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Abstract— Hybrid locomotion, which combines multiple
modalities of locomotion within a single robot, enables robots
to carry out complex tasks in diverse environments. This paper
presents a novel method for planning multi-modal locomotion
trajectories using approximate dynamic programming. We
formulate this problem as a shortest-path search through a
state-space graph, where the edge cost is assigned as optimal
transport cost along each segment. This cost is approximated
from batches of offline trajectory optimizations, which allows
the complex effects of vehicle under-actuation and dynamic
constraints to be approximately captured in a tractable way.
Our method is illustrated on a hybrid double-integrator, an
amphibious robot, and a flying-driving drone, showing the
practicality of the approach.

I. INTRODUCTION

A hybrid locomotor combines multiple movement modal-

ities into a single platform. Examples of hybrid locomotion

include amphibious vehicles with the ability to swim and

drive, or flying cars with the ability to drive and fly. Hybrid

locomotion can allow robots to tackle more complex tasks

in complicated environments, while achieving greater perfor-

mance, such as improved energy efficiency. For instance, a

flying-car can readily fly over obstacles or uneven terrain via

aerial mobility, while driving when possible to save energy

(see Fig. 1 for examples).

Prior works on hybrid locomotion have investigated the

design and feasibility of hybrid locomotion strategies ([1],

[2], [3], [4], [5], [6]); however, realizing the full poten-

tial of these robots not only depends on clever design,

but also on autonomous planning of their complex motion

strategies. The continuous inputs, combined with discrete

mode switches, produce entirely different energy costs, travel

times, and robustness, which ultimately dictate performance.

The complexity of combinatorial optimization of the switch-

ing sequences, as well as trajectory optimization within each

modality, makes this problem particularly challenging. Di-

rectly transcribing this problem into a mixed-integer program

[7], [8] may not scale well enough to handle switching

sequences and coordinates of high-dimensional problems.

This paper presents a novel motion-planning method for

hybrid locomotion using approximate dynamic program-

ming. Our solution relies on the following key insight: jointly

optimizing for the continuous and discrete decision variables

in the space of policies is difficult, but we can use the

approximate optimal cost of a continuous trajectory segment

* This work is supported by NSF Award No. 1932091
1Computer Science and Artificial Intelligence Laboratory, Massachusetts

Institute of Technology, Cambridge, MA 02139, USA, hjsuh@mit.edu
2Deptartment of Mechanical and Civil Engineering, California Institute

of Technology, Pasadena, CA 91125, USA, {xxiong,asinglet,
ames}@caltech.edu, jwb@robotics.caltech.edu

Fig. 1. Top Row: A ”Drivocopter” Drone (developed by the au-
thors) which can fly and drive. Video of operation can be accessed at
https://www.youtube.com/watch?v=QZyuvXfifvQ. Bottom Row: ”Ambot”
Amphibious Robot [1] capable of ground and marine locomotion.

as a proxy to the effect of optimal continuous policies within

each modality. This allows us to decouple the original mixed-

integer problem into discrete and continuous problems by

first performing a graph search with approximated energy

costs, then doing a final multi-phase continuous optimization

with the obtained sequence and switch coordinates.

Prior work on multi-modal planning often only consider

geometric graph-based planning ([9],[10],[11],[12]). By ig-

noring the continuous dynamics of the robot, these planners

often ignore dynamic feasibility. In addition, although en-

ergy expenditure is often the most relevant cost in hybrid

locomotion, most works often assume that energy is linearly

proportional to geometrical distance traveled ([9],[11],[13]),

which ignore how dynamic constraints affect the optimal

cost. As our cost is approximated from full-dimensional

trajectory optimization with rigid body and motor dynamics,

it accurately captures the robot’s dynamic characteristics,

including effects of underactuation that might occur in some

locomotion modalities.

Other relevant work can be found in the concept of

”Combined Task and Motion Planning” (TAMP) [14], [15],

[16], in which a discrete sequence of tasks must be found

simultaneously with the geometric motions that satisfy these

sequences. Most of these works are in the domain of ma-

nipulation, where there are little-to-no continuous dynamic

effects, which are often critical for locomotion. In addition,

whereas each discrete task changes the geometric precondi-

tions that affect the next task in a manipulation sequence,

we assume a fixed geometric map in our framework.

