
AutoGrow: Automatic Layer Growing
in Deep Convolutional Networks

Wei Wen
Duke University

Durham, North Carolina, United States
wei.wen@alumni.duke.edu

Feng Yan
University of Nevada, Reno
Reno, Nevada, United States

fyan@unr.edu

Yiran Chen
Duke University

Durham, North Carolina, United States
yiran.chen@duke.edu

Hai Li
Duke University

Durham, North Carolina, United States
hai.li@duke.edu

ABSTRACT

Depth is a key component of Deep Neural Networks (DNNs), how-

ever, designing depth is heuristic and requires many human efforts.

We propose AutoGrow to automate depth discovery in DNNs: start-

ing from a shallow seed architecture, AutoGrow grows new layers

if the growth improves the accuracy; otherwise, stops growing and

thus discovers the depth. We propose robust growing and stop-

ping policies to generalize to different network architectures and

datasets. Our experiments show that by applying the same policy

to different network architectures, AutoGrow can always discover

near-optimal depth on various datasets of MNIST, FashionMNIST,

SVHN, CIFAR10, CIFAR100 and ImageNet. For example, in terms of

accuracy-computation trade-off, AutoGrow discovers a better depth

combination in ResNets than human experts. Our AutoGrow is effi-

cient. It discovers depthwithin similar time of training a single DNN.

Our code is available at https://github.com/wenwei202/autogrow.

CCS CONCEPTS

• Computing methodologies→ Neural networks; Computer

vision; Discrete space search; Lifelong machine learning.

KEYWORDS

automated machine learning; neural architecture search; neural

networks; depth; growing

ACM Reference Format:

Wei Wen, Feng Yan, Yiran Chen, and Hai Li. 2020. AutoGrow: Automatic

Layer Growing in Deep Convolutional Networks. In Proceedings of the 26th

ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD

’20), August 23–27, 2020, Virtual Event, USA. ACM, New York, NY, USA,

9 pages. https://doi.org/10.1145/3394486.3403126

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

KDD ’20, August 23–27, 2020, Virtual Event, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7998-4/20/08. . . $15.00
https://doi.org/10.1145/3394486.3403126

1 INTRODUCTION

Layer depth is one of the decisive factors of the success of Deep

Neural Networks (DNNs). For example, image classification accu-

racy keeps improving as the depth of network models grows [12,

15, 17, 32, 35]. Although shallow networks cannot ensure high

accuracy, DNNs composed of too many layers may suffer from

over-fitting and convergence difficulty in training. How to obtain

the optimal depth for a DNN still remains mysterious. For instance,

ResNet-152 [12] uses 3, 8, 36 and 3 residual blocks under output

sizes of 56 × 56, 28 × 28, 14 × 14 and 7 × 7, respectively, which

don’t show an obvious quantitative relation. In practice, people

usually reply on some heuristic trials and tests to obtain the depth

of a network: they first design a DNN with a specific depth and

then train and evaluate the network on a given dataset; finally, they

change the depth and repeat the procedure until the accuracy meets

the requirement. Besides the high computational cost induced by

the iteration process, such trial & test iterations must be repeated

whenever dataset changes. In this paper, we propose AutoGrow

that can automate depth discovery given a layer architecture. We

will show that AutoGrow generalizes to different datasets and layer

architectures.

There are some previous works which add or morph layers to in-

crease the depth in DNNs. VggNet [32] and DropIn [33] added new

layers into shallower DNNs; Network Morphism [5, 36, 37] mor-

phed each layer to multiple layers to increase the depth meanwhile

preserving the function of the shallower net. Table 1 summarizes

differences in this work. Their goal was to overcome difficulty of

training deeper DNNs or accelerate it. Our goal is to automati-

cally find an optimal depth. Moreover, previous works applied layer

growth by once or a few times at pre-defined locations to grow a

pre-defined number of layers; in contrast, ours automatically learns

the number of new layers and growth locations without limiting

growing times. We will summarize more related works in Section 4.

Table 1: Comparison with previous works on layer growth.

Previous works [5, 32, 33, 36, 37] AutoGrow

Goal Ease training Depth automation

Growth times Once or a few Unlimited

Locations Human defined Learned

Layer # Human defined Learned

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

833

Figure 1: A simple example of AutoGrow.

Figure 1 illustrates an example of AutoGrow. It starts from the

shallowest backbone network and gradually grows sub-modules

(A sub-module can be one or more layers, e.g., a residual block);

the growth stops once a stopping policy is satisfied. We studied

multiple initializers of new layers and multiple growing policies,

and surprisingly find that: (1) a random initializer works equally or

better than complicated Network Morphism; (2) it is more effective

to grow before a shallow net converges. We hypothesize that this

is because a converged shallow net is an inadequate initialization

for training deeper net, while random initialization can help to

escape from a bad starting point. Motivated by this, we intentionally

avoid full convergence during the growing by using (1) random

initialization of new layers, (2) a constant large learning rate, and

(3) a short growing interval.

Our contributions are:

• We propose AutoGrow to automate DNN layer growