
TPrune: Efficient Transformer Pruning for Mobile Devices

JIACHEN MAO, Duke University, United States

HUANRUI YANG, Duke University, United States

ANG LI, Duke University, United States

HAI LI, Duke University, United States

YIRAN CHEN, Duke University, United States

The invention of Transformer model structure boosts the performance of Neural Machine Translation (NMT)

tasks to an unprecedented level. Many previous works have been done to make the Transformer model more

execution-friendly on resource-constrained platforms. These researches can be categorized into three key

fields: Model Pruning, Transfer Learning, and Efficient Transformer Variants. The family of model pruning

methods are popular for their simplicity in practice and promising compression rate and have achieved great

success in the field of convolution neural networks (CNNs) for many vision tasks. Nonetheless, previous

Transformer pruning works did not perform a thorough model analysis and evaluation on each Transformer

component on off-the-shelf mobile devices. In this work, we analyze and prune transformer models at the

line-wise granularity and also implement our pruning method on real mobile platforms. We explore the

properties of all Transformer components as well as their sparsity features, which are leveraged to guide

Transformer model pruning. We name our whole Transformer analysis and pruning pipeline as TPrune.

In TPrune, we first propose Block-wise Structured Sparsity Learning (BSSL) to analyze Transformer model

property. Then, based on the characters derived from BSSL, we apply Structured Hoyer Square (SHS) to derive

the final pruned models. Comparing with the state-of-the-art Transformer pruning methods, TPrune is able to

achieve a higher model compression rate with less performance degradation. Experimental results show that

our pruned models achieve 1.16× - 1.92× speedup on mobile devices with 0% - 8% BLEU score degradation

compared with the original Transformer model.

CCS Concepts: • Computing methodologies → Neural networks; Machine translation; Regularization;

Feature selection; • Computer systems organization → Embedded software; • Software and its en-

gineering → Software libraries and repositories.

Additional Key Words and Phrases: neural machine translation, neural networks, model pruning, embedded

software, real-time system, mobile computing

ACM Reference Format:

Jiachen Mao, Huanrui Yang, Ang Li, Hai Li, and Yiran Chen. . TPrune: Efficient Transformer Pruning for

Mobile Devices. 1, 1 (July), 22 pages.

Authors’ addresses: Jiachen Mao, Duke University, Durham, United States, jiachen.mao@duke.edu; Huanrui Yang, Duke

University, Durham, United States, huanrui.yang@duke.edu; Ang Li, Duke University, Durham, United States, ang.li630@

duke.edu; Hai Li, Duke University, Durham, United States, hai.li@duke.edu; Yiran Chen, Duke University, Durham, United

States, yiran.chen@duke.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© Association for Computing Machinery.

XXXX-XXXX//7-ART $15.00

https://doi.org/

, Vol. 1, No. 1, Article . Publication date: July .

2 Mao, et al.

1 INTRODUCTION

1.1 Motivation

In modern cyber-physical systems (CPS), the human-computer interaction plays an important
role many Human-centered applications. As a result of that, Neural Machine Translation (NMT)
acts as an input media for better human machine interface understanding in CPS. Transformer
has emerged in the NMT tasks as a promising paradigm for sequence modeling [1]. Empowered
by the stacking of attention and large feed forward layers, Transformer successfully achieves
state-of-the-art performance in many NMT benchmarks. In recent years, the performance of many
pre-trained attention-based models has been further enhanced by larger datasets as well as larger
model sizes [2–4].

However, the ever-growing model size of the transformer models introduces tremendous memory
consumption and computational cost, making the models hard to be deployed onto real-time
CPS [5, 6]. Running the transformer models on remote servers may potentially cause latency,
privacy, and security problems [7, 8]. Hence, efficiently executing transformer models on resource-
constrained platforms becomes critical [9–12]. Among all the solutions, compressing the model size
has been proven as an effective way to reduce the resource needs of transformer model execution.
Current model compression techniques for Transformer models mainly fall into three categories –
Model Pruning, Transfer Learning, and Efficient Transformer Variants.
Model Pruning method fine-tunes the original pre-trained model to force the weights [13–15]

or activations [16–18] to be zeros as many as possible. A transformer model may be pruned at
four different pruning granularity levels, say, layer-wise pruning [19], head-wise pruning [20, 21],
line-wise pruning [22] and element-wise pruning [23].

Transfer Learning method aims at using the knowledge from a pre-trained large model to guide
the training of a smaller model structure. In [24], Sanh et al. initially remove 1 out of every 2 layers
of the teacher model to form the student model. Then, the student model is trained based on the
KL-divergence of the logits from the student and teacher model. In [25], Sun et al. transfer the
knowledge of the Transformer model using both the MSE of feature maps and the KL divergence
of per-head self-attention distribution between the student and teacher models as the loss.

Efficient Transformer Variants method tries to substitute the original costly Transformer modules
with more efficient operators. For example, in [26], Zhang et al. introduce average layer and gating
layer to summarize history attention via a cumulative average operation over previous positions to
replace the original self-attention scheme. In [27], Wu et al. introduce Long-Short Range Attention,
which designates different heads for local heads modeling and long-distance relationship to broaden
the functionalities of attention structure in Transformer.

Among all three model compression methods, model pruning is the most straightforward tech-
nique. Compared with transfer learning and efficient Transformer variants, model pruning neither
requires extra human effort in model structure design nor needs to train the model from scratch.

1.2 Proposed Method

Our work falls into the category of model pruning for real-time cyber-physical system on mobile
devices at line-wise pruning granularity, similar to [22]. Note that model pruning is orthogonal to
other model compression methods. All the models, including original Transformer and Transformer
variants, can be pruned with possibly accuracy tradeoff. Therefore, in this work, we compare our
method with all the model pruning works on Transformer models. Different from these works where
pruning is often performed heuristically, we thoroughly analyze all the Transformer components to
find the best pruning scheme that can achieve a satisfactory sparsity-accuracy tradeoff. Moreover,

, Vol. 1, No. 1, Article . Publication date: July .

TPrune: Efficient Transformer Pruning for Mobile Devices 3

we quantitatively test the real inference speedup of our pruned Transformer models on resource-
constrained mobile devices and report these first-hand results.

1.3 Contributions

In the CPS enabled by NMT, the security of the users and translation latency are two key challenges.
In this work, we propose TPrune, a Transformer-based analyzing and pruning method for efficient
deployment of Neural Machine Translation (NMT) applications on mobile devices. With TPrune,
we are able to derive more efficient Transformer models for the local execution on embedding
devices so as to enable better user-privacy and lower response latency in CPS. Specifically, the
contributions of this work can be summarized as follows:

• We use Block-wise Structure Sparsity Learning (BSSL) to exploit the redundancy of the
Transformer model through group lasso regularizer.

• We visualize the Transformer model pruned using BSSL and analyze the sparsity pattern of
the pruned model. We then derive the pruning rules of each Transformer component.

• We extend Structured Hoyer Square (SHS) regularizer from Convolutional Neural Networks
(CNNs) to Transformer models guided by the derived pruning rules.

• We evaluate the model performance, sparsity, and computational cost of the model pruned
by TPrune on real mobile devices. We also compare the effectiveness of TPrune with other
state-of-the-art works in the field of Transformer pruning [21] and pruning regularizer [14].

The remainder of our paper is organized as follows: In Section 2, we first give a brief introduction
to Transformer architecture. Second, we profile the characteristics and computational costs of
different neural network layers on mobile devices and present the challenge of Transformer
deployments. Then, we summarize the related Transformer model pruning works and how these
works related to our work. Finally, we illustrate the regularizers that are widely used for model
pruning. In Section 3, we first present the objects of our analysis. Then, we introduce Block-wise
Structure Sparsity Learning (BSSL) and use it to derive the pruning properties of Transformer
models. In Section 4, we first adopt Structured Hoyer Square regularizer for Transformer line-wise
pruning. Then, we discuss our pruning strategy of the Transformer model based on the guidance
of BSSL-based analysis in Section 3. In Section 5, we give the experimental setup and results of
our pruned Transformer models including the model sparsity, execution speedup, and overall
performance of TPrune. Section 6 concludes the paper.