Within the field of robotic locomotion, there has been

considerable effort to solve the ”Hybrid Activity and Tra-

jectory Planning” (HATP) problem [9], [17], [18], [13],
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where individual tasks of multiple robots, as well as their

trajectories, must simultaneously be planned. Some of these

planners also take into account the dynamic behavior of the

robot. However, due to the difficulty of simultaneously doing

trajectory generation with task planning, these approaches

often consider simplified forms of dynamics, such as constant

rate [17], or first-order behavior [18], that admit fast and

convex formulations of trajectory planning. By alleviating

the need to compute exact control inputs in the discrete-

planning process, and capturing their effects with offline-

approximated costs, our approach allows tractable utilization

of realistic robot dynamics.
Our framework is most related to [13], which uses hi-

erarchical planning for multi-agent systems: a graph-search

first creates a global plan for multiple agents, and a local

controller is used for the agents to track the global plan.

The cost function in their graph utilizes the value function

of the closed-loop policy that is computed offline, which is

similar to our offline cost approximation. However, while

[13] utilizes distance-dependent energy costs with a double-

integrator model for their robot dynamics, we directly opti-

mize for electrical energy expenditure, thus capturing a more

detailed and dynamically accurate behavior of the robot. This

further emphasizes the full power of this framework.
The proposed method is primarily implemented in simu-

lation: the hybrid double-integrator with viscous friction is

shown as a low-dimensional case (Sec.IV). Then, example

trajectories for more realistic systems are given by con-

sidering amphibious (Sec.V) and flying-driving locomotion

(Sec.VI). As most hybrid planners ([17], [18]), our planner

does not guarantee probabilistic optimality due to the under-

lying heuristics required to solve the problem, but we show

that our method performs quantitatively well in practice.

II. PROBLEM FORMULATION

A. The Hybrid Locomotion System
We define a hybrid locomotion system as a type of hybrid

control system [19], [20] with additional constraints. The

hybrid locomotion system, H L , is defined as a tuple

H L = (FG,D,U ,S,Δ). (1)

In the following descriptions of each system element, i
indexes the locomotion mode (i.e. flying or driving):

• FG = {(fi, gi)} describes the dynamics associated

with each locomotion mode, which are assumed to take

a control-affine form: ẋ = fi(x) + gi(x)u.

• D = {Di} is the set of domains, or state-spaces,

associated with the continuous dynamics of each mode.

• U = {Ui} is the set of admissible control inputs

associated with each mode.

• S = {Si,j} is the set of guard surfaces that describes

the boundaries between domains of mode i and j.

• Δ = {Δi→j} is the set of reset maps that describe

discrete transformations on the guard surface Si,j

We additionally assume that each state x ∈ ⋃Di belongs

to a single mode i. i.e., the domains disjointly partition the

reachable state-space.

B. Optimal Trajectories in the Hybrid Locomotion System

To define an optimal hybrid trajectory, we formulate a cost

for each mode’s control-affine system in Bolza form:

Ji = Φi(x(t0), t0, x(tf ), tf ) +

∫ tf

t0

Li(x(t), u(t), t)dt. (2)

There also exists a constant switching cost J(Δi→j) to tran-

sition from one modality i to j. We formulate the problem of

finding the optimal trajectory for a hybrid locomotion system

as the following two-point boundary value problem:

min
u

∑
Ji + J(Δi→j)

s.t. ẋ = fi(x) + gi(x)u ∀x ∈ Di u ∈ Ui ∀i,
x(t0) = x0, x(tf ) = xf .

(3)

We want to find a trajectory that is dynamically feasible

within each modality, while optimizing the cost functional

throughout the entire trajectory, which would also require

optimizing the order of discrete modes to visit. This problem

can be transformed into an instance of a mixed-integer

nonlinear program [8].

III. PLANNING METHODOLOGY

Sec. III-A summarizes our planning method that combines

sampling-based planning with local trajectory optimization.

To extend this approach to problems with high dimensions,

Sec. III-B introduces virtual constraints and cost approxima-

tion to improve real-time performance.

