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ABSTRACT

Recent research has made great progress in realizing neural style

transfer of images, which denotes transforming an image to a de-

sired style. Many users start to use their mobile phones to record

their daily life, and then edit and share the captured images and

videos with other users. However, directly applying existing style

transfer approaches on videos, i.e., transferring the style of a video

frame by frame, requires an extremely large amount of computa-

tion resources. It is still technically unaffordable to perform style

transfer of videos on mobile phones. To address this challenge, we

propose MVStylizer, an efficient edge-assisted photorealistic video

style transfer system for mobile phones. Instead of performing styl-

ization frame by frame, only key frames in the original video are

processed by a pre-trained deep neural network (DNN) on edge

servers, while the rest of stylized intermediate frames are generated

by our designed optical-flow-based frame interpolation algorithm

on mobile phones. A meta-smoothing module is also proposed to

simultaneously upscale a stylized frame to arbitrary resolution and

remove style transfer related distortions in these upscaled frames.

In addition, for the sake of continuously enhancing the perfor-

mance of the DNN model on the edge server, we adopt a federated

learning scheme to keep retraining each DNN model on the edge

server with collected data from mobile clients and syncing with a

global DNN model on the cloud server. Such a scheme effectively

leverages the diversity of collected data from various mobile clients

and efficiently improves the system performance. Our experiments

demonstrate that MVStylizer can generate stylized videos with an

even better visual quality compared to the state-of-the-art method

while achieving 75.5× speedup for 1920×1080 videos.

CCS CONCEPTS

• Information systems→Mobile informationprocessing sys-

tems;Multimedia content creation.
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1 INTRODUCTION

In the past decade, deep neural networks (DNNs) have been widely

applied in image transformation tasks, including style transfer

[12, 23, 49], semantic segmentation [35], super resolution [9, 23],

etc. DNN-based style transfer is one of the most popular techniques

in image transformation, and has led to many successful industrial

applications with significant commercial impacts, such as Prisma

[25] and DeepArt [8]. The DNN-based style transfer aims at trans-

forming an input image into a desired output image according to a

user-specified style image. Specifically, the DNN model is trained

to search for a new image that has similar neural activations as the

input image’s and similar feature correlations as the style image’s.

Figure 1 shows one example of directly applying a pre-trained DNN

model to perform style transfer. Here the input image is one ex-

tracted frame from a video of road trip recorded in the daytime,

while the style image is a similar scene captured at dusk. After

performing stylization, the input frame is successfully transformed

to the dusky scene while keeping the content unchanged as the

input frame.

Figure 1: An example of video style transfer.
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Figure 2: Examples of artistic style transfer [19] and photorealistic style transfer [36].

However, the naive extension of style transfer from images to

videos is very challenging: frame-by-frame transformations are

very slow [3, 18] even running on powerful GPUs. Although many

users start to use mobile phones to record their daily life, and then

edit and share images and videos on social networks or with friends,

performing style transfer of videos on mobile phones is still unaf-

fordable till very recently due to the limited computing sources on

the phones. In addition to efficiency issues, “photorealistic” style

transfer is another critical challenge. Figure 2 shows several exam-

ples of artistic style transfer and photorealistic style transfer. Even

though the contents of artistic stylized images are distorted, these

distortions can be tolerated and hard to be detected by human eyes

due to the artistic attribute. However, compared with artistic style

transfer, the target of photorealistic style transfer is to achieve pho-

torealism, which requires loyally preserving the content structure

in the stylized image. Humans are able to evaluate the visual quality

of the photorealistic stylized images. It is necessary to explore the

approach that can achieve efficiently photorealistic style transfer of

videos on mobile phones while keeping high visual quality of the

stylized videos. Some works have been done for style transfer of im-

ages and videos, most of which focus on improving either the visual

quality of stylization [2, 26, 27, 43] or efficiency of style transfer

[4, 10, 18, 29, 49]. However, performing photorealistic style transfer

of videos on mobile phones under the constraints of computing

resources has not been fully investigated.

