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Algorithmic Analysis and Statistical Estimation of
SLOPE via Approximate Message Passing

Zhiqi Bu, Jason M. Klusowski , Cynthia Rush , Member, IEEE, and Weijie J. Su

Abstract— SLOPE is a relatively new convex optimization
procedure for high-dimensional linear regression via the sorted �1

penalty: the larger the rank of the fitted coefficient, the larger the
penalty. This non-separable penalty renders many existing tech-
niques invalid or inconclusive in analyzing the SLOPE solution.
In this paper, we develop an asymptotically exact characterization
of the SLOPE solution under Gaussian random designs through
solving the SLOPE problem using approximate message passing
(AMP). This algorithmic approach allows us to approximate the
SLOPE solution via the much more amenable AMP iterates.
Explicitly, we characterize the asymptotic dynamics of the AMP
iterates relying on a recently developed state evolution analysis
for non-separable penalties, thereby overcoming the difficulty
caused by the sorted �1 penalty. Moreover, we prove that the
AMP iterates converge to the SLOPE solution in an asymptotic
sense, and numerical simulations show that the convergence is
surprisingly fast. Our proof rests on a novel technique that
specifically leverages the SLOPE problem. In contrast to prior
literature, our work not only yields an asymptotically sharp
analysis but also offers an algorithmic, flexible, and constructive
approach to understanding the SLOPE problem.

Index Terms— Approximate message passing (AMP), sorted �1

regression, high-dimensional regression, state evolution.

I. INTRODUCTION

CONSIDER observing linear measurements y ∈ R
n that

are modeled by the equation

y = Xβ + w, (I.1)

where X ∈ R
n×p is a known measurement matrix, β ∈ R

p

is an unknown signal, and w ∈ R
n is the measurement noise.
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Among numerous methods that seek to recover the signal β
from the observed data, especially in the setting where β is
sparse and p is larger than n, SLOPE has recently emerged
as a useful procedure that allows for estimation and model
selection [9]. This method reconstructs the signal by solving
the minimization problem

�β := arg min
b

1
2
�y − Xb�2 +

p�
i=1

λi|b|(i), (I.2)

where � · � denotes the �2 norm, λ1 ≥ · · · ≥ λp ≥ 0 (with
at least one strict inequality) is a sequence of penalties, and
|b|(1) ≥ · · · ≥ |b|(p) are the order statistics of the fitted
coefficients in absolute value. The regularizer

�
λi|b|(i) is

a sorted �1-norm (denoted as Jλ(b) henceforth), which is
non-separable due to the sorting operation involved in its
calculation.

Owing to the flexibility of its penalty sequence, SLOPE is
versatile in its ability to handle the linear model (I.1) from
a variety of perspectives. In the case where λ1 = · · · = λp,
SLOPE reduces to LASSO. A nontrivial choice of the
penalty sequence λ is to use the critical values given by the
Benjamini–Hochberg procedure [9]. This penalty sequence
enables two attractive features of SLOPE that are not
simultaneously present in other methods for linear regression.
On the estimation side, SLOPE achieves minimax estimation
properties under certain random designs without requiring any
knowledge of the sparsity degree of β [7], [42]. On the testing
side, SLOPE controls the false discovery rate if the predictors
are weakly correlated [9], [11]. Another popular choice for
the SLOPE penalty is to take a linearly decreasing sequence
of the form λi = λp + c(p − i) for some c > 0, which
encourages SLOPE to group correlated predictors when the
design matrix X is highly correlated [10], [18], [46]. More
recently, [22] considers the problem of finding the penalty
sequence for SLOPE that minimizes the asymptotic mean
squared error and [45] characterizes the finite sample mean
square error and provides analytic comparisons of different
SLOPE estimators with respect to varying noise levels.

In this paper, we are concerned with the algorithmic aspects
of SLOPE through the lens of approximate message passing
(AMP) [4], [15], [25], [35]. AMP is a class of computation-
ally efficient and easy-to-implement algorithms for a broad
range of statistical estimation problems, including compressed
sensing and the LASSO [5]. When applied to SLOPE, AMP
takes the following form: at initial iteration t = 0, assign
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Fig. 1. Optimization errors, 1
p
||βt − �β||2, and (symmetric) set difference

of supp(βt) and supp(�β).

TABLE I

FIRST ITERATION t FOR WHICH THERE IS ZERO SET DIFFERENCE

OR OPTIMIZATION ERROR ||βt − �β||2/p FALLS BELOW A THRESH-
OLD. FIGURE 1 AND TABLE I DETAILS: DESIGN X IS 500 ×

1000 WITH I.I.D. N (0, 1/500) ENTRIES. TRUE SIGNAL β IS
I.I.D. GAUSSIAN-BERNOULLI: N (0, 1) WITH PROBABILITY

0.1 AND 0 OTHERWISE. NOISE VARIANCE σ2
w = 0.

A CAREFUL CALIBRATION BETWEEN THE THRESH-
OLDS θt IN SLOPE AMP AND λ IS SLOPE IS

USED (DETAILS IN SEC. II)

β0 = 0, z0 = y, and for t ≥ 0,

βt+1 = proxJθt
(X�zt + βt), (I.3a)

zt+1 = y − Xβt+1 +
zt

n

�
∇ proxJθt

(X�zt + βt)
�
. (I.3b)

The non-increasing sequence θt is proportional to λ =
(λ1, λ2, . . . , λp) and will be given explicitly in Section II.
Here, proxJθ

is the proximal operator of the sorted �1 norm,
that is,

proxJθ
(x) := argmin

b

1
2
�x − b�2 + Jθ(b), (I.4)

and ∇ proxJθ
denotes the divergence of the proximal operator

(see an equivalent, but more explicit form, of this algorithm
in Section II and further discussion of SLOPE and the
prox operator in Section V-A). Compared to the proximal
gradient descent (ISTA) [13], [14], [33], AMP has an extra
correction term in its residual step that adjusts the iteration in
a non-trivial way and seeks to provide improved convergence
performance [15].

The empirical performance of AMP in solving SLOPE
under i.i.d. Gaussian matrix X is illustrated in Figure 1 and
Table I, which suggest the superiority of SLOPE AMP over
ISTA and FISTA [6]—perhaps the two most popular proximal
gradient descent methods—in terms of speed of convergence
in this setting. However, the vast AMP literature thus far
remains silent on whether AMP provably solves SLOPE and,

if so, whether one can leverage AMP to get insights into the
statistical properties of SLOPE. This vacuum in the literature is
due to the non-separability of the SLOPE regularizer, making
it a major challenge to apply AMP to SLOPE directly. In stark
contrast, AMP theory has been rigorously applied to the
LASSO [5], showing both good empirical performance and
nice theoretical properties of solving the LASSO using AMP.
Moreover, AMP in this setting allows for asymptotically exact
statistical characterization of its output, which converges to the
LASSO solution, thereby providing a powerful tool in fine-
grained analyses of the LASSO [2], [32], [40], [41].

Main Contributions: In this work, we prove that the AMP
algorithm (I.3) solves the SLOPE problem in an asymptoti-
cally exact sense under independent Gaussian random designs.
Our proof uses the recently extended AMP theory for non-
separable denoisers [8] and applies this tool to derive the state
evolution that describes the asymptotically exact behaviors
of the AMP iterates βt in (I.3). The next step, which is
the core of our proof, is to relate the AMP estimates to the
SLOPE solution. This presents several challenges that cannot
be resolved only within the AMP framework. In particular,
unlike the LASSO, the number of non-zeros in the SLOPE
solution can exceed the number of observations. This fact
imposes substantially more difficulties on showing that the
distance between the SLOPE solution and the AMP iterates
goes to zero than in the LASSO case due to the possible non-
strong convexity of the SLOPE problem, even restricted to the
solution support. To overcome these challenges, we develop
novel techniques that are tailored to the characteristics of the
SLOPE solution. For example, our proof relies on the crucial
property of SLOPE that the unique non-zero components of
its solution never outnumber the observation units.

As a byproduct, our analysis gives rise to an exact
asymptotic characterization of the SLOPE solution under
independent Gaussian random designs through leveraging
the statistical aspect of the AMP theory. In more detail,
the probability distribution of the SLOPE solution is
completely specified by a few parameters that are the solution
to a certain fixed-point equation in an asymptotic sense. This
provides a powerful tool for fine-grained statistical analysis
of SLOPE as it was for the LASSO problem. We note
that a recent paper [22]—which takes an entirely different
path—gives an asymptotic characterization of the SLOPE
solution that matches our asymptotic analysis deduced from
our AMP theory for SLOPE. However, our AMP-based
approach is more algorithmic in nature and offers a more
concrete connection between the finite-sample behaviors of
the SLOPE problem and its asymptotic distribution via the
computationally efficient AMP algorithm.

Paper Outline: In Section II we develop an AMP algorithm
for finding the SLOPE estimator in (I.2). Specifically, it is
through the threshold values θt in the AMP algorithm in
(I.3) that one can ensure the AMP estimates converge to
the SLOPE estimator with parameter λ, so in Section II we
provide details for how one should calibrate the thresholds of
the AMP iterations in (I.3) in order for the algorithm to solve
SLOPE cost in (I.2). Then in Section III, we state theoretical
guarantees showing that the AMP algorithm solves the SLOPE
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optimization asymptotically and we leverage theoretical guar-
antees for the AMP algorithm to exactly characterize the mean
square error (more generally, any pseudo-Lipschitz error) of
the SLOPE estimator in the large system limit. This is done by
applying recent theoretical results for AMP algorithms that use
a non-separable non-linearity [8], like the one in (I.3). Finally,
Sections IV-VII prove rigorously the theoretical results stated
in Section III and we end with a discussion in Section IX.

II. ALGORITHMIC DEVELOPMENT

To begin with, we state assumptions under which our
theoretical results will hold and give some preliminary ideas
about SLOPE that will be useful in the development of the
AMP algorithm.

Assumptions: Concerning the linear model (I.1) and para-
meter vector in (I.2), we assume:

(A1) The measurement matrix X has independent and
identically-distributed (i.i.d.) Gaussian entries that have mean
0 and variance 1/n.

(A2) The signal β has elements that are i.i.d. B, with
E(B2 max{0, logB}) <∞.

(A3) The noise w is elementwise i.i.d. W , with σ2
w :=

E(W 2) <∞.
(A4) The vector λ(p) = (λ1, . . . , λp) is elementwise

i.i.d. Λ, with E(Λ2) <∞ and P(Λ �= 0) > 0.
(A5) The ratio n/p approaches a constant δ ∈ (0,∞) in the

large system limit, as n, p→ ∞.
Remark: (A4) can be relaxed as λ1, . . . , λp having any

empirical distribution that converges weakly to the distri-
bution of the random variable Λ on R with E(Λ2) <
∞, �λ(p)�2/p → E(Λ2) and P(Λ �= 0) > 0. In this sense,
λ1, ..., λp are order statistics of the entries of any qualifying
λ. A similar relaxation can be made for distributional assump-
tions (A2), (A3).

SLOPE Preliminaries: For a vector v ∈ R
p, the diver-

gence of the proximal operator, ∇ proxf (v), is given by the
following:

∇ proxf (v) :=
p�

i=1

∂

∂vi
[proxf (v)]i

=
� ∂

∂v1
,
∂

∂v2
, . . . ,

∂

∂vp

�
· proxf (v),

where [42, proof of Fact 3.4],

∂[proxJι
(v)]i

∂vj
=⎧⎪⎪⎨⎪⎪⎩

sign([proxJι
(v)]i)·sign([proxJι

(v)]j)

#{1 ≤ k ≤ p : |[proxJι
(v)]k| = |[proxJι

(v)]j |} ,

if |[proxJι
(v)]j | = |[proxJι

(v)]i|,
0, otherwise.

(II.1)

Hence the divergence takes the simplified form

∇ proxJι
(v) = � proxJι

(v)�∗0, (II.2)

where �·�∗0 counts the unique non-zero magnitudes in a vector,
e.g. �(0, 1,−2, 0, 2)�∗0 = 2. This explicit form of divergence
not only waives the need to use an approximation in the
calculation but also speeds up the recursion, since it only

depends on the proximal operator as a whole instead of on
θt−1,X, zt−1,βt−1. Therefore, we have

Lemma II.1: In AMP, (I.3b) is equivalent to zt+1 = y −
Xβt+1 + zt

δp�βt+1�∗0.
Other details and background on SLOPE and the prox

operator are found in Section V-A. Now we discuss the details
of an AMP algorithm that can be used for finding the SLOPE
estimator in (I.2).

A. AMP Background

An attractive feature of AMP is that its statistical properties
can be exactly characterized at each iteration t, at least
asymptotically, via a one-dimensional recursion known as state
evolution [4], [8], [23], [40]. Specifically, it can be shown that
the pseudo-data, meaning the input X�zt+βt for the estimate
of the unknown signal in (I.3a), is asymptotically equal in dis-
tribution to the true signal plus independent, Gaussian noise,
i.e. β+τtZ, where the noise variance τt is defined by the state
evolution. For this reason, the function used to update the esti-
mate in (I.3a), in our case, the proximal operator, proxJθt

(·),
is usually referred to as a ‘denoiser’ in the AMP literature.

This statistical characterization of the pseudo-data was first
rigorously shown to be true in the case of ‘separable’ denoisers
by Bayati and Montanari [4], and an analysis of the rate of
this convergence was given in [40]. A ‘separable’ denoiser
is one that applies the same (possibly non-linear) function to
each element of its input. It has been empirically validated
in [30] that the state evolution may characterize some non-
separable denoiser. Then the recent work [8] rigorously proves
that the pseudo-data has distribution β + τtZ asymptotically,
even when the ‘denoisers’ used in the AMP algorithm are
non-separable, like the SLOPE prox operator in (I.3a).

As mentioned previously, the dynamics of the AMP iter-
ations are tracked by a recursive sequence referred to as the
state evolution, defined as follows. For B elementwise i.i.d. B
independent of Z ∼ N (0, Ip), let τ2

0 = σ2
w + E[B2]/δ and

for t ≥ 0,

τ2
t+1 = σ2

w + lim
p

1
δp

E�proxJθt
(B + τtZ) − B�2. (II.3)

Below we make rigorous the way that the recursion in (II.3)
relates to the AMP iteration (I.3).

We note that throughout, we let N (μ, σ2) denote the
Gaussian density with mean μ and variance σ2 and we use
Ip to indicate a p× p identity matrix.

B. Analysis of the AMP State Evolution

As the state evolution (II.3) predicts the performance of the
AMP algorithm (I.3) (the pseudo-data, X�zt +βt, is asymp-
totically equal in distribution β + τtZ), it is of interest to
study the large t asymptotics of (II.3). Moreover, recall that
through the sequence of thresholds θt, one can relate the AMP
algorithm to the SLOPE estimator in (I.2) for a specific λ,
and the explicit form of this calibration, given in Section II-C,
is motivated by such asymptotic analysis of the state evolution.

Instead of (II.3), a finite-size approximation, which we
denote τ2

t (p), will be easier to analyze. The definition of
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τ2
t+1(p) is stated explicitly in (II.4) below. Throughout the

work, we will define thresholds θt := ατt(p) for every
iteration t where the vector α is fixed via a calibration made
explicit in Section II-C. We can interpret this to mean that
within the AMP algorithm, α plays the role of the regularizer
parameter, λ. Now we define τ2

t+1(p), for large p, as a finite-
sample approximation to (II.3), namely

τ2
t+1(p) = σ2

w +
1
δp

E�proxJατt(p)
(β + τt(p)Z) − β�2,

(II.4)

where the difference between (II.4) and the state evolution
(II.3) is via the large system limit in p. When we refer to the
recursion in (II.4), we will always specify the p dependence
explicitly as τt(p). An analysis of the limiting properties (in t)
of (II.4) is given in Theorem 1 below, after which it is then
argued that because interchanging limits and differentiation is
justified, the large t analysis of (II.4) holds for (II.3) as well.
Before presenting Theorem 1, however, we give the following
result which motivates why the AMP iteration should relate
at all to the SLOPE estimator. This result can be viewed as
a generalization of the scalar case [31, Proposition 5.1].

Lemma II.2: Any stationary point �β (with corresponding�z) in the AMP algorithm (I.3a)-(I.3b) with θt → θ∗ is a
minimizer of the SLOPE cost function in (I.2) with

λ = θ∗
�
1 − 1

δp

�
∇ proxJθ∗

(�β + X��z)
��

= θ∗
�
1 − 1

n




proxJθ∗
(�β + X��z)




∗
0

�
.

Proof of Lemma II.2: Denote, ω := (∇ proxJθ∗
(�β +

X��z))/(δp). Now, by stationarity,�β = proxJθ∗
(�β + X��z),

�z = y − X�β +
�z
δp

(∇ proxJθ∗
(�β + X��z)). (II.5)

First, �z = y−X�β
1−ω by (II.5), and X��z ∈ ∂Jθ∗(�β) by Fact

V.2, where ∂Jθ∗(�β) is the subgradient of Jθ∗(·) at �β (a
precise definition of a subgradient is given in Section V-A).

Then, X��z = X�(y−X�β)
1−ω ∈ Jθ∗(�β), and therefore X�(y −

X�β) ∈ Jθ∗(1−ω)(�β) which is exactly the stationary condition
of SLOPE with regularization parameter λ = (1 − ω)θ∗,
as desired.

Next, we present Theorem 1, which studies the t asymp-
totics of the recursion in (II.4) and its proof is given in
Appendix A. First, some notation must be introduced: let
Amin(δ) be the set of solutions to

δ = f(α), where

f(α) :=
1
p

p�
i=1

E

�1 − |[proxJα
(Z)]i|

�
j∈Ii

αj

[D(proxJα
(Z))]i

�
. (II.6)

Here 
 represents elementwise multiplication of vectors and
for vector v ∈ R

p, D is defined elementwise as [D(v)]i =
#{j : |vj | = |vi|} if vi �= 0 and ∞ otherwise. Let Ii =
{j : 1 ≤ j ≤ p and |[proxJα

(Z)]j | = |[proxJα
(Z)]i|}. The

expectation in (II.6) is taken with respect to Z, a p-length

Fig. 2. Amin (black curve) when p = 2, δ = 0.6.

vector of i.i.d. standard Gaussians. Finally, for u ∈ R
m, the

notation �u
 :=
�m

i=1 ui/m and we say u is strictly larger
than v ∈ R

m if ui > vi for all elements i ∈ {1, 2, . . . ,m}.
For the simple case of p = 2, we illustrate an example of the
set Amin(δ) in Figure 2.

Theorem 1: For any α strictly larger than at least one
element in the set Amin(δ), the recursion in (II.4) has a unique
fixed point that we denote as τ2

∗ (p). Then τt(p) → τ∗(p)
monotonically for any initial condition. Define a function
F : R × R

p → R as

F
�
τ2(p),ατ(p)

�
:=

σ2
w +

1
δp

E�proxJατ(p)
(B + τ(p)Z) − B�2, (II.7)

where B is elementwise i.i.d. B independent of Z ∼
N (0, Ip), so that τ2

t+1(p) = F(τ2
t (p),ατt(p)). Then

| ∂F
∂τ2(p) (τ

2(p),ατ(p))|< 1 at τ(p) = τ∗(p). Moreover,
for f(α) defined in (II.6), we show that f(α) =
δ limτ(p)→∞ dF/dτ2(p).

Beyond providing t asymptotics of the state evolution
sequence, notice that Theorem 1 gives necessary conditions on
the calibration vector α under which the recursion in (II.4),
and equivalently, the calibration detailed in Section II-C below
are well-defined.

Recall that it is actually the state evolution in (II.3) (and
not that in (II.4)) that predicts the performance of the AMP
algorithm, and therefore we would really like a version of
Theorem 1 studying the large system limit in p. We argue that
because interchanging differentiation and the limit, the proof
of Theorem 1 analyzing (II.4), can easily be used to give an
analogous result for (II.3). In particular analyzing (II.3) via the
strategy given in the proof of Theorem 1 requires that we study
the partial derivative of limp E�proxJατ

(B+τZ)−B�2/(δp),
with respect to τ2. Indeed, to directly make use our proof for
the finite-p case given in Theorem 1, it is enough that

∂

∂τ2
lim

p

1
δp

E�proxJατ
(B + τZ) − B�2

= lim
p

∂

∂τ2

1
δp

E�proxJατ
(B + τZ) − B�2.

(II.8)

Note that we already have an argument (based on dominated
convergence for fixed p, see (A.1) and Lemma A.1) showing
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that
∂

∂τ2
E�proxJατ

(B + τZ) − B�2

= E

� ∂

∂τ2
�proxJατ

(B + τZ) − B�2
�
.

The next lemma gives us a roadmap for how to proceed (c.f.,
[39, Theorem 7.17]) to justify the interchange in (II.8).

Lemma II.3: Suppose {gm} is a sequence of functions that
converge pointwise to g on a compact domain D and whose
derivatives {g�m} converge uniformly to a function h on D.
Then h = g� on D.

Therefore, taking {gp} = {F(τ2(p),ατ(p))}, it suffices to
show that if

∂F
∂τ2(p)

(τ2(p),ατ(p)) =

∂

∂τ2(p)
1
δp

E�proxJατ(p)
(B + τ(p)Z) − B�2,

then the sequence { ∂F
∂τ2 (τ2,ατ)}p converges uniformly as

p → ∞. The main tool for proving such a result is given
in the following lemma.

Lemma II.4: Let {gm} be a sequence of L-Lipschitz func-
tions (where L is independent of m) that converge pointwise
to a function g on a compact domain D. Then, the convergence
is also uniform on D.