A. Dynamic Programming with Continuous Optimization

1) Graph Structure: First, we discretize the problem by

sampling coordinates in the free state-space of each domain

Di. The vertices, V , of a digraph, G(V,E), are constructed

from these samples, similar to the framework of Probabilistic

Roadmaps (PRM) [21]. The edges represent locally optimal

paths between the vertices. Each edge is weighted with the

optimal transport cost. To avoid the situation where the two

vertices of an edge lie in different modalities, we additionally

impose the following constraints:

1) e = (xi → xj) ∈ E, xi, xj ∈ Dk for some mode k.

i.e., edges only connect states in the same mode.

2) We explicitly sample the guard surface and only allow

paths to cross a guard through a guard sample point.

Fig.2. A and B illustrate these conditions. The shortest-path

search is tackled by Djikstra’s algorithm [22] once the locally

optimal trajectory costs are known.

Fig. 2. A) red edges cross a guard surface between domains D1 and D2,
violating the constraint on edges. B) By sampling on the guard surface and
allowing no edges between D1 to D2, all graph edges are constrained to a
single mode. C) Node augmentation to handle modality switching costs.
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If there exists a switching cost from one modality to

another, we augment the sample on the guard surface x with

two connected nodes xi and xj that shares the same state-

space coordinates, and assign switching cost to the edge cost

between the two samples, as illustrated in Fig. 2.C.

2) Continuous Optimization of Trajectory Segments: As

each edge connects states in a single mode, we assign the

edge weight by solving the optimization problem:

w(x1 → x2) = min
u

Ji

s.t. ẋ = fi(x) + gi(x)u, x ∈ Di, u ∈ Ui,

x(t0) = x1, x(tf ) = x2,
(4)

where x1, x2 ∈ Di. The result of this problem is used as

the running cost in our dynamic programming framework.

This standard trajectory optimization problem can be solved

using existing methods, such as direct collocation [23].

3) Final Path Smoothing: The path(s) returned from

graph-search are smoothed via trajectory optimization, know-

ing the switching sequence and the guard surface points.

Given a path of samples P = (x1, x2, · · · , xk) resulting from

graph search, we partition the samples using their modalities:⋃
Pi = P1 = {xi|0 ≤ i ≤ k1, ∀xi ∈ Dj1} ∪ · · · ∪
Pn = {xi|kn−1 ≤ i ≤ kn, ∀xi ∈ Djn},

(5)

where ji denotes the mode of each partition, and xki
denotes

the sample on the guard surface where the trajectory switches

modes. The optimal trajectories between boundary points

are then found by re-solving the partition-wise trajectory

optimization problem. The total trajectory is reconstructed by

concatenating the partition-wise optimal trajectories. Existing

works have shown that this type of final smoothing, which

delays the final choice the control inputs until the end, often

leads to much enhanced performance [16], [18].

In addition, although we assume no significant presence

obstacles in this work, we note that the result of the path of

samples can be used as a nominal collision-free trajectory

that can be used to bound the final smoothing process [24],

[25], which is a direction we further plan to investigate.

B. Extension to High Dimensions

Although dynamic programming with running cost of

continuous trajectory optimization shows good promise, it

is computationally expensive, requiring O(|V |2) instances

of trajectory optimization. In high dimensions, the number

of samples increases exponentially if the resolution is main-

tained, and trajectory optimization methods scale poorly. The

two methods introduced in this section aim to make this

method tractable for high-dimensional systems.

1) Virtual Constraints for Search-Space Reduction: We

can reduce the dimensionality of the sample space by intro-

ducing heuristic virtual constraints that fix some coordinates

as functions of the sampled-coordinates. The state-space is

divided into sampled coordinates (xs) and auxiliary coordi-

nates (xa), which are functions of the sampled coordinates:

x = (xs, xa)T = (xs, v (xs))
T
. (6)

The state partioning into xs and xa is problem-dependent,

but can be understood in the context of model-order reduc-

tion: if the original system and the virtually-constrained sys-

tem show bounded difference in their evolution, it indicates

a good choice of coordinates and constraints. Point-mass

coordinates of position and velocity [20], or differentially

flat coordinates [26] can be good choices. Eliminating the

sampling of the subspace xa can significantly reduce com-

putation, making the method tractable.