In this paper, we propose MVStylizer – an efficient edge-assisted

video style transfer system for mobile phones. Instead of perform-

ing transformation frame by frame, MVStylizer processes only

extracted key frames using pre-trained DNN models on the edge

server while the rest of intermediate frames are generated on-the-fly

using our proposed optical-flow-based frame interpolation algo-

rithm on mobile phones. The interpolation is done by exploiting

the optical flow information between the intermediate frames and

key frames. The reason why we choose edge servers but not cloud

servers is that edge servers are closer to users and hence, are able to

provide real-time response to mobile phones. Edge-cloud federated

learning is adopted in our architecture to continuously improve the

performance of the DNN models on edge server: Each DNN model

on the edge server keeps re-training while performing stylization

with collected data from mobile clients, and each edge server will

sync the model with cloud server where a global DNN model is

maintained when it is idle. Meanwhile, the global DNN is also a

backup of the edge DNN, from which an edge server can be quickly

restored if it suddenly crashes. We also conduct experiments to

quantitatively and qualitatively evaluate our proposed system. The

experimental results demonstrate that MVStylizer can successfully

stylize videos with even better visual quality compared to the state-

of-the-art method while achieving significant speedup with high

resolutions.

The main contributions of this paper are summarized as follows:
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• To the best of our knowledge, MVStylizer is the first mobile

system for performing photorealistic style transfer of videos.

• An optical-flow-based frame interpolation algorithm is pro-

posed to accelerate style transfer of videos on mobile phones.

• A meta-smoothing module is designed to efficiently tackle

two problems in an end-to-end learning manner: dynami-

cally upscaling a stylized image to multiple/arbitrary resolu-

tion and removing style transfer related distortions in these

upscaled versions.

• An edge-cloud federated learning scheme is applied to con-

tinuously improve the performance of DNN-based stylizer

on edge servers.

• We implement a prototype system and conduct experiments

to quantitatively evaluate MVStylizer, which demonstrates

that it can perform video style transfer of videos on mobile

phones in an effective and efficient way.

The rest of this paper is organized as follows. Section 2 provides

background information and section 3 presents the system overview

and details of core modules. Section 4 shows the evaluation results.

Section 5 reviews the related work. Section 6 concludes this paper.

2 BACKGROUND

2.1 Photorealistic style transfer

As Figure 1 shows, the photorealistic style transfer extracts human-

perceptual “style” features from a style image and applies these style

features to “decorate” the content image without changing objects’

semantic structures in the original photo. Similar to artistic style

transfer [22], photorealistic style transfer requires high style faith-

fulness for the stylized image. Unlike artistic style transfer, however,

generating a stylized image with high photorealism is essential in

photorealistic style transfer, which remains as a key challenge.

Based on previous artistic style transfer methods [23, 31], theoret-

ical analysis on feature correlation [32] or photorealism loss [36]

are often adopted to quantitatively approximate or simulate human

evaluation on photorealism.

2.2 Device to edge offloading

Offloading computational intensive tasks to edge servers is feasible

and promising way to address the challenge of limited computation

resources on edge devices (e.g., smartphones) [51]. Such strategy

has been widely applied to many applications. Ran et al. [42] design

a framework to dynamically determine the offloading strategy for

the object detection task based on the network conditions. Yi et al.

[52] propose a system named Lavea, which offloads the computation

from the clients to nearby edge servers to provide video analytics

service with low latency. Jeong et al. [21] propose an approach to

offload DNN computations to nearby edge servers in the context

of web apps. Chen et al. [7] conduct an empirical study to evaluate

the performance of several edge computing applications in terms

of latency.

In this work, we also adopt the similar strategy to offload key

frames to the edge servers, where those key frames are processed

by the pre-trained DNN models. We leave the lightweight optical-

flow-based interpolation for intermediate frames on mobile phones.

3 OUR PROPOSED MVSTYLIZER SYSTEM

3.1 The System Overview

In this work, we propose MVStylizer for efficiently performing

photorealistic style transfer for videos on mobile phones. Due to

the constrained computation resources on mobiles, edge servers are

leveraged to speed up the style transfer. Moreover, specific technical

approaches are proposed to address two critical challenges in this

system.

First, performing frame-by-frame stylization is still technically

unaffordable, even with the assistance of edge servers. We propose

an optical-flow-based frame interpolation algorithm and a meta-

smoothing module to speed up the stylization process. Specifically,

only extracted key frames will be processed by a pre-trained DNN

on the edge server, while the rest of intermediate frames will be

generated on-the-fly using our proposed optical-flow-based frame

interpolation algorithm on mobile phones. The interpolation is

done based on the stylized key frames and pre-computed optical

flow information between key frames and intermediate frames. In

addition, the meta-smoothing module is integrated in the edge DNN

for handling upscaling and distortion issues of the stlyized frame

in a single operation, accelerating the style transfer of key frames

on the server.

