[5] M. Arora, “The architecture and evolution of CPU-GPU systems for
general purpose computing,” Res. Surv., Dept. Comput. Sci. Eng., Univ.
California, San Diego, CA, USA, Tech. Rep., 2012.

[6] Nvidia. Kepler. Accessed: 2012. [Online]. Available: https://www.nvidia.
com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-
Whitepaper.pdf

[7] S. Che et al., “Rodinia: A benchmark suite for heterogeneous com-
puting,” in Proc. IEEE Int. Symp. Workload Characterization (IISWC),
Oct. 2009, pp. 44–54.

[8] W. W. L. Fung, I. Sham, G. Yuan, and T. M. Aamodt, “Dynamic warp
formation: Efficient MIMD control flow on SIMD graphics hardware,”
ACM Trans. Archit. Code Optim., vol. 6, no. 2, pp. 1–37, Jun. 2009.

[9] N. Goswami, B. Cao, and T. Li, “Power-performance co-optimization
of throughput core architecture using resistive memory,” in Proc. IEEE
19th Int. Symp. High Perform. Comput. Archit. (HPCA), Feb. 2013,
pp. 342–353.

[10] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt,
“Analyzing CUDA workloads using a detailed GPU simulator,” in Proc.
IEEE Int. Symp. Perform. Anal. Syst. Softw., Apr. 2009, pp. 163–174.

[11] J. Leng et al., “GPUWattch: Enabling energy optimizations in GPG-
PUS,” in Proc. 40th Annu. Int. Symp. Comput. Archit. (ISCA), 2013,
pp. 487–498.

[12] K. L. Spafford, J. S. Meredith, S. Lee, D. Li, P. C. Roth, and J. S. Vetter,
“The tradeoffs of fused memory hierarchies in heterogeneous comput-
ing architectures,” in Proc. 9th Conf. Comput. Frontiers (CF), 2012,
pp. 103–112.

[13] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk,
and W.-M.-W. Hwu, “Optimization principles and application perfor-
mance evaluation of a multithreaded GPU using CUDA,” in Proc. 13th
ACM SIGPLAN Symp. Princ. Pract. Parallel Program. (PPoPP), 2008,
pp. 73–82.

[14] R. Dorrance, F. Ren, Y. Toriyama, A. A. Hafez, C.-K.-K. Yang, and
D. Markovic, “Scalability and design-space analysis of a 1T-1MTJ
memory cell for STT-RAMs,” IEEE Trans. Electron Devices, vol. 59,
no. 4, pp. 878–887, Apr. 2012.

[15] Y. Zhang et al., “Compact model of subvolume MTJ and its design appli-
cation at nanoscale technology nodes,” IEEE Trans. Electron Devices,
vol. 62, no. 6, pp. 2048–2055, Jun. 2015.

[16] Y. Zhang, L. Zhang, W. Wen, G. Sun, and Y. Chen, “Multi-level cell
STT-RAM: Is it realistic or just a dream?” in Proc. Int. Conf. Comput.-
Aided Design (ICCAD), 2012, pp. 526–532.

[17] Y. Chen, W.-F. Wong, H. Li, and C.-K. Koh, “Processor caches built
using multi-level spin-transfer torque RAM cells,” in Proc. IEEE/ACM
Int. Symp. Low Power Electron. Design, Aug. 2011, pp. 73–78.

[18] L. Jiang, B. Zhao, Y. Zhang, and J. Yang, “Constructing large and fast
multi-level cell STT-MRAM based cache for embedded processors,” in
Proc. 49th Annu. Design Autom. Conf. (DAC), 2012, pp. 907–912.

[19] X. Bi, M. Mao, D. Wang, and H. Li, “Unleashing the potential of
MLC STT-RAM caches,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided
Design (ICCAD), Nov. 2013, pp. 429–436.

[20] M. Hosomi et al., “A novel nonvolatile memory with spin torque transfer
magnetization switching: Spin-RAM,” in IEDM Tech. Dig., Dec. 2005,
pp. 459–462.

[21] T. Ishigaki et al., “A multi-level-cell spin-transfer torque memory with
series-stacked magnetotunnel junctions,” in Proc. Symp. VLSI Technol.,
Jun. 2010, pp. 47–48.

[22] Y. Chen et al., “Access scheme of multi-level cell spin-transfer torque
random access memory and its optimization,” in Proc. 53rd IEEE Int.
Midwest Symp. Circuits Syst., Aug. 2010, pp. 1109–1112.

[23] Nvidia. GeForce GTX 480. Accessed: 2010. [Online]. Available: http://
www.geforce.com/hardware/desktop-gpus/geforce-gtx-480/
specifications

[24] B. W. Coon, J. E. Lindholm, S. Liu, S. F. Oberman, and M. Y. Siu,
“Operand collector architecture,” U.S. Patent 7834881, Nov. 16, 2010.