Using this lemma, the essential idea is to show that there
exists a constant L > 0, independent of p, such that for all p
and all τ1, τ2 in a bounded set D = {τ : 0 < r ≤ |τ | ≤ R},��� ∂F

∂τ2
(τ2

1 ,ατ1) −
∂F
∂τ2

(τ2
2 ,ατ2)

��� ≤ L|τ1 − τ2|.
This follows by the mean value theorem and (A.14), with L =
supp,τ∈D | ∂

∂τ2
∂F
∂τ2 (τ2,ατ)| < +∞.

Remark II.5: The boundedness of {τt(p)} is guaranteed by
Proposition II.6. In particular, since α satisfies the assumption
of Theorem 1, Proposition II.6 guarantees λ is bounded and,
consequently, so is τ (see the calibration in (II.9) below).

C. Threshold Calibration

Motivated by Lemma II.2 and the result of Theorem 1,
we define a calibration from the regularization parameter λ,
to the corresponding threshold α used to define the AMP
algorithm. In practice, we will be given finite-length λ and
then we want to design the AMP iteration to solve the
corresponding SLOPE cost. We do this by choosing α as the
vector that solves λ = λ(α) where

λ(α) :=

ατ∗(p)
�
1 − 1

n
E � proxJατ∗(p)

(B + τ∗(p)Z)�∗0
�
, (II.9)

where B is elementwise i.i.d. B independent of Z ∼ N (0, Ip)
and τ∗(p) is the limiting value defined in Theorem 1. We note
the fact that the calibration in (II.9) sets α as a vector in the
same direction as λ, but that is scaled by a constant value
(for each p), where the scaling constant value is τ∗(p)(1 −
E � proxJατ∗(p)

(B + τ∗(p)Z)�∗0/n).
In Proposition II.6 we show that the calibration (II.9) and

its inverse λ �→ α(λ) are well-defined and in Algorithm 1

we show that determining the calibration is straightforward in
practice.

Proposition II.6: The function α �→ λ(α) defined in (II.9)
is continuous on {α : f(α) < δ} for f(·) defined in (II.6)
with λ(Amin) = −∞ and limα→∞ λ(α) = ∞ (where the
limit is taken elementwise). Therefore the function λ �→ α(λ)
satisfying (II.9) exists. As p → ∞, the function α �→
λ(α) becomes invertible (given λ, α satisfying (II.9) exists
uniquely). Furthermore, the inverse function is continuous
non-decreasing for any λ > 0.

In [5, Proposition 1.4 (first introduced in [16]) and Corol-
lary 1.7] this is proven rigorously for the analogous LASSO
calibration and in Appendix A we show how to adapt this
proof to SLOPE case. This proposition motivates Algorithm 1
which uses a bisection method to find the unique α for each
λ. It suffices to find two guesses of α parallel to λ that, when
mapped via (II.9), sandwich the true λ.

Algorithm 1 Calibration From λ → α

1. Initialize α1 = αmin such that αmin� ∈ Amin, where
� := λ/λ1; Initialize α2 = 2α1

while L(α2) < 0 where α �→ sgn(λ(α�) − λ);L : R → R

do
2. Set α1 = α2, α2 = 2α2

end while
3. return BISECTION (L(α), α1, α2)

Remark: sgn(·) is the sign function and sgn(λ(·)−λ) ∈ R is
well-defined since λ(·) � λ implies all entries share the same
sign. The function “BISECTION(L, a, b)” finds the root of L
in [a, b] via the bisection method.

The calibration in (II.9) is exact when p → ∞, so we
study the mapping between α and λ in this limit. Recall from
(A4), that the sequence of vectors {λ(p)}p≥0 are i.i.d. Λ.
It follows that the sequence {α(p)}p≥0 defined for each p
by the finite-sample calibration (II.9) are i.i.d. A, where A
satisfies E(A2) <∞, and is defined via

Λ D= Aτ∗
�
1 − lim

p

1
δp

E || proxJA(p)τ∗
(B + τ∗Z)||∗0

�
, (II.10)

We note, moreover, that the calibrations presented in this
section are well-defined:

Fact II.7: The limits in (II.3) and (II.10) exist.
Fact II.7 is proven in Appendix C. One idea used in the

proof of Fact II.7 is that the prox operator is asymptotically
separable, a result shown by [22, Proposition 1]. Specifically,
for sequences of input, {v(p)}, and thresholds, {λ(p)}, having
empirical distributions that weakly converge to the distribu-
tions of random variables V and Λ, respectively, then there
exists a limiting scalar function h(·) := h(v(p);V,Λ) (deter-
mined by V and Λ) of the proximal operator proxJι

(v(p)).
Further details are in Lemma III.3 in Section III. Using h(·) :=
h(·;B + τ∗Z,Aτ∗), this argument implies that (II.3) can be
represented as

τ2
∗ := σ2

w +
1
δ

E(h(B + τ∗Z) −B)2,
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and if we denote m as the Lebesgue measure, then the limit
in (II.10) can be represented as

P

�
B + τ∗Z ∈ (II.11)�

x
���h(x) �= 0 and m

�
z
�� |h(z)| = |h(x)|� = 0

��
.

In other words, the limit in (II.10) is the Lebesgue measure of
the domain of the quantile function of h for which the quantile
of h assumes unique values (i.e., is not flat).

III. ASYMPTOTIC CHARACTERIZATION OF SLOPE

A. AMP Recovers the SLOPE Estimate

Here we show that the AMP algorithm converges in �2 to
the SLOPE estimator, implying that the AMP iterates can be
used as a surrogate for the global optimum of the SLOPE
cost function. The schema of the proof is similar to [5,
Lemma 3.1], however, major differences lie in the fact that
the proximal operator used in the AMP updates (I.3a)-(I.3b)
is non-separable. We sketch the proof here, and a forthcoming
article will be devoted to giving a complete and detailed
argument.

Theorem 2: Under assumptions (A1) - (A5), for the output
of the AMP algorithm in (I.3a) and the SLOPE estimate (I.2),

plim
p→∞

1
p
��β − βt�2 = ct, where lim

t→∞ ct = 0. (III.1)

The proof of Theorem 2 can be found in Section IV. At a
high level, the proof requires dealing carefully with the fact
that the SLOPE cost function, C(b) := 1

2�y−Xb�2 +Jλ(b),
given in (I.2) is not necessarily strongly convex, meaning that
we could encounter the undesirable situation where C(�β) is
close to C(β) but �β is not close to β, meaning the statistical
recovery of β would be poor.

In the LASSO case, one works around this challenge by
showing that the (LASSO) cost function does have nice
properties when considering just the elements of the non-zero
support of βt at any (large) iteration t. In the LASSO case,
the non-zero support of β has size no larger than n < p.

In the SLOPE problem, however, it is possible that the
support set has size exceeding n, and therefore the LASSO
analysis is not immediately applicable. Our proof develops
novel techniques that are tailored to the characteristics of the
SLOPE solution. Specifically, when considering the SLOPE
problem, one can show nice properties (similar to those in the
LASSO case) by considering a support-like set, that being
the unique non-zero magnitudes in the estimate βt at any
(large) iteration t. In other words, if we define an equivalence
relation x ∼ y when |x| = |y|, then entries of AMP estimate
at any iteration t are partitioned into equivalence classes. Then
we observe from (II.9), and the non-negativity of λ, that the
number of equivalence classes is no larger than n. We see
an analogy between SLOPE’s equivalence class (or ‘maximal
atom’ as described in Appendix V-A) and LASSO’s support
set. This approach allows us to deal with the lack of a strongly
convex cost.

Theorem 2 ensures that the AMP algorithm solves the
SLOPE problem in an asymptotic sense. To better appreciate

the convergence guarantee, it calls for elaboration on (III.1)
and we highlight that the order of limits is important, as AMP
may not converge to the true minimizer in finite dimensions.
First, (III.1) implies that ��β−βt�2/p converges in probability
to a constant, say ct. Next, (III.1) says ct → 0 as t→ ∞.

B. Exact Asymptotic Characterization of the
SLOPE Estimate

As a consequence of Theorem IV.1, the SLOPE estimator�β inherits AMP state evolution performance guarantees, in the
sense of Theorem 3 below. Theorem 3 provides as asymptotic
characterization of pseudo-Lipschitz loss between �β and the
truth β.

Definition III.1 (Uniformly Pseudo-Lipschitz Functions [8]):
For k ∈ N>0, a function φ : R

d → R is pseudo-Lipschitz of
order k if there exists a constant L, such that for a, b ∈ R

d,

�φ(a) − φ(b)�

≤ L

�
1 +
��a�√

d

�k−1

+
��b�√

d

�k−1
�

�a − b�√
d

. (III.2)

A sequence (in p) of pseudo-Lipschitz functions {φp}p∈N>0

is uniformly pseudo-Lipschitz of order k if, denoting by Lp

the pseudo-Lipschitz constant of φp, Lp <∞ for each p and
lim supp→∞ Lp <∞.

Theorem 3: Under assumptions (A1) - (A5), for any uni-
formly pseudo-Lipschitz sequence of functions ψp : R

p ×
R

p → R and for Z ∼ N (0, Ip),

plim
p

ψp(�β,β)

= lim
t

plim
p

E
Z
[ψp(proxJα(p)τt

(β + τtZ),β)],

where τt is defined in (II.3) and the expectation is taken with
respect to Z.

Theorem 3 says that, in the large system limit, under
uniformly pseudo-Lipschitz loss, distributionally the SLOPE
optimizer acts as a ‘denoised’ version of the truth corrupted
by additive Gaussian noise where the denoising function is the
proximal operator, i.e. within uniformly pseudo-Lipschitz loss�β can be replaced with proxJα(p)τt

(β + τtZ) for large p, t.
The proof of Theorem 3 is in Section IV. We show that

Theorem 3 follows from Theorem 2 and recent AMP theory
dealing with the state evolution analysis in the case of non-
separable denoisers [8], which can be used to demonstrate that
the state evolution given in (II.3) characterizes the performance
of the SLOPE AMP (I.3) via pseudo-Lipschitz loss functions.

We note that [22, Theorem 1] follows by Theorem 3 and
their separability result [22, Proposition 1]. To see this, we use
the following lemma that is a simple application of the Law
of Large Numbers.

Lemma III.2: For any function f : R
p → R that is

asymptotically separable, in the sense that there exists some
function �f : R → R, such that���f(β) − 1

p

n�
i=1

�f(βi)
���→ 0, as p→ ∞,
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where �f(B) is Lebesgue integrable then plimp(f(β) −
EB[ �f(B)]) = 0, where B ∼ i.i.d. B.

Now to show the result [22, Theorem 1], consider a special
case of Theorem 3 where ψp(x,y) = 1

p

�
ψ(xi, yi) for

function ψ : R × R → R that is pseudo-Lipschitz of order
k = 2. It is easy to show that ψp(·, ·) is uniformly pseudo-
Lipschitz of order k = 2. The result of Theorem 3 then says
that

plim
p

1
p

p�
i=1

ψ
��βi, βi

�
= lim

t
plim

p

1
p

p�
i=1

E
Z

�
ψ
�
[proxJα(p)τt

(β + τtZ)]i, βi

��
.

Then [22, Theorem 1] follows by [22, Proposition 1], restated
below in Lemma III.3, the Law of Large Numbers, and
Theorem 1. Now we restate in Lemma III.3, the result given
in [22, Proposition 1], which says that proxJατt

(·) becomes
asymptotically separable as p→ ∞, for convenience.

Lemma III.3 (Proposition 1, [22]): For an input sequence
{v(p)}, and a sequence of thresholds {λ(p)}, both having
empirical distributions that weakly converge to distributions
of random variables V and Λ, respectively, then there exists a
limiting scalar function h (determined by V and Λ) such that
as p→ ∞,

�proxJι(p)
(v(p)) − h(v(p);V, Λ)�2/p→ 0, (III.3)

where h applies h(·;V, Λ) coordinate-wise to v(p) (hence it
is separable) and h is Lipschitz(1).

Then [22, Theorem 1] follows from Theorem 3 by using the
asymptotic separability of the prox operator. Namely, the result
of Lemma III.3 (using that α(p)τt has an empirical distribution
that converges weakly to Aτt for A defined by (II.10)), along
with Cauchy-Schwarz and the fact that ψ is pseudo-Lipschitz,
allow us to apply a dominated convergence argument (see
Lemma B.2), from which it follows for some limiting scalar
function ht as specified by Lemma III.3,

1
p

��� p�
i=1

E
Z
[ψ([proxJα(p)τt

(β + τtZ)]i, βi)]

−
p�

i=1

E
Z
[ψ([ht(β + τtZ)]i, βi)]

���→ 0.

Then the above allows us to apply Lemma III.2 and the Law
of Large Numbers to show

plim
p

1
p

p�
i=1

E
Z
[ψ([proxJα(p)τt

(β + τtZ)]i, βi)]

= lim
p

1
p

p�
i=1

E
Z,B

[ψ(ht([B + τtZ]i), Bi)]

= E
Z,B

[ψ(ht(B + τtZ), B)],

Finally we note that the result of [22, Theorem 1] follows
since

lim
t

E
Z,B

[ψ(ht(B + τtZ), B)] = E
Z,B

[ψ(h∗(B + τ∗Z), B)].

We highlight that our Theorem 3 allows the consideration
of a non-asymptotic case in t. While Theorem 1 motivates
an algorithmic way to find a value τt(p) which approximates
τ∗(p) well, Theorem 3 guarantees the accuracy of such approx-
imation for use in practice. One particular use of Theorem 3 is
to design the optimal sequence λ that achieves the minimum
τ∗ and equivalently minimum error [22], though a concrete
algorithm for doing so is still under investigation.

Finally we show how we use Theorem 3 to study the
asymptotic mean-square error between the SLOPE estimator
and the truth [12].

Corollary III.4: Under assumptions (A1)−(A5), plimp��β−
β�2/p = δ(τ2∗ − σ2

w).
Proof: Applying Theorem 3 to the pseudo-Lipschitz loss

function ψ1 : R
p×R

p → R, defined as ψ1(x,y) = 1
p ||x−y||2,

we find

plim
p

1
p
��β − β�2

= lim
t

plim
p

1
p

E
Z
[�proxJατt

(β + τtZ) − β�2].

The desired result follows since

lim
t

plim
p

1
p

E
Z
[�proxJατt

(β + τtZ) − β�2] = δ(τ2
∗ − σ2

w).

To see this, notice limt δ(τ2
t+1 − σ2

w) = δ(τ2
∗ − σ2

w) and

plim
p

1
p

E
Z
[�proxJατt

(β + τtZ) − β�2]

= lim
p

1
p

E
Z,B

[�proxJατt
(B + τtZ) − B�2]

= δ(τ2
t+1 − σ2

w),

for B elementwise i.i.d. B independent of Z ∼ N (0, Ip).
A rigorous argument for the above requires showing that the
assumptions of Lemma III.2 are satisfied and follows similarly
to that used to prove property (P2) stated in Section IV and
proved in Appendix B.

IV. PROOF FOR ASYMPTOTIC CHARACTERIZATION OF

THE SLOPE ESTIMATE

In this section, we prove Theorem 3 using a result that
guarantees that the state evolution given in (II.3) characterizes
the performance of the SLOPE AMP algorithm (I.3b), given in
Lemma IV.1 below. Specifically, Lemma IV.1 relates the state
evolution (II.3) to the output of the AMP iteration (I.3b) for
pseudo-Lipschitz loss functions. This result follows from [8,
Theorem 14], which is a general result relating state evolutions
to AMP algorithm with non-separable denoisers. In order to
apply [8, Theorem 14], we need to demonstrate that our
denoiser, i.e. the proximal operator proxJατt

(·) defined in (I.4),
satisfies two additional properties labeled (P1) and (P2) below.

Define a sequence of denoisers {ηt
p}p∈N>0 where ηt

p : R
p →

R
p to be those that apply the proximal operator proxJατt

(·)
defined in (I.4), i.e. for a vector v ∈ R

p, define

ηt
p(v) := proxJατt

(v). (IV.1)
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(P1) For each t, denoisers ηt
p(·) defined in (IV.1) are

uniformly Lipschitz (i.e. uniformly pseudo-Lipschitz of order
k = 1) per Definition III.1.

(P2) For any s, t with (Z,Z�) a pair of length-p vectors,
where for i ∈ {1, 2, . . . , p}, the pair (Zi, Z

�
i) i.i.d. ∼ N (0,Σ)

with Σ any 2×2 covariance matrix, the following limits exist
and are finite.

plim
p→∞

�β�/p, plim
p→∞

E
Z
[β�ηt

p(β + Z)]/p,

and plim
p→∞

E
Z,Z�

[ηs
p(β + Z �)�ηt

p(β + Z)]/p.

We will show that properties (P1) and (P2) are satisfied for
our problem in Appendix B.

Lemma IV.1: [8, Theorem 14] Under assumptions
(A1)-(A4), given that (P1) and (P2) are satisfied, for the
AMP algorithm in (I.3b) and for any uniformly pseudo-
Lipschitz sequence of functions φn : R

n × R
n → R and

ψp : R
p×R

p → R, let Z ∼ N (0, In) and Z � ∼ N (0, Ip), then

plim
n

�
φn(zt,w) − E

Z
[φn(w +

�
τ2
t − σ2

wZ,w)]
�

= 0,

plim
p

�
ψp(βt + X�zt,β) − E

Z�
[ψp(β + τtZ

�,β)]
�

= 0,

where τt is defined in (II.3).
We now show that Theorem 3 follows from Lemma IV.1

and Theorem 2.
Proof of Theorem 3: First, for any fixed n and t,

the following bound uses that ψn is uniformly pseudo-
Lipschitz of order k and the Triangle Inequality,���ψp(βt,β) − ψp(�β,β)

���
≤ L

�
1 +

�(βt,β)�k−1

2p
k−1
2

+
�(�β,β)�k−1

2p
k−1
2

�
�βt − �β�√

2p

≤ L

�
1 +

�βt�k−1

2p
k−1
2

+
��β�k−1

2p
k−1
2

+
�β�k−1

2p
k−1
2

�
�βt − �β�√

2p
.

Now we take limits on either side of the above, first with
respect to p and then with respect to t. We note that the term
1√
n
�βt − �β� vanishes by Theorem 2. Then as long as the

following are all finite,

lim
t

plim
p

��βt�2/p
� k−1

2 , plim
p

�
��β�2/p

�k−1
2
,

and plim
p

��β�2/p
�k−1

2 , (IV.2)

we have plimp ψp(�β,β) = limt plimp ψp(βt,β). But by
Theorem IV.1 we also know that

lim
t

plim
p

ψp(βt,β) = lim
t

plim
p

E[ψp(ηt(β + τtZ),β)],

giving the desired result.
Finally we convince ourself that the limits in (IV.2) are

finite. Since k finite, that the third term in (IV.2) is finite
follows by property (P2). Bounds for the first and second term
are demonstrated in Lemma VII.1 found in Appendix VI.

V. PROOF AMP FINDS THE SLOPE SOLUTIONS

In this section we aim to prove Theorem 2. Define the
SLOPE cost function as follows,

C(b) :=
1
2
�y − Xb�2 + Jλ(b), (V.1)

where Jλ(b) is the sorted �1-norm. The proof of Theorem 2
relies on a technical lemma, Lemma V.5, stated in Section V-B
below, that deals carefully with the fact that the SLOPE cost
function given in (V.1) is not necessarily strongly convex.

In the LASSO case, one works around this challenge by
showing that the (LASSO) cost function does have nice
properties when considering just the elements of the non-zero
support of βt at any (large) iteration t, using that the non-zero
support of β has size no larger than n < p.

In the SLOPE problem, however, it is possible that the
support set has size exceeding n, and therefore the LASSO
analysis is not immediately applicable. Our proof develops
novel techniques that are tailored to the characteristics of the
SLOPE solution. Specifically, when considering the SLOPE
problem, one can show nice properties (similar to those in the
LASSO case) by considering a support-like set, that being the
unique non-zero magnitudes in the estimate βt at any (large)
iteration t.

In other words, our strategy is to define an equivalence
relation x ∼ y when |x| = |y| and partition the entries
of the AMP estimate at any iteration t into equivalence
classes. This allows us to observe, using (II.9) and the non-
negativity of λ, that the number of equivalence classes is
no larger than n. (Recall that � · �∗0 counts the unique non-
zero magnitudes in a vector.) We see an analogy between
SLOPE’s equivalence class (or ‘maximal atom’ as described in
Section V-A) and LASSO’s support set. This approach, taken
in Lemma V.5 below, allows us to deal with the fact that
we are not guaranteed to have a strongly convex cost. Then
Lemma V.5 is used to prove Theorem 3.

Before we state Lemma V.5, we include some useful
preliminary information on SLOPE that will be needed for
the upcoming work. In particular, we introduce in more
details the idea of equivalence classes of elements having the
same magnitude, a mapping of vector ranking denoted as Π̂,
and a polytope-related mapping whose image is the set of
subgradients denoted as P . These definitions are all given in
more detail in Section V-A.

A. Preliminaries on SLOPE

In general, we refer to the function C(·) stated in (V.1) as
the SLOPE cost function and the SLOPE estimator β̂ is the
one that minimizes the SLOPE cost. We note that the SLOPE
cost function C(·) depends on both y and λ, so technically
a notation like C(y,λ)(·) would be more rigorous, however,
we don’t think that dropping the explicit dependence on (y,λ)
will cause any confusion.