Second, the edge DNN may be trained with limited data so that

the optimal performance is not achieved. Therefore, we propose

an edge-cloud federated learning scheme to continuously improve

the performance of the edge DNN. While the edge server offers

stylization service, the edge DNN keeps retraining based on the

collected data from mobile clients. The updated edge DNN will be

synced with a cloud DNN when the edge server is idle. Note that

the cloud DNN has the same DNN architecture as edge DNNs, and

the cloud DNN is also maintained as a backup of the edge DNN in

case some edge server crashes. The cloud server is updated with

averaging the aggregated parameters from each server, and the

updated parameters of the cloud DNN will be synced with each

edge DNN.

As illustrated in Figure 3, MVStylizer consists of three major

modules: optical-flow-based frame interpolation, edge DNN and cloud

DNN. The work flow is as follows: When a user performs the style

transfer of a video on the mobile phone, the extracted key frames

of this video will be sent to the edge server associated with a user-

specified style image. The key frames can be identified using either

standard H.264 video codec or the content-based method [40]. After-

wards, a pre-trained DNN will perform transformation on received

key frames according to the style image on the edge server. While

performing stylization, the edge DNN will continuously keep re-

training based on the specific evaluation metric. The updated edge

DNN will be synced with a cloud DNN when the edge server is idle.

The post-processed stylized key frames will then be returned to the

mobile client. Finally, the stylized intermediate frames will be in-

terpolated by the proposed optical-flow-based frame interpolation

algorithm.

Next, we will illustrate more details about each module.

3.2 Optical-flow-based Frame Interpolation

Transferring the style of a video on a mobile phone is always chal-

lenging due to its limited available computing resource. In this work,
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Figure 3: The system design of MVStylizer.

we attempt to process only a few key frames on the edge DNN,

while a lot of more stylized intermediate frames will be interpo-

lated based on the optical flow information. An optical-flow-based

frame interpolation algorithm is designed for interpolating stylized

intermediate frames based on the optical flow information between

intermediate frames and key frames in the original video.

Given a video consists of n frames, among which there are j
key frames (k0, . . . ,kj−1) andm intermediate frames (i0, . . . , im−1)

where j +m = n. The optical flow information can be computed as

fsp = F (is ,kp ) for any intermediate frame is between the key frame

kp and kp+1, where F is an optical flow estimator [38]. The fsp is a

two dimensional flow field, representing the displacement of each

pixel from kp to is . For example, given the location of a pixel p in kp
as kp (x ,y), and assume the location of p in is is kp (x +Δx ,y +Δy),
that is, is (x ,y) = kp (x + Δx ,y + Δy). The optical flow of p from kp
to is is (Δx ,Δy). Again, only key frames will be sent to the edge

server for performing style transfer using the edge DNN, and the

stylized key frames (k̂0, . . . , k̂j−1) will be returned to the mobile

phone. Based on the stylized key frames (k̂0, . . . , k̂j−1) and optical

flow information (f0, . . . , fm−1), we are able to generate stylized

intermediate frames (î0, . . . , îm−1) by spatial warping. We adopt

the bilinear interpolation for generating the stylized intermediate

frames, such as:

îp = I (fpq , k̂q ), (1)

where I is a bilinear interpolation kernel. The detailed workflow

of the optical-flow-based interpolation algorithm is described in

Algorithm 1.

3.3 Edge DNN

In MVStylizer, the edge DNN is a stylizer. As depicted in Figure 4, it

consists of four modules: a pretrained VGG [48] encoder for feature

extraction, a colorization module for integrating style features into

content features, a decoderwithmirrored VGG layers for generating

stylized image, and our proposed meta-smoothing module.

Algorithm 1 Optical-flow-based frame interpolation

Input:

Stylized key frames (k̂0, . . . , k̂j−1);
Optical flow information between key frames and intermediate

frames (f0, . . . , fm−1);

Index of each frame in original video

Output:

Stylized intermediate frames (î0, . . . , îm−1);

1: p = 0, q = 0

2: for p = 0 : m:

3: if Index (k̂q ) < Index (fp ) < Index (k̂q+1)

4: îp = I (fp , k̂q );
5: else

6: q = q + 1
7: end if

8: end for

The meta-smoothing module is designed to tackle two major

issues in an end-to-end learning manner: dynamically upscaling the

decoder’s output to multiple/arbitrary resolution and removing the

style transfer related distortions in these upscaled versions. First,

popular encoder-decoder for style transfer [20, 31] often adopt

fixed architectures (VGG, ResNet [15], MobileNet [16], etc.). Even

when replacing the encoder-decoder with a more flexible DNN

transformer [46] to support manually designed architecture, the

generated image still needs to be upscaled to the target resolution,

and the upscaling efficiency is an issue. Second, the stylized image

generated by the decoder has distortions incurred by the style

transfer. Those distortions become even worsened in the upscaling

process as observed in previous super resolution studies [17, 47].