2 PRELIMINARY

2.1 Transformer Architecture

Fig. 1 depicts the architecture of Transformer model in [1]. Transformer is a sequence-to-sequence
model which is composed of decoder (left) and encoder (right). Both decoder and encoder are made
up of several identical Transformer blocks. The input and output of each block in Transformer
have identical dimensions (𝑑𝑚𝑜𝑑𝑒𝑙), which are the same as the embedding dimension (𝑑𝑒𝑚𝑏𝑒𝑑) of
the input/output words. Following [1], in this work, we set 𝑑𝑚𝑜𝑑𝑒𝑙 to 512. In each Transformer
block, there exist two main components, which are Multi-Head Attention (MHA) and Feed Forward
Network (FFN). The detail of these two components will be illustrated in Section 3. In [1], translation
tasks are adopted in the experiment. Similarly, in this work, we also conducted our experiments on
NMT English to German translation task.

2.2 Model Profiling on Mobile Devices

Although Transformer could be categorized as a deep neural network which is full of linear
weight matrix that seems amiable to deep compression [13], the normalized weight magnitude

, Vol. 1, No. 1, Article . Publication date: July .

4 Mao, et al.

Fig. 1. Transformer Architecture in [1]

(a) ResNet on Cifar10 (b) Transformer on WMT

D
ist

rib
ut

io
n

D
en

sit
y

Fig. 2. Weight distribution of (a) ResNet and (b) Transformer

of Transformer models is much larger than that of CNNs due to the nature of the target tasks.
Fig. 2 compares the weight distribution of Transformer on WMT dataset [28] and ResNet [29] on
CIFAR-10 dataset [30]. Note that Transformer and ResNet are targeting at language processing
and computer vision, respectively. For the ease of comparison, we visualize the weights from −1
to 1 for both models. Comparing with the ResNet in Fig. 2(b), the range of the distribution of the
Transformer’s weights is much wider, meaning that the weight magnitude of Transformer models
is much larger than that of CNNs. Therefore, the pruning of Transformer faces many challenges
compared to the pruning of CNNs, which has been proven in many previous works [20–23].

, Vol. 1, No. 1, Article . Publication date: July .

TPrune: Efficient Transformer Pruning for Mobile Devices 5

A
ve

ra
ge

Ti
m

e
(μ

s)

Lenet Inception-BN VGG-16
1.0E+0

1.0E+2

1.0E+4

1.0E+6
Convolutional Layer
Fully-connected Layer
Other Layer

M
em

or
y

U
sa

ge
(k

B)

Lenet Inception-BN VGG-16
1.0E+0

1.0E+2

1.0E+4

1.0E+6
Convolutional Layer
Fully-connected Layer
Other Layer

Fig. 3. Comparison between Fully-connected layers and Convolutional layers.

In order to understand the properties of different types of layers in deep neural networks, we
deploy three representative models on Nexus5 [6, 31], which are Lenet [32], Inception-BN [29],
and VGG-16 [33]. For each model, we obtained the breakdown of time consumption and memory
cost of convolutional layers, fully-connected layers, and other layers. As shown in Fig. 3, fully-
connected layers and convolutional layers consume most resources during the execution. More
specifically, fully-connected layers are the most memory-intensive while convolutional layers
are the most computation-intensive. For Transformer, both MHA and FFN are composed of fully-
connected layers. Therefore, reducing the number of model parameters is critical to the deployment
of Transformer on resource-constrained mobile devices.

2.3 Transformer Model Pruning

As mentioned in Section 1.1, many previous works have been done in the field of Transformer
model compression. In the field of NMT tasks, besides efficient Transformer variance [26, 27, 34],
Transformer pruning is the most popular topic for Transformer compression due to its simplicity
and practicality [19–23]. These Transformer pruning works could be classified into the following
types in terms of different pruning granularities.
Layer-wise pruning uses Transformer layers as the smallest pruning granularity. For example,

in [19], Fan et al. propose LayerDrop, which selects sub-network of any depth from the origi-
nal Transformer network during inference time. In LayerDrop, a drop rate is learned for each
Transformer layer during training and only the highest-scored layers are adopted during testing.

Head-wise pruning uses attention heads in Transformer as the smallest pruning granularity.
For example, in [20], Voita et al. apply gates on each head of MHA for pruning using stochastic
relaxation. It prunes half of all heads in Transformer with less than 0.25 BLEU degradation. In [21],
Michel et al. also mask the heads in MHA iteratively based on the proposed proxy score to evaluate
the importance of each attention head.
Line-wise pruning uses rows or columns in Transformer layer matrices as the smallest pruning

granularity. For example, in [22], Kenton et al. utilize auto-sizing to prune Transformer model
weights with regularizer and proximal gradient descent. However, auto-sizing severely affects the
performance of the pruned model. For example, the BLEU score drops from 27.9 to 20.9 when 20%
of parameters are removed in Arabic to English translation task.
Element-wise pruning uses random weights as the smallest pruning granularity. For example,

in Transformer.zip [23], Cheong et al. implement iterative magnitude pruning, which masks out
the weights that are less than a certain threshold and iteratively retrain the model. Although
element-wise pruning, in general, leads to a higher sparsity than other pruning methods, it achieves
real speedup only under some specific hardware setting.

, Vol. 1, No. 1, Article . Publication date: July .

6 Mao, et al.

Moreover, BERT is a self-supervised approach to train a pre-trained model for many downstream
language tasks with Transformer structure [2]. Many model compression works have also be
done on BERT utilizing various technologies like transfer learning [24, 25], pruning [35–37], and
quantization [38, 39].

TPrune falls into the category of line-wise pruning. In this work, we mainly focus on the speedup
of the execution of NMT tasks of Transformer models using pruning methods when being deployed
on resource-constrained platforms.

2.4 Model Pruning with Regularizer

When pruning a model, we could use a straightforward training loss: 𝐿0 regularization of model
weights. In such a case, 𝐿0 represents the number of non-zero weights. However, 𝐿0 is non-convex
and indifferentiable. Hence, gradient-based methods are hard to apply to 𝐿0 regularizer. In [40],
Han et al. iteratively prune a fixed percentage of weights with the smallest magnitude. Such a
heuristic method hardly achieves the optimal compression rate. As an alternative, 𝐿1 regularizer
is introduced. In [41], Liu et al. apply 𝐿1 regularizer on weights to achieve element-wise sparsity.
However, the drawback of 𝐿1 is its scale-variance property, meaning that the gradient varies with
respect to the scale of the original weight magnitude.

Structured pruning extends element-wise pruning to group-wise. By removing groups of weights
from the original model weights, the memory usage locality can be preserved and the speedup on
real computing systems can be achieved. In [14], Wen et al. group each column and row of the
weight matrix using 𝐿2 norm and minimize the 𝐿1 of all these grouped weights. Similarly, in [22],
Kenton et al. apply 𝐿1 to the 𝐿∞ of all the grouped weights, where the scale variance problem still
holds. In [20], Gate method is proposed to apply on each head of MHA component in Transformer.
The gate value is drawn independently from a parameterized concrete distribution. However, such
a method incurs extra overheads in the gate approximation, making it less scalable.

2.5 Structured Hoyer Square (SHS)

In TPrune, we adopt Structured Hoyer Square (SHS) for structured Transformer model pruning [42].
Previously, the effectiveness of SHS on CNNs has been demonstrated in [42]. In this work, we
will explore the challenges of applying SHS to Transformer models for sequence-to-sequence
applications.
The key reason why we adopt Hoyer regularizer is because of its scale-invariant property, i.e.,

𝑅(𝛼𝑋) = 𝑅(𝑋), where Hoyer regularizer 𝑅(𝑋) equals:

𝑅(𝑋) =
∑
𝑖 |𝑥𝑖 |√∑
𝑖 𝑥

2
𝑖

. (1)

The minima structure of Hoyer regularizer is close to 𝐿0, which meets the intention of weight

pruning. In order to align Equation (1)of scale (0 −
√
𝑁) with 𝐿0 of range (0 − 𝑁), Hoyer-Square

(HS) regularizer is proposed for element-wise sparsity [42] as:

𝐻𝑆 (𝑊) = (∑𝑖 |𝑤𝑖 |)2∑
𝑖 𝑤

2
𝑖

. (2)

In addition to scale-invariant, the HS regularizer is also differentiable. It has the same range and
minima structure as the 𝐿0 norm. In the scenario of structured pruning, HS regularizer is turned
into Structured Hoyer Square (SHS), which can be expressed as:

𝑆𝐻𝑆 (𝑊) =
(∑𝐺

𝑔=1 | |𝑤 (𝑔) | |2)2∑𝐺
𝑔=1 | |𝑤 (𝑔) | |22

, (3)

, Vol. 1, No. 1, Article . Publication date: July .