For a convex function f : R
p → R, we denote the

subgradient of f at a point x ∈ R
p as ∂f(x). We will be

interested, particularly, in the subgradient of the SLOPE cost
∂C(b) which forces us to study the subgradient of the SLOPE
norm ∂Jλ(b). In particular,
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Fact V.1: ∂C(b) = −X�(y − Xb) + ∂Jλ(b).
We will now describe explicitly the relevant subgradient,

∂Jλ ⊂ R
p. We note that the proximal operator given in (I.4) is

linked to the subgradient of the SLOPE norm in the following
way.

Fact V.2: If proxJι
(v1) = v2, then v1 − v2 ∈ ∂Jλ(v2).

Define a function Πx : R
p → R

p to be a mapping
(not necessarily unique) that sorts its input by magnitude
in descending order according to absolute values of entries
in x. For example, if x = (5, 2,−3,−5), then there are
two possible such mappings Πx(b) = (|b1|, |b4|, |b3|, |b2|)
or Πx(b) = (|b4|, |b1|, |b3|, |b2|). With this notation, we can
rewrite the SLOPE norm as Jλ(b) = λ · Πb(b). Since this
mapping may not be unique, the inverse may not exist and we
therefore define a pseudo-inverse mapping, Π̂−1

x , based on the
function Π̂x : R

p → {maximal atoms}. In words, Π̂x finds
the maximal atoms of ranking of the absolute values of x.
Then Π̂x corresponds to the mapping�

1 2 3 4
{1, 2} 4 3 {1, 2}

�
with Π̂x(x) = ({5,−5}, {5,−5},−3, 2) and Π̂−1

x (λ) =
({λ1, λ2}, λ4, λ3, {λ1, λ2}). It is not hard to see that there
exists λ̂ ∈ Π̂−1

x (λ) such that Jλ(b) = λ · Πb(b) = λ̂ · |b|.
In words, this says there are two equivalent ways to consider
the calculation of Jλ(b) when λ1 ≥ . . . ≥ λp ≥ 0. First
λ·Πb(b) computes the inner product between λ and the sorted

magnitudes of b, and in the second case, λ̂
�|b| computes the

inner product between the magnitudes of b (unsorted), with a
rearrangement of the λ vector (based on b) that pairs values
in λ with values of |b| by magnitude.

Now we define an equivalence relation x ∼ y if |x| = |y|.
Then Π̂x partitions elements in x into different equivalence
classes I . The motivation of using equivalence classes roots
from AMP. In calibrating the AMP to the SLOPE problem,
we need to calculate ∇ prox, which equals the number of non-
zero equivalence classes. For example, ∂ prox

∂v |v=(1,0,−1,3) =
(1
2 , 0,

1
2 , 1) has a sum of 2.

Now we note that the subgradient of the SLOPE norm can
be represented using the idea of the equivalence classes. For
a vector v ∈ R

p, we use the notation vI to be the elements
of the vector v belonging to equivalence class I . Then,

Fact V.3:

∂Jλ(s) =
�

v ∈ R
p : for each equivalent class I ,

if sI �= 0 =⇒ vI ∈ P([ Π̂−1
s (λ)]I ) sgn(sI);

if sI = 0 =⇒ |vI | ∈ P0([ Π̂−1
s (λ) ]I)

�
.

In the above, P ,P0 are polytope-related mappings:

P(u) :=
{y : y = Au for some doubly stochastic matrix A}
P0(u) :=
{y : y = Au for some doubly sub-stochastic A}

By definition, the doubly stochastic matrix, a.k.a. a Birkhoff
polytope, is a square matrix of non-negative real numbers,

whose row and column sums equal 1. For example,

A =

⎛⎝1/3 2/3 0
1/6 1/3 1/2
1/2 0 1/2

⎞⎠ (V.2)

is a doubly stochastic matrix. Similarly, a doubly sub-
stochastic matrix is defined as a square matrix of non-negative
real numbers, whose row and column sums are at most 1. Note
that if all entries of λ take the same value, the subgradient in
Fact V.3 gives the usual subgradient of the �1 norm.

Using the subgradient definition in Fact V.3, consider
P((λ1, λ2, λ3)), relating to a non-zero equivalence class hav-
ing three entries. Then A in (V.2) is one possible matrix
considered in defining the set P((λ1, λ2, λ3)) and it has
the following interpretation. The rows of A determine how
the subgradient vI values are calculated by averaging the
corresponding threshold values λ, for example, the first entry
of vI is a weighted average with 1/3 its weight in λ1 and
2/3 in λ2; the second entry of vI is a weighted average
with 1/6 its weight in λ1, 1/3 in λ2, and 1/2 in λ2, etc.
You can think of this as determining the threshold each input
value sI receives, as some weighted combination of all the
possible threshold values λ corresponding to this equivalence
class. Similarly, the columns of the doubly-stochastic matrix
considered in the mapping P define how the thresholds λ
are spread out amongst each element of the subgradient, for
example, 1/3 of λ1’s value goes to the first element of vI ,
1/6 to the second value, and 1/2 to the third value, etc.

To see why ∂Jλ(s) takes the form given in Fact V.3,
let’s consider again the P used in the case that sI �= 0.
Recall the sI looks at only the indices of s appearing in
the equivalence class I , so all elements of sI have the same
absolute value. This means that there are many ways to
share the corresponding λ threshold values among them.
We can think of this as an assignment problem: assign jobs
(thresholds λ) to workers (si) where as assignment according
to a doubly stochastic matrix is a natural one (all workers
take on the same load, and all jobs must be completed). On
the other hand, P0 does not require that the sharing of the
threshold values λ amongst the entries of sI be strict: row
and/or column sums can be smaller than one. This difference
is rooted in the subgradient of �1 norm: i.e. ∂|x| = sgn(x)
when x �= 0 and ∂|x| ∈ [−1, 1] when x = 0.

For a rigorous proof of Fact V.3, we refer the reader to [37,
Exercise 8.31], but we give a quick sketch here in the case of
sI �= 0. The proof uses that P(u) is a permutohedron, mean-
ing a convex hull with vertices corresponding to permuted
entries of u. Notice that we can rewrite Jλ(s) as a finite
max function Jλ(s) : max{λ�f1(s), ...,λ�fm(s)}, where
{fi(s)}1≤i≤m is the collection of all possible permutations
for the entries of |s|. Notice that the permutation that sorts
the magnitudes will be chosen by the maximum function. For
such a function (see [37, Exercise 8.31]) the subgradient takes
the form of a convex hull of the partial derivatives of the
maximizing elements:

∂Jλ(s) ∈ conv{∇s(λ�fi(s)) : i ∈ A(s)}
≡ conv{f−1

i (λ) : i ∈ A(s)},
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where A(s) = {i ∈ {1, 2, . . . ,m} : λ�fi(s) = Jλ(s)} and in
our case, the partial derivatives correspond to permutations of
the thresholds. Now, without loss of generality, we consider
an input having only one non-zero equivalence class, i.e. s =
(s, s, ..., s) ∈ R

d. Then clearly there are m = d! possible
permutations. Therefore,

∂Jλ(s) ∈ conv{f−1
i (λ) : i ∈ {1, 2, ..., d!}}

≡ conv{fi(λ) : i ∈ {1, 2, ..., d!}}.
In other words, the partial derivative lies in the set that is
the convex combination of all possible permutations of the
threshold λ. By definition, this is a permutohedron. So, in our
case, the subgradient is a convex hull whose vertices are
the permutated thresholds, i.e. an image of Birkhoff polytope
under the thresholds, which can be characterized by doubly
stochastic matrices.

B. Main Technical Lemma

Now we state and prove the main technical lemma that
is used to prove Theorem 2. Before we state Lemma V.5,
we introduce a very important definition:

Definition V.4: Given a vector v ∈ R
p, a set I ⊂ {1, . . . , p}

is said to be a maximal atom of indices of v if |vi| = |vj | for
all i, j ∈ I and |vi| �= |vk| for i ∈ I and all k /∈ I . With this
definition in place, we define the star support of the vector v
as

supp�(v) := {I : I ⊂ {1, . . . , p} is a maximal atom

of indices of v and vI �= 0}.
For example, if v = (1, 1,−1, 0, 2,−1), then supp�(v) =

{{1, 2, 3, 6}, {5}} . Now we state and prove Lemma V.5.
Lemma V.5: For constants c1, ..., c5 > 0, if the following

conditions are satisfied,

(1) 1√
p�βt − β̂� ≤ c1,

(2) There exists a subgradient sg(C,βt) ∈ ∂C(βt) such that
1√
p�sg(C,βt)� ≤ �,

(3) Let νt := X�(y−Xβt)+sg(C,βt) ∈ ∂Jλ(βt) (where
sg(C,βt) is the subgradient from Condition (2)). Denote
st(c2) := {I ⊂ [p] : |νt

I | � [P(Π̂−1
βt (λ))]I(1 − c2)}

and St(c2) := {i ∈ I : I ∈ s(c2)}, where the
equivalence classes, I , for both sets are defined via the
AMP estimation βt, and for a vector x ∈ R

d and a set
A ⊂ R

d, the notation x � A means there exists some
y ∈ A such that x ≥ y elementwise. Then for s� being
any set of maximal atoms in [p] with |s�| ≤ c3p and
S� := {i ∈ I : I ∈ s�}, we have σmin(XSt(c2)∪S�) ≥ c4.

(4) The minimum non-zero and maximum singular value
of X , denoted σ̂2

min(X) and σ2
max(X), are bounded:

i.e. σ̂2
min(X) ≥ 1

c5
and σ2

max(X) ≤ c5.

(5) Define Cx(b) = 1
2�y − Xb�2 +

�p
i=1 λ̂i|bi| for some

λ̂ ∈ P(Π̂−1
x (λ)). Then C(βt) ≥ Cβt(β̂).

then for some function f(�) := f(�, c1, c2, c3, c4, c5) such that
f(�) → 0 as �→ 0,

�βt − β̂�/√p < f(�).

We wrap up this section by proving Lemma V.5. Once we
have proved Lemma V.5, we will be able to prove Theorem 2.
The major piece of work in proving Theorem 2 is in showing
that the five assumptions of Lemma V.5 are satisfied. Then
the result of Theorem 2 is immediate. We show the five
assumptions are met in Sections VII-A - VII-E. Now we prove
the Lemma.

Proof of Lemma V.5: Throughout the proof, we denote
ξ1, ξ2, . . . as functions of the constants c1, . . . , c5 > 0 and of
� such that ξi(�) → 0 as � → 0 (we omit the dependence of
ξi on �). We will think of t as a fixed iteration and we denote
the residual we are interested in studying as r = β̂ − βt.

The proof strategy is to show that 1
p�Xr�2 ≤ ξ(�) from

which a similar result for 1
p�r�2 follows when we have control

of the singular values of X as we do with Condition (4).
Structurally, the proof is similar to that in the LASSO case
(cf. [5, Lemma 3.1]), with the main difference coming through
Condition (3), where we need to use star support instead of
the support when bounding the minimum singular value of a
selection of columns of X .

For a fixed iteration t, let S = {i ∈ [p] : i ∈ I and I ∈
supp∗(βt)}, i.e. S is the collection of (unique) indices belong-
ing to the star support of the AMP estimate at iteration t. Then
for a vector v ∈ R

p we denote vS to mean the vector indexed
only over the indices in the set S and we let S̄ denote the
complement of S. In what follows, we drop the t-dependence
on νt, writing ν = νt and for p-length vectors u and v, define
�u,v
 := 1

p

�
i uivi.

First, we notice that

0
(a)

≥ 1
p
(Cβt(�β) − C(βt))

(b)
=

1
2p

(�y − X�β�2 − �y − Xβt�2) + �λ̂, |�β| − |βt|
.
(V.3)

In the above, step (a) follows immediately from Condition (5)
and step (b) holds for any λ̂ ∈ P(Π̂−1

βt (λ)) by the definition

of Cβt(�β), noticing that Jλ(βt) = λ̂
�|βt| in the SLOPE cost

(V.1) since λ̂ ∈ P(Π̂−1
βt (λ)). Below we will select a specific

λ̂ ∈ P(Π̂−1
βt (λ)) based on the definition of ν. Now we further

simplify the terms on the right side of (V.3).

1
2p

(�y − X�β�2 − �y − Xβt�2) + �λ̂, |�β| − |βt|

(c)
= �λ̂S , |βt

S + rS | − |βt
S |
 + �λ̂S̄ , |rS̄ |


+
1
2p

(�y − Xβt − Xr�2 − �y − Xβt�2)

(d)
=
�
�λ̂S , |βt

S + rS | − |βt
S |
 − �νS , rS


�
+ �ν, r


+
�
�λ̂S̄ , |rS̄ |
 − �νS̄ , rS̄


�
− �y − Xβt,Xr


+
�Xr�2

2p
(e)
=
�
�λ̂S , |βt

S + rS | − |βt
S |
 − �νS , rS


�
+

�Xr�2

2p

+
�
�λ̂S̄ , |rS̄ |
 − �νS̄ , rS̄


�
+ �sg(C,βt), r
. (V.4)
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In the above, step (c) follows by replacing �β with βt + r
and noticing that βt

S̄ = 0. Step (d) follows since �ν, r
 =
�νS , rS
 + �νS̄ , rS̄
 and step (e) from the definition of ν.

Using Conditions (1) and (2) along with the bounds in (V.3)-
(V.4), by Cauchy-Schwarz,��

�λ̂S , |βt
S + rS | − |βt

S |
 − �νS , rS

�

+
�
�λ̂S̄ , |rS̄ |
 − �νS̄ , rS̄


�
+ �Xr�2/(2p)

�
≤ �sg(C,βt)��r�/p ≤ c1�. (V.5)

We now show all three terms on the left side of (V.5) are
non-negative. The idea is then: if all three terms are non-
negative and their sum tends to 0 as �→ 0, it must be true that
each term tends to 0 too. The third term in (V.5), 1

2p�Xr�2,
is trivially non-negative, so we focus on the first two.

To show that the other terms are non-negative, we consider
choosing a specific vector λ̂ ∈ P(Π̂−1

βt (λ)) such that on the

support, λ̂S = |νS |, and off the support λ̂S̄ ≥ |νS̄ |, meaning
λ̂I is parallel to |νI | for each equivalence class I of βt. That
such a λ̂ exists in the set P(Π̂−1

βt (λ)) follows since ν is a
valid subgradient of Jλ(βt) (see Fact V.3).

Using this λ̂, notice that the sets defined in Condition (3)
are equivalent to the following: st(c2) := {I ⊂ [p] : |νI | ≥
(1 − c2)λ̂I} and St(c2) := {i : |νi| ≥ (1 − c2)λ̂i}, where
both use equivalence classes, I , defined for βt. To see that
this is the case, note that if I is a non-zero equivalence class,
by Fact V.3, since |νI | ∈ [P(Π̂−1

βt (λ))]I , we know that |νI | �
[P(Π̂−1

βt (λ))]I(1−c2) and similarly, since λ̂S = |νS | we know

that |νI | ≥ (1− c2)λ̂I , so I clearly belongs to st(c2) for both
definitions. If I is the zero equivalence class, if |νI | ≥ (1 −
c2)λ̂I then obviously |νI | � [P(Π̂−1

βt (λ))]I(1−c2) since λ̂ ∈
P(Π̂−1

βt (λ)). In the other direction, if the non-zero equivalence

class I is such that |νI | � [P(Π̂−1
βt (λ))]I(1 − c2) then there

exists a vector �νI ∈ [P(Π̂−1
βt (λ))]I such that |νI | ≥ �νI(1−c2)

elementwise. However since �νI ∈ [P(Π̂−1
βt (λ))]I , this implies

that |νI | ≥ (1 − c2)λ̂I is also true since λ̂I ∈ [P(Π̂−1
βt (λ))]I

in the same direction as |νI |.
To visualize the choice of λ̂, we consider an example

where νI = (−1, 2) for equivalence class I = {1, 2} with
λI = (4, 1) in Figure 3. In the figure, the blue shaded region
indicates possible subgradient values for zero elements and
the black line are possible subgradients for zero elements. In
this example, the equivalence class is that for zero elements,
so we notice that νI lies in the blue region. Then λI is in
the same direction as |νI | but lies on the black line (since
λ̂ ∈ P(Π̂−1

βt (λ))).
Now we would like to show that the first term in (V.5)

is non-negative. Specifically, our choice of λ̂ gives νi =
sgn(βt

i )λ̂i, for each i ∈ S, and then it suffices, in order to
prove the non-negativity of �λ̂S , |βt

S +rS |−|βt
S |
−�νS , rS
,

to show

0 ≤ (|βt
i + ri| − |βt

i |) − sgn(βt
i)ri

= (βt
i + ri) sgn(βt

i + ri) − βt
i sgn(βt

i) − ri sgn(βt
i)

= (βt
i + ri)

#
sgn(βt

i + ri) − sgn(βt
i )
$
,

Fig. 3. The blue area contained by the black line segment is the set of
subgradients; Red crosses are examples of νI and λ̂I correspondingly when
bI = 0.

since each (βt
i + ri) [sgn(βt

i + ri) − sgn(βt
i )] is either equal

to 0 (when sgn(βt
i ) = sgn(βt

i + ri)) or equal to 2|βt
i + ri|

otherwise.
Finally, the second term in (V.5) is also non-negative.

It suffices to show for each i ∈ S̄, we have 0 ≤ λ̂i|ri| − νiri,
or equivalently 0 ≤ λ̂i − νi sgn(ri) = λ̂i(1− sgn(βt

i) sgn(ri))
which is clearly true. Since all three terms in (V.5) are non-
negative and their sum tends to 0 as � → 0, it must be true
that each term tends to 0,

�λ̂S̄ , |rS̄ |
 − �νS̄ , rS̄
 ≤ ξ1(�), (V.6)

�Xr�2 ≤ pξ1(�). (V.7)

We now make use of these inequalities to construct the bound
for �r�2/p.

Decompose r as r = r⊥ + r
, with r
 ∈ ker(X) and
r⊥ ∈ ker⊥(X) so that Xr = Xr⊥. We will now use
(V.6) and (V.7) to obtain bounds for �r⊥�2 and �r
�2. First
notice that by (V.7) and Condition (4) we have 1

c5
�r⊥�2 ≤

σ̂2
min(X)�r⊥�2 ≤ �Xr⊥�2 = �Xr�2 ≤ pξ1(�).
In the case ker(X) = {0}, the proof is concluded. Other-

wise, we prove a similar bound for �r
�2. To bound �r
�2,
we use the fact that that this can be done if there exists sets
Q ∈ [p] and Q̄ ∈ [p]/Q such that we can bound �r


Q̄
�2 and

show a high probability lower bound for σ2
min(XQ).
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In (V.6), decompose rS̄ = r⊥̄
S

+ r


S̄

and observe that by
Cauchy Schwarz inequality and the bound just obtained,

�λ̂S̄ , |r⊥̄
S |
 ≤ 1

p
�λ̂S̄��r⊥̄

S �

≤ 1
p
�λ̂��r⊥� ≤ 1√

p
�λ̂�
%
c5ξ1(�). (V.8)

Then we use the fact that

�λ̂S̄ , |r

S̄
|
 − �νS̄ , r



S̄



= �λ̂S̄ , |rS̄ − r⊥̄
S |
 − �νS̄ , rS̄ − r⊥̄

S 

≤ �λ̂S̄ , |rS̄ |
 + �λ̂S̄ , |r⊥̄

S |
 − �νS̄ , rS̄
 + �νS̄ , r
⊥̄
S 


= �λ̂S̄ , |rS̄ |
 + �λ̂S̄ , |r⊥̄
S |


− �νS̄ , rS̄
 + �λ̂S̄ sgn(βt
S̄), r⊥̄

S 

≤ �λ̂S̄ , |r⊥̄

S |
 − �νS̄ , rS̄
 + 2�λ̂S̄ , |r⊥̄
S |
,

to get from (V.6) and (V.8) that

�λ̂S̄ , |r

S̄
|
 − �νS̄ , r



S̄

 ≤ ξ2(�). (V.9)

Next we would like to show

�λ̂S̄(c2), |r

S̄(c2)

|
 − �νS̄(c2), r


S̄(c2)


(1 − c2)−1 ≥ 0. (V.10)

Note that it suffices again to prove this elementwise for each
i ∈ S̄(c2). Specifically, note that (1− c2)−1|νi| < λ̂i for each
i ∈ S̄(c2) by the set’s definition and therefore λ̂i|r
i |−νir



i (1−

c2)−1 ≥ |νi||r
i |(1 − c2)−1 − νir


i (1 − c2)−1 ≥ 0. Therefore,

c2

&
λ̂S̄(c2), |r


S̄(c2)
|
'

(a)

≤
&
λS̄(c2), |r


S̄(c2)
|
'
−
&
νS̄(c2), r



S̄(c2)

'
=
&
λ̂S̄(c2) − νS̄(c2) sgn(r


S̄(c2)
), |r


S̄(c2)
|
'

(b)

≤
&
λ̂S̄ − νS̄ sgn(r


S̄
), |r


S̄
|
'

=
&
λ̂S̄ , |r


S̄
|
'
−
&
νS̄ , r



S̄

' (c)

≤ ξ2(�). (V.11)

In particular, step (a) follows by (V.10), step (b) since S ⊆
St(c2) implies S̄t(c2) ⊆ S̄ along with the fact that λ̂S̄ −
νS̄ sgn(r


S̄
) ≥ 0 elementwise (for each i ∈ S̄, we have λ̂i −

νi sgn(r
i ) > 0 by λ̂i ≥ |νi|). Finally step (c) holds by (V.9).
We now use the bound in (V.11) to bound components of r
.