In other words, adopting only super resolution methods cannot

synthesize a satisfactory stylized image with high resolution.

Figure 4: The design of DNN-based stylizer with meta-

smoothing.

In our method, as shown in Figure 4, a content image Ic and

a style image Is are rescaled to the same size and fed into our

stylizer’s pretrained VGG encoder. The encoder will extract the

content features Fc (blue) and style features Fs (red). After that,

the colorization module will “colorize” Fc with Fs . The feature

maps Fc and Fs have the same dimension, since the input Ic and
Is have been rescaled to the same size. The dimensions of Fc and
Fs are denoted as H ×W × C where H ×W is the feature map’s

height and width and C is the channel number. The colorization is

processed along channel dimensions of Fc and Fs . Specifically, the
feature maps Fc is denoted as {x ic |i = 1, 2, ...,H ×W } where the

vector length |x i | = C . Similarly, the feature maps Fs is denoted
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as {y js |j = 1, 2, ...,H ×W } where the vector length |y j | = C . The
colorization module outputs the colorized content features Fcs ,
which is denoted as {zkcs |z = 1, 2, ...,H ×W } and the vector length

|zk | = C . The colorization is defined as:

zkcs =
H×W∑
m=1

(yms − xkc ). (2)

Finally, Fcs is fed into the decoder, which generates a stylized image

denoted as Ics . The meta-smoothing module upscales and smoothes

Ics such as

I rcs = P(ICS ,W
r
u ) ∗Ws , (3)

where P(·) is a deconvolution operator, r (r > 0) is an upscaling

factor that is specified by an application user,W r
u is our improved

convolution kernel which is used in the deconvolution operator

P(·),Ws is convolution kernelWs for smoothing distortions in-

curred by the style transfer, and Ns is number of feature maps

output by convolution withWs . The convolution kernelW r
u for

deconvolution is defined in Equation 4:

W r
u =

{
W 1

u r = 1

Q(r ) ∗W 1
u r � 1

(4)

where the function Q(·) is to construct a matrix filled with r . If
the upscaling factor r = 1, the deconvolution operator P(·) only

executes convolution without upscaling. Therefore,W 1
u is denoted

as a meta convolution kernel of our meta-smoothing module. If the

upscaling factor r � 1,W r
u is calculated using the meta convolution

kernelW 1
u and the upscaling factor r . ForW r

u andW s , each filter’s

dimensions are respectively denoted as Hu ×Wu and Hs ×Ws .

The objective function is defined as Equation 5:

L = D(Rr (Ic ), I
r
cs )︸������������︷︷������������︸

content loss

+λ · D(Rr (Is ), I
r
cs )︸������������︷︷������������︸

style loss

, (5)

where the function D(·) is to measure the perceptual distance [23],

the function Rr (·) is to rescale input data with respect to the up-

scaling factor r , and λ is a scale factor. Rr (Ic ), Rr (Is ), and I rcs have
the same size. In Equation (5), the first part evaluates the content

loss defined as the perceptual distance between the input content

image and the stylized image, and the second part evaluates the

style loss, which is the perceptual distance between the input style

image and the stylized image.

3.4 Cloud DNN

The cloud DNN has an identical architecture as the edge DNN. It

is designed for aggregating the updated parameters of edge DNNs

in the edge-cloud federated learning process. Algorithm 2 presents

the details of the edge-cloud federated learning procedure. Suppose

that there exist N participated edge servers, the parameters of each

corresponding edge DNN are denoted as (θ1, · · · ,θN ). θ̄ represents

the parameters of the cloud DNN. When a mobile client sends a

style transfer request to an edge server associated with the video

data, the edge DNN will perform the style transfer on received data

while retraining the model based on those data. Then, the updated

parameters θi will be uploaded to the cloud server when the edge

server is idle. The parameters of the cloud DNN can be updated

by averaging the parameters of each edge DNN as θ̄ t =
∑N
i=1 θ

t
i .

Finally, the updated θ̄ will be distributed to each edge server, where

the edge DNN can be updated with the latest θ̄ . The entire process
will be continuously repeated for improving the performance of the

edge DNN in an efficient way. The effectiveness of the edge-cloud

federated learning is evaluated in Section 4.8.