TPrune: Efficient Transformer Pruning for Mobile Devices 7

where | |𝑤 (𝑔) | |2 denotes the 𝐿2 norm of group of weights𝑤 (𝑔) . Hence, Equation (3) is equivalent to:

𝑆𝐻𝑆 (𝑊) =
(∑𝐺

𝑔=1 | |𝑤 (𝑔) | |2)2
| |𝑊 | |22

, (4)

3 ANALYSIS OF TRANSFORMERWITH BLOCK-WISE STRUCTURE SPARSITY

LEARNING

3.1 Analysis of Model Components

As mentioned in Section 2, Transformer is mainly made up of two layer components, of which we
want to decrease the parameter size:

Multi-Head Attention (MHA):Multi-head attention components take three matrices: Query
(Q) of dimension 𝑑𝑞 , Key (K) of dimension 𝑑𝑘 , and Value (V) of dimension 𝑑𝑣 as input and generate
the transformed matrices of dimension 𝑑𝑜 . In [1], 𝑑𝑞=𝑑𝑘=𝑑𝑣=𝑑𝑜=𝑑𝑚𝑜𝑑𝑒𝑙/𝑛, where 𝑛 represents the
number of heads in MHA components, which is set to 8. Hence, 𝑑𝑞=𝑑𝑘=𝑑𝑣=𝑑𝑜=𝑑𝑚𝑜𝑑𝑒𝑙/ℎ=512/8=64.
For multi-head self-attention, Q, k, V are identical. Formally, MHA is calculated as:

𝑀𝐻𝐴(𝑄,𝐾,𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡 (ℎ1, ..., ℎ𝑛)𝑊 𝑜 ,

𝑤ℎ𝑒𝑟𝑒 ℎ𝑖 = 𝐴𝑡𝑡𝑛(𝑄𝑊𝑄
𝑖 , 𝐾𝑊 𝐾

𝑖 ,𝑉𝑊𝑉
𝑖). (5)

In Equation (5), the attention function (𝐴𝑡𝑡𝑛) equals:

𝐴𝑡𝑡𝑛(𝑄,𝐾,𝑉) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝐾𝑇 /
√
𝑑𝑘)𝑉 . (6)

As expressed in Equation (6), attention operation basically multiplies 𝑄 and 𝐾 (scaled by
√
𝑑𝑘),

applies softmax on the results and multiplies it with 𝑉 , where no model parameters are involved.
Therefore, our pruning targets of MHA are𝑊𝑄 ,𝑊 𝐾 ,𝑊𝑉 , and𝑊 𝑜 , where𝑊 𝑜 is called the output

transform matrix. Because 𝑄 , 𝐾 , 𝑉 matrices are of the same shape,𝑊𝑄
𝑖 ,𝑊 𝐾

𝑖 , and𝑊𝑉
𝑖 (𝑖 = [1...8])

could be combined into one weight matrix and computed in parallel. Here𝑊𝑄 ,𝑊 𝐾 ,𝑊𝑉 are of
shape (𝑑𝑚𝑜𝑑𝑒𝑙 , 𝑑𝑚𝑜𝑑𝑒𝑙) and𝑊

𝑜 is also of shape (𝑑𝑚𝑜𝑑𝑒𝑙 , 𝑑𝑚𝑜𝑑𝑒𝑙).
Fully-connected Feed-forward Network (FFN): Fully-connected Feed-forward Networks

(FFN) take the output of MHA as input and consist of two subsequent fully connected layers with
ReLU activation function in between. FFN is formulated as:

𝐹𝐹𝑁 (𝑥) =𝑚𝑎𝑥 (0, 𝑥𝑊𝑓 𝑓 𝑛1 + 𝑏1)𝑊𝑓 𝑓 𝑛2 + 𝑏2, (7)

where 𝑏1 and 𝑏2 are biases. Therefore,𝑊𝑓 𝑓 𝑛1 and𝑊𝑓 𝑓 𝑛2 are the pruning targets of FFN components,
which are of shape (𝑑𝑚𝑜𝑑𝑒𝑙 , 𝑑𝑓 𝑓 𝑛) and (𝑑𝑓 𝑓 𝑛, 𝑑𝑚𝑜𝑑𝑒𝑙), respectively. Following [1], 𝑑𝑓 𝑓 𝑛 equals 2048,
which is 4 times of 𝑑𝑚𝑜𝑑𝑒𝑙 .

3.2 Analysis of Pruning Target

Although our pruning targets are fully-connected layers, there still exist some challenges in learning
the compact structure of Transformer. Transformer is composed of encoder and decoder, which
may have different layer properties due to their different functionalities. Moreover, the input
dimension of𝑊𝑓 𝑓 𝑛1 denotes the dimension of the input word embedding (𝑑𝑒𝑚𝑏𝑒𝑑) while the output
dimension represents the linear transformations (𝑑𝑓 𝑓 𝑛). It is hard to prune the model without a
full understanding of the underlined meanings of the network configurations. More specifically, in
order to better prune a Transformer model, we need to answer several questions relevant to the
properties of Transformer components:

◦ For each of our pruning targets (𝑊𝑄 ,𝑊 𝐾 ,𝑊𝑉 ,𝑊 𝑜 ,𝑊𝑓 𝑓 𝑛1 and𝑊𝑓 𝑓 𝑛2), should we prune it
row-wise, or column-wise, or both row-wise and column-wise?

◦ Should we treat encoder and decoder equally during pruning?

, Vol. 1, No. 1, Article . Publication date: July .

8 Mao, et al.

Original Matrix Blocked Matrix Final Blocked Matrix

Tile
Initialize

SSL Train
Input

Output

Row-wise Group LassoColumn-wise Group Lasso
Concatenate Concatenate

Fig. 4. Block-wise structured sparsity learning.

◦ Is the pruning properties the same for shallow layers and deep layers?
◦ Should𝑊𝑄 ,𝑊 𝐾 ,𝑊𝑉 be pruned with the same sparsity in MHA?

We will answer these questions in the following sections.

3.3 Block-wise Structured Sparsity Learning (BSSL)

In this work, we use Block-wise Structured Sparsity Learning (BSSL) to analyze the pruning
properties of Transformer. In BSSL, we divide the original weight matrix into several sub-blocks
with the same shape. We apply row-wise and column-wise group lasso penalty on each sub-block
with the same weight decay. Row-wise and column-wise BSSL regularizer on a single sub-block of
shape (𝑟, 𝑐) is formulated as:

𝐿𝑟𝑜𝑤 (𝑊) =
𝑟∑
𝑖=1

√√√ 𝑐∑
𝑗=1

(𝑊 [𝑖, 𝑗])2 (8)

and

𝐿𝑐𝑜𝑙 (𝑊) =
𝑐∑
𝑖=1

√√√ 𝑟∑
𝑗=1

(𝑊 [𝑗, 𝑖])2 . (9)

For an original weight matrix𝑊 , which is divided into 𝑥 ×𝑦 sub-blocks, the final training loss for a
model with 𝑙 layers can be defined as:

𝐿 = 𝐿𝐷 + 𝜆
𝑙∑
𝑖=1

𝑥∑
𝑗=1

𝑦∑
𝑘=1

(𝐿𝑟𝑜𝑤 (𝑊[𝑖, 𝑗,𝑘]) + 𝐿𝑐𝑜𝑙 (𝑊[𝑖, 𝑗,𝑘])), (10)

where 𝜆 is the weight decay, which controls the tradeoff between the loss on training data (𝐿𝐷)
and BSSL regularizer penalty. Here,𝑊[𝑖, 𝑗,𝑘] denotes the sub-block with index (𝑗 , 𝑘) in the original
weight matrix of layer 𝑖 .

Essentially, BSSL is a generalization of weight pruning with different granularities. For example,
when the sub-block shape equals the original weight matrix shape, BSSL is line-wise pruning.
When sub-block shape is (1, 1), it becomes element-wise pruning. BSSL can be used to analyze the
best pruning granularity of Transformer as follows:

◦ In order to understand which dimension of each weight matrix is more likely to be pruned,
all sub-blocks of each layer have an identical size. As a result, the penalty on each row and
column of the sub-block is the same.

, Vol. 1, No. 1, Article . Publication date: July .