To bound �r
�2, we would like to exploit a relationship
between the �1 and �2 norms. To do this, we consider an
ordering of the elements of the vector r
 by magnitude. Recall
that S̄t(c2) ⊆ S̄ and we first assume |S̄t(c2)| ≥ pc3/2. Now
we partition S̄t(c2) = ∪K

�=1S�, where (pc3/2) ≤ |S�| ≤ pc3
and for each i ∈ S� and j ∈ S�+1 we have |r
i | ≥ |r
j |.
Finally, define S̄+ := ∪K

�=2S� ⊆ S̄t(c2), i.e. the set union
of all the partitions except the first one corresponding to the
indices containing the largest elements in r
. Now we note for
any i ∈ S�, we have |r


i | ≤ �r

S�−1

�/|S�−1|, that is, in terms
of absolute value, for any i in group �, it should be smaller
than the average of all the elements in the previous group �−1.

Then,

�r

S̄+

�2 (a)
=

K�
�=2

�r

S�
�2

(b)

≤
K�

�=2

|S�|
�r


S�−1
�2
1

|S�−1|2
(c)

≤ 4
pc3

K�
�=2

�r

S�−1

�2
1 ≤ 4

pc3

� K�
�=2

�r

S�−1

�1

�2
(d)

≤ 4
pc3

�r

S̄(c2)

�2
1

(e)

≤ 4ξ2(�)2p
c22c3(min λ̂S̄(c2))

2
=: pξ3(�).

(V.12)

In the above, step (a) follows from the definition of S̄+,
step (b) from the fact that for i ∈ S�, we have |r


i | ≤
�r


S�−1
�/|S�−1|, step (c) since (pc3/2) ≤ |S�| ≤ pc3, and step

(d) since
�K

�=2 S� ⊂
�K

�=1 S� = S̄t(c2). Finally step (e) fol-
lows using that 1

p min{λ̂S̄(c2)}�r

S̄(c2)

�1 ≤ �λ̂S̄(c2), |r

S̄(c2)

|
.
Now, recalling S+ = St(c2) ∪ S1 and |S1| ≤ pc3, by Con-

dition (3), σmin(XS+) ≥ c4 and therefore,

c24�r

S+

�2 ≤ σ2
min(XS+)�r


S+
�2

≤ �XS+r


S+

�2

(a)
= �X S̄+

r


S̄+

�2
(b)

≤ 2c5�r

S̄+

�2. (V.13)

In the above, in step (a) we use that 0 = Xr
 = XS+r


S+

+
X S̄+

r


S̄+

. In step (b) we use Condition (4) and the fact that

�XS̄+
r


S̄+

�2 ≤ σ2
max(X)�r


S̄+
�2. Therefore, to conclude the

proof, it is sufficient to prove a bound for �r

S+

�2.

Decomposing �r
�2 = �r

S+

�2 + �r

S̄+

�2, we find from
(V.12) and (V.12) the desired bound:

�r
�2 ≤ �r

S+

�2 + �r

S̄+

�2 ≤
�2c5
c24

+ 1
�
�r


S̄+
�2

≤
�2c5
c24

+ 1
�
pξ3(�).

This finishes the proof when |S̄t(c2)| ≥ pc3/2. When
|S̄t(c2)| < pc3/2, we take S̄+ = ∅ and S+ = [p]. Hence,
the result is a special case of the above inequality.

VI. EXPANSION OF AMP STATE EVOLUTION IDEAS

In this section, we develop ideas and notation specifically
for the SLOPE AMP algorithm given in (I.3). Most are
adapted from the work in [8] that studies general non-separable
AMP algorithms. These results relate to the performance
analysis of the AMP algorithm and will be useful in proving
Lemma V.5. Throughout this section, we use the {ηt

p}p∈N>0

notation introduced in Section IV and defined in (IV.1).
Namely, we consider a sequence of denoisers ηt

p : R
p → R

p to
be those that apply the proximal operator proxJατt

(·) defined
in (I.4), i.e. ηt

p(v) := proxJατt
(v) for a vector v ∈ R

p.
Given w ∈ R

n and β ∈ R
p, define sequences of column

vectors ht+1 ∈ R
p and mt ∈ R

n for t ≥ 0. At each iteration
t, the sequence ht+1 measures the difference between the
truth β and the pseudo-data X�zt + βt, that is the input
to the denoiser, and the sequence mt measures the difference
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between the noise w and the AMP residual zt. Namely, define
mt,ht+1: for t ≥ 0,

ht+1 = β − (X�zt + βt) and mt = w − zt. (VI.1)

We next introduce a generalization to the state evolution
given in (II.3), that will be useful in studying the limiting
properties of functions of the AMP estimates βs and βt at
different iterations s and t. To do this, we will recursively
define covariances {Σs,t}s,t≥0: for B elementwise i.i.d. ∼ B,
set Σ0,0 = σ2

w + 1
δ E[B2] and

Σ0,t+1 = σ2
w + lim

p

1
δp

E{−B�[ηt
p(B + τtZt)−B]}, (VI.2)

for Zt ∼ N (0, I) independent of B. Then for each t ≥ 0,
given (Σs,r)0≤s,r≤t, define

Σs+1,t+1 = σ2
w +

lim
p

1
δp

E

�
[ηs

p(B + τsZs) − B]�[ηt
p(B + τtZt) − B]

�
,

(VI.3)

where Zs and Zr are length−p jointly Gaussian vectors,
independent of B ∼ B i.i.d. elementwise, with E[Zs] =
E[Zr] = 0, E{([Zs]i)2} = E{([Zr]i)2} = 1 for any element
i ∈ [p], and E{[Zs]i[Zr]j} = Σs,r

τrτs
I{i = j}. Note that

Σt,t = τ2
t defined in (II.3).

Using the above covariances, we have the following
result that characterizes the asymptotic empirical distributions
of the difference vectors defined in (F.1) and generalizes
Lemma (IV.1). This result follows by [8, Theorem 1].

Lemma VI.1: [8, Theorem 1] Assuming that
Σ0,0, ...,Σt+1,t+1 > σ2

w, then for any deterministic sequence
φp : (Rp × R

n)t × R
p → R of uniformly pseudo-Lipschitz

functions of order k,

0 = plim
p

�
φp(β,m0,h1, ...,mt,ht+1)−

E[φp(β,
�
τ2
0 − σ2

wZ �
0, τ0Z0, ...,

�
τ2
t − σ2

wZ�
t, τtZt)]

�
,

for (Z0,Z1, ...,Zt) defined in (VI.3) in dependent of
(Z �

0,Z
�
1, ...,Z

�
t) and the expectation is taken with respect to

the collection (Z0,Z
�
0,Z1,Z

�
1, ...,Z

�
t,Zt). We note that Z �

s

and Z �
r are length−n jointly Gaussian vectors, with E[Z �

s] =
E[Z �

r] = 0, E{([Z �
s]i)2} = E{([Z �

r]i)2} = 1 for any element
i ∈ [n], and E{[Z �

s]i[Z
�
r]j} = (Σs,r − σ2

w)((τ2
r − σ2

w)(τ2
s −

σ2
w))−1/2

I{i = j}.
We use Lemma VI.1 to explicitly state asymptotic character-

izations of AMP quantities that will be useful in our analysis.
Lemma VI.2: Under the condition of Theorem 3, for zt

and βt+1 defined in (I.3) and the generalized state evolution
sequence defined in (VI.3),

plim
n

� 1
n
�zt − zt−1�2 − (τ2

t − 2Σt,t−1 + τ2
t−1)

�
= 0,

(VI.4)

plim
p

� 1
δp

�βt+1 − βt�2 − (τ2
t − 2Σt,t−1 + τ2

t−1)
�

= 0.

(VI.5)

Proof: The major tools in proving (VI.4)-(VI.5)
are first recognizing that we can write the differences
zt − zt−1 and βt+1 − βt as a function of the values
(β,m0,h1, . . . ,mt,ht+1) defined in (F.1) and finally making
an appeal to the Law of Large Numbers. We prove (VI.5) and
(VI.4) follows similarly.

By (I.3a), βt+1 − βt = ηt
p(β

t + X�zt) − ηt−1
p (βt−1 +

X�zt−1) = ηt
p(β−ht+1)−ηt−1

p (β−ht). Therefore, we will
appeal to Lemma VI.1 for the uniformly pseudo-Lipschitz
function

φp(β,m0,h1, . . . ,mt,ht+1) =
1
δp

�βt+1 − βt�2

=
1
δp

�ηt
p(β − ht+1) − ηt−1

p (β − ht)�2.

We note that it easy to show that the above function is
uniformly pseudo-Lipschitz, though we do not do this here.
Then by Lemma VI.1,

0 = plim
p

1
δp

�
�βt+1 − βt�2 −

E�ηt
p(β − τtZt) − ηt−1

p (β − τt−1Zt−1)�2
�
. (VI.6)

Now to prove result (VI.4), by Lemma III.2,

plim
δp

1
p

E�ηt
p(β − τtZt) − ηt−1

p (β − τt−1Zt−1)�2

= lim
p

1
δp

E�ηt
p(B − τtZt) − ηt−1

p (B − τt−1Zt−1)�2,

where B ∼ B i.i.d. elementwise independent of Zt and
Zt−1. The argument for showing that the assumptions of
Lemma III.2 are met follows like that used in Appendix B
in the proof of Proposition (P2) introduced in Section IV.
Then, limp

1
δpE�ηt

p(B − τtZt) − ηt−1
p (B − τt−1Zt−1)�2 =

Σt,t − 2Σt,t−1 + Σt−1,t−1.
We finally state a lemma that characterizes the asymptotic

value of the normalized �2 norm of the residuals in AMP
algorithm (I.3b) following from Lemma IV.1.

Lemma VI.3: For zt defined in (I.3b) and τ2
t given in (II.3),

plim
n

��zt�2/n− τ2
t

�
= 0. (VI.7)

Proof: This follows from Lemma IV.1, using the uni-
formly pseudo-Lipschitz (of order 2) sequence of functions
φn(a, b) = 1

n�a�2 to get, plimn�zt�2/n = plimn EZ [�w +%
τ2
t − σ2

wZ�2]/n for Z ∼ N (0, I). Then the final result
follows by noticing that

EZ�w +
�
τ2
t − σ2

wZ�2 = �w�2 + (τ2
t − σ2

w)EZ�Z�2

= �w�2 + n(τ2
t − σ2

w),

and therefore, using that plimn�w�2/n = σ2
w by the Law of

Large Numbers,

plim
n

1
n

EZ�w +
�
τ2
t − σ2

wZ�2

= (τ2
t − σ2

w) + plim
n

1
n
�w�2 = τ2

t .
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VII. VERIFICATION OF MAIN TECHNICAL

LEMMA CONDITIONS

We now verify that the Lemma V.5 conditions 1-5 are met
for the SLOPE cost function and the associated AMP algo-
rithm. We note that conditions 1, 4, and 5 are straightforward,
so their proof is presented first. On the other hand, condition
2 and condition 3 are quite technical. Their proofs are given
in Section VII-D and Section VII-E below.

A. Condition (4)

This follows by standard limit theorems about the singular
values of Wishart matrices (see Appendix G, Theorem H.2).

B. Condition (5)

Recall, Cx(b) = 1
2�y − Xb�2 +

�p
i=1 λ̂i|bi| for some

λ̂ ∈ P(Π̂−1
x (λ)), and by definition, Cx(x) = C(x) for all

x. Since �β minimizes C(·) we have C(βt) ≥ C(β̂) and by
the rearrangement inequality, Cβ̂(β̂) ≥ Cβt(β̂). Therefore,

C(βt) ≥ C(β̂) = Cβ̂(β̂) ≥ Cβt(β̂).

C. Condition (1)

Condition (1) follows, for large enough p, from
Lemma VII.1, stated below, which proves the asymptotic
boundedness of the norms of the AMP estimates βt and the
SLOPE estimate �β.

Lemma VII.1: For any parameter vector λ ∈ R
p defining a

SLOPE cost as in (I.2), let α = α(λ), then for t ≥ 0,

plim
p

1
p
�βt�2 = plim

p

1
p

EZ [�ηt
p(β + τtZ)�2]

≤ 2σ2
β + 2τ2

t , (VII.1)

for ηt
p(·) defined in (IV.1) with σ2

β := E[B2] < ∞ and σ2
β +

τ2
∗ <∞ and

plim
p

��β�2/p ≤ C, (VII.2)

where C := C(δ, σ2
β, σ

2
w,Bmax,Bmin, λmin) is a positive

constant depending on δ, σ2
β, σ

2
w, along with the singular

values of X through Bmax ≥ limp σ
2
max(X), and Bmin ≤

limp σ̂
2
min(X), and a lower bound on the parameter values

λmin := limp min(λ).
Proof: The proof is included in Appendix D.

D. Condition (2)

Condition (2) follows from Lemma VII.2 stated below, for
� arbitrarily small when t is large enough.

Lemma VII.2: Under the conditions of Theorem 3, for every
iteration t, there exists a subgradient sg(C,βt) of C defined
in (V.1) at point βt such that almost surely,

lim
t

plim
p

1
p
�sg(C,βt)�2 = 0.

The proof is an adaption of [5, Lemma 3.3], though, the sub-
gradient for the SLOPE cost function (studied extensively in
Section V-A) is quite different than that of the LASSO cost and
our analysis requires handling this carefully. Before we prove

Lemma VII.2, we state and prove a result which tells us that
the asymptotic difference between the AMP output at any two
iterations t and t−1 goes to zero in �2 norm as the algorithm
runs. This result is crucial to the proof of Lemma VII.2.

Lemma VII.3: Under the condition of Theorem 3, the esti-
mates {βt}t≥0 and residuals {zt}t≥0 of AMP almost surely
satisfy limt plimp

1
δp�βt−βt−1�2 = 0, and limt plimp

1
n�zt−

zt−1�2 = 0.
Proof of Lemma VII.3: This result uses Lemma VI.2,

which characterizes the large system limit of 1
n�zt − zt−1�2

and 1
δp�βt+1−βt�2 as both being equal to τ2

t −2Σt,t−1+τ2
t−1

where Σt,t−1 is the generalized state evolution sequence
defined in (VI.3). Then Lemma E.1 (which is stated and proved
in Appendix E) shows that limt (τ2

t −2Σt,t−1 + τ2
t−1) = 0.

Proof of Lemma VII.2: For any vector νt ∈ ∂Jλ(βt),
note that νt−X�(y−Xβt) is a valid subgradient belonging
to the set ∂C(βt) as defined in Fact V.1. Moreover, by AMP
(I.3b), y−Xβt = zt−ωtzt−1 with ωt := 1

δp [∇ηt−1(βt−1 +
X�zt−1)]. Therefore we can write,

νt − X�(y − Xβt) = νt − X�(zt − ωtzt−1)
= νt − X�(zt − zt−1) − (1 − ωt)X�zt−1

= (νt − μtX
�zt−1) − X�(zt − zt−1)

+ (μt − (1 − ωt))X�zt−1, (VII.3)

where we define μt := �λ,θt−1
/�θt−1�2 as the ratio of λ to
θt−1 so that λ = μtθt−1 (here θt−1 := ατt−1 and recall that
α is calibrated to be parallel to λ). It follows that ∂Jλ(x) =
μt ∂Jθt−1(x).

Now, by the definition of the proximal operator used in
(I.3a) and by Fact V.2, we have that (X�zt−1 + βt−1) −
βt ∈ ∂Jθt−1(βt). Hence we choose νt to be the specific
subgradient defined by

νt = μt(X�zt−1 + βt−1 − βt) ∈ ∂Jλ(βt), (VII.4)

which leads to νt − μtX
�zt−1 = μt(βt−1 − βt). Plugging

into (VII.3),

νt − X�(y − Xβt)
= μt(βt−1 − βt) − X�(zt − zt−1)

+ (μt − (1 − ωt))X�zt−1. (VII.5)

Then taking the norm, dividing by
√
p, and using the triangular

inequality, we have

�νt − X�(y − Xβt)�/√p
≤ μt�βt−1 − βt�/√p+ �X�(zt − zt−1)�/√p

+ (μt − (1 − ωt))�X�zt−1�/√p.
Using Lemma VI.2, that σmax(X) is almost surely bounded
as p goes to ∞ (cf. Theorem 2), and that limt limp μt = 1 −
limp

1
δp E || proxJA(p)τ∗

(B+τ∗Z)||∗0 in (II.10) is finite, the first
two terms on the right side of the above go to 0. Finally, for the
third term, Lemma VI.3 gives limt plimp

1√
p�zt� = τ∗, and

with the calibration formula (II.10), that σmax(X) is almost
surely bounded as p goes to ∞, and the definition of ω in the
proof of Lemma II.2, we find limt limp(μt − (1 − ωt)) = 0.
Thus the third term goes to 0. As νt − X�(y − Xβt) ∈
∂C(βt), the proof is complete.
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E. Condition (3)

We take νt to be the subgradient defined in (VII.4) and
since t is fixed, we drop the superscript t writing ν := νt.
Recall the sets st(c2) and St(c2) defined in Condition (3).
Then for s� being any set of maximal atoms in [p] with
|s�| ≤ c3p and S� := {i ∈ I : I ∈ s�}, we would like to show
σmin(XSt(c2)∪S�) ≥ c4. This holds by Proposition VII.4,
stated below, whose proof is the main challenge. We state
the proposition and then we identify two auxiliary lemmas,
Lemma VII.5 and VII.6, that will be used to ultimately prove
Proposition VII.4.

Proposition VII.4: There exist constants c2 ∈ (0, 1), c3,
c4 > 0 and tmin < ∞ such that, for any t ≥ tmin, and set St

defined in Condition (3)

min
s�

�
σmin(XSt(c2)∪S�) : S� ⊆ [p] , |s�| ≤ c3 p ,

S� = {i ∈ I : I ∈ s�}� ≥ c4

eventually almost surely as p→ ∞.
The proof of Proposition VII.4 will use two auxiliary

lemmas, Lemma VII.5 and VII.6, stated below.
Lemma VII.5: Let the set st be measurable on the σ-algebra

St generated by {z0, ..., zt−1} and {β0 + X�z0, ...,βt−1 +
X�zt−1} and assume |st| ≤ p(δ− c) for some c > 0. Define
St ⊆ [p] as {i ∈ I for some I ∈ st}. Then there exists
a1 = a1(c) > 0 (independent of t) and a2 = a2(c, t) > 0
(depending on t and c) such that, eventually almost surely as
p→ ∞,

min
s�

�
σmin(XSt∪S�) : S� ⊆ [p] , |s�| ≤ a1 p ,

S� = {i ∈ I : I ∈ s�}� ≥ a2 .

Proof: The proof of Lemma VII.5 is given in Appendix F.
The key difference in SLOPE case (Lemma VII.5) and LASSO
case (cf. [5, Lemma 3.4]) is the concept of equivalence classes
of indices. On a high level, the set s describes some structure in
the support space S and such structure restricts the dimension
of some linear spaces in the proof of Lemma VII.5.

Lemma VII.6: [5, Lemma 3.5] Fix γ ∈ (0, 1) and let the
sequence {St(γ)}t≥0 be defined as before. For any ξ > 0
there exists t∗ = t∗(ξ, γ) <∞ such that, for all t2 ≥ t1 ≥ t∗
fixed, we have

|St2(γ) \ St1(γ)|/p < ξ , (VII.6)

eventually almost surely as p→ ∞.
Proof: For LASSO, this result was given in [5,

Lemma 3.5], and for SLOPE, the proof stays largely the same
so we don’t repeat it here. The major difference is that where
the work in [5] can appeal to AMP analysis in [4], for SLOPE,
we appeal to similar results given in [8] (e.g. Lemma VI.1).

Proof of Proposition VII.4: The subgradient in Condition
(2) is given by sg(C,βt) := νt − X�(y − Xβt) where
νt ∈ ∂Jλ(βt) is the subgradient defined in the Condition
(2) proof at Eq. (VII.4). Recall, St(c2) = {i ∈ I : |νt

I | �
P([Π̂−1

βt (λ)]I)(1−c2)}. We include a simple visualization for
the set St(c2) in Figure 4. We have plotted the subgradient
νt

I = (−1, 2) for (zero) equivalence class I = {1, 2} when

Fig. 4. Left: c2 = 0.5; Right: c2 = 0.2; Blue area is {ν ∈ ∂Jλ(0, 0) :
|ν| � (1 − c2)P(λ1, λ2)} and grey area is complement of blue area in
∂Jλ(0, 0).

λ = (4, 1) and βt = (0, 0). Then indices of |νt
I |, namely

(1, 2) are in St(c2) unless c2 < 0.4.
We know from the proof of Lemma VII.2 Eq. (VII.4) that

νt = μt(X�zt−1 + βt−1 − βt) ∈ μtJθt(βt) where μt :=
�λ,θt−1
/�θt−1�2 and λ = μtθ

t−1. Therefore, summing
over all equivalence classes I ,

|st(c2)| =
�

I

I

�
|νt

I | � P([Π̂−1
βt (λ)]I)(1 − c2)

�
=
�

I

I

�
|βt − [X�zt−1] − βt−1|I

� P([Π̂−1
βt (θt−1)]I)(1 − c2)

�
. (VII.7)

As detailed in the proof of Lemma V.5, for non-zero equiv-
alence classes, let λ̂I = |νI |, and for the zero equivalence
class, let λ̂I ≥ |νI |, meaning λ̂I is parallel to |νI | for each
equivalence class I of βt. That such a λ̂ exists in the set
P(Π̂−1

βt (λ)) follows since ν is a valid subgradient of Jλ(βt)
(see Fact V.3). Then simplify the set definitions of st(c2) and
St(c2) to be st(c2) := {I ⊂ [p] : |νI | ≥ (1 − c2)λ̂I} and
St(c2) := {i : |νi| ≥ (1− c2)λ̂i}, where both use equivalence
classes, I , defined for βt. Then since λ = μtθ

t−1, we also
let θ̂

t−1
be defined such that λ̂ = μtθ̂

t−1
.
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Therefore, by (VII.7),

|st(c2)| =
�

I

I{|βt − [X�zt−1] − βt−1|I ≥ θ̂
t−1

I (1 − c2)}.