[25] M. Gebhart, S. W. Keckler, B. Khailany, R. Krashinsky, and W. J. Dally,
“Unifying primary cache, scratch, and register file memories in a
throughput processor,” in Proc. 45th Annu. IEEE/ACM Int. Symp.
Microarchitecture, Dec. 2012, pp. 96–106.

[26] M. Abdel-Majeed and M. Annavaram, “Warped register file: A power
efficient register file for GPGPUs,” in Proc. IEEE 19th Int. Symp. High
Perform. Comput. Archit. (HPCA), Feb. 2013, pp. 412–423.

[27] P. Shivakumar and N. P. Jouppi, “Cacti 3.0: An integrated cache timing,
power, and area model,” Compaq Comput. Corp., Palo Alto, CA, USA,
Tech. Rep. 2001/2, 2001.

[28] W. Zhao and Y. Cao, “New generation of predictive technology model
for sub-45 nm early design exploration,” IEEE Trans. Electron Devices,
vol. 53, no. 11, pp. 2816–2823, Nov. 2006.

[29] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “NVSim: A circuit-level
performance, energy, and area model for emerging nonvolatile memory,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 31, no. 7,
pp. 994–1007, Jul. 2012.

[30] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “Energy reduction for STT-
RAM using early write termination,” in Proc. Int. Conf. Comput.-Aided
Design (ICCAD), Nov. 2009, pp. 264–268.

[31] J. A. Stratton et al., “Parboil: A revised benchmark suite for scientific
and commercial throughput computing,” Center Reliable High-Perform.
Comput., vol. 127, pp. 1–12, 2012.

[32] N. Jing et al., “An energy-efficient and scalable eDRAM-based register
file architecture for GPGPU,” in Proc. 40th Annu. Int. Symp. Comput.
Archit. (ISCA), 2013, pp. 344–355.

[33] Y. Chen, W.-F. Wong, H. Li, C.-K. Koh, Y. Zhang, and W. Wen, “On-
chip caches built on multilevel spin-transfer torque RAM cells and its
optimizations,” ACM J. Emerg. Technol. Comput. Syst., vol. 9, no. 2,
pp. 1–22, May 2013.

Authorized licensed use limited to: Duke University. Downloaded on July 29,2021 at 23:33:54 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: EXPLORING APPLICATIONS OF STT-RAM IN GPU ARCHITECTURES 249

[34] W. Xu, Y. Chen, X. Wang, and T. Zhang, “Improving STT MRAM
storage density through smaller-than-worst-case transistor sizing,” in
Proc. 46th Annu. Design Autom. Conf. DAC, 2009, pp. 87–90.

[35] Nvidia. Maxwell. Accessed: 2014. [Online]. Available: http://
international.download.nvidia.com/geforce-com/international/pdfs/
GeForce-GTX-750-Ti-Whitepaper.pdf

[36] Nvidia. Pascal. Accessed: 2016. [Online]. Available: http://images.
nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.
pdf

[37] M. Gebhart, S. W. Keckler, and W. J. Dally, “A compile-time managed
multi-level register file hierarchy,” in Proc. 44th Annu. IEEE/ACM Int.
Symp. Microarchitecture (MICRO), Dec. 2011, pp. 465–476.

[38] W.-K.-S. Yu, R. Huang, S. Q. Xu, S.-E. Wang, E. Kan, and G. E. Suh,
“SRAM-DRAM hybrid memory with applications to efficient register
files in fine-grained multi-threading,” in Proc. 38th Annu. Int. Symp.
Comput. Archit. (ISCA), 2011, pp. 247–258.

[39] H. Zhang et al., “Shielding STT-RAM based register files on GPUs
against read disturbance,” ACM J. Emerg. Technol. Comput. Syst.,
vol. 13, no. 2, pp. 1–17, Mar. 2017.

[40] J. Wang and Y. Xie, “A write-aware STTRAM-based register file archi-
tecture for GPGPU,” ACM J. Emerg. Technol. Comput. Syst., vol. 12,
no. 1, pp. 1–12, 2015.

[41] H. Zhang, X. Chen, N. Xiao, and F. Liu, “Architecting energy-efficient
STT-RAM based register file on GPGPUs via delta compression,” in
Proc. 53rd Annu. Design Autom. Conf. (DAC), 2016, pp. 1–6.

[42] Nvidia. Volta. Accessed: 2017. [Online]. Available: https://images.
nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.
pdf

[43] G. Wang et al., “Compact modeling of perpendicular-magnetic-
anisotropy double-barrier magnetic tunnel junction with enhanced ther-
mal stability recording structure,” IEEE Trans. Electron Devices, vol. 66,
no. 5, pp. 2431–2436, May 2019.

Xiaoxiao Liu received the B.S. and M.S. degrees in
electrical engineering and software engineering from
Beihang University, Beijing, China, in 2005 and
2009, respectively, and the Ph.D. degree from the
University of Pittsburgh in 2017. She worked with
Dr. Y. Chen on emerging memory and heterogeneous
system architecture during her Ph.D. study. She
currently is working as a Senior Technical Staff at
GPU Architecture Team, AMD.

Mengjie Mao received the B.S. degree in computer
science from the South China University of Technol-
ogy, the M.S. degree in computer science from the
University of Science and Technology of China, and
the Ph.D. degree from the University of Pittsburgh
in 2016. He is currently a Software Engineer with
Waymo LLC.

Xiuyuan Bi received the B.E. and M.E. degrees in
microelectronics from Tsinghua University, Beijing,
China, and the Ph.D. degree in electrical engineering
from the University of Pittsburgh, Pittsburgh, PA,
USA. He is currently a Principal Design Engi-
neer with Black Sesame Technology. His research
interests include emerging nonvolatile memory tech-
nology and hardware acceleration for deep neural
networks.

Hai (Helen) Li (Fellow, IEEE) received the B.S.
and M.S. degrees from Tsinghua University, Beijing,
China, and the Ph.D. degree from the Department
of Electrical and Computer Engineering, Purdue
University, West Lafayette, IN, USA, in 2004. She is
currently the Clare Boothe Luce Associate Professor
with the Department of Electrical and Computer
Engineering, Duke University, Durham, NC, USA.
Before that, she was with Qualcomm Inc., San
Diego, CA, USA, Intel Corporation, Santa Clara,
CA, Seagate Technology, Bloomington, MN, USA,

the Polytechnic Institute of New York University, Brooklyn, NY, USA, and the
University of Pittsburgh, Pittsburgh, PA, USA. She has authored or coauthored
more than 200 technical papers in peer-reviewed journals and conferences
and a book titled Nonvolatile Memory Design: Magnetic, Resistive, and
Phase Change (CRC Press, 2011). Her current research interests include
neuromorphic architecture for brain-inspired computing systems, machine
learning and deep neural network, memory design and architecture, and
architecture/circuit/device cross-layer optimization for low power and high
performance. She is currently a Distinguished Lecturer of the IEEE CAS
Society and a Distinguished Speaker of ACM. She is a Distinguished Member
of ACM. She was a recipient of the NSF CAREER Award, the DARPA
Young Faculty Award (YFA), and the TUM-IAS Hans Fisher Fellowship
from Germany. She received seven best paper awards and additional seven
best paper nominations from international conferences. She was the General
Chair or Technical Program Chair of multiple IEEE/ACM conferences and
a technical program committee member of over 30 international conference
series. She serves as an Associate Editor for the IEEE TRANSACTIONS
ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS,
the IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION, the
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS,
the IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, ACM
TECS, IEEE Consumer Electronics Magazine, ACM TODAES, and IET-CPS.

Yiran Chen (Fellow, IEEE) received the B.S. and
M.S. degrees from Tsinghua University and the
Ph.D. degree from Purdue University in 2005. After
five years in industry, he joined the University
of Pittsburgh in 2010, as an Assistant Professor,
and then promoted to Associate Professor with
tenure in 2014, held a Bicentennial Alumni Faculty
Fellowship. He is currently a Professor with the
Department of Electrical and Computer Engineering,
Duke University, and serving as the Director of
the NSF Industry–University Cooperative Research

Center (IUCRC) for Alternative Sustainable and Intelligent Computing (ASIC)
and the Co-Director of the Center for Computational Evolutionary Intelligence
(CEI), Duke University, focusing on the research of new memory and
storage systems, machine learning and neuromorphic computing, and mobile
computing systems. He has published one book and more than 350 technical
publications and holds 93 U.S. patents. He received six best paper awards
and 13 best paper nominations from international conferences. He was a
recipient of the NSF CAREER Award and the ACM SIGDA Outstanding New
Faculty Award. He is a Distinguished Member of ACM, a Distinguished Lec-
turer of the IEEE CEDA, and a recipient of the Humboldt Research Fellowship
for Experienced Researchers. He serves or served as an associate editor for
several IEEE and ACM transactions/journals and served on the technical and
organization committees of more than 50 international conferences.

Authorized licensed use limited to: Duke University. Downloaded on July 29,2021 at 23:33:54 UTC from IEEE Xplore. Restrictions apply.