Algorithm 2 Edge-Cloud Federated Learning

Input:

N collected video data D1,D2,D3, . . . ,DN on each edge

server;

Output:

federated learned neural network parameters θ̄ ;
1: Deploy the pre-trained DNN model on the cloud server;

2: Distribute the cloud DNN to each server as edge DNN for

initialization;

3: Initialize time stamp t = 0;

4: Client executes:

5: for i = 1 : N :

6: Participated edge server receives latest model parame-

ters θ̄ t from the cloud server;

7: Update corresponding edge DNN θ t+1i = θ̄ t ;
8: t = t + 1;
9: Retrain the edge DNN based on Di and send the up-

dated parameters θ ti ;
10: Server executes:

11: Compute average parameters θ̄ t =
∑N
i=1 θ

t
i ;

12: Send aggregated parameters θ̄ t to each participated edge

server;

13: Continuously repeat from steps 4 to 12 for improving the per-

formance of edge DNN;

Not only works for the federated learning, the cloud DNN is

also maintained as a backup of the edge DNN, from which an edge

server can be quickly restored after it suddenly crashes.

4 EVALUATIONS

4.1 Experiment Setup

We implement a prototype system ofMVStylizer which is composed

of Google Pixel 2 and servers running on Ubuntu 16.04. The mobile

device is equipped with Qualcomm Snapdragon-835@2.35GHz. In

this experiment, both the edge server and cloud server are equipped

with an Intel Xeon E5-2630@2.6GHz, 128G RAM and a NVIDIA

TITAN X Pascal GPU. But the cloud server should be more powerful

than the edge server in the real life. The mobile device communi-

cates with the server through IEEE 802.11 wireless network. The

system is implemented with PyTorch and OpenCV.

4.2 Model Training

To train our proposed stylizer shown in Figure 4, the pretrained

VGG encoder is frozen, while the other three modules are learned

together. The stylizer is optimized usingAdam [24]with parameters:

β1 = 0.5, β2 = 0.999, and an initial learning rate of 0.0001. Batch

size is set to 2. The scale factors λ in Equation 5 is set to 1.0, i.e.,

we do not tune λ. For the meta-smoothing module, each filter of

W r
u andWs is set to have the same dimension. Specifically, we set

Hu = Hs =Wu =Ws = 5.
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4.3 Dataset

In this work, we adopt two datasets for training and testing the

proposed DNN-based stylizer, respectively. We train the stylization

model on MS-COCO [34], which contains 328k images covering

91 different object types. Both content images and style images

are sampled from MS-COCO for training. We also download 100

videos of different scenes from Videvo.net [1] for evaluation, which

contains about 41,500 frames. One style image is assigned to each

video for performing style transformation.

4.4 Stylization Speed

The efficiency issue is one major concern about photorealistic style

transfer. Therefore, we evaluate the efficiency of our proposed style

transfer method by comparing with the methods proposed by Luan

et al. [37] and Li et al. [33]. Table 1 shows the average time to per-

form style transfer on one frame with different resolutions. The

numbers reported in Table 1 are obtained by averaging the styl-

ization time of 1000 frames which are randomly sampled from the

testing data. Overall, our proposed method outperforms the meth-

ods proposed by Luan et al. and Li et al. with any resolution setting,

and we can obtain greater speedup with increasing resolution. For

example, the time of processing a 512 × 256 frame by our method

is 356.7 times and 5.6 times faster than the approaches of Luan et

al. and Li et al., respectively. Besides, for performing style transfer

on a 1920 × 1080 frame, the two compared methods need over 1000

seconds and 38.72 seconds separately, but our method only costs

1.51 seconds, which is greatly faster. In summary, benefiting from

our proposed meta-smoothing module of the stylizer, our proposed

model can perform stylization in a much more efficient way than

existing work.

Table 1: Average run time (in seconds) comparison between

existing photorealistic style transfer methods and ours (on

an NVIDIA TITAN X Pascal).

Method 512x256 768x384 1024x512 1920x1080

Luan et al. [37] 186.52 380.82 650.45 >1000.00

Li et al. [33] 2.95 7.05 13.16 38.72

Ours 0.52 0.73 0.99 1.51

4.5 Speedup by Optical-flow-based Frame
Interpolation

As described in Section 3, we design an optical-flow-based inter-

polation algorithm to interpolate stylized intermediate frames for

improving efficiency. Therefore, we evaluate the speedup by com-

paring the run time of performing stylization by our pre-trained

DNN model on an edge server with that of interpolating stylized in-

termediate frames on the mobile phone. Table 2 shows average run

time of processing 1000 key frames and 1000 intermediate frames by

those two methods separately. It demonstrates that the optical-flow-

based interpolation method significantly outperforms performing

DNN-based stylization in terms of efficiency, even though the run

time of both methods will be increased with higher resolution frame.