In the notation of (F.1), βt − [X�zt−1] − βt−1 = ht +
ηt−1(β − ht) − β and βt = ηt−1(β − ht) and therefore
by (VII.7),

|st(c2)| =�
I

I

�
|ht + ηt−1(β − ht) − β|I ≥ θ̂

t−1

I (1 − c2)
�
.

Now, since Lemma VI.1 implies weak convergence of the
empirical distribution of ht to τt−1Zt−1 for Zt−1 a vector
of i.i.d. standard Gaussian and τt−1 given by the state evo-
lution (II.3), a careful argument using continuous approxima-
tions to indicators will show:

plim
p

1
p

�
I

I

�
|ht + ηt−1(β − ht) − β|I

≥ θ̂
t−1

I (1 − c2)
�

= lim
p

1
p

�
I

P

�
|τt−1Zt−1 + ηt−1(β − τt−1Zt−1) − β|I

≥ θ̂
t−1

I (1 − c2)
�
,

(VII.8)

where on the right side of (VII.8), the probability is with
respect to the randomness in Zt−1 , the equivalence classes

I are taken with respect to ηt−1(β− τt−1Zt−1), and θ̂
t−1

I as
equal to or larger than |τt−1Zt−1+ηt−1(β−τt−1Zt−1)−β|I
depending on whether I is the zero equivalence class or not.
We justify the substitution of τt−1Zt−1 for ht by approx-
imating the sum of indicators with a function that counts
the number of elements in ηt−1(β − ht) that are strictly
greater than its neighbour. Then this function converges to a
continuous and bounded function, the function that measures
the proportion of ηt−1 that is non-flat, to which we apply
the Portmanteau Theorem (cf. [22], Lemma 1(b) in [4] and
Lemma F.3(b) in [5]).

Now, using (VII.8), we can simplify:

plim
p

1
p
|st(c2)|

= lim
p

1
p

�
I

P

�
|τt−1Zt−1 − ηt−1(β − τt−1Zt−1) − β|I

≥ θ̂
t−1

I (1 − c2)
�
, (VII.9)

and we study the probability on the right side of the above,
for a fixed equivalence class I , writing ηt−1(β − τt−1Zt−1)

to be ηt−1, dropping the input.

P

�
|τt−1Zt−1 + ηt−1 − β|I ≥ θ̂

t−1

I (1 − c2)
�

= P

�
|τt−1Zt−1 + ηt−1 − β|I

≥ θ̂
t−1

I (1 − c2), ηt−1
1 = 0

�
+ P

�
|τt−1Zt−1 + ηt−1 − β|I

≥ θ̂
t−1

I (1 − c2), ηt−1
I �= 0

�
(a)
= P

�
θ̂

t−1

I ≥ |β − τt−1Zt−1|I ≥ θ̂
t−1

I (1 − c2)
�

+ P

�
θ̂

t−1

I ≥ θ̂
t−1

I (1 − c2)
�

P(ηt−1
I �= 0).

= P

�
θ̂

t−1

I ≥ |β − τt−1Zt−1|I ≥ θ̂
t−1

I (1 − c2)
�

+ P(ηt−1
I �= 0). (VII.10)

In the above, step (a) follows when ηt−1
I = [proxJθt−1

(β −
τt−1Zt−1)]I = 0, since we must have |β − τt−1Zt−1|I ≤
θ̂

t−1

I , and when ηt−1
I �= 0, by Fact V.2 and Fact V.3,

we know that |ηt−1(β − τt−1Zt−1) − (β − τt−1Zt−1)|I ∈
P([Π̂−1

ηt−1(θt−1)]I).
It obvious that one can make the first probability arbitrarily

small by bringing c2 to 0. To see this, say 1 ∈ I and notice that
P([Π̂−1

ηt−1(θt−1)]I) always has Lebesgue measure 0 because
it is a subset of the hyperplane {x ∈ R

p :
�

j∈I xj =�
j∈I θ

t−1
j }.

On the other hand, notice that�
I

P([ηt−1(β − τt−1Zt−1)]I �= 0)

=
�

I

E{I([ηt−1(β − τt−1Zt−1)]I �= 0)}

= E
Zt−1

�ηt−1(β − τt−1Zt−1)�∗0,

and that ηt−1 is asymptotically separable by Lemma III.3.
Define ht−1(x) = h(x;B + τt−1Z,Θt−1) with Θt−1 being
the distribution to which the empirical distribution of θt−1

converges, and also define

W t−1 :=
�
x
���ht−1(x) �= 0 and

m{z||ht−1(z)| = |ht−1(x)|} = 0
�
,

similarly to (II.11), where m is the Lebesgue measure. Then,

lim
p

1
p

E
Zt−1

�ηt−1(β − τt−1Zt−1)�∗0

= lim
p

1
p

E
Zt−1

�ht−1(β − τt−1Zt−1)�∗0

= lim
p

1
p

E
Zt−1

p�
i=1

I {(βi − τt−1Zt−1,i) ∈ W t−1}

= lim
p

1
p

E
Zt−1,B

�ηt−1(B − τt−1Zt−1)�∗0,

where the last equality holds by Lemma III.2.
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Then (II.9) gives this term is smaller than δ for large t.
Hence, by (VII.9) and (VII.10),

plim
p

1
p
|st(c2)| =

lim
p

1
p

�
I

P

�
θ̂

t−1

I ≥ |β − τt−1Zt−1|I ≥ θ̂
t−1

I (1 − c2)
�

+ lim
p

1
p

E
Zt−1,B

�ηt−1(B − τt−1Zt−1)�∗0,

Therefore, for some c > 0, choose c2 ∈ (0, 1) such that the
first term on the right side of the above is arbitrarily small
along with tmin,1(c) such that the second term is arbitrarily
close to δ, meaning

lim
p

P

�
1
p
|st(c2)| < δ − c

�
= 1,

for all fixed t larger than some tmin,1(c).
For any t ≥ tmin,1(c) we can apply Lemma VII.5 for

some a1(c), a2(c, t). Note this doesn’t immediately give the
result we use since the lower bound, a2, depends on t. To
get around this we additionally appeal to Lemma VII.6 that
tells us after some time t∗, the supports of the AMP estimates
don’t change appreciably. Now we fix c > 0 and consequently
a1 = a1(c) is fixed. Define tmin = max(tmin,1, t∗(a1/2, c2))
with t∗( · ) defined as in Lemma VII.6 and let a2 =
a2(c, tmin). Then, by Lemma VII.5 and the fact that a2(c, t) is
non-increasing in t,

min
�
σmin(XStmin (c2)∪S�) : S� ⊆ [p], |s�| ≤ a1p

� ≥ a2.

In addition, by Lemma VII.6, |St(c2) \ Stmin(c2)| ≤ pa1/2.
Both events hold eventually almost surely as p → ∞. The
proof completes with c3 = a1(c)/2 and c4 = a2(c, tmin),
fixed with respect to t.

VIII. NUMERICAL EXPERIMENTS AND EXTENSIONS OF

THE PRESENT WORK

We now briefly demonstrate the performance of SLOPE
AMP in various settings where assumptions are weakened and
discuss some potential extensions.

i.i.d. Gaussian Measurement Matrix Assumption. A limi-
tation of vanilla AMP is that the theory assumes an i.i.d.
Gaussian measurement matrix, and moreover, the AMP algo-
rithm can become unstable when the measurement matrix is
far from i.i.d., creating the need for heuristic techniques to
provide convergence in applications where the measurement
matrix is generated by nature (i.e., a real-world experiment or
observational study). While, in general, AMP theory provides
performance guarantees only for i.i.d. sub-Gaussian data [3],
[4], in practice, favorable performance of AMP seems to be
more universal.

For example, in Fig. 5, we illustrate the performance of
AMP for i.i.d. zero mean, 1/n variance design matrices that
are not Gaussian (one i.i.d. ±1 Bernoulli (top) and one i.i.d.
shifted exponential (bottom)). In particular, we note that the
exponential prior is not sub-Gaussian, so the performance here
is not supported by theory. In both cases, AMP converges

Fig. 5. Optimization errors, ||βt − �β||2/p, for i.i.d. ±1 Bernoulli design
matrix (top) and i.i.d. shifted exponential design matrix (bottom).

Fig. 6. Optimization errors, ||βt − �β||2/p, for i.i.d. Gaussian design matrix
(top) and non-i.i.d. right rotationally-invariant design matrix where AMP
diverges (bottom).

very fast, thus demonstrating its robustness to distributional
assumptions.

On the theoretical side, to break the i.i.d. restriction, recent
work proposes a variant of AMP, called vector-AMP or VAMP
[19], [36] that is a computationally-efficient algorithm that
provably works for a wide range of design matrices, namely,
those that are right rotationally-invariant. For example, [29]
studies VAMP for a similar setting as SLOPE. However,
the type of nonseparability considered in this work requires the
penalty to be separable on subsets of an affine transformation
of its input. As such, the setting does not directly apply to
SLOPE. To address this, we have built a hybrid, ‘SLOPE
VAMP’, based on code generously shared by the authors of the
referenced work [29], which performs very well in the (non-)
i.i.d. (non-) Gaussian regime (see Fig. 5 and 6). Motivated by
these promising empirical results, we feel that theoretically
understanding SLOPE dynamics with VAMP is an exciting
direction for future work.

Known Signal Prior Assumption: This work assumes that
the prior distribution of the signal is known, however, there is a
possibility that, by using EM- or SURE-based AMP strategies
[21], [43], [44], one can remove this assumption. Numerical
results in [20] show that the performance of EM-VAMP with
separable penalties is very close to that of VAMP with known
prior. Developing such strategies alongside our SLOPE VAMP
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Fig. 7. Performance of AMP variants by AMP iterates and by state evolution
characterization. Here the design matrix is i.i.d. Gaussian R

600×2000 and
the signal prior is Bernoulli-Gaussian: N (0, 1) with probability 0.5 and
0 otherwise. Noise variance σ2

w = 1. LASSO AMP refers to AMP run with
a soft-thresholding denoiser, SLOPE AMP is the algorithm studied here, and
MMSE AMP is AMP run with a conditional expectation denoiser.

Fig. 8. Empirical optimization error of AMP iterates βt and the theoretical
error characterized by state evolution δ(τ2

t − σ2
w). Here the design matrix

is i.i.d. Gaussian and the signal prior is Bernoulli-Gaussian: N (0, 1) with
probability 0.5 and 0 otherwise. Noise variance σ2

w = 1 and δ = n/p = 0.3.
The results are the averages of 30 independent runs.

would provide a quite general framework for recovery of the
SLOPE estimator.

Comparison to ‘Bayes-AMP’: In many settings one may
want to use a ‘Bayes-AMP’ algorithm, meaning the general
AMP algorithm with the minimum mean square error (MMSE)
denoiser, i.e., the conditional expectation denoiser, and for this
reason, this is the most common form of AMP that is used
in practice. The SLOPE AMP presented here is not a ‘Bayes-
AMP’ algorithm since we use a denoiser based on the proximal
operator instead. We made this choice for the denoiser, because
in general, the (statistical) motivation for using methods like
LASSO or SLOPE is to perform variable selection, and in
addition, for SLOPE, to control the false discovery rate. Both
methods are therefore biased and, consequently, ‘Bayes-AMP’
strategies that are designed to be optimal in terms of MSE will
outperform if performance is based on MSE. In particular, [12]
proves that ‘Bayes-AMP’ always has smaller MSE than that of
methods employing convex regularization for a wide class of
convex penalties and Gaussian design. Our aim with SLOPE
is the keep the MSE small, while controlling the FDR, but

in order to retain the FDR control, SLOPE may take a hit in
terms of MSE compared to ‘Bayes-AMP’ strategies.

Nevertheless, Fig. 7 suggests that SLOPE AMP has MSE
that is not too much worse than ‘Bayes-AMP’, and it may
significantly improve on the best tuned LASSO.

Finite Sample Characterization of State Evolution: In Corol-
lary III.4, we show that the estimation error between �β and
β can be asymptotically characterized by the state evolution.
In Figure 8, we demonstrate that in the finite sample case,
the SE prediction matches well with the reality, for different
problem sizes, and as the dimension (n, p) grows, the errors
do approach the state evolution characterization. In particular,
Figure 8 considers the problem in (I.2) with λ being 3 for the
first half entries and 0 for the other half.

IX. DISCUSSION AND FUTURE WORK

This work develops and analyzes the dynamics of an
approximate message passing (AMP) algorithm with the pur-
pose of solving the SLOPE convex optimization procedure for
high-dimensional linear regression. By employing recent the-
oretical analysis of AMP when the non-linearities used in the
algorithm are non-separable [8], as is the case for the SLOPE
problem, we provide rigorous proof that the proposed AMP
algorithm finds the SLOPE solution asymptotically. Moreover
empirical evidence suggests that the AMP estimate is already
very close to the SLOPE solution even in few iterations. By
leveraging our analysis showing AMP provably solves SLOPE,
we provide an exact asymptotic characterization of the �2
risk of the SLOPE estimator from the underlying truth and
insight into other statistical properties of the SLOPE estimator.
Though this asymptotic analysis of the SLOPE solution has
been demonstrated in other recent work [22] using a different
proof strategy, we believe that our AMP-based approach offers
a more concrete and algorithmic understanding of the finite-
sample behavior of the SLOPE estimator.

A limitation of this approach is that the theory assumes an
i.i.d. Gaussian measurement matrix, and moreover, the AMP
algorithm can become unstable when the measurement matrix
is far from i.i.d., creating the need for heuristic techniques to
provide convergence in applications where the measurement
matrix is generated by nature (i.e., a real-world experiment
or observational study). Additionally, the asymptotical regime
studied here, n/p → δ ∈ (0,∞), requires that the number of
columns of the measurement matrix p grow at the same rate
as the number of rows n. It is of practical interest to extend
the results to high-dimensional settings where p grows faster
than n.

APPENDIX A
STATE EVOLUTION ANALYSIS

We first prove Theorem 1 and then provide a proof of
Proposition II.6.

A. Proving Theorem 1

Proof of Theorem 1: To begin with, we prove that
F(τ2,ατ) defined in (II.7) is concave with respect to
τ2. The proof follows along the same lines as the proof
of [5, Proposition 1.3], however, whereas the proof of

Authorized licensed use limited to: Rutgers University. Downloaded on July 29,2021 at 23:51:17 UTC from IEEE Xplore.  Restrictions apply. 



524 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 1, JANUARY 2021

[5, Proposition 1.3] proceeds by explicitly expressing the first
derivative of the corresponding function F, and then differenti-
ating on the explicit form to get the second derivative, because
of the averaging that occurs within the proximal operation for
SLOPE, it is difficult to similarly derive an explicit form. To
work around this, we keep all differentiation implicit. First,

∂F
∂τ2

(τ2,ατ)

=
∂

∂τ2

(
σ2

w +
1
δp

E�proxJατ
(B + τZ) − B�2

)
(a)
=

1
δ

E

�
∂

∂τ2

1
p
�proxJατ

(B + τZ) − B�2

�
=

2
δp

p�
i=1

E
��

[proxJατ
(B + τZ)]i −Bi

�
× ∂

∂τ2
[proxJατ

(B + τZ)]i

�
.

(A.1)

We note that the interchange between the derivative (a limit)
and the expectation in step (a) of the above holds due to a
dominated convergence argument that relies on the following
lemma. First we introduce a bit of notation that will be used
throughout the proof. Define an equivalence classes Ii for
each index i = {1, 2, . . . , p}, defined as

Ii := {j : |[proxJατ
(B + τZ)]j |

= |[proxJατ
(B + τZ)]i|}.

For any j ∈ Ii, with the above definition, Ij = Ii. In general,
we use I , without any specific index, to represent an entire
equivalence class and let I indicate the collection of unique
equivalence classes.

Lemma A.1:��� ∂
∂τ2

1
p
�proxJατ

(B + τZ) − B�2
���

≤ 1
p

�
I∈I

1
|I|
��

i∈I

|sgn(Bi + τZi)Zi − αi|
�2

. (A.2)

Lemma A.1 will be proved below, after we solve
∂

∂τ2 [proxJατ
(B + τZ)]i.

Now we describe how the bound in Lemma A.1 can be used
to produce the dominated convergence result needed in step
(a) of (A.1). First note,

1
p

E

��
I∈I

1
|I|
��

i∈I

|sgn(Bi + τZi)Zi − αi|
�2�

≤ 1
p

E

��
I∈I

�
i∈I

�
|sgn(Bi + τZi)Zi − αi|

�2�
≤ 2
p

E

��
I∈I

�
i∈I

(Z2
i + α2

i )
�

=
2
p

E

��
i∈[p]

(Z2
i + α2

i )
�

= 2 +
2
p
�α�2 <∞.

The first and second inequalities follow from (
�n

i=1 xi)2 ≤
n
�

i x
2
i . The last inequality comes from entries of α being

finite and then �α�2/p ≤ maxi α
2
i < ∞. Therefore we can

invoke the dominated convergence theorem that allows the
exchange of the derivative and expectation in step (a) of (A.1).

Now we want to further simplify (A.1). For each 1 ≤ i ≤ p,
we would like to study ∂

∂τ2 [proxJατ
(B + τZ)]i. We first note

that the mapping τ2 �→ [proxJατ
(B+τZ)]i can be considered

as f(g(τ2)), where g : R → R
2p is defined as y �→ g(y) :=

(B + Z
√
y,α

√
y) and f : R

2p → R is defined as (a, b) �→
f(a, b) := [proxJb

(a)]i. Hence,

∂

∂τ2
[proxJατ

(B + τZ)]i = Jf◦g(τ2)

(a)
= Jf (g(τ2))Jg(τ2)

=
�
∇af(g(τ2)),∇bf(g(τ2))

��Z

2τ
,

α

2τ

��
, (A.3)

where Jh ∈ R
m×n is the Jacobian matrix of a function h :

R
n → R

m and step (a) follows by the chain rule. We denote
the proximal operator using a function η : R

2p → R
p as

η(a, b) := proxJb
(a) and consider the partial derivatives of η

with respect to its first and second arguments. Denote

∂1η(a, b) := diag
� ∂

∂a1
,
∂

∂a2
, . . . ,

∂

∂ap

�
η(a, b),

∂2η(a, b) := diag
� ∂
∂b1

,
∂

∂b2
, . . . ,

∂

∂bp

�
η(a, b). (A.4)

Recall that the derivatives computed in ∂1η(a, b) are defined
in (II.1), and by anti-symmetry between two arguments,

d
dbj

[η(a, b)]i = − sgn([η(a, b)]j) d
daj

[η(a, b)]i. Then using
the result of (II.1):

∂[proxJι
(v)]i

∂vj
=
∂[η(v,λ)]i

∂vj

=
I{|[η(v,λ)]i| = |[η(v,λ)]j |} sgn([η(v,λ)]i[η(v,λ)]j)

#{1 ≤ k ≤ p : |[η(v,λ)]k| = |[η(v,λ)]i|}
we have

d

daj
f(a, b) =

d

daj
[η(a, b)]i

= I {|[η(a, b)]i| = |[η(a, b)]j |}
× sgn ([η(a, b)]i[η(a, b)]j) [∂1η(a, b)]i, (A.5)

and similarly,

d

dbj
f(a, b) =

d

dbj
[η(a, b)]i

= −I
�|[η(a, b)]i| = |[η(a, b)]j |

�
× sgn

�
[η(a, b)]i

�#
∂1η(a, b)

$
i
.

Now plugging the above into (A.3), we have

∂

∂τ2
[proxJατ

(B + τZ)]i

=
1
2τ
#
∂1η(B + τZ,ατ)

$
i
sgn
�
[η(B + τZ,ατ)]i

�
×
�
j∈Ii

�
sgn([η(B + τZ,ατ)]j)Zj − αj

�
. (A.6)

In what follows, we drop the explicit statement of the η(·, ·)
input to save space, writing ηi to mean [η(B + τZ,ατ)]i or
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[∂1η]i to mean [∂1η(B + τZ,ατ)]i for example. Using (A.6)
in (A.1),

(δp) × ∂F
∂τ2

(τ2,ατ)

=
1
τ

p�
i=1

�
j∈Ii

E{(ηi −Bi) [∂1η]i
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E
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1η]i
�

−1
τ

p�
i=1

�
j∈Ii

E

�
(ηi −Bi) [∂1η]i sgn(ηi)αj

�
. (A.7)

where the second equality follows by Stein’s lemma for a
fixed i and j ∈ Ii, namely, for standard Gaussian Z we have
E{f(Z)Z} = E{f �(Z)} and therefore,

1
τ

E
�
[∂1η]i sgn(ηi)(ηi −Bi) sgn(ηj)Zj

�
= E
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sgn(ηi) sgn(ηj)(ηi −Bi)
d
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+ E
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d

daj
[η]i
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= E
�
(ηi −Bi)[∂2

1η]i + ([∂1η]i)2
�
.

where the last step uses the definition of d
daj

[η(a, b)]i
given in (A.5) and the fact that d

daj
[∂1η(a, b)]i =

sgn(ηi) sgn(ηj)[∂2
1η(a, b)]i.