TPrune: Efficient Transformer Pruning for Mobile Devices 9

◦ For𝑊𝑄 ,𝑊 𝐾 , and𝑊𝑉 in MHA layer, the dimension of sub-block is equal to head width. In
this way, we could understand how many heads are needed for each MHA component and
what is the dimension that is required for each head.

◦ For𝑊 𝑜 in MHA layer, we divide them into 2 × 2 sub-blocks. Each sub-block is of shape
(256, 256).

◦ For𝑊𝑓 𝑓 𝑛1 and𝑊𝑓 𝑓 𝑛2 in FFN, we set the sub-block of the same shape as𝑊 𝑜 . Therefore,𝑊𝑓 𝑓 𝑛1

and𝑊𝑓 𝑓 𝑛2 are divided into 2 × 8 sub-blocks and 8 × 2 sub-blocks, respectively.

Fig. 4 depicts the implementation procedure of BSSL analysis. For a target Transformer model,
we first train an original full-size model. Then, we build a new Transformer graph, where each
original layer matrix is replaced with tiled sub-blocks. The input dimension of the original layer
matrix is split and fed into the tiled layer matrix and the output dimension of the tiled layer matrix
is concatenated so as to be fed into the next layer. In this way, each layer in the original Transformer
could be transformed into the block-wise layer matrix independent of the other layers. Because the
combined shape of all the sub-blocks is the same as the original weight matrix, we initialize all the
sub-blocks with the original weight values. After initialization, the block-wise Transformer models
could achieve the same accuracy as the original model. Last, we apply row-wise and column-wise
group lasso on each sub-block and perform the BSSL analysis. During training, rows and columns of
each sub-block are expected to become zeros gradually. Finally, we visualize the sparsity properties
of the model after BSSL analysis for a better understanding of Transformer weights redundancy.

3.4 Observation on BSSL Analysis

We apply BSSL on a Transformer model trained on WMT English-German dataset. The weight
decay of BSSL regularizer 𝜆 = 10−3 and the learning rate equals 10−2, which is one-tenth of the
original learning rate. In order to better understand the property of each layer and component
of Transformer, we visualize the line-wise sparsity of the Transformer model after BSSL analysis.
Following previous works [14, 42], the total number of the zero weights are determined by a
pre-defined threshold, which is set to 10−4 in our case.
In Fig. 5, we present the sparsity of 6 encoder layers of Transformer (left part of Fig. 1) after

BSSL analysis. For each encoder layer, there exist𝑊𝑄 ,𝑊 𝐾 ,𝑊𝑉 ,𝑊 𝑜 for MHA and𝑊𝑓 𝑓 𝑛1,𝑊𝑓 𝑓 𝑛2 for
FFN. The blocks in red are the sub-blocks containing no rows or columns that are full of zeros, i.e.,
the sparsity is 0% after BSSL pruning. All the other green blocks indicate that they are of certain
sparsity, either row-wise, column-wise, or both after BSSL analysis. The areas of green denote the
non-zero weights in the blocks and the white areas represent the weights that are zeros. In other
words, the smaller area colored by green in a block, the larger the sparsity of that block is. For
𝑊𝑓 𝑓 𝑛2, we visualize it by its transpose (𝑊𝑇

𝑓 𝑓 𝑛2
).From the visualization of Transformer encoder in

Fig. 5, we observe that:

◦ All the weight matrices are pruned to certain extent for the encoder.
◦ 𝑊𝑄 ,𝑊 𝐾 ,𝑊𝑉 , and𝑊 𝑓 𝑓 𝑛1 should be pruned column-wise while𝑊 𝑜 and𝑊 𝑓 𝑓 𝑛2 should be
pruned row-wise.

In Fig. 6, we present the sparsity of 6 decoder layers of Transformer (right part of Fig. 1) after
BSSL analysis. For each decoder layer, there exist𝑊𝑄 ,𝑊 𝐾 ,𝑊𝑉 ,𝑊 𝑜 for both self-MHA and encoder-
decoder MHA and𝑊𝑓 𝑓 𝑛1,𝑊𝑓 𝑓 𝑛2 for FFN. From the visualization of Transformer encoder after BSSL
in Fig. 6, we observe that:

◦ For both self-MHA and encoder-decoder MHA,𝑊𝑄 ,𝑊 𝐾 ,𝑊𝑉 are all pruned to some extent.
◦ 𝑊 𝑜 ,𝑊 𝑓 𝑓 𝑛1, and𝑊 𝑓 𝑓 𝑛2 hardly get any sparsity even both line-wise and column-wise group
lasso regularizers are applied.

, Vol. 1, No. 1, Article . Publication date: July .

10 Mao, et al.

Fig. 5. Sparsity visualization of Transformer encoder with BSSL.

3.5 Conclusion of BSSL Analysis

Here, we summarize the properties derived from the BSSL analysis by looking into both the encoder
and decoder of Transformer in Fig. 5 and Fig. 6, respectively.
First, with the help of BSSL analysis, we could find some properties of Transformer models,

which have already been discovered in previous works on Transformer understanding [20, 43].

◦ Some heads in Fig. 5 and Fig. 6 are removed entirely, implying that only a subset of heads is
important for translation.

◦ The column-wise sparsity of self-attention MHA in Fig. 5 is high (53.5% on average) while
the sparsity of decoder-encoder MHA in Fig. 6 is much lower (22% on average), implying that
the model prefers to prune encoder self-attention heads. In other words, decoder-encoder
attention heads are more important.

◦ For the self-attention heads in Fig. 6, the heads in shallower layers (e.g., layer 1, 2) are retained
more compared with deeper layers (e.g., layer 5, 6). For example, the column-wise sparsities
of layers 1 and 2 are 13.3% and 23.3%, respectively while the column-wise sparsities of layers
5 and 6 are 36.7% and 93%, respectively.

◦ For the decoder-encoder attention heads in Fig. 6, more heads are retained in deeper layers
(e.g., layer 5, 6). For example, the column-wise sparsities of layer 1 and 2 are 68% and 63%,
respectively while 10% and 16.7% for layers 5 and 6, respectively.

, Vol. 1, No. 1, Article . Publication date: July .

TPrune: Efficient Transformer Pruning for Mobile Devices 11

Fig. 6. Sparsity visualization of Transformer decoder with BSSL.

Besides the properties which have been discovered before, we indeed obtained more understand-
ing of the sparsity visualization in Fig. 5 and Fig. 6 from the BSSL analysis:

◦ Even if we apply the block-wise penalty on Transformer, the final model trained by BSSL
still achieves only line-wise sparsity in most cases. That is the main reason why we propose
line-wise pruning for Transformer.

◦ 𝑊𝑄 ,𝑊 𝐾 are always pruned to the same column-sparsity level while𝑊𝑉 is pruned to a
different sparsity level. This fact can be derived from Equation (6), where 𝑄 and 𝐾 transpose
is multiplied while 𝑉 is related to the 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 of the multiplication result.

, Vol. 1, No. 1, Article . Publication date: July .

12 Mao, et al.

◦ The dimension of FFN could be further compressed in Transformer encoder but not for
Transformer decoder.

◦ All the weights are pruned either row-wise or column-wise because all the sub-blocks want
to utilize the whole embedded dimension and hence, only the internal dimension could be
pruned. In other words, the pruned dimension is always the internal dimension of each
component (MHA and FFN).

Thanks to BSSL analysis, we are able to answer the question aforementioned in Section 3.2 about
the properties of Transformer pruning. Those understandings of Transformer model help us to
propose the pruning strategy in Section 4.

4 TRANSFORMER PRUNING

4.1 Line-wise Transformer Pruning

Based on our analysis, in TPrune, we prune the model line-wise to realize real speedup-up on mobile
devices. In specific, we apply 𝐿1 on 𝐿2 norm of group weights to generate structured sparsity [14].
However, pruning using SSL has its disadvantage regarding the group scale. For example, consider
adding SSL regularizer on a group of weights:𝑊𝑔 , where the 𝐿2 norm of this group of weights
equals 𝑛𝑔 . The corresponding gradient for single weight 𝑤𝑖 in𝑊𝑔 equals 𝑤𝑖/𝑛𝑔 . The gradients
largely depend on the scale of the original weight value as well as the 𝐿2 norm of the group that
the weight belongs to. As aforementioned in Section 2.5, in response to the scale-variant SSL, we
adopt scale-invariant Structured Hoyer Square (SHS). In TPrune, each group of weights 𝑤 (𝑔) in
Equation (4) of SHS regularizer is defined as a row or a column of Transformer layer matrices.