2) Approximate Dynamic Programming: To find the

weight between two sampled coordinates xs
1 and xs

2 in the

graph, let us first define a function J : Rdim(xs)×R
dim(xs) →

R, which is described by the following optimization problem:

J(xs
1, x

s
2) = min

u
Ji

s.t. ẋ = fi(x) + gi(x)u, x ∈ Di, u ∈ Ui,

x0 = [xs
1, v(x

s
1)]

T , xf = [xs
2, v(x

s
2)]

T

(7)

where (xs
1, v(x

s
1))

T , (xs
2, v(x

s
2))

T ∈ Di. Since this optimiza-

tion problem has to be solved O(|V |2) times, we choose to

learn a function approximator offline.

Using (xs
1, x

s
2) as feature vectors, and J(xs

1, x
s
2) as label,

we first produce a batch ((xs
1, x

s
2) , J (xs

1, x
s
2)) from multiple

trajectory optimization runs. Then, function approximators

from supervised learning algorithms such as Support Vector

Regression (SVR) [27] or Neural Nets are used to ap-

proximate J(xs
1, x

s
2). Denoting the approximated function

as J̃(xs
1, x

s
2), the weights on the graph are assigned by

w(xs
1 → xs

2) = J̃(xs
1, x

s
2).

Since J̃ is learned offline, its evaluation does not require

a full instance of nonlinear programming, greatly reducing

online computation. Yet, as J̃ is learned from trajectory

optimization, all costs in Bolza form can be utilized, and

dynamic or temporal constraints can be incorporated.

IV. CASE STUDY: HYBRID DOUBLE INTEGRATOR

This section first verifies our low-dimensional method for

1D problem of a thrust-vectored mass on a linear rail, with

viscous drag appearing at p ≥ 0. This can be formulated as

a hybrid locomotion system with the dynamics of:

p̈ = u if p < 0, p̈ = u− ṗ if p ≥ 0. (8)

In addition, consider that we have the input constraint |u| ≤
1 for both domains. Converting this to a first-order system

x =
(
p, v

)T
, the system can be described as:

H L =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

FG = {(f−, g−), (f+, g+)},
D = {{x|p < 0} , {x|p ≥ 0}}
U = {{u||u| ≤ 1} , {u||u| ≤ 1}}
S = {S+,− = {x|p = 0}} ,
Δ = {Δ+,− = x+ → x−}

, (9)

where the dynamics are described by,

f− =

(
0 1
0 0

)
, f+ =

(
0 1
0 −1

)
, g+ = g− =

(
0
1

)
.

(10)
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Then, let us find a trajectory from xi to xf while minimizing

the input,

J− = J+ =

∫ tf

t0

u2dt. (11)

Using our framework, we first place a graph structure

on the state-space using knowledge of the domains Di,

then optimize each continuous trajectory using GPOPS-II

[23] with IPOPT [28] solver. The trajectory obtained using

graph search, and the final smoothened trajectory using the

knowledge of the switching sequence and the boundary

points on the guard surface is displayed in Fig.3.

Finally, since the switching sequence is trivial to guess for

this example, we utilize multi-phase optimization in GPOPS-

II with IPOPT, which puts an equality constraint from the

end of the first phase in D+ and the beginning of the second

phase in D− and compare the results. The trajectory using

multi-phase optimization is displayed in Fig.3.

To empirically study the effect of having increased number

of samples, we run the algorithm 10 times with different

inter-sample distances (controlled by Poisson disc sampling

[29] on the state-space), and show convergence in Fig. 4. Fig.

4 shows that our method results in a lower cost compared

to multi-phase optimization, with inter-sample distance as

large as 0.3. Although the dynamics are linear and cost is

quadratic, the problem is no longer convex in the switching

coordinate. Thus, our PRM framework, which searches more

globally over the domain, performs better than the local

optimum provided by IPOPT [28].