Therefore, simplifying (A.7), we have shown

(δpτ) × ∂F
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αj

�
. (A.8)

We now have the tools to prove Lemma A.1.
Proof of Lemma A.1: First,

∂

∂τ2

1
p
�proxJατ

(B + τZ) − B�2 =

2
p

p�
i=1

�
[proxJατ

(B + τZ)]i −Bi

�
× ∂

∂τ2
[proxJατ

(B + τZ)]i.

As in the work above, we denote the proximal operator using
a function η : R

2p → R
p as η(a, b) := proxJb

(a). Now
from (A.6), denoting Ii := {j : |[η(a, b)]j | = |[η(a, b)]i|},
again dropping the explicit statement of the η(·, ·) input to
save space,

∂

∂τ2
[proxJατ

(B + τZ)]i

=
1
2τ

[∂1η]i sgn(ηi)
�
j∈Ii

(sgn(ηj)Zj − αj).

Therefore,��� ∂
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��� p�
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(ηi −Bi) [∂1η]i sgn(ηi)
�
j∈Ii

(sgn(ηj)Zj − αj)
���.

Since the averaging operation reduces the dot prod-
uct (meaning informally that for a vector v ∈ R

p,
(mean(v), ...,mean(v)) · v ≤ �v�2), we have for any i ∈
{1, 2, . . . , p} that [η(B+τZ,ατ)]i−Bi can be replaced with
Bi + τZi − sgn(ηi)αiτ −Bi. Using this in the above,��� ∂
∂τ2

1
p
�proxJατ

(B + τZ) − B�2
���

≤ 1
p

��� p�
i=1

(sgn(ηi)Zi − αi)
�
j∈Ii

(sgn(ηj)Zj − αj) [∂1η]i
���.

(A.9)

Next, using that 0 ≤ |[∂1η]i| ≤ 1/|Ii|,��� p�
i=1

�
j∈Ii

(sgn(ηi)Zi − αi)(sgn(ηj)Zj − αj) [∂1η]i
���

≤
p�

i=1

1
|Ii|
�
j∈Ii

���(sgn(ηi)Zi − αi)(sgn(ηj)Zj − αj)
���.

Finally we make the following observation. Any equivalence
class Ii is a collection of indices j ∈ {1, 2, . . . , p} such that
|[proxJατ

(B + τZ)]j | = |[proxJατ
(B + τZ)]i|, so for any

j ∈ Ii, it follows Ij = Ii. Recall, I indicates the collection of
unique equivalence classes, and we have

p�
i=1

1
|Ii|
�
j∈Ii

���(sgn(ηi)Zi − αi)(sgn(ηj)Zj − αj)
���
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I∈I
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Now plugging back into (A.9),��� ∂
∂τ2

1
p
�proxJατ

(B + τZ) − B�2
���

≤ 1
p

�
I∈I

1
|I|
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���(sgn(ηi)Zi − αi)(sgn(ηj)Zj − αj)
���

=
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j∈I

|sgn(ηj)Zj − αj |
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.

Now considering (A.8), for brevity, we suppress |Ii| to
1 without loss of generality. To see this, recall that Ii :=
{j : |[η(B + τZ,ατ)]j | = |[η(B + τZ,ατ)]i|} and note that
when |[η(B + τZ,ατ)]j equals |[η(B + τZ,ατ)]i, the terms
will remain equal after small changes in τ . Therefore |Ii| is
treated as a constant in the derivative and since all operations
below preserves linearity, it can safely be assumed to be equal
to 1. Note that similarly,

�
j∈Ii

αj , will pass through future
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calculations as a constant. Therefore (A.8) becomes

(δpτ) × ∂F
∂τ2

(τ2,ατ)

=
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i=1

�
E
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τ([∂1η]i)2 + τ(ηi −Bi)[∂2
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��

−
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αi sgn(ηi)(ηi −Bi)[∂1η]i

��
. (A.10)

In what follows we will need to take care with the points
(x,y) such that [∂2

1η(x,y)]i is not equal to 0. We refer to
such points as ‘kink’ points, since these are points where the
partial derivative jumps (and the second partial gradient acts
like Dirac delta function δ(x)), or in other words the points
where the two (sorted, averaged) arguments in η are equal to
each other. Informally, define a ‘kink’ point as an index where
the sorted vector x matches the corresponding threshold y
exactly. In LASSO, for example, the correspond to the ‘kinks’
of the soft-thresholding function. We have

[∂2
1η(B + τZ,ατ)]i

= δ(Bi + τZi − αiτ) − δ(Bi + τZi + αiτ)
(A.11)

and
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Therefore, denoting 
 as elementwise multiplication of vec-
tors, by (A.10) and (A.12),
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Now we have shown the first derivative, so we consider
the second derivative to prove concavity.

Notice, however, that in order to prove concavity of
F(τ2,ατ) it suffices to show ∂

∂τ [ ∂F
∂τ2 (τ2,ατ)] ≤ 0 because

∂
∂τ2 ( ∂F
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We now show ∂
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∂τ2 (τ2,ατ)] ≤ 0. First,
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(A.14)

To show that (A.14) is ≤ 0, we find simplified represen-
tations of the three terms on the right side. This requires the
same techniques as were used to find the first derivative above
and are not detailed.

The first term on the right side of (A.14) can be simplified
to the following:

∂

∂τ
E||∂1η||2 =

− 1
τ2

EB

�
B�#φ(α − 1

τ
B)) − φ(α +

1
τ
B))
$�
. (A.15)

Doing so requires smart uses of the chain rule, a dominated
convergence argument, the partials in (A.6), and special care
for the ‘kink’ points as discussed above. Similarly, using
(A.12), one can show for the third term on the right side of
(A.14),

∂

∂τ

1
τ

E
�#

α 
 sgn(η) 
 (η − B)
$�
∂1η
� ≥

1
τ3

EB

�
[α 
 B2]�[φ(α +

1
τ

B) + φ(α − 1
τ

B)]
�
.

(A.16)

Finally, using φ�(u) = −uφ(u) and a dominated convergence
argument, the second term on the right side of (A.14) equals

− ∂

∂τ

1
τ

E
B

�
B�#φ(α − 1

τ
B) − φ(−α − 1

τ
B)
$�

=
1
τ2

E
B

�
B�#φ(α − 1

τ
B) − φ(−α − 1

τ
B)
$�

− 1
τ3

E
B

�
(B2)

�
(
1
τ

B − α) 
 φ(α − 1
τ

B)
�

+
1
τ3

E
B

�
(B2)

�
(α +

1
τ

B) 
 φ(−α − 1
τ

B)
�
. (A.17)

Now we plug (A.15),(A.16), and (A.17) back into (A.14)
to show that ∂

∂τ [ ∂F
∂τ2 (τ2,ατ)] ≤ 0.

(δp) × ∂

∂τ

� ∂F
∂τ2

(τ2,ατ)
�

≤ − 1
τ2

EB

�
B�#φ(α − 1

τ
B)) − φ(α +

1
τ
B))
$�

+
1
τ2

E
B

�
B�#φ(α − 1

τ
B) − φ(−α − 1

τ
B)
$�

− 1
τ3

E
B

�
(B2)

�
(
1
τ

B − α) 
 φ(α − 1
τ

B)
�

+
1
τ3

E
B

�
(B2)

�
(α +

1
τ
B) 
 φ(−α − 1

τ
B)
�

− 1
τ3

EB

�
[α 
 B2]�[φ(α +

1
τ

B) + φ(α − 1
τ
B)]
�

= − 1
τ4

EB

�
[B3]�

#
φ(α − 1

τ
B) − φ(α +

1
τ

B)
$�
. (A.18)

We justify non-positivity of (A.18) by showing that the
elementwise term inside the expectation is less than or equal
to 0. First assume Bi ≥ 0, then αi − Bi/τ ≤ αi + Bi/τ and
φ(αi−Bi/τ) ≥ φ(αi +Bi/τ). The other case Bi ≤ 0 follows
similarly.

Now (A.18), implies ∂
∂τ

#
∂F
∂τ2 (τ2,ατ)

$ ≤ 0 and therefore,
we have shown that F(τ2,ατ) defined in (II.7), is concave
with respect to τ2.

Next we show that τ2 �→ F(τ2,ατ) is strictly increasing.
To do so, it is sufficient to show that ∂F

∂τ2 (τ2,ατ) is positive
as τ → ∞ because the concavity implies that ∂F

∂τ2 (τ2,ατ) is
non-increasing. Define f(α) := δ limτ→∞ ∂F

∂τ2 (τ2,ατ). First
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recall that ∂F
∂τ2 (τ2,ατ) is given in (A.8). In particular,

(δ) × ∂F
∂τ2

(τ2,ατ)

=
1
p

p�
i=1

E

�
|Ii|
�
[∂1η]2i + (ηi −Bi)[∂2

1η]i
��

− 1
τp

p�
i=1

E

�
[∂1η]i sgn(ηi)(ηi −Bi)

�
j∈Ii

αj

�
, (A.19)

Then taking τ → ∞ in the above, it is easy to see that f(α)
is equivalent to setting B = 0 in η(B + τZ,ατ) and using
that η(τZ,ατ) = τη(Z ,α) (implying that ∂1η(τZ,ατ) =
∂1η(Z,α)). We note that using a simplification of [∂2

1η]i as in
(A.11)-(A.12), means that this term will go to zero as τ → ∞.
Therefore, using sgn(η(Z,α)) 
 η(Z,α) = |η(Z,α)|,

f(α) =
1
p

p�
i=1

E

�
[D(η(Z,α))]i([∂1η(Z,α)]i)2

− [∂1η(Z,α)]i|[η(Z,α)]i|
�

j:|[η(Z,α)]j |=|[η(Z,α)]i|
αj

�
.

In the above we have used the following definition: for a
vector v ∈ R

p, define D elementwise as [D(v)]i := #{j :
|vj | = |vi|} = |Ii| if vi �= 0 and ∞ otherwise. Using that
∂1η(Z,α) = 1

D(η(Z,α)) ,

f(α) =

1
p

p�
i=1

E

*
1 − |[η(Z,α)]i|

�
j:|[η(Z,α)]j|=|[η(Z,α)]i| αj

[D(η(Z,α))]i

+
.

(A.20)

This simplification can be efficiently computed because only
|η(Z,α)| and α need to be memorized.

Now considering (A.20), let α → ∞ and note that since
|Z| < α almost surely as α → ∞, it follows that η(Z,α) =
∂1η(Z,α) = 0. Therefore limα→∞ f(α) = 0. By a very
similar argument to the proof of concavity, it is easy to see
f �(α) < 0, and together these facts imply f(α) > 0 for
all α. The monotonicity of F is now obvious: since F is
concave (implying ∂F

∂τ2 (τ2,ατ) is non-increasing) and strictly
increasing for τ2 large enough, it is increasing everywhere.
Moreover, the monotonicity of F implies the monotonicity of
the sequence {τ2

t (p)}t≥0.
Finally we show that there exists a unique τ∗ such that

F(τ2∗ ,ατ∗) = τ2∗ , from which it follows that the monotone
sequence {τ2

t (p)}t≥0 converges to τ2
∗ (p) as t → ∞. First,

f(0) = E�∂1η(τZ,0)�2/p = E�1�2/p = 1 by (A.20). This,
along with the fact that f �(α) < 0, tells us that 0 < f(α) <
1 for all α. Recall the definition of the set Amin, namely
Amin := {α : f(α) = δ}. We know that this set is non-empty
since the LASSO case shows α = (αmin, · · · , αmin) belongs
to Amin where αmin is the unique non-negative solution of
(1 + α2)Φ(−α) − αφ(α) = δ/2. We write α � Amin to
mean α is larger than at least one element in Amin, where
we consider one vector v to be larger than another vector u
if vi ≥ ui for all i and vj > uj for some j.

To complete the proof, we show that F(τ2,ατ) > τ2 for
small enough τ2 and F(τ2,ατ) < τ2 for large enough τ2.

Therefore, there is at least one τ∗ such that F(τ2
∗ ,ατ∗) = τ2

∗
since F is continuous in τ . It follows from the concavity of F
that the solution is unique and the sequence of iterates τ2

t (p)
converge to τ2

∗ (p). We first show that F(τ2,ατ) > τ2 for
small enough τ2. Consider the function G(τ2) := F(τ2,ατ)−
τ2. Recall the definition of F(τ2,ατ) in (II.7), namely,

F(τ2,ατ) = σ2
w + E�proxJατ

(B + τZ) − B�2/(δp),

clearly F(0,0) = σ2
w ≥ 0 and G(0) = σ2

w ≥ 0 (with
equality only if σ2

w = 0). Now we show that F(τ2,ατ) < τ2

for large enough τ2. Since f(α) is decreasing in α,
for α � Amin, it must be that f(α) < δ. Moreover,
limτ→∞ ∂F

∂τ2 (τ2,ατ) = 1
δ f(α) ≤ 1 for α � Amin.

Therefore, limτ→∞ ∂G
∂τ2 (τ2) ≤ 0 meaning G is eventually

decreasing (as τ2 grows) for any α � Amin. Also, G(τ2)
is concave and therefore for τ2 large enough we will have
G(τ2) < 0, in which case F(τ2,ατ) < τ2.

Finally,
�� ∂F
∂τ2 (τ2,ατ)

�� evaluated at at τ2 = τ2
∗ is upper

bounded by 1 when α � Amin, as the concavity of F
implies that ∂F

∂τ2 (τ2,ατ) is strictly decreasing in τ2 along
with limτ→∞ ∂F

∂τ2 (τ2,ατ) = 1
δ f(α) ≤ 1 when α � Amin.

If this were not the case then there would be multiple fixed
points.

B. Proving Proposition II.6

Proof of Proposition II.6: This proof is a generalized result
of [5, Proposition 1.4] (originally proved in [16]) and [5,
Corollary 1.7]. Here we fix p and denote τ(p) as τ . Recall
in the proof of Theorem 1 we have shown the following facts:
(A) 0 < limτ2→∞ ∂F

∂τ2 (τ2,ατ) < 1; (B) τ2 �→ F(τ2,ατ)
is concave; (C) τ2 �→ F(τ2,ατ) is strictly increasing; and
(D) ∂F

∂τ2 (τ2,ατ) evaluated at τ = τ∗, which we denote
∂F
∂τ2 (τ2∗ ,ατ∗) is such that 0 < ∂F

∂τ2 (τ2∗ ,ατ∗) < 1.
First we claim α �→ τ2

∗ (α) is continuously differentiable
on R

p
+. This follows from the implicit function theorem on

function G(α, τ2) := τ2 − F(τ2,ατ) and from Fact (D): G
is continuously differentiable and 0 < ∂G

∂τ2 < 1. Hence τ2

can be written as τ2(α) which is continuously differentiable.
Defining

g(α, τ2) := ατ
#
1 − 1

n
E�proxJατ

(B + τZ)�∗0
$
,

notice that λ(α) = g(α, τ2
∗ (α)). Clearly g is continuously

differentiable in α and so is α �→ λ(α).
In the next step, we consider α � Amin(δ) such that α →

amin for some amin ∈ Amin(δ) (denote as α ↓ Amin(δ)).
We claim τ2

∗ (α) → +∞ as α ↓ Amin(δ). Recall, f(α) :=
δ limτ→∞ ∂F

∂τ2 (τ2,ατ) (cf. Theorem 1). Then by concavity of
F(τ2,ατ) in τ ,

τ2
∗ = F(τ2

∗ ,ατ∗) ≥ F(0,0) + τ2
∗ lim

τ2→∞
∂F
∂τ2

(τ2,ατ)

= F(0,0) +
1
δ
τ2
∗ f(α),

which implies τ2
∗ ≥ F(0,0)

1−f(α)/δ . Recall F(0,0) = σ2
w and

f(amin) = δ for any amin ∈ Amin(δ). Hence τ2
∗ (α) → +∞

as α ↓ Amin(δ).
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Define �(α) := 1− 1
n E � proxJατ∗

(B+τ∗Z)�∗0. Then when
τ2
∗ (α) → +∞ as α ↓ Amin(δ),

�∗ := lim
α→amin

�(α)

= lim
α→amin

�
1 − 1

n
E � proxJατ∗

(τ∗Z)�∗0
�

= 1 − 1
n

E � proxJamin
(Z)�∗0 .

We claim that �∗ < 0. Using the definition of the vector D
and the set Amin(δ) in (II.6),

�∗ = 1 − 1
n

E � proxJamin
(Z)�∗0

= 1 − 1
δ

E

& 1
D(proxJamin

(Z))

'
< 1 − 1

δp

�
i

E

�1 −�j∈Ii
[amin]j |[proxJamin

(Z)]i|
[D(proxJamin

(Z))]i

�
= 0,

where (writing η to mean proxJamin
(Z) and D to mean D(η))

the inequality in the above uses that

1
Di

− 1
Di

�
1 −

�
j∈Ii

[αmin]j |ηi|
�

=
1

Di

�
j∈Ii

[αmin]j |ηi|

≥ 0.

Notice in the above, the equality only holds when ηi =
0 but η �= 0 almost surely. Therefore, using that
λ(α) = g(α, τ2∗ (α)) = ατ∗(α)

#
1 − 1

n E�proxJατ∗(α)
(B +

τ∗(α)Z)�∗0
$
,

lim
α↓Amin(δ)

λ(α) = �∗ · lim
α↓Amin(δ)

ατ∗(α) = −∞ . (A.21)

Finally we consider the case α → ∞ and observe τ2
∗ (α) →

σ2
w + E{B2}/δ. To see this, notice that F(τ2,ατ) → σ2

w +
E{B2}/δ as α → ∞ since τ2

∗ (α) = F(τ2
∗ (α),ατ∗(α)) is

bounded above. Moreover, since τ∗(α) is bounded, ατ∗(α)
is unbounded as α → ∞ and we have limα→∞ �(α) = 1
whence

lim
α→∞ λ(α) = 1 · lim

α→∞ ατ∗(α) = ∞ . (A.22)

We pause here to summarize that α �→ λ(α) is continuously
differentiable on the domain {α : α � Amin(δ)} with
λ(Amin(δ)) = −∞ and limα→∞ λ(α) = +∞.

Now to prove the inverse mapping λ �→ α(λ) is con-
tinuous and non-decreasing when p → ∞, we claim that
the invertibility of α �→ λ(α) is sufficient. Precisely, (1)
invertibility implies strict monotonicity; (2) monotonicity plus
(A.21) and (A.22) implies both α �→ λ(α) and λ �→ α(λ) are
increasing; and (3) continuity of α �→ λ(α) implies continuity
of λ �→ α(λ).

Now we prove the invertibility by contradiction. Assume
that there are two distinct such values α1, α2 satisfying �λ =
λ(α1) = λ(α2). Apply Theorem 3 to both α(�λ) = α1,α2

with ψ(x,y) = �(x−y)2
. Then, together with Corollary III.4,

plim
p→∞

1
p
�β̂ − β�2

= plim
p→∞

E�� proxJατ∗
(β + τ∗Z ; ατ∗) − β�2

2


= δ(τ2
∗ − σ2

w) .

Since plimp→∞ �β̂ − β�2/p is independent of α, the right
side gives τ∗(α1) = τ∗(α2). Next apply Theorem 3
with ψ(x,y) = �|x|
, giving plimp→∞ �β̂�1/p =
plimp→∞ E�� proxJατ∗

(β+τ∗Z ; ατ∗)�1
 . Obviously, for τ∗
and p fixed, θ �→ E�� proxJατ∗

(β + τ∗Z ; θ)�1
 is strictly
decreasing in θ. Therefore α1τ∗(α1) = α2τ∗(α2) implying
α1 = α2, since τ∗(α1) = τ∗(α2), which is a contradiction.

APPENDIX B
VERIFYING PROPERTIES (P1) AND (P2)

In this appendix we demonstrate that the properties (P1)
and (P2) given in Section IV and relating to the denoiser ηt

p(·)
defined in (IV.1) are true.

Verifying Properties (P1) and (P2): Property (P1) follows
since ηt

p(·) = proxJατt
(·), as it is easy to show that proximal

operators are Lipschitz continuous with Lipschitz constant one.
Namely

||ηt
p(v1) − ηt

p(v2)|| = || proxJατt
(v1) − proxJατt

(v2)||
≤ ||v1 − v2||.

Next we show that property (P2) is true. We restate property
(P2) for convenience: for any s, t with (Z,Z�) a pair of length-
p vectors such that (Zi, Z

�
i) are i.id. ∼ N (0,Σ) for i ∈ [p]

where Σ is any 2 × 2 covariance matrix, the following limits
exist and are finite.

plim
p→∞

1
p
�β�, plim

p→∞
1
p

EZ [β�ηt
p(β + Z)],

plim
p→∞

1
p

EZ,Z� [ηs
p(β + Z �)�ηt

p(β + Z)]. (B.1)

We first note that the first limit in (B.1) exists by Assump-
tion (A2) and the strong law of large numbers. We focus on the
other two limits. These results follow by [22, Proposition 1]
given in Lemma III.3 and the following lemma, which is a
classic result in probability theory.

Lemma B.1 (Doob’s L1 maximal inequality, [17]
Chapter VII, Theorem 3.4): Let X1, X2, . . . , Xp be a
sequence of nonnegative i.i.d. random variables such that
E[X1 max{0, log(X1)}] <∞. Then,

E

�
sup
p≥1

�1
p
(X1 +X2 + · · · +Xp)

��
≤ e

e− 1
(1 + E[X1 max{0, log(X1)}]).

Proof: Let Mp = 1
p (X1 + X2 + · · · + Xp). Then the

sequence {Mp} is a submartingale and hence by Doob’s
maximal inequality,

E

�
sup

p�≥p≥1
Mp

�
≤ e

e− 1
(1 + E[Mp� max{0, log(Mp�)}]).
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The mapping x �→ xmax{0, logx} is convex, hence,
E[Mp� max{0, log(Mp�)}]) ≤ E[X1 max{0, log(X1)}]. The
result follows by Fatou’s lemma and that supp�≥p≥1Mp ↑
supp≥1Mp as p� → ∞.

Before we prove that the second and third limits in (B.1)
exist and are finite, we state one more result that will be
helpful in the proof. This result uses Lemma B.1 along with a
Dominated Convergence argument to study expectations taken
with respect to (Z,Z �) like those in (B.1).

Lemma B.2: Consider a function ψp : R
p × R

p × R
p → R

such that for iterations s, t ≥ 0, as p→ ∞,

1
p

���ψp(β, ηs
p(β + Z), ηt

p(β + Z �))

−ψp(β, hs(β + Z), ht(β + Z �))
���→ 0, (B.2)

where hs, ht are the unspecified functions of Lemma III.3, and
(Z,Z �) are independent Gaussian vectors having zero-mean
and independent entries with finite variance. Assume, for some
constant L > 0 not depending on p,

1
p

���ψp(β, ηs
p(β + Z), ηt

p(β + Z �))

−ψp(β, hs(β + Z), ht(β + Z �))
���

≤ L
�
1 +

�β�2

p
+

�Z�2

p
+

�Z��2

p

�
. (B.3)

Then, as p→ ∞,
1
p

��� E
Z,Z�

�
ψp(β, ηs

p(β + Z), ηt
p(β + Z))

�
− E

Z,Z�

�
ψp(β, hs(β + Z), ht(β + Z �))

����→ 0. (B.4)

Proof: We begin by showing that
EZ,Z�{supp≥1

1
p |ψp(β, ηs

p(β + Z), ηt
p(β + Z �))|} < ∞.

Using (B.3), it is clear that this expectation is finite almost
surely if

E

�
sup
p≥1

�
�Z(p)�2/p

��
< ∞,

E

�
sup
p≥1

�
�Z�(p)�2/p

��
< ∞,

E

�
sup
p≥1

�
�β(p)�2/p

��
< ∞,

where we have made the dependence of the vectors on the
dimension p explicit. But Lemma B.1 immediately implies the
above since E[B2 max{0, logB}] <∞ by assumption (A2).

Now by dominated convergence we have,

E
Z,Z�

�
plim

p

1
p

���ψp(β, ηs
p(β + Z), ηt

p(β + Z �))

− ψp(β, hs(β + Z), ht(β + Z �))
����

= plim
p

1
p

E
Z,Z�

���ψp(β, ηs
p(β + Z), ηt

p(β + Z �))

− ψp(β, hs(β + Z), ht(β + Z �))
���

≥ plim
p

1
p

��� E
Z,Z�

�
ψp(β, ηs

p(β + Z), ηt
p(β + Z))

�
− E

Z,Z�

�
ψp(β, hs(β + Z), ht(β + Z �))

����.

Then the above implies the desired result (B.4) from
assumption (B.2).

First consider the second limit in (B.1). By Cauchy-
Schwarz, (III.3) of Lemma III.3 implies that

��β�ηt
p(β +Z)−

β�ht(β + Z)
��/p→ 0, as p→ ∞. This follows because��β�ηt

p(β + Z) − β�ht(β + Z)
��/p

≤ �β��ηt
p(β + Z) − ht(β + Z)�/p.

Then the right side of the above → 0 with growing p because
�β�/√p limits to a constant as justified above (this is the limit
in (B.1)), and the other term → 0 by (III.3) of Lemma III.3.
This means that assumption (B.2) of Lemma B.2 is satisfied.
Assumption (B.3) of Lemma B.2 is also satisfied since both
ηt

p and ht are Lipschitz(1), by Cauchy-Schwarz inequality.
Therefore Lemma B.2 implies

��EZ{β�ηt
p(β + Z)} −

EZ{β�ht(β + Z)}��/p→ 0, as p→ ∞. Therefore,

plim
p→∞

1
p

EZ [β�ηt
p(β + Z)]

= plim
p→∞

1
p

p�
i=1

β0,iEZ{ht(β0,i + Zi)}

= E[Bht(B + Z)],

where B,Z are univariate. By the Cauchy-Schwarz inequality,
E[Bht(B+Z)] <∞ if E[B2] <∞ and E[ht(B+Z)2] <∞.
Since E[B2] = σ2

β <∞ is given by our assumption, it suffices
to show E[ht(B + Z)2] < ∞. But this follows from the fact
that ht(·) is Lipschitz(1) and therefore E[ht(B + Z)2] <
E[(B + Z)2] ≤ E[B2] + E[Z2] = σ2

β + Σ11 <∞.
Finally consider the third limit in (B.1). Similarly to the

work in studying the second limit in (B.1), we appeal to
Lemma B.2. First we show that, as p→ ∞,

1
p

��ηs
p(β + Z �)�ηt

p(β + Z) − hs(β + Z �)�ht(β + Z)
��,

(B.5)

approaches 0, meaning that assumption (B.2) of Lemma B.2
is satisfied. Then, again, assumption (B.3) of Lemma B.2 is
satisfied since both ηt

p(·) and ht(·) are Lipschitz(1), using
Cauchy-Schwarz.

Now we want to prove (B.5). By repeated applications of
Cauchy-Schwarz it is not hard to show,

|ηs
p(β + Z �)�ηt

p(β + Z) − hs(β + Z �)�ht(β + Z)|
≤ �hs(β + Z �)� × �ηt

p(β + Z) − ht(β + Z)�
+ �ht(β + Z)� × �ηs

p(β + Z �) − hs(β + Z �)�
+ �ηs

p(β + Z �) − hs(β + Z �)�
× �ηt

p(β + Z) − ht(β + Z)�.
Now, (B.5) follows since the right side of the above goes to
0 as p grows. This follows since, by (III.3) of Lemma III.3,
as p→ ∞,

1√
p
�ηs

p(β + Z �) − hs(β + Z �)� → 0,

1√
p
�ηt

p(β + Z) − ht(β + Z)� → 0.
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Moreover, since hs(·) and ht(·) are separable, by the Law of
Large Numbers,

plim
p

1
p
�hs(β + Z �)�2 = plim

p

1
p

p�
i=1

[hs(βi + Z �
i)]

2

= E[(hs(B + Z �))2] <∞,

and

plim
p

1
p
�ht(β + Z)�2 = plim

p

1
p

p�
i=1

[ht(βi + Zi)]2

= E[(ht(B + Z))2] <∞,

where the inequalities follow since E[(hs(B+Z �))2] ≤ E[(B+
Z �)2] ≤ σ2

β+Σ22 <∞ and E[(ht(B+Z))2] ≤ E[(B+Z)2] ≤
σ2

β +Σ11 <∞. This proves (B.5) and therefore we can apply
Lemma B.2.

Then Lemma B.2 implies,

1
p

�� E
Z,Z�

{ηs
p(β + Z�)�ηt

p(β + Z)}
− E

Z,Z�
{hs(β + Z �)�ht(β + Z)}��→ 0,

as p→ ∞. But now, using the above,

plim
p→∞

1
p

E
Z,Z�

{ηs
p(β + Z �)�ηt

p(β + Z)}

= plim
p→∞

1
p

p�
i=1

E
Z,Z�

{hs(βi + Z �
i)h

t(βi + Zi)}

= E[hs(B + Z �)ht(B + Z)],

where B,Z �, and Z are univariate and E[hs(B + Z �)ht(B +
Z)] <∞ by Cauchy-Schwarz and the fact that hs(·) and ht(·)
are Lipschitz(1). Namely, this gives the bound�

E[hs(B + Z �)ht(B + Z)]
�2

≤ E[(hs(B + Z �))2] E[(ht(B + Z))2]

≤ E[(B + Z �)2] E[(B + Z)2]
= (E[B2] + E[Z �2])(E[B2] + E[Z2])

= (σ2
β + Σ22)(σ2

β + Σ11) <∞.

We have now shown that property (P2) is true.

APPENDIX C
PROOF OF FACT II.7

Proof: The fact follows from the asymptotic separability
of the proximal operator [22, Proposition 1] (restated in
Lemma III.3) and the dominated convergence theorem [38]
allowing for interchange of limit and expectation. We sketch
the proof of the existence of the limit in (II.3) (and the result
for the limit in (II.10) follows similarly). By Lemma III.3,
the weak convergence of α(p) to A, and the Weak Law of
Large Numbers, one can argue that

lim
p

1
δp

�proxJα(p)τ∗
(B + τ∗Z) − B�2

=
1
δ

E{(h(B + τ∗Z) −B)2},

where h(·) := h(·;B+τ∗Z,Aτ∗) is the unspecified, separable
function of Lemma III.3. This is consistent with [Lemma 29,
[22]]. The limit in (II.3) exists if E{(h(B+ τ∗Z)−B)2}/δ <
∞ and

E{(h(B + τ∗Z) −B)2} ≤ 2E{h(B + τ∗Z)2 +B2}
≤ 2E{(B + τ∗Z)2 +B2}
≤ 2E{2 B2 + 2τ2

∗Z
2 +B2}

= 6E{B2} + 4τ2
∗ <∞.

Here the first and third inequalities follow from (x − y)2 ≤
2(x2 + y2) and the second inequality follows from h being
Lipschitz(1): |h(x)| = |h(x) − h(0)| ≤ |x− 0| = |x|.

APPENDIX D
PROOF OF LEMMA VII.1

Proof: First, the proof of (VII.1) follows from Theo-
rem IV.1. To see this, note that by (I.3a), we have βt+1 =
proxJθt

(X�zt + βt) = ηt
p(X

�zt + βt), and therefore we
apply Theorem IV.1 with uniformly pseudo-Lipschitz function
ψp(βt + X�zt,β) = �ηt

p(β
t + X�zt)�2/p to get, for

Z ∼ N (0, Ip),

plim
p

�βt�2/p
p
= plim

p
EZ [�ηt

p(β + τtZ)�2]/p. (D.1)

By the Lipschitz property of ηt
p (Assumption (A4)),

EZ [�ηt
p(β + τtZ)�2] ≤ EZ [�β + τtZ�2] ≤ 2�β�2 + 2pτ2

t .

Plugging into (D.1), plimp�βt�2/p
p
= 2 plimp�β�2/p+2τ2

t =
2σ2

β + 2τ2
t , where the final inequality follows by Assumption

(A2).
Now consider the �β result in (VII.2). First, note that by

definition C(�β) ≤ C(0) where the cost function C(·) is defined
in (I.2). Using that

C(0) =
1
2
�y�2 =

1
2
�Xβ + w�2

≤ �Xβ�2 + �w�2 ≤ σ2
max(X)�β�2 + �w�2, (D.2)

where σmax(X) is the maximum singular value of X . We note
that this value, σmax(X), is bounded almost surely as p →
∞ using standard estimates on the singular values of random
matrices since X has i.i.d. Gaussian entries by Assumption
(A1) (see, for example, [8, Lemma F.2]). Therefore,

plim
p

C(�β)/p ≤ plim
p

σ2
max(X)�β�2/p+ plim

p
�w�2/p

≤ Bmaxσ
2
β + σ2

w, (D.3)

where we’ve defined Bmax to be a bound on the limit of the
maximum singular value, i.e. limp σ

2
max(X) ≤ Bmax, and the

final inequality holds by Assumptions (A2) and (A3).
Now we will relate 1

p��β�2 to 1
pC(�β) and other terms

lower-bounded by a constant with high probability. We write�β = �β⊥
+ �β


where �β⊥ ∈ ker(X)⊥ and �β
 ∈ ker(X).
Since �β
 ∈ ker(X) and ker(X) is a random subspace of size
p−n = p(1−δ), by Kashin Theorem (Theorem H.1.), we have
that for some constant ν1 = ν1(δ), with high probability

��β
�2
2 ≤ ν1��β
�2

1/p. (D.4)
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Then we have the following bound

��β�2 = ��β
�2 + ��β⊥�2
(a)

≤ ν1��β
�2
1/p+ ��β⊥�2

(b)

≤ 2ν1��β�2
1/p+ (2ν1 + 1)��β⊥�2, (D.5)

where step (a) holds by (D.4) and step (a) by the Triangle
Inequality and Cauchy-Schwarz as follows

��β
�2
1 = ��β − �β⊥�2

1 ≤ (��β�1 + ��β⊥�1)2

≤ 2��β�2
1 + 2��β⊥�2

1 ≤ 2��β�2
1 + 2p��β⊥�2.

Now we bound the second term on the right side
of (D.5). Define σ̂min(X) as the minimum non-zero
singular value of X . By standard results in linear algebra,

σ̂2
min(X)��β⊥�2 ≤ �X�β⊥�2. Therefore,

σ̂2
min(X)��β⊥�2 ≤ �X�β⊥�2 ≤ �X�β⊥ − y + y�2

≤ 2�y − X�β⊥�2 + 2�y�2 ≤ 2C(�β) + 2C(0) ≤ 2C(0).

Therefore, using (D.2) and (D.3), we have

plim
p

1
p
��β⊥�2 ≤ plim

p

2
pC(0)

σ̂2
min(X)

≤ 2(Bmaxσ
2
β + σ2

w)
Bmin

.

(D.6)

where we’ve defined Bmin to be a bound on the limit of the
minimum non-zero singular value, i.e. limp σ̂

2
min(X) ≥ Bmin.

Now we bound the first term on the right side of (D.5).
Recall the definition of the sorted �1 norm, i.e. Jλ(b) =�
λi|b|(i), then using λmin described below to lower bound

the threshold values,

λmin��β�1 =
�

λmin|�βi| =
�

λmin|�β|(i)
≤
�

λi|�β|(i) = Jλ(�β) ≤ C(�β) ≤ C(0).

Here λmin is defined as min{λj : λj > 0}#{j:λj>0}
p . To see

this, denoting the smallest non-zero entry of λ as λk:�
i

λi|�β|(i) =
�

i:λi>0

λi|�β|(i) =
�
i≤k

λi|�β|(i)
≥ λk

�
i≤k

|�β|(i) = kλk

�
i≤k |�β|(i)
k

≥ kλk

�
i |�β|(i)
p

= λk
k

p
��β�1,

where the penultimate inequality follows from the fact
that the arithmetic mean of a decreasing sequence is also
decreasing.

Then, using (D.2) and (D.3), we see

plim
p

��β�1

p
≤ plim

p

C(0)/p
λmin

≤ Bmaxσ
2
β + σ2

w

λmin
. (D.7)

By (D.7), along with the upper bound in (D.5),

plim
p

��β�2

p
≤ 2ν1 plim

p

��β�2
1

p2
+ (2ν1 + 1) plim

p

��β⊥�2

p

≤
�2ν1(Bmaxσ

2
β + σ2

w)
λmin

�2
+

2(2ν1 + 1)(Bmaxσ
2
β + σ2

w)
Bmin

.

APPENDIX E
PROOF OF LEMMA VII.3

The proof of Lemma VII.3 relies on the following result,
Lemma E.1, about the exponential rate of the convergence of
the state evolution sequence defined in (VI.3). We state and
prove Lemma E.1, and Lemma VII.3 is proved afterward.

Lemma E.1: Assume α > Amin(δ) and let {Σs,t}s,t≥0 be
defined by the recursion (VI.3) with initial condition (VI.2).
Then there exists constants B1, r1 > 0 such that for all t ≥ 0,
letting τ∗ := limt τt,

|Σt,t − τ2
∗ | ≤ B1 e

−r1 t, and |Σt,t+1 − τ2
∗ | ≤ B1 e

−r1 t.

Proof: Throughout the proof, we use the {ηt
p}p∈N>0

notation introduced in Section IV and defined in (IV.1) with a
slight modification to explicitly state the thresholds. Namely,
we consider a sequence of denoisers ηp : R

p×p → R
p to be

those that apply the proximal operator proxJατt
(·) defined in

(I.4), i.e. ηp(v; ατt) := proxJατt
(v) for a vector v ∈ R

p.
Then, per the definition in (VI.3), we have

Σs+1,t+1 = σ2
w+ lim

p

1
δp

E
�
[ηp(B + τsZs; ατs) − B]�

× [ηp(B + τtZt; ατt) − B]
�
,

where B ∼ B i.i.d. elementwise, independent of length−p
jointly Gaussian vectors Zs and Zr having E[Zs] = E[Zr] =
0, with covariance E{([Zs]i)2} = E{([Zr]i)2} = 1 for any
element i ∈ [p], and E{[Zs]i[Zr]j} = Σs,r

τrτs
I{i = j}. Recall,

Σt,t = τ2
t defined in (II.3) and by Theorem 1 we know that

{Et,t}t≥0 is monotone and converges to τ2
∗ as t → ∞. To

prove exponential convergence of {Et−1,t}t≥0 as claimed
in the lemma statement, we construct a discrete dynamical
system below.

For t ≥ 1, define the vector yt = (yt,1, yt,2, yt,3) ∈ R
3 as

yt,1 ≡ Σt−1,t−1 = τ2
t−1 ,

yt,2 ≡ Σt,t = τ2
t ,

yt,3 ≡ Σt−1,t−1 − 2Σt,t−1 + Σt,t .

A careful argument shows that the vector yt = (yt,1, yt,2, yt,3)
belongs to R

3
+. Essentially this requires showing that a matrix

RT := as in [5, Lemma 5.8] is strictly positive definite. Using
the definition of the Σ recursion in (VI.3), it is immediate to
see that this sequence is updated according to the mapping
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yt+1 = G(yt) where

G1(yt) ≡ yt,2 ,

G2(yt) ≡ σ2
w+

lim
p

1
δp

E
��ηp(B +

√
yt,2Zt; α

√
yt,2) − B�2

�
,

G3(yt) ≡ lim
p

1
δp

E
��ηp(B +

√
yt,2Zt; α

√
yt,2)

− ηp(B +
√
yt,1Zt−1; α

√
yt,1)�2

�
,

where (Zt,Zt−1) are length−p jointly Gaussian vec-
tors, independent of B ∼ B i.i.d. elementwise, hav-
ing E[Zt] = E[Zt−1] = 0 and with covariance
E{([Zt]i)2} = E{([Zt−1]i)2} = 1 for any element i ∈
[p], and E{[Zt]i[Zt−1]j} = Σt,t−1

τtτt−1
I{i = j}. Notice that

E{�√yt,2Zt − √
yt,1Zt−1�2} = yt,3, where we emphasize

that G3(yt) depends on yt,3 through the covariance of Zt and
Zt−1. Moreover, if σ2

w > 0, then yt,1 and yt,2 are both strictly
positive and by the map defined above it is easy to see that yt,3

for all t ≥ 0. This mapping is defined for yt,3 ≤ 2(yt,1+yt,2).
In the following, we will show by induction on t, for t ≥ 1,

that the stronger inequality yt,3 < (yt,1 + yt,2) holds. The
initial condition implied by Eq. (VI.2) is

y1,1 = σ2
w + E[B2]/δ,

y1,2 = σ2
w + lim

p
E
��ηp(B + τ0Z0; ατ0) − B�2

�
/(δp),

y1,3 = lim
p

E
��ηp(B + τ0Z0; ατ0)�2

�
/(δp),

It follows that
1
2
(y1,1 + y1,2 − y1,3)

= σ2
w + lim

p

1
δp

E
�
B��B − ηp(B + τ0Z0; ατ0)

��
= σ2

w

+ lim
p

1
δp

EB

�
B�(B − EZ0{ηp(B + τ0Z0; ατ0)})

�
.

Using the above, it is easy to show y1,3 < y1,1 + y1,2. This
follows since EB

�
B��B−EZ0{η0

p(B+τ0Z0)}
��

is asymp-
totically separable using Lemma III.3 and because the function
x �→ x−EZ h

0(x+ τ0 Z) is monotone increasing. It follows
that limp EB

�
B��B − EZ0{η0

p(B + τ0Z0)}
��
/(δp) > 0.

Suppose that yt,3 < yt,1 + yt,2, we want to show
yt+1,3 < yt+1,1 + yt+1,2. By the induction hypothesis,
E{[Zt]i[Zt−1]i} = yt,1+yt,2−yt,3

2
√

yt,1yt,2
> 0, so elementwise Zt

and Zt−1 are positively correlated.

1
2
(yt+1,1 + yt+1,2 − yt+1,3) = σ2

w +

lim
p

1
δp

E

�
[ηp(B +

√
yt,2Zt; α

√
yt,2) − B]�

×[ηp(B +
√
yt,1Zt−1; α

√
yt,1) − B]

�
.

(E.1)

Notice that x �→ η(b + c · x ; θ) − b is monotone for any
constants b and c > 0 and consider the following result:
for g, a monotone function, and X1 and X2, two posi-
tively correlated standard Gaussians, E[g(X1)g(X2)] ≥ 0.

This is a special case of a theorem in [34], which shows
E[g(X1)g(X2)] ≥ E[g(X1)] E[g(X2)] = (E[g(X1)])2 > 0.
Then since Zt and Zt−1 are positively correlated, E

�
[ηp(B+√

yt,2Zt; α
√
yt,2) − B]�[ηp(B + √

yt,1Zt−1; α
√
yt,1) −

B]
� ≥ 0, which yields yt+1,3 < (yt+1,1 + yt+1,2).
Therefore, we hereafter assume yt,3 < yt,1 + yt,2 for all t.

We consider the above iteration for arbitrary initialization y0
(satisfying y0,3 < y0,1 + y0,2) and will show the following
three facts:

Fact (i). yt,1, yt,2 → τ2
∗ as t → ∞. Further the

convergence is monotone.
Fact (ii). If y0,1 = y0,2 = τ2

∗ and y0,3 ≤ 2τ2
∗ , then

yt,1 = yt,2 = τ2∗ for all t and yt,3 → 0.
Fact (iii). The Jacobian J = JG(y∗) of G at y∗ =
(τ2

∗ , τ
2
∗ , 0) has spectral radius σ(J) < 1.

By simple compactness arguments, Facts (i) and (ii) imply
yt → y∗ as t → ∞. (Notice that yt,3 remains bounded since
yt,3 ≤ (yt,1 + yt,2) and by the convergence of yt,1, yt,2.) Fact
(iii) implies that convergence is exponentially fast.

Proof of Fact (i). Notice that yt,2 evolves independently
by yt+1,2 = G2(yt) = F (y2,t,α

√
y2,t), with F ( · , · ) the

state evolution mapping introduced in (II.7). It follows from
Proposition 1.3 that yt,2 → τ2∗ monotonically for any initial
condition. Since yt+1,1 = yt,2, the same happens for yt,1.

Proof of Fact (ii). Consider the function

G∗(x) = G3(τ2
∗ , τ

2
∗ , x) =

lim
p

1
δp

E�ηp(B + τ∗Zt; ατ∗) − ηp(B + τ∗Zt−1; ατ∗)�2,

where

E{[Zt]i[Zt−1]i} =
yt,1 + yt,2 − yt,3

2√yt,1yt,2
=

2τ2
∗ − x

2τ2∗

is no longer time-dependent. This function is defined for x ∈
[0, 2τ2∗ ]. Further G∗ can be represented as follows in terms of
the independent random vectors Z, W ∼ N(0, I):

G∗(x) =

lim
p

1
δp

E
��ηp(B + Z

,
τ2∗ − 1

4
x+ W (

1
2
√
x); ατ∗)

− ηp(B + Z

,
τ2∗ − 1

4
x− W (

1
2
√
x); ατ∗)�2

�
,

where

(τ∗Zt−1, τ∗Zt)
d=�

Z

,
τ2∗ − 1

4
x− W (

1
2
√
x),Z

,
τ2∗ − 1

4
x+ W (

1
2
√
x)
�
.

Obviously G∗(0) = 0. A simple Taylor expansion about the
first argument around B yields (recall higher derivatives of η
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are 0 almost everywhere)

G∗(x)

= lim
p

1
δp

E

�
�ηp(B; ατ∗) − ηp(B; ατ∗)

+
�
Z

,
τ2∗ − 1

4
x+ W (

1
2
√
x)
�

 ∂1ηp(B; ατ∗)

−
�
Z

,
τ2∗ − 1

4
x− W (

1
2
√
x)
�

 ∂1ηp(B; ατ∗)]�2

�
= lim

p
xE
��W 
 ∂1ηp(B; ατ∗)]�2

�
/(δp)

= lim
p
xE
��∂1ηp(B; ατ∗)]�2

�
/(δp).

Using the above, we study G�
∗(x). First, we can

exchange the limit and differentiation because
fp(x) := xE

��∂1ηp(B; ατ∗)]�2
�
/(δp) converges uniformly

to f(x) := limp xE
��∂1ηp(B; ατ∗)]�2

�
/(δp). To see this,

notice fp, f are linear in x and defined on [0, 2τ2
∗ ]. Hence for

every � > 0, there exists p0 such that

|fp0(x) − f(x)| = x
��� 1
δp0

E�∂1ηp0(B; ατ∗)]�2

− lim
p

1
δp

E�∂1ηp(B; ατ∗)]�2
���

≤ 2τ2
∗
��� 1
δp0

E�∂1ηp0(B; ατ∗)]�2

− lim
p

1
δp

E�∂1ηp(B; ατ∗)]�2
���

< �.

By uniform convergence we have,

G�
∗(x) = lim

p

1
δp

E
��∂1ηp(B; ατ∗)]�2

�
= G�

∗(0) ≤ lim
p

1
δp

p�
i=1

E
�
[∂1ηp(B; ατ∗)]i

�
.

Hence G�
∗(0) < 1, using (II.9) since λ > 0. Then yt,3 =

[G�
∗(0)]ty0,3 → 0 as t→ ∞ as claimed.
Proof of Fact (iii). By the definition of G, the Jacobian is

given by

JG(y∗) =

⎛⎝ 0 1 0
0 F�(τ2

∗ ) 0
a G�∗(0) b

⎞⎠
denoting F�(τ2

∗ ) ≡ ∂F
∂τ2 (τ2,ατ) evaluated at τ2 = τ2

∗ with a
and b constants whose values are not important to the proof.
Computing the eigenvalues of the Jacobian, we get σ(J) =
max

�
F�(τ2

∗ ) , G�
∗(0)

�
. Since G�

∗(0) < 1 proved above and
F(τ2

∗ ) < 1 by Theorem 1, the claim follows.
Proof of Lemma VII.3: We show that Lemma VII.3

follows by Lemmas E.1 and VI.2. By Lemma VI.2,

plim
n

� 1
n
�zt − zt−1�2 − (τ2

t − 2Σt,t−1 + τ2
t−1)

�
= 0,

plim
p

� 1
δp

�βt+1 − βt�2 − (τ2
t − 2Σt,t−1 + τ2

t−1)
�

= 0,

and so it is sufficient to show that limt(τ2
t −2Σt,t−1+τ2

t−1) =
0. Note that this follows from Lemma E.1 since τ2

t = Σt,t and
τ2
t−1 = Σt−1,t−1 both converge to τ2

∗ as does Σt,t−1.

APPENDIX F
TECHNICAL DETAILS FOR THE CONDITION (3) PROOF

We first introduce some notation and ideas that will be used
throughout. The proof is similar to [5, Section 5.3], with the
key difference being the concept of equivalence classes as
described in Section V-A.

We now introduce a more general recursion than the AMP
algorithm in (I.3a)-(I.3b). Given w ∈ R

n and β ∈ R
p,

define the column vectors ht+1, qt+1 ∈ R
p and bt,mt ∈ R

n,
recursively, for t ≥ 0 as follows, starting with initial condition
β0 = 0 and z0 = y.

ht+1 = β − (X�zt + βt), qt = βt − β,

bt = w − zt, mt = −zt.
(F.1)

Note that these definitions of ht and mt match those used in
Section VI. Denoting [u|v] to mean the matrix of concatenat-
ing vectors u,v horizontally, we define

[h1 + q0|...|ht + qt−1]- ./ 0
At

= X� [m0|...|mt−1]- ./ 0
Mt

,

[b0|b1 + κ1m
0|...|bt−1 + κt−1m

t−2]- ./ 0
Y t

= X [q0|...|qt−1]- ./ 0
Qt

,

(F.2)

where scalar κt := −[∇ηt−1(β − ht−1)]/n.
Define as St the σ-algebra generated by

b0, ..., bt−1,m0, ...,mt−1,h1, ...,ht, q0, ..., qt. Then [4],
[8] say that the conditional distribution of the random matrix
X given St is

X|St

d= Et + P⊥
Mt

X̃P⊥
Qt
, (F.3)

where X̃
d= X is independent of the conditioning sigma-

algebra St and Et = E(X |St) is given by:

Et := Y t(Q�
t Qt)

−1Q�
t + M t(M�

t M t)−1A�
t

+ M t(M�
t M t)−1M�

t Y t(Q�
t Qt)

−1Q�
t .

In (F.3), we use the notation P⊥
Mt

= I − P Mt andP⊥
Qt

=
I−P Qt

where P Qt
and P Mt

are orthogonal projectors onto
column spaces of Qt,M t respectively. From now on, since
t is fixed, we will drop the subscript t when it is clear. A
proof of (F.3) can be found in [4, Lemma 11]. We note that
there are no differences in this conditional distribution in the
nonseparable case, since the analysis (in both cases) is just that
of an i.i.d. Gaussian matrix conditional on linear constraints.

Given the above notations, we claim that Lemma VII.5 is
implied by the following statement.

Lemma F.1: Let s be a set of maximal atoms in [p] such
that |s| ≤ p(δ − γ), for some γ > 0. Then there exists
α1 = α1(γ) > 0 (independent of t) and α2 = α2(γ, t) > 0
(depending on t and γ) with

P

�
min


v
=1, supp∗(v)⊆s



Ev + P⊥
MX̃P⊥

Qv


 ≤ α2

���St

�
≤ e−pα1 ,

eventually almost surely as p → ∞, with Ev =
Y (Q∗Q)−1Q∗P Qv + M(M∗M)−1X∗P⊥

Qv.
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We prove such implication in the next section now.
Proof of Lemma VII.5: The proof is adapted from [5,

Section 5.3.1]. First note that by Borel-Cantelli, it is sufficient
to show that, for s measurable on St and |s| ≤ p(δ− c) there
exist a1 = a1(c) > 0 and a2 = a2(c, t) > 0, such that

P

�
min

|s�|≤a1p
min


v
=1, supp∗(v)⊆s∪s�
�Xv� < a2

�
≤ 1/p2 ,

for all p large enough, using σmin(XSt∪S�) =
min
v
=1, supp∗(v)⊆s∪s� �Xv�. To shorten notation, the set
{�v� = 1, supp∗(v) ⊆ s ∪ s�} is denoted v(s�). Now,
conditioning on St, by a union bound,

P{ min
|s�|≤a1p

min
v(s�)

�Xv� < a2

��St}

≤
�

|s�|≤a1p

P{min
v(s�)

�Xv� < a2

��St}

≤
� a1p�

k=1

�
p

k

��
max

|s�|≤pa1

P{min
v(s�)

�Xv� < a2

��St}

≤ eph(a1) max
|s�|≤a1p

P{min
v(s�)

�Xv� < a2

��St} , (F.4)

where h(a) = −a log a−(1−a) log(1−a) is the binary entropy
function (cf. [28, Chapter 10, Corollary 9]). Therefore, using
iterated expectation and (F.4),

P

�
min

|s�|≤a1p
min
v(s�)

�Xv� < a2

�
= E

�
P

�
min

|s�|≤a1p
min
v(s�)

�Xv� < a2

���St

��
≤ eph(a1) E

�
max

|s�|≤a1p
P

�
min
v(s�)

�Xv� < a2

���St

��
,

Now, we fix a1 < c/2 in such a way that h(a1) ≤ 1
2α1( c

2 )
and let a2 = 1

2α2( c
2 , t) where α1 and α2 are defined by

Lemma F.1. Then,

P

�
min

|s�|≤a1p
min
v(s�)

�Xv� < a2

�
≤ e

1
2 pα1( c

2 )×
E

�
max

|s�|≤a1p
P

�
min


v
=1,supp∗(v)⊆s∪s�
�Xv�

<
1
2
α2(

c

2
, t)
���St

��
≤ e

1
2 pα1( c

2 )×
E

�
max

|s��|≤p(δ− c
2 )

P

�
min


v
=1,supp∗(v)⊆s��
�Xv�

<
1
2
α2(

c

2
, t)
���St

��
.

Finally, using (cf. [5, Lemma 5.1]),

Xv|S d= Y (Q∗Q)−1Q∗P Qv

+ M (M∗M )−1X∗P⊥
Qv + P⊥

MX̃P⊥
Qv .

to estimate Xv and applying Lemma F.1, we get, for all p
large enough,

P

�
min

|s�|≤a1p
min
v(s�)

�Xv� < a2

�
≤ e

1
2 pα1 E

�
max

|s��|≤p(δ− c
2 )
e−pα1

� ≤ 1/p2 .

Now we prove Lemma F.1, using a proof that is similar to
that of [5, Section 5.3.2]. We first state lemmas that will be
used in the proof, but we will not migrate the full proofs from
[5] for the sake of brevity. Instead, we describe the key points
of proofs emphasizing technical differences for the SLOPE
problem and providing pointers to the original proofs.

The concept of maximal atoms are reflected in these lemmas
via the sets s and correspondingly P s, where P s is the p× p
projector matrix onto the subspace of vectors whose supp∗

equals s. In the LASSO case where supp∗ ≡ supp and
s ≡ S, the projector is orthogonal, but in general, we must
define P s[·, j] = 1

|I|
�

i∈I ei for j ∈ I where P s[·, j] is
the jth column of P s for 1 ≤ j ≤ p and ei is the ith

vector of the standard basis. For example, when p = 4 and
s = {{1}, {2, 4}},

P s =

⎛⎜⎜⎝
1 0 0 0
0 1/2 0 1/2
0 0 0 0
0 1/2 0 1/2

⎞⎟⎟⎠ .

Such a projector is not necessarily orthogonal and its rank
is described via |s| (the number of equivalence classes), not
via |S| (the number of non-zero elements) as for the LASSO.
We view this projector as an orthogonal projector onto the
subspace of maximal atoms: for a maximal atom I ∈ s,
the projector maps elements whose indices belong to I onto
their average value.

We begin with the auxiliary lemmas.
Lemma F.2: [Adapted from [5, Lemma 5.4]] Let s be a

set of maximal atoms in [p] such that |s| ≤ p(δ − γ), for
some γ > 0. Recall that Ev = Y (Q�Q)−1Q�P Qv +
M(M�M)−1A�P⊥

Qv and consider the event

ε1 :=
�

Ev + P⊥

MX̃P⊥
Qv


2

≥ γ

4δ



Ev − P MX̃P⊥
Qv


2 +

γ

4δ



X̃P⊥
Qv


2

∀v s.t. �v� = 1 and supp∗(v) ⊆ s
�
.

Then there exists a = a(γ) > 0 such that P{ε1|St} ≥ 1 −
e−pa.

Sketch Proof: Define an event �ε1 as follows:

�ε1 =
�
|(Ev − P MX̃P⊥

Qv)�(X̃P⊥
Qv)|

≤
�
1 − γ

2δ

� 1
2 �Ev − P MX̃P⊥

Qv� �X̃P⊥
Qv�

�
, (F.5)

where the event �ε1 is meant to hold for all v such that
�v� = 1 and supp∗(v) ⊆ s. We claim that P{�ε1|St} ≥
1− e−pa. To prove the claim, we use that for any v, the unit
vector X̃P⊥

Qv/�X̃P⊥
Qv� belongs to the random linear space

im(X̃P⊥
QP s) with dimension at most p(δ − γ). Also, Ev −

P MX̃P⊥
Qv belongs to space spanned by the column space of

the matrices M and of B where Bt = [b0| . . . |bt−1] defined
in (F.1) and (F.2), having dimension at most 2t. Applying
Proposition G.1 using m = n,mλ = p(δ − γ), d = 2t and
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ε = (1 − γ
2δ )1/2(1 − γ

δ )1/2 gives that the event�
Ev − P MX̃P⊥

Qv

�Ev − P MX̃P⊥
Qv�

��
X̃P⊥

Qv

�X̃P⊥
Qv� ≤

√
λ+ ε

=
�
1 − γ

2δ

� 1
2
,

holds with the desired probability, proving the claim. Condi-
tional on event (F.5), one can show

Ev + P⊥

MX̃P⊥
Qv


2

≥
�
1 −
�
1 − γ

2δ

� 1
2
��

Ev − P MX̃P⊥

Qv


2

+


X̃P⊥

Qv


2� .

Finally observe that 1 − (1 − γ
2δ )1/2 ≥ γ

4δ and therefore
since event �ε1 occurring implies ε1 occurs, giving the desired
probability of ε1 as well.

Next we estimate the term �X̃P⊥
Qv�2 in the above lower

bound.
Lemma F.3: [Adapted from [5, Lemma 5.5]] Let s be a set

of maximal atoms in [p] such that |s| ≤ p(δ − γ), for some
γ > 0. Then there exists constant c1 = c1(γ), c2 = c2(γ) such
that the event

ε2 :=
�

X̃P⊥

Qv


 ≥ c1(γ)�P⊥

Qv




∀v such that supp∗(v) ⊆ s
�

holds with probability P{ε2|St} ≥ 1 − e−pc2 .
Sketch Proof: Let V be the linear space V = im(P⊥

QP s)
having dimension at most p(δ − γ). For all v with
supp∗(v) ⊆ s,

X̃P⊥

Qv


 ≥ σmin(X̃|V ) �P⊥

Qv


 , (F.6)

where X̃|V refers to the restriction of X̃ to V . Then
σmin(X̃|V ) is distributed as the minimum singular value of a
Gaussian matrix of dimensions pδ×dim(V ), which is almost
surely bounded away from 0 as p → ∞ (see Theorem G. 2).
Large deviation estimates [27] imply that the probability that
σmin is smaller than a constant c1(γ) is exponentially small.

In the next step we estimate the norm Ev by quoting the
following result.

Lemma F.4: [5, Lemma 5.6] There exists a constant c =
c(t) > 0 such that, defining the event,

E3 :=
��EP Qv� ≥ c(t)�P Qv� ,
�EP⊥

Qv� ≤ c(t)−1�P⊥
Qv� , for all v ∈ R

p
�
,

then E3 holds eventually almost surely as p→ ∞.
Finally, we can now prove Lemma F.1 with the ingredients

given in Lemmas F.2-F.4. We restate the proof from [5,
Lemma 5.3] with minor changes.

Proof of Lemma F.1: We start with Lemma F.4 by which
we assume that event E3 holds for some function c = c(t)
(without loss of generality c < 1/2). For α2(t) > 0 small
enough, let E be the event

E :=
�

min

v
=1, supp∗(v)⊆s



Ev + P⊥
MX̃P⊥

Qv


 ≤ α2(t)

�
.

First assume �P⊥
Qv� ≤ c2/10, from which it follows,

�Ev − P MX̃P⊥
Qv�

≥ �EP Qv� − �EP⊥
Qv� − �P MX̃P⊥

Qv�
≥ c�P Qv� − (c−1 + �X̃�2)�P⊥

Qv�

≥ c

2
− c

10
− �X̃�2

c2

10
=

2c
5

− �X̃�2
c2

10
,

where the last inequality uses �P Qv� =
�

1 − �P⊥
Qv�2 ≥

1/2 under the assumption �P⊥
Qv� ≤ c2/10. Therefore, using

Lemma F.2, we get

P{E|St}
≤ P

�2c
5

− �X̃�2
c2

10
≤
�4δ
γ

� 1
2
α2(t)

���St

�
+ e−pa ,

and the thesis follows from large deviation bounds on the
norm �X̃�2 (see [26]) by first taking c small enough, and
then choosing α2(t) < c

5

%
γ
4δ .

Next assume �P⊥
Qv� ≥ c2/10. By Lemma F.2 and F.3,

we can assume events E1 and E2 hold. Therefore


Ev +

P⊥
MX̃P⊥

Qv


 ≥ ( γ

4δ )
1
2 �X̃P⊥

Qv


 ≥ ( γ

4δ )
1
2 c1(γ)�P⊥

Qv� ,
proving our thesis.

APPENDIX G
SOME USEFUL AUXILIARY MATERIAL

We collect some auxiliary results that are used in the work.
Most are results that were initially stated in [5] that we repeat
here for the reader.

The following proposition is used in the proof of
Lemma F.2. The proof is identical to that of [5, Proposi-
tion E.1] and it follows from a standard concentration of
measure argument in [26]. For this reason, we don’t repeat
it here.

Proposition G.1: Let V ⊆ R
m a uniformly random linear

space of dimension d. For λ ∈ (0, 1), let P λ denote the
projector onto the first mλ maximal atoms in [m]: assume
s = {I1, ..., Id} is the set of maximal atoms, then the jth

column, P λ[:, j] = 1
|Ir|
�

i∈Ir
ei if j ∈ Ir for some r ≤ mλ;

otherwise P λ[:, j] = 0. Define Z(λ) := sup{�P λv� : v ∈
V, �v� = 1}. Then, for any ε > 0 there exists c(ε) > 0 such
that, for all m large enough (and d fixed) P{|Z(κ) − √

λ| ≥
ε} ≤ e−m c(ε).

We next state a result due to Kashin [24] relating to the
equivalence of �2 and �1 norms on random vector spaces (cf.
also [5, Theorem F.1]).

Theorem G. 1: [24] For any positive number υ there exist a
universal constant cυ such that for any n ≥ 1, with probability
at least 1 − 2−n, for a uniformly random subspace Vn,υ of
dimension �n(1 − υ)�, for all x ∈ Vn,υ , we have cυ�x�2 ≤
�x�1/

√
n.

Finally we state a general result about the limit behavior of
extreme singular values of random matrices, as proved in [1]
(cf. also [5, Theorem F.2]).

Theorem G. 2: [1] Let A ∈ R
n×p have i.i.d. entries with

E{Aij} = 0, E{A2
ij} = 1/n, and n/p = δ. Let σmax(A) be
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it largest singular value, and σ̂min(A) be its smallest non-zero
singular value. Then,

lim
p→∞σmax(A) a.s.= 1/

√
δ + 1,

lim
p→∞ σ̂min(A) a.s.= 1/

√
δ − 1.
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