4.2 Pruning Strategy

Based on the pruning properties of Transformer derived from the BSSL analysis, we use SHS to
perform line-wise pruning on our target Transformer model. The detailed pruning strategies are
the follows:

◦ The visualization of BSSL in Fig. 5 shows that we can achieve high sparsity for all the layer
components of Transformer. For Transformer encoder, we prune𝑊𝑄 ,𝑊 𝐾 ,𝑊𝑉 ,𝑊 𝑓 𝑓 𝑛1 in
column-wise and prune𝑊 𝑜 and𝑊 𝑓 𝑓 𝑛2 in row-wise.

◦ The visualization of the BSSL in Fig. 6 shows that the sparsity for FFN and𝑊𝑉 in MHA is very
limited. Therefore, for Transformer decoder, we only prune𝑊𝑄 and𝑊 𝐾 in column-wise.

Same as previous works [14, 42], the pruning procedure includes two steps: pruning and fine-

tuning. In the pruning step, the model is trained with sparsity regularizer (e.g., SSL and SHS),
aiming at removing the redundant weights as many as possible. In the fine-tuning step, the trained
model from the pruning step is further fine-tuned without sparsity regularizer. The gradients are
masked-out for all the zero weights during the fine-tuning step. In Section 5, we will compare our
pruning strategy with naive pruning strategies.

5 EXPERIMENTS

5.1 Experimental Setup

Framework: We implement TPrune with TensorFlow [44], a widely used deep learning framework
for training and testing on varies hardware platforms. More specifically, for the training and pruning
of Transformer model, we use tensor2tensor (T2T) [45]. T2T is a TensorFlow library designed for
machine learning research. It incorporates many datasets, pre-trained models, and pre-defined
hyperparameters to accelerate model development. For the profiling of real-time execution of
Transformer on mobile devices, we adopt TFLite Model Benchmark Tool, which is a TensorFlow

, Vol. 1, No. 1, Article . Publication date: July .

TPrune: Efficient Transformer Pruning for Mobile Devices 13

benchmark tool for embedded software on both IOS and android devices. It converts the original
model structure to TFLite format targeting at embedding systems for profiling purposes.
Benchmarks and Settings: For the whole experiments, we use WMT English-German dataset

provided by T2T to validate the effectiveness of TPrune. English-German dataset consists of around
32𝑘 tokens with shared source-target vocabulary. During the pruning step, the effective batch
size is set to 6𝑘 tokens and trained for 40𝑘 steps. Following the tip in [46], the effective batch size
and training steps are set larger than those in the pruning step, which is 16𝑘 tokens and 800𝑘
steps, respectively. The same as [1], we report the BLEU score as the metric to evaluate model
performance and the testing dataset is newstest2014.
TransformerModel: In all the following experiments, we adopt the same model structure as the

base Transformer structure in the original work [1]. The base Transformer model include 6 layers
for both encoder and decoder. 𝑑𝑚𝑜𝑑𝑒𝑙 and 𝑑𝑒𝑚𝑏𝑒𝑑 equal 512 and 𝑑𝑓 𝑓 𝑛 equals 2048. Because this work
is about Transformer model pruning, the final model sparsity is derived by only considering the
weights of the main body of Transformer. The embedding matrix is not included. This is reasonable
because the size of the weight matrix largely depends on the vocabulary size of the source and
target languages. For the fairness of comparison, we start the model pruning from the official
pre-trained Transformer model provided by T2T framework. The BLEU score of the original model
on newstest2014 is 29.2.

Environment: In order to speed up the training, the models are trained under Linux system
with 4 NVIDIA TITAN RTX GPUs in parallel. Therefore, the batch size of each GPU is 4𝑘 in order
to reach 16𝑘 effective batch size. For time profiling on mobile devices, we test the Transformer
models on 4 popular Android devices with different hardware configurations, i.e., Nexus 5, Pixel 2,
Pixel 3, and LG G8 ThinQ. All the testing of Transformer are based on mobile CPUs.

5.2 Comparisons of Different Pruning Regularizers

Fig. 7 shows the sparsity and the corresponding BLEU score during the pruning step of the SHS
and SSL regularizers, respectively. In Fig. 7, the weight decay 𝜆 is set as 10−5 and 10−4 for SSL and
SHS regularizer, respectively. Because of the comparatively small 𝜆, the pruned models after 400𝑘
steps still maintain a good performance.

As demonstrated in Fig. 7, under similar BLEU score after 400𝑘 steps training, the model pruned
with SHS achieves a higher sparsity (8.16%) than the model pruned with SSL regularizer (2.2%).
This is due to the reason that, when the pruning penalty 𝜆 is small, most of the weights are still
non-zeros. In this case, SHS is more effective to remove the weights that are close to zeros while SSL

Sp
ar
si
ty
(%
)

0

2

4

6

8

10

0
40
k
80
k
12
0k
16
0k
20
0k
24
0k
28
0k
32
0k
36
0k
40
0k

SSL

SHS

25.4
25.6
25.8
26

26.2
26.4
26.6
26.8
27

0
40
k
80
k
12
0k
16
0k
20
0k
24
0k
28
0k
32
0k
36
0k
40
0k

SSL

SHS

B
L
E
U
Sc
or
e

(a) (b)

Fig. 7. Sparsity (a) and BLEU (b) between SSL (𝜆 = 10−5) and SHS (𝜆 = 10−4) with a small 𝜆.

, Vol. 1, No. 1, Article . Publication date: July .

14 Mao, et al.

0
5
10
15
20
25
30
35
40
45
50

0
40
k
80
k
12
0k
16
0k
20
0k
24
0k
28
0k
32
0k
36
0k
40
0k

SSL

SHS

15
17
19
21
23
25
27
29

0
40
k
80
k
12
0k
16
0k
20
0k
24
0k
28
0k
32
0k
36
0k
40
0k

SSL

SHS

Sp
ar
si
ty
(%
)

B
L
E
U
Sc
or
e

(a) (b)

Fig. 8. Sparsity (a) and BLEU (b) between SSL (𝜆 = 5 × 10−5) and SHS (𝜆 = 10−3) with a large 𝜆.

25
27
29
31
33
35
37
39
41

0 5 10 15 20 25 30 35

B
L
E
U

Sparsity (%)

Fine-grained Coarse Naïve

Fig. 9. BLEU on WMT development set with different line-wise pruning strategies under different sparsities.

applies almost equal penalties on all the weights, leading to less number of weights to be removed.
Therefore, SHS outperforms SSL regularizer when we prefer a high-performance model with a low
sparsity.
Fig. 8 shows the sparsity and the corresponding BLEU score of the models trained with larger

weight decays, i.e., 5 × 10−5 and 10−3, respectively, for SSL and SHS. Because of the higher 𝜆
setting, the pruned model sparsity reaches around 45% for both regularizers after 400𝑘 steps. The
corresponding BLEU scores are 21.97 and 21.66, respectively, for SSL and SHS regularizer.
Different from the situation in Fig. 7, the performance of the SSL pruned model is similar to

that of the SHS pruned model. Moreover, the larger 𝜆 settings of SSL and SHS regularizers lead to
different performance trends in model pruning: the BLEU score of the SSL pruned model keeps
decreasing when the sparsity of the model increases; the BLEU score of the SHS pruned model,
however, first drops dramatically when the sparsity of the model increases (i.e., at 40𝐾 steps), and
then gradually recovers. Such different trade-offs between the sparsity and the performance of SSL
and SHS offer us unique design flexibility in Transformer pruning.

Table 1 summarizes the sparsity and the BLEU score of both SSL and SHS after 400𝑘 steps with
a batch size of 8𝑘 . We could find that SHS performs better with a low sparsity and SSL performs
slightly better with a high sparsity. Mind that the performance may be further boosted by increasing
the training steps.

, Vol. 1, No. 1, Article . Publication date: July .