Fig. 3. Optimal Trajectories from xi = [0.8, 0.2]T to xf = [−0.8,−0.]T

(left), and from xi = [0.7,−0, 1]T to xf = [−0.5, 0.2]T (right). Red
trajectories are obtained using graph search, green trajectories are results
of final smoothened path, and the pink trajectory is result of Multi-phase
optimization in GPOPS-II [23]. The edges represent optimal trajectories
between each sample.

Fig. 4. Empirical convergence of cost with decreasing intersample distance.

V. 2D CASE STUDY: AMPHIBIOUS TANK (AMBOT)

This section describes optimal trajectories for the amphibi-

ous vehicle introduced in [1], which uses tank treads for

ground locomotion (skid-steer), and marine locomotion (pad-

dles). After describing the vehicle dynamics in both modes,

we obtain optimal trajectories for an example environment.

A. Dynamics
1) Ground and Marine Dynamics: We derive the Newto-

nian mechanics for planar motion, and incorporate first-order

armature motor dynamics. The ground states, xg ∈ R
6, and

marine states, xm ∈ R
8, are defined as{

xg = (pwb , v
b, θwb , ω

b)T

xm = (pwb , v
b, θwb , ω

b, φL, φR)
T ,

(12)

where pwb ∈ R
2 is the body position with respect to (wrt) a

world frame, vb ∈ R
2 is the velocity in the body frame, and

θwb , ω
b ∈ R denote the orientation and angular velocity wrt

a world frame. Finally, φL, φR ∈ R denote the left and right

motor speeds. In both locomotion modes, the control action

ug = um = (uL, uR)
T ∈ [−1, 1]2 correspond to commanded

motor speeds via fraction of applied motor voltage.
We model a no-slip constraint for ground operation. A

1st-order motor model relates motor torque (which generates

tractive forces on the vehicle) to command inputs. A drag

force proportional to the square of vehicle speed and a similar

1st-order motor model are used in the aquatic domain.
2) Hybrid Dynamics: The governing dynamical systems

for each mode are represented by the hybrid dynamics

FG =

{
ẋg = fg(xg) + gg(xg)ug x ∈ Dg

ẋm = fm(xm) + gm(xm)um x ∈ Dm,
(13)

where g,m denotes ground and marine modes. The domains

and guard surfaces Dg,Dm,Sm,g are obtained from terrain,

and Ug = Um = [−1, 1]2 for both inputs. We apply the

identity map to Δm→g and Δg→m.
3) Cost Function: We minimize the robot’s total energy

expenditure, modeled as:

Jg = Jm =

∫ tf

ti

( ∑
i=L,R

Vccui · kt
R
(Vccui − ktφi) + Pd

)
dt,

(14)

where Vcc is the battery voltage, kt is the motor torque-

constant, R the internal resistance, and Pd the constant power

drain. The first term models actuator power dissipation, and

the latter term models constant power drainage from on-

board electronics. We assume no switching costs associated

with the discrete reset map, J(Δm→g) = J(Δg→m) = 0

B. Learning the Cost Approximator
For ground operation, we divide the state-space xg ∈ R

6

into sampled and auxiliary coordinates

xs
g = (pwx , p

w
y , v

b
x, θ)

T , xa
g = (vby, ω)

T = (0, 0)T . (15)

This heuristic division of coordinates recognizes that side-

slip is constrained for skid-steer vehicles, and angular veloc-

ity is small. For marine operation, xm is divided into
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Fig. 5. Left: 11520 ground trajectories colored by their cost. Right: xy-
energy contour for vbx = 1.0m/s, θ = π/2. The heatmap corresponds to
the energy cost to go from xs

i = [0, 0, 0, 0]T to xs
f = [x, y, 1.0, π/2]T .

The approximated cost captures complex effects of underactuation.{
xs
m = (pwx , p

w
y , v

b
x, θ)

T

xa
m = (vby, ω, φL, φR)

T = (0, 0, φn, φn)
T ,

(16)

where track forces equal water drag at equilibrium speed φn.

The cost J(xs
i , x

s
f ) in (7) is approximated from multiple

optimal trajectories evaluated offline. Using 11520 samples,

the function J(xs
i , x

s
f ) is evaluated using GPOPS-II [23],

and SVR with Gaussian kernel trains the function J̃ with

Sequential Minimal Optimization [30]. The process is re-

peated for ground and marine locomotion. Fig.5 shows the

resulting trajectories and the learned function’s contour.

C. Results

We sample position using the method of Sec.III.A, and

grid the states vx, θ to create xs. The edge weights are

estimated from the learned function J̃ . Finally, the shortest

path is found by Djikstra’s algorithm [22]. Fig. 6 illustrates

this process. The final smoothed trajectory is shown in Fig.7.

The final trajectories differ noticeably from those produced

by a shortest-path planner due to the differences in Costs of

Transport. Since the robot expends more energy in water, it

drives further on the ground until it switches to swimming.

This example shows that our method exhibits reasonably

correct qualitative behavior.

Fig. 6. A: Model Environment. B: Graph Generation. C. Result of shortest
path search.

Fig. 7. Final trajectories for example of river crossing (left), and island
crossing (right). The Robot outline is displayed at equal time differences.

VI. 3D CASE STUDY: DRIVOCOPTER

This section models the Drivocopter flying-driving drone

of Fig. 1. It uses skid-steer driving and quadrotor flight.

A. Dynamics

We use the ground model of Sec.V with different param-

eters, while the flight dynamics are based on [31] and [32].

1) Flight Dynamics: Standard rigid-body dynamics [33]

describe flight motions driven by four rotor forces, which use

a speed-squared-dependent lift term and 1st-order armature

motor dynamics. The state vector xf ∈ R
16 is

xf = (pwb , v
b,Θw

b , ω
b, φi)

T , (17)

where pwb ∈ R
3 is the vehicle position wrt a world frame,

vb ∈ R
3 is the 3D velocity in the body frame, Θw

b ∈ R
3 de-

notes vehicle orientation w.r.t the world frame, parametrized

by ZYX Euler angles, ωb ∈ R
3 is the body angular velocity,

and φi = (φ1, φ2, φ3, φ4) ∈ R
4 are the motor rotational

speeds.

2) Hybrid Dynamics: Again, the two modalities of ground

and flight are represented by a hybrid dynamical system

FG =

{
ẋf = ff (xf ) + gf (xf )uf xf ∈ Df

ẋg = fg(xg) + gg(xg)ug xg ∈ Dg,
(18)

where f, g denotes flight and ground modes, the domains

and guard surfaces Df ,Dg,Sf,g are obtained from the

ground surface geometry. The motor inputs are Uf =
(u1, u2, u3, u4) = [0, 1]4 with Ug = (uL, uR) = [−1, 1]2.

Finally, Δf→g (landing) and Δg→f (takeoff) are discrete

transitions:{
Δf→g = (pwx , p

w
y , p

w
z , 0

9, φn) → (pwx , p
w
y , 0

4)

Δg→f = (pwx , p
w
y , 0

2, θwb , 0) → (pwx , p
w
y , p

w
z , 0

9, φn),
(19)

where φn is the motor speed needed to provide hovering

lift. During takeoff, we set pwz to be a meter higher than the

ground surface of the ground sample.

3) Cost Function: We use the same ground energy cost as

(14), and formulate the same energy for flight with different

motor parameters. The costs for reset maps J(Δf→g) and

J(Δg→f ) are constant takeoff and landing energy costs

obtained via trajectory optimization.

B. Learning the Cost Approximator

Fig. 9. Left: 17016 trajectories produced to learn the flight energy function.
Right: xz-projection of the learned function J̃(0, x).
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The ground states are divided into sampled / auxiliary

coordinates via (15). Flight states are divided by:{
xs
f = (pwb , v

b)T

xa
f = (Θw

b , ω
b, φi) = (01×3, 01×3, φn · 11×4)T ,

(20)

where the φn is the rotor rate at which the lift provided by

the propellers allows the drone to hover in stable equilibrium.

The cost J(xs
1, x

s
2) is learned as in Sec.V.B from 17016

paths. Fig. 9 shows the trajectories and energy map. The

ground energy cost is found with Drivocopter parameters.