In particular, performing DNN-based stylization on a 512 × 256

frame needs 0.52 seconds, but it only takes 0.00006 seconds for

interpolating a stylized intermediate frame with the same resolu-

tion, which achieves about 866.7 times speedup. More important,

since mobile phones usually record a video in high quality today,

we also make the evaluation for high-resolution videos. Specifi-

cally, for processing a 1920 × 1080 frame, the optical-flow-based

interpolation method only costs 0.02 seconds but the DNN-based

stylization requires 1.51 seconds, indicating 75.5 times speedup. It

can be imagined how slow it will be to perform the DNN-based

stylization frame by frame. For instance, given a 10-minute video

with resolution of 1920 × 1080 and frame rate at 30 fps, it will cost

7.55 hours to perform DNN-based stylization frame by frame even

on the edge server.

Table 2: Average run time (in seconds) comparison between

DNN-based stylization and optical-flow-based interpolation

Resolution

Stylization

per frame

(edge server)

Interpolation

per frame

(mobile)

Speedup

512x256 0.52 0.0006 866.7

768x384 0.73 0.002 365

1024x512 0.99 0.006 165

1920x1080 1.51 0.02 75.5

In addition to evaluate the speedup for a single frame, we also

quantitatively evaluate the speedup for performing stylization on

videos. Benefiting from the optical-flow-based interpolation, we

can define the speedup as Equation 6:

speedup =
#all frames × td

#key frames × td + #intermediate frames × ti

≈
#all frames × td

#key frames × td
=

#all frames

#key frames

∝ key frame interval

(6)

where td represents the time of performing stylization on a frame

by the DNN-based stylizer, and ti expresses the time of stylizing a

frame with optical-flow-based interpolation algorithm, which are

shown in Table 2. Since td � ti , speedup is approximately propor-

tional to the key frame interval as shown Equation 6. The key frame

interval is defined as how often a key frame appears in a particular

video as Equation 2. In this experiment, we consider a video clip

with 300 frames with different resolutions as an example, and the

speedup with various key frame interval are displayed in Figure

5. Generally, the higher key frame interval, the greater speedup

due to less key frames in the video. Regarding with different resolu-

tions, given the same key frame interval, since the higher resolution

cost more time to perform style transfer for both key frames and

intermediate frames, the speedup has a slight decrease but is still

directly proportional to corresponding key frame interval.

4.6 Quantitative Evaluation of Stylization
Results

In addition to the efficiency evaluation, we also experimentally

evaluate the visual result of style transfer, including measuring the

quality of stylization by the DNN-based stylizer and comparing the
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Figure 5: The speedup with different key frame intervals

similarity between frames that are stylized by DNN-based stylizer

with those interpolated by the optical-flow-based interpolation

algorithm.

Firstly, we randomly sample 1000 frames with the resolution

512 × 256 from the testing data, and we compare the visual quality

of stylized results based on those 1000 frames which are trans-

formed by our DNN-based stylizer with those processed by the

state-of-the-art photorealistic style transfer method [33]. In this

experiment, we adopt two widely applied quantitative evaluation

metrics Inception score [45] and Fréchet Inception Distance (FID) [45]

for our evaluation, which are designed to measure two aspects of

synthesized image quality: photorealism and diversity. Note that

the bigger Inception score indicates higher visual quality while the

smaller FID representing better image quality. The averaged result

are reported in Table 3, demonstrating our method can generate

visually better stylized results than the state-of-the-art.

Table 3: Visual quality comparison of stylized frames be-

tween the state-of-the-art [33] and ours

Method Inception score FID

Li et al. [33] 129.54 168.71

Ours 135.20 164.23

Besides, we also evaluate the visual quality of interpolated styl-

ized intermediate frames. Ideally, we expect the visual quality of

interpolated frames can be as close as frames which are directly pro-

cessed by the DNN-based stylizer. Figure 6 shows several examples

of stylized key frames by DNN-based stylizer and interpolated inter-

mediate frames. In this example, we choose the intermediate frame

that is next to the corresponding key frame for demonstration. As

Figure 6 illustrates, both the stylized key frames and interpolated

intermediate frames are successfully rendered into the target style

while maintaining original content structure, but it is difficult to per-

ceptually tell the difference between them in terms of visual quality.

Furthermore, we also quantitatively evaluate image similarity be-

tween the stylized key frames and interpolated intermediate frames

by attempting to predict human perceptual similarity judgments.

In this experiment, we adopt the widely applied metric multi-scale

structural similarity (MS-SSIM) [39, 50] for measuring the frame sim-

ilarity. MS-SSIM is a multi-scale perceptual similarity metric that

attempts to pay less attention to aspects of an image that are not

important for human perception. MS-SSIM values range between 0

and 1. The higher MS-SSIM values, the more perceptually similar

between compared images. Specifically, we randomly choose 1000

frames from the testing data, and a pair of stylized frames for each

of those 1000 frames are generated by the DNN-based stylizer and

optical-flow-based interpolation algorithm, respectively. In addi-

tion, we evaluate the MS-SSIM for those 1000 pairs with different

resolutions settings which are the same as used in above exper-

iments. Table 4 shows the averaged results for those 1000 pairs,

MS-SSIM is greater than 0.98 for all resolution settings, indicating

that the stylized frames generated by the optical-flow-based inter-

polation algorithm have the perceptually comparable visual quality

with frames that are directly processed by the DNN-based stylizer.

In summary, above experiments demonstrate MVStylizer can

efficiently perform style transfer of videos while achieving even

better visual quality compared to the state-of-the-art method.

Table 4:MS-SSIMof stylized frames processed byDNN-based

stylization and optical-flow-based interpolation

Resolution MS-SSIM

512x256 0.9845

768x384 0.9841

1024x512 0.9847

1920x1080 0.9849

4.7 Latency Comparison

We quantitatively compare the latency of sending a key frame to

an edge server with that of sending a key frame to a conventional

cloud server. In this experiment, we test 1000 frames that are sent by

a user from Boston. The edge server is located in New York, but the

other two conventional cloud servers are located in Los Angles and

Hong Kong, respectively. The average results are shown in Table 5.

Generally, the latency of send a key frame the edge server is about

10 times and 30 times lower than that of sending the key frame to

the cloud server in Los Angles and in Hong Kong, respectively. For

example, it takes 0.031 seconds to upload a 1920×1080 key frame

to the edge server from the mobile user, but requires 0.318 seconds

and 0.925 seconds to send the key frame to the cloud server in Los

Angles and Hong Kong, respectively. The above results demonstrate

that the edge server is able to provide the style transfer service to

the mobile user with a significantly lower latency compared to the

conventional cloud server.

4.8 Performance Improvement by Edge-Cloud
Federated Learning

As described in Section 3, we apply an edge-cloud federated learning

scheme to continuously improve the DNN-based stylizer on each

edge server. In this experiment, we quantitatively evaluate how

edge-cloud federated learning scheme can improve the performance

of DNN-based stylizer on each edge server through simulations. To

make simulations, we enforce each participated edge server to sync

the edge DNN with the cloud DNN after training on 4000 images
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(a) input key frame (b) style image (c) stylized key frame (d) interpolated intermediate frame

Figure 6: Examples of stylized key frames and interpolated intermediate frames

Table 5: Average latency (in seconds) comparison between

sending one frame to the edge server and to the cloud server.

Resolution
Edge Server

(New York)

Cloud Server

(Los Angles)

Cloud Server

(Hong Kong)

512x256 0.003 0.028 0.088

768x384 0.006 0.058 0.176

1024x512 0.011 0.105 0.312

1920x1080 0.031 0.318 0.925

that are randomly sampled from the training data, and the cloud

DNN will make an update once receive all the synchronized param-

eters from all participated edge server. Then, the latest cloud DNN

will be distributed to each edge server as the new edge DNN. In

addition, we also change the number of participated edge servers to

explore how it will affect the performance improvement. We evalu-

ate the performance of the model based on the loss function defined

as Equation 5, including the content loss and style loss. Figure 7

shows the federated learning curves during the continuously train-

ing with different number of participated edge servers. In general,

the more participated edge servers, the faster and greater the per-

formance can be improved. For example, if there are 4 participated

edge servers, the total loss can be reduced to 0.0748 after 12000

images are trained on each edge server. However, it requires to

train 40000 images when there is only one participated edge server

for achieving the same performance, and 32000 images on each of

the two participated edge servers. The results show the edge-cloud

federated learning can more efficiently improve the performance

with an increasing number of participated edge servers.