TPrune: Efficient Transformer Pruning for Mobile Devices 15

Table 1. Sparsity and BLEU score after 400𝑘 steps pruning using SSL and SHS regularizers

Regularizer 𝜆 BLEU Sparsity(%)

SSL 1 × 10−5 26.05 2.21
2 × 10−5 24.46 26.33
3 × 10−5 23.31 38.23
4 × 10−5 22.53 43.61
5 × 10−5 21.97 46.78

SHS 1 × 10−4 26.03 8.16
2 × 10−4 25.01 20.29
3 × 10−4 24.04 29.52
4 × 10−4 23.58 33.15
5 × 10−4 23.15 35.66
1 × 10−3 21.46 44.07

5.3 Evaluation of Pruning Strategies

In Fig. 9, we compare different pruning strategies of Transformer by presenting the BLEU score
during the SHS training step on the WMT development set. Besides the adopted fine-grained
pruning strategy (marked as “Fine-grained”) that was discussed in Section 4, we add two more
strategies for comparison:

◦ Coarse Strategy: In the fine-grained pruning strategy derived from the BSSL analysis, we
treat the encoder and the decoder differently. In coarse strategy (marked as “Coarse”), we
treat them the same as the pruning strategy for original encoder strategy.

◦ Naive Strategy: In naive strategy (marked as “Naive”), we simply apply both row-wise and
column-wise penalties to all the target weight matrix. This strategy represents the baseline
when we have no understanding of the Transformer structure properties.

As shown in Fig. 9, our proposed fined-grained pruning strategy always performs the best among
all the strategies under any model sparsity. The naive strategy baseline performs the worst. For
example, the BLEU score under 20% sparsity are 34.36, 31.13, and 28.98 for Fine-grained, Coarse,
and Naive, respectively. The performance gap keeps increasing with the growth Transformer
model sparsity, proving that our designed Fine-grained pruning strategy is effective in removing
useless weights while keeping the model performance.

5.4 Evaluation of Layer-wise Sparsity

Fig. 10 and Fig. 11 present the layer-wise sparsities under different model sparsities for Transformer
encoder and decoder, respectively. Due to the computation logic of Transformer, the following
rules always hold:

◦ 𝑊𝑄 and𝑊 𝐾 are always of the same column-wise sparsity.
◦ The column-wise sparsity of𝑊𝑉 and the row-wise sparsity of𝑊 𝑜 are the same.
◦ The𝑊 𝑓 𝑓 𝑛1’s column-wise sparsity is the same as the𝑊 𝑓 𝑓 𝑛2’s row-wise sparsity.

Fig. 10 shows that for Transformer encoder, MHA is effectively pruned first. For example, when
the model sparsity equals 9.76%, the sparsities of “𝑊𝑄 ,𝑊 𝐾 ” and “𝑊𝑉 ,𝑊𝑂” are 14.65% and 24.48%,
respectively, while the sparsity of “𝑊 𝑓 𝑓 𝑛1,𝑊 𝑓 𝑓 𝑛2” is only 2.08%. Following the increase of model
sparsity, the sparsities of all target layer types gradually become similar. For example, when the

, Vol. 1, No. 1, Article . Publication date: July .

16 Mao, et al.

model sparsity equals 45.07%, the sparsities for “𝑊𝑄 ,𝑊 𝐾 ”, “𝑊𝑉 ,𝑊𝑂”, and “𝑊 𝑓 𝑓 𝑛1,𝑊 𝑓 𝑓 𝑛2” are
79.07%, 79.52%, and 77.33%, respectively.

Because no regularizer penalty is applied to𝑊𝑉 ,𝑊𝑂 ,𝑊 𝑓 𝑓 𝑛1, and𝑊 𝑓 𝑓 𝑛2 in Transformer decoder,
Fig. 11 only shows the sparsities of𝑊𝑄 and𝑊 𝐾 in self-attention and encoder-decoder attention,
respectively. The sparsities of the𝑊𝑄 and𝑊 𝐾 in encoder-decoder attention are always lower
than that of the𝑊𝑄 and𝑊 𝐾 in self attention. This means that encoder-decoder attention is more
important than self attention for Transformer encoder and lean to be preserved.
When comparing Fig. 10 with Fig. 11, we could find that under the model sparsities of 9.76%

and 20.29%, the sparsities of𝑊𝑄 and𝑊 𝐾 in Transformer decoder is higher than that of encoder.
For example, when the model sparsity equals 9.76%, the sparsity of “𝑊𝑄 ,𝑊 𝐾 ” in the encoder is
14.65% while the sparsity of “𝑊𝑄 ,𝑊 𝐾 ” in self-attention and encoder-decoder attention of decoder
are 46.06% and 43.42%, respectively. This is because “𝑊 𝑓 𝑓 𝑛1,𝑊 𝑓 𝑓 2” are not pruned for Transformer
decoder. As a result of that, model redundancy of Transformer decoder is transferred to the MHA,
leaving more pruning space for “𝑊𝑄 ,𝑊 𝐾 ” in the decoder.

5.5 Evaluation of Speedup on Mobile Devices

In this section, we evaluate the speedup of our pruned Transformer models on mobile devices. For
all the profiling experiments on mobile devices, we set the warm-up runs as 5 times and the test
runs as 80 times.

5.5.1 Impact of string length. Fig. 12 presents the execution time on Pixel 3 with different model
sparsities and translation string lengths (denoted by “StnLen”). All the execution times in Fig. 12
are tested under 4 threads. As shown in Fig. 12, with the same sparsity, the execution time increases

0

20

40

60

80

100

0 10 20 30 40 50

Series1 Series2 Series3

L
ay
er
Sp
ar
si
ty
(%
)

Model Sparsity (%)

Encoder

Fig. 10. Layer-wise sparsities of Transformer encoder under different model sparsities.

0

20

40

60

80

100

0 10 20 30 40 50

Series1 Series2

Model Sparsity (%)

L
ay
er
Sp
ar
si
ty
(%
)

Decoder

Fig. 11. Layer-wise sparsities of Transformer decoder under different model sparsities.

, Vol. 1, No. 1, Article . Publication date: July .

TPrune: Efficient Transformer Pruning for Mobile Devices 17

E
xe
cu
tio
n
T
im
e
(m
s)

Model Sparsity (%)

0

40

80

120

160

200

0 5 10 15 20 25 30 35 40 45

StnLen=10 StnLen=20 StnLen=40 StnLen=80

Fig. 12. Execution time with different string lengths.

E
xe
cu
tio
n
T
im
e
(m
s)

Model Sparsity (%)

0

40

80

120

160

200

0 15 30 45

Nexus 5 Pixel2
Pixel3 LG G8 ThinQ

0.5

1

1.5

2

Nexus 5 Pixel2 Pixel3 LG G8
ThinQ

Ori 10% 20% 30%
34% 37% 45%

Sp
ee
du
p

(a) (b)

Fig. 13. Execution time (a) and Speedups (b) on different mobile devices.

with the string length. For example, for the original transformer model, the execution time increases
from 50𝑚𝑠 to 184𝑚𝑠 when the string length increases from 10 to 80. Note that this result does
not exactly follow the theoretical analysis in [1] where the computational cost of Transformer
quadratically increases with the string length. Except the time complexity of the algorithm, many
factors could affect the execution time of a Transformer model on a mobile device such as memory
bandwidth, on-chip cache size, memory latency, etc. From Fig. 12, the execution time of the pruned
model with a small string length still consumes a certain amount of latency. In this case, memory
latency is the main reason that causes a large execution time even with short string length.

5.5.2 Impact of mobile devices. Fig. 13(a) compares the execution time of the Transformer model
running on different popular mobile devices. All the results are tested under 4 threads with a string
length of 40. As shown in the Figure, the computing performance of different mobile devices varies
significantly. For example, when we execute the original models on Nexus 5, Pixel 2, Pixel 3, and
LG G8 ThinQ, the corresponding execution times are 190𝑚𝑠 , 159𝑚𝑠 , 100𝑚𝑠 , and 70𝑚𝑠 , respectively.
Nonetheless, increasing the sparsity of the model always helps to reduce the execution time: if
we execute the Transformer model with a sparsity of 45%, the execution times of these tested
mobile devices changes to 121𝑚𝑠 , 81𝑚𝑠 , 57𝑚𝑠 , and 40𝑚𝑠 , respectively. Fig. 13(b) demonstrates the
normalized speedups of the Transformer models with different sparsities when compared with the
original Transformer model on different mobile devices. When executed on Nexus 5, 1.07 × −1.57×
speedups are achieved when the model sparsity grows from 10% to 45%. Pixel 2 achieves 1.2×−1.96×
speedups while Pixel 3 and LG G8 ThinQ achieve 1.07 × −1.75× speedups.