C. Results

Fig. 10. A. Model Terrain classified into drivable and undrivable terrains.
B. Poisson sampling on ground mesh. C. Poisson sampling on air and
shortest path search. D. Smoothened final path. E. Heuristic trajectories for
comparison in Tab.I. From back to front: F (red), DF (green), DFD (blue),
FDF (pink), DFDF (black), DFDFD (cyan)

A CAD environment model, consisting of two raised

platforms separated by a flat-bottom chasm, is meshed into

drivable and undrivable regions (Fig.10.A), and the ground

and free-space meshes are Poisson sampled (Fig.10.B). The

result of a shortest-path (Fig.10.C) is smoothened (Fig.10.D).

This process is depicted in Fig. 10. We hypothesized that

when the landing platforms are nearby, the drone should not

drive in the chasm, since gravitational losses exceed energy

gains by driving. As the landing platform becomes more

distant, the drone saves energy by driving in the chasm.

We tested this idea on 5 different terrains parametrized by

the distance between platforms (see Fig.8). Our planning

results show correct qualitative behavior. Illustration of the

trajectories is available in the video [34].

To illustrate how our results perform quantitatively, we

also generate a few heuristic trajectories with different

sequences (illustrated in Fig.10.E) and compare the final

cost of these heuristic trajectories with our method in Ta-

ble.I. Our method produces switching sequences that mostly

agree with lowest-cost producing sequences among heuristic

trajectories, and costs are quantitatively comparable to the

heuristically optimal trajectories. However, our comparison

is limited by the fact that the true optimal solution to the

original mixed-integer problem is not tractable to obtain.

VII. CONCLUSION

We presented a novel scheme to plan energy-efficient

hybrid locomotion trajectories using approximate dynamic

programming. Through capturing optimal policies within

individual modalities with the optimal cost function, we

showed that our approach is successful in decoupling the

continuous and discrete optimization problems. We have

also demonstrated that our approximated cost is successful

in capturing complex dynamic characteristics of the robot

through examples of practical hybrid locomotion: the hybrid

double-integrator, the Ambot, and the Drivocopter.

Improvements are possible by upgrading elements of this

framework. Better computational speed could be realized by

adaptive sampling [35]. An (A*) [36] graph search would be

enabled by transport energy heuristics, while other function

approximators, such as Neural Nets, might improve the cost

function learning module. More efficient implementations

[37] can be used for trajectory optimization.

We also note some major limitations of the planner. Our

Cost from Fixed Sequence Heuristic Trajectories (Joules) Our Method

Dist. (m) F DF DFD FDF DFDF DFDFD Sequence Cost (Joules)

110 12129.72 11991.18 11780.26 6612.62 6620.16 6642.41 DFDFD 6655.44

90 10167.32 9902.18 9867.10 6345.64 6558.94 6578.74 DFDFD 6600.45

70 8208.72 7941.78 7726.73 6470.98 6492.85 6511.88 DFD 8156.85

50 6248.72 6112.78 5894.58 6477.60 6449.91 6452.32 DF 6456.37

30 4244.2 4148.18 3815.68 6343.64 6365.65 6387.47 DFD 4033.92

TABLE I

COMPARISON OF COSTS FROM HEURISTIC TRAJECTORIES WITH FIXED SEQUENCES. D: DRIVING, F: FLYING

Fig. 8. Depiction of trajectory differences as the target platforms become more distant. At less than 75m separation, the robot always flies. After 95
meters separation, driving in the chasm saves energy.
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framework relies on approximating solutions to Boundary

Value Problems (BVP), but it is difficult to guarantee how

well the function approximator captures the cost landscape,

especially due to reachability constraints; even if the result-

ing BVP is infeasible, the cost approximator will still return

a finite cost. An RRT [38] approach to planning through

hybrid dynamical systems can address this issue [39]; while

all nodes are reachable in this approach, detecting where the

tree has crossed the guard surface is much more difficult.

For future works, we wish to understand how this planner

can extend to settings with many obstacles, by using our

sampled points as waypoints that can bound the result

of final path smoothing. In addition, we are interested in

studying cases where the map is not known in advance

[40]. Finally, efforts are underway to demonstrate our results

experimentally on the Drivocopter of Fig. 1.
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