5 RELATEDWORK

Neural Style Transfer. Current neural style transfer techniques

fit one of two mainstreams [22], image-optimization-based online

neural methods and model-optimization-based offline neural meth-

ods. Generally, the first category transfers the style by optimizing

an image in an iterative way, while the second category aims to

optimize a generative model offline which can generate the stylized

image with a single forward pass. Gatys et al. [12, 13] proposed a

seminal work demonstrating the power in style transfer by sepa-

rating and recombining image content and style. It is inspired by

observing that a CNN can separately extract content information

from an original image and style information from a style image.

Based on such observations, a CNN model can be trained to re-

combine the extracted content and style information to generate

the target stylized image. However, this method only compares the

content and stylized image in the feature space, which inevitably

lose some low-level information contained in the image that can

lead to distortion and abnormal artistic effects of stylized outputs.

To preserve the structure coherence, Li et al. [28] introduced an

additional Laplacian loss to constrain low-level features in pixel

space. Although image-optimization-based can achieve impressive
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(a) total loss (b) content loss (c) style loss

Figure 7: Edge-cloud federated learning curves of total loss, content loss and style loss (# participated edge server =1,2,4 )

stylized results, they have a common limitation in efficiency. To

address the efficiency issue, various model-optimization-based of-

fline neural methods have been proposed. Johnson et al. [23] and

Ulyanov et al. [49] proposed the first two model-optimization-based

algorithms for style transfer, which generate stylized result with a

single forward pass through a pre-trained style-specific CNN. Even

though those algorithms can achieve real-time style transfer, they

require separate generative networks to be trained for each specific

style, which is quite inflexible. Therefore, multiple-style-per-model

neural methods are proposed to improve the flexibility by integrat-

ing multiple styles into one single model by tuning a small number

of parameters for each style [5, 11] or combining both style and

content as inputs to the generative model [30, 53]. Furthermore, sev-

eral works have been done for designing one single mode transfer

arbitrary artistic styles by exploiting texture modeling techniques

[6, 14].

Video Style Transfer. Compared with above image style trans-

fer techniques, video style transfer algorithms need to consider the

smooth transition between consecutive frames. Ruder et al. [43, 44]

introduced a temporal consistency loss based on optical flow for

video style transfer. Huang et al. [18] designed an augmented tem-

poral consistency loss by computing the outputs of style transfer

network for two consecutive frames. A flow subnetwork was pro-

posed by Chen et al. [3] to produce feature flow, which can be used

to wraps feature activations from a pre-trained stylization encoder.

Photorealistic Style Transfer. Most existing works focus on

artistic style transfer which can tolerate some distortion, but pho-

torealistic style transfer requires more strict structure preservation

of the content image. Luan et al. [36] firstly proposed a two-stage

optimization for photorealistic style transfer, which firstly renders a

given photo with non-photorealistic style and then penalizes image

distortions by adding a photorealistic regularization. However, this

algorithm is very computational expensive. Mechrez et al. [41] also

adopts above two-stage optimization scheme, but they refine the

photorealistic rendering effect by matching the gradients in the styl-

ized image to those in the content image. To improve the efficiency

issue, Li et al. [33] designed a two-step photorealistic style transfer

algorithm, including the stylization step and smoothing step. The

stylization step aims to generate stylized output based on existing

neural style transfer algorithms but replaces upsampling layers

with unpooling layer for less distortion, and then the smoothing

step is applied to remove structural artifacts.

Even though there exist some works on video style transfer and

photorealistic style transfer, none of them is specifically designed

for performing photorealistic style transfer of videos on resource-

constrained devices, such as mobile phones.

6 CONCLUSION

In this paper, we designedMVStylizer to efficiently perform photore-

alistic style transfer of videos on mobile phones with the assistance

of an edge server. Considering the stylization is very computational

expensive, we proposed an optical-flow-based interpolation algo-

rithm, so that only key frames in the video need to be uploaded

to the edge server where they can be processed by the pre-trained

DNN-based stylizer and the rest of stylized intermediate frames can

be interpolated based on the pre-computed optical flow information

from the original video and stylized key frames. A meta-smoothing

module is also designed in the DNN-based stylizer for improving

the efficiency of performing style transfer on the edge server. In

addition, we adopt an edge-cloud federated learning scheme to

continuously enhancing the performance of DNN-based stylizer.

Experiments demonstrate 75.5 times speedup compared with per-

forming style transfer frame by frame using the DNN-based stylizer

even with the high resolution, while generating the stylized videos

with even better visual quality compared to the state-of-the-art

method. Furthermore, it also demonstrates the edge-cloud feder-

ated learning scheme can facilitate in continuously improving the

performance of the DNN-based stylizer in an efficiency way.
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