, Vol. 1, No. 1, Article . Publication date: July .

18 Mao, et al.

0

200

400

600

800

1000

1 2 4 8 16E
xe

cu
tio

n
T

im
e

(m
s)

N_Thread

Pixel3_Ori

Pixel3_Spr_45%

0

200

400

600

800

1000

1 2 4 8 16
E

xe
cu

tio
n

T
im

e
(m
s)

N_Thread

LG G8 ThinQ_Ori

LG G8 ThinQ_Spr_45%

0

400

800

1200

1 2 4 8 16E
xe

cu
tio

n
T

im
e

(m
s)

N_Thread

Pixel2_Ori
Pixel2_Spr_45%

0

1000

2000

3000

1 2 4 8 16E
xe

cu
tio

n
T

im
e

(m
s)

N_Thread

Nexus5_Ori
Nexus5_Spr_45%

(a) (b)

(c) (d)

Fig. 14. Execution time with different number of threads on Nexus 5 (a), Pixel 2 (b), Pixel 3 (c) and LG G8

ThinQ (d).

5.5.3 Impact of multi-thread. Fig. 14 presents the impact of multi-threading on the execution time
when executing Transformer models. All the execution time in Fig. 14 are tested with a string
length of 40. The sparsity of the Transformer model is 45%. As presented in Fig. 14, the trends
of the experimental results are similar across all the 4 mobile devices with different hardware
configurations. Take Pixel 3 as an example, the speedups of running sparse Transformer model w.r.t.
the original model are 1.6×, 1.5×, 1.57×, 1.63×, and 1.19×, respectively, for 1, 2, 4, 8, and 16 threads.
Simply increasing the number of parallel threads does not always reduce the execution time: When
the number of threads increases from 8 to 16, the execution time dramatically increases on both
Pixel 2, Pixel 3, and LG G8 ThinQ due to the sharply increased model partitioning overheads.
Moreover, as shown in Fig. 14(a), the execution time increases on Nexus 5 when the number of
threads increases from 4 to 8. This is due to the limited CPU multi-processing capability of Nexus 5
when comparing with the other 3 tested mobile devices. In general, 4 parallel threads offer a good
setup of executing the Transformer models (original and pruned) on all 4 tested mobile devices.

5.5.4 Speedup of pruned models. Fig. 15 shows the execution time when executing two pruned
models with different sparsities. The blue line shows the results of the models pruned by our
proposed SHS regularizer and the yellow line shows the results of head-wise pruning in previous
works [20, 21]. All the results are tested with a string length of 40 and 4 parallel threads on Pixel 3.
When the model sparsity changes from 4% to 28%, head-wise pruning outperforms SHS-based line-
wise pruning because of the larger pruning granularity and simpler pruning strategy of head-wise
pruning. Note that 28% is the highest sparsity that head-wise pruning can achieve as it is obtained
by removing all the heads in Transformer model. As a comparison, SHS-based line-wise pruning
can further prune the model sparsity to around 45%, resulting in 1.92× speedup finally. Note that
the performance degradation of head-wise pruning is much worse than that of SHS-based line-wise
pruning at the same sparsity, which will be discussed in the next section.

, Vol. 1, No. 1, Article . Publication date: July .

TPrune: Efficient Transformer Pruning for Mobile Devices 19

E
xe
cu
tio
n
T
im
e
(m
s)

Model Sparsity (%)

0

20

40

60

80

100

120

0 10 20 30 40 50

SHS pruned model MHA Headwise pruned model

Fig. 15. Execution time when executing pruned models of different sparsity.

20

22

24

26

28

0k 100k 200k 300k 400k 500k 600k 700k 800k

λ=0.0001 Sparsity=9.76 %
λ=0.0002 Sparsity=20.29%
λ=0.0003 Sparsity=30.65%
λ=0.001 Sparsity = 45.07 %

Training Step

B
L

E
U

Ori 26.92

Fig. 16. BLEU score during the fine-tuning procedure.

5.6 Evaluation of Sparsity-accuracy Trade-off

Fig. 16 shows how the BLEU score changes during the fine-tuning procedure of SHS pruning. The
BLEU score of the original model is 26.92, which is marked as the red dash line in the Figure. Here
we train all the models for 800𝑘 steps with 16𝑘 batch size. Fig. 16 shows that the SHS pruned model
converges quickly when the pruned model sparsity is low. For example, the BLEU score of the
model with a sparsity of 9.76% converges at 26.89 after only 200𝑘 fine-tuning steps. When the model
sparsity increases to 45.07%, it takes approximately 400𝑘 steps for the BLEU score to converge at
around 24.38. As shown in Fig. 16, when the model sparsity is below 30%, the fine-tuning step could
always restore the performance back and make it close to the original level.

Table 2 summarizes the metrics of SHS pruned models with different sparsity’s. Here the original
model is used as the baseline. For comparison purposes, we also present the results of another
state-of-the-art work with head-wise pruning [21]. For the fairness of the comparison, we port the
head-wise pruning technology from original frameworks [21] to our T2T framework to ensure
that all the used initial models and dataset are identical to our experiment. Moreover, because no
speedup was tested in [21], all the speedup results here are tested by us on Pixel 3. As shown in
Table 2, our pruned models demonstrate good performance with satisfactory speedup on mobile
devices. Compared with the baseline model, the SHS pruned model achieves around 16% sparsity
without any degradation in BLEU score. The corresponding speedup is 1.21× on Pixel 3. When
the sparsity is increased to 20.29%, the BLEU score slightly degrades to 26.78, or 99.48% of the
original performance. If we further increase the sparsity to 45%, we can obtain 1.92× speedup with a
BLEU score of 24.78. As a comparison, head-wise Transformer pruning [21] incurs no performance
degradation when the sparsity is 4.29%. The corresponding speedup is merely 1.05×. Increasing

, Vol. 1, No. 1, Article . Publication date: July .

20 Mao, et al.

Table 2. Summary of our line-wise pruning results and previous head-wise pruning results [21].

Dataset Model BLEU BLEU Degradation (%) Sparsity(%) Speedup

WMT_EnDe Baseline 26.92 0 0 1
Model1 27.14 0 9.76 1.16
Model2 26.93 0 15.63 1.21
Model3 26.78 0.52 20.29 1.25
Model4 26.14 2.9 30.65 1.44
Model5 25.94 3.58 34.27 1.52
Model6 25.63 4.79 36.93 1.59
Model7 24.78 7.95 45.07 1.92

WMT_EnDe Baseline 26.92 0 0 1
[21] 26.92 0 4.29 1.05
[21] 25.19 6.43 8.58 1.15
[21] 20.74 22.96 17.14 1.33
[21] 10.1 62.82 25.71 1.56

the sparsity of the pruning model will quickly degrade the model performance: when the sparsity
becomes 25.71%, the BLUE score drops down to only 10.1. Even worse, the model could not be
further pruned because of the limited heads in Transformer. In layer-wise pruning [19], 5% BLEU
degradation is incurred with 50% sparsity, which achieves better performance-accuracy trade-off
than TPrune. Fortunately, layer-wise pruning of Transformer is orthogonal to TPrune. Therefore,
better performance is expected when combining these two pruning methods.

6 CONCLUSION

TPrune includes a Transformer model analysis method – Block-wise Structure Sparsity Learning
(BSSL) and a line-wise pruning method using Structured Hoyer Square (SHS). In BSSL, we utilize
structured sparsity learning on sub-blocks of Transformer weight matrix to analyze the model
properties of Transformer. Based on the analysis derived from BSSL, we propose to use SHS
regularizer to prune the Transformer model in either row-wise or column-wise for different
Transformer components. Experimental results show that TPrune achieves a better trade-off between
the accuracy and execution time of Transformer model than the prior-arts on some representative
mobile devices.

ACKNOWLEDGMENTS

This work was supported in part by NSF CNS-1717657, CCF-1937435, CNS-1822085, and NSF IUCRC
for ASIC memberships from Unisound etc.

REFERENCES

[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia

Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,

and R. Garnett, editors, Advances in Neural Information Processing Systems 30, pages 5998–6008. Curran Associates,

Inc., 2017.

[2] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep bidirectional

transformers for language understanding. CoRR, abs/1810.04805, 2018.

, Vol. 1, No. 1, Article . Publication date: July .

TPrune: Efficient Transformer Pruning for Mobile Devices 21

[3] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le. Xlnet: Generalized

autoregressive pretraining for language understanding. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-

Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages 5754–5764. Curran

Associates, Inc., 2019.

[4] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer,

and Veselin Stoyanov. Roberta: A robustly optimized BERT pretraining approach. CoRR, abs/1907.11692, 2019.

[5] Jiachen Mao, Qing Yang, Ang Li, Hai Li, and Yiran Chen. Mobieye: An efficient cloud-based video detection system for

real-time mobile applications. In Proceedings of the 56th Annual Design Automation Conference 2019, pages 1–6, 2019.

[6] Jiachen Mao, Xiang Chen, Kent W Nixon, Christopher Krieger, and Yiran Chen. Modnn: Local distributed mobile

computing system for deep neural network. In Design, Automation & Test in Europe Conference & Exhibition (DATE),

2017, pages 1396–1401. IEEE, 2017.

[7] Kent W Nixon, Jiachen Mao, Juncheng Shen, Huanrui Yang, Hai Helen Li, and Yiran Chen. Spn dash-fast detection of

adversarial attacks on mobile via sensor pattern noise fingerprinting. In 2018 IEEE/ACM International Conference on

Computer-Aided Design (ICCAD), pages 1–6. IEEE, 2018.

[8] Fan Chen, Linghao Song, Hai Helen Li, and Yiran Chen. Zara: a novel zero-free dataflow accelerator for generative

adversarial networks in 3d reram. In Proceedings of the 56th Annual Design Automation Conference 2019, pages 1–6,

2019.

[9] J. Mao, Z. Qin, Z. Xu, K. W. Nixon, X. Chen, H. Li, and Y. Chen. Adalearner: An adaptive distributed mobile learning

system for neural networks. In 2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages

291–296, Nov 2017.

[10] Bing Li, Wei Wen, Jiachen Mao, Sicheng Li, Yiran Chen, and Hai Helen Li. Running sparse and low-precision neural

network:When algorithmmeets hardware. In 2018 23rd Asia and South Pacific Design Automation Conference (ASP-DAC),

pages 534–539. IEEE, 2018.

[11] Linghao Song, Jiachen Mao, Youwei Zhuo, Xuehai Qian, Hai Li, and Yiran Chen. Hypar: Towards hybrid parallelism

for deep learning accelerator array. In 2019 IEEE International Symposium on High Performance Computer Architecture

(HPCA), pages 56–68. IEEE, 2019.

[12] Chuhan Min, Jiachen Mao, Hai Li, and Yiran Chen. Neuralhmc: an efficient hmc-based accelerator for deep neural

networks. In Proceedings of the 24th Asia and South Pacific Design Automation Conference, pages 394–399, 2019.

[13] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks with pruning,

trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

[14] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in deep neural networks.

In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing

Systems 29, pages 2074–2082. Curran Associates, Inc., 2016.

[15] Wei Wen, Yuxiong He, Samyam Rajbhandari, Minjia Zhang, Wenhan Wang, Fang Liu, Bin Hu, Yiran Chen, and Hai Li.

Learning intrinsic sparse structures within long short-term memory. arXiv preprint arXiv:1709.05027, 2017.

[16] Qing Yang, Jiachen Mao, ZuoguanWang, and Hai Li. Dasnet: Dynamic activation sparsity for neural network efficiency

improvement. arXiv preprint arXiv:1909.06964, 2019.

[17] Mengye Ren et al. Sbnet: Sparse blocks network for fast inference. In CVPR, pages 8711–8720, 2018.

[18] Mikhail Figurnov et al. Perforatedcnns: Acceleration through elimination of redundant convolutions. In NIPS, pages

947–955, 2016.

[19] Angela Fan, Edouard Grave, and Armand Joulin. Reducing transformer depth on demand with structured dropout.

arXiv preprint arXiv:1909.11556, 2019.

[20] Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head self-attention:

Specialized heads do the heavy lifting, the rest can be pruned. arXiv preprint arXiv:1905.09418, 2019.

[21] Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? In Advances in Neural

Information Processing Systems, pages 14014–14024, 2019.

[22] Kenton Murray, Jeffery Kinnison, Toan Q Nguyen, Walter Scheirer, and David Chiang. Auto-sizing the trans-

former network: Improving speed, efficiency, and performance for low-resource machine translation. arXiv preprint

arXiv:1910.06717, 2019.

[23] Robin Cheong and Robel Daniel. transformers. zip: Compressing transformers with pruning and quantization. Technical

report, Technical report, Stanford University, Stanford, California, 2019. URL https . . . , 2019.

[24] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of bert: smaller, faster,

cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

[25] Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou. Mobilebert: a compact task-

agnostic bert for resource-limited devices. arXiv preprint arXiv:2004.02984, 2020.

[26] Biao Zhang, Deyi Xiong, and Jinsong Su. Accelerating neural transformer via an average attention network. arXiv

preprint arXiv:1805.00631, 2018.

, Vol. 1, No. 1, Article . Publication date: July .

22 Mao, et al.

[27] Zhanghao Wu, Zhijian Liu, Ji Lin, Yujun Lin, and Song Han. Efficient transformer for mobile applicatoins. International

conference on learning representitive (ICLR), 2020.

[28] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey, Maxim Krikun,

Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural machine translation system: Bridging the gap between

human and machine translation. arXiv preprint arXiv:1609.08144, 2016.

[29] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi. Inception-v4, inception-resnet and the

impact of residual connections on learning. In Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[30] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. Citeseer, 2009.

[31] Jiachen Mao, Zhongda Yang, Wei Wen, Chunpeng Wu, Linghao Song, Kent W. Nixon, Xiang Chen, Hai Li, and Yiran

Chen. Mednn: A distributed mobile systemwith enhanced partition and deployment for large-scale dnns. In Proceedings

of the 36th International Conference on Computer-Aided Design, ICCAD ’17, pages 751–756, Piscataway, NJ, USA, 2017.

IEEE Press.

[32] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recogni-

tion. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[33] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014.

[34] Jie Hao, Xing Wang, Shuming Shi, Jinfeng Zhang, and Zhaopeng Tu. Multi-granularity self-attention for neural

machine translation. arXiv preprint arXiv:1909.02222, 2019.

[35] Ziheng Wang, Jeremy Wohlwend, and Tao Lei. Structured pruning of large language models. arXiv preprint

arXiv:1910.04732, 2019.

[36] JS McCarley. Pruning a bert-based question answering model. arXiv preprint arXiv:1910.06360, 2019.

[37] Fu-Ming Guo, Sijia Liu, Finlay S Mungall, Xue Lin, and Yanzhi Wang. Reweighted proximal pruning for large-scale

language representation. arXiv preprint arXiv:1909.12486, 2019.

[38] Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami, Michael W Mahoney, and Kurt Keutzer.

Q-bert: Hessian based ultra low precision quantization of bert. arXiv preprint arXiv:1909.05840, 2019.

[39] Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe Wasserblat. Q8bert: Quantized 8bit bert. arXiv preprint

arXiv:1910.06188, 2019.

[40] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for efficient neural network.

In Advances in neural information processing systems, pages 1135–1143, 2015.

[41] Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall Tappen, and Marianna Pensky. Sparse convolutional neural

networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 806–814, 2015.

[42] Huanrui Yang, Wei Wen, and Hai Li. Deephoyer: Learning sparser neural network with differentiable scale-invariant

sparsity measures. arXiv preprint arXiv:1908.09979, 2019.

[43] Tobias Domhan. How much attention do you need? a granular analysis of neural machine translation architectures. In

Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages

1799–1808, 2018.

[44] Martín Abadi et al. Tensorflow: A system for large-scale machine learning. In 12th {USENIX} Symposium on Operating

Systems Design and Implementation ({OSDI} 16), pages 265–283, 2016.
[45] Ashish Vaswani, Samy Bengio, Eugene Brevdo, Francois Chollet, Aidan N. Gomez, Stephan Gouws, Llion Jones, Łukasz

Kaiser, Nal Kalchbrenner, Niki Parmar, Ryan Sepassi, Noam Shazeer, and Jakob Uszkoreit. Tensor2tensor for neural

machine translation. CoRR, abs/1803.07416, 2018.

[46] Martin Popel and Ondřej Bojar. Training tips for the transformer model. The Prague Bulletin of Mathematical Linguistics,

110(1):43–70, 2018.

, Vol. 1, No. 1, Article . Publication date: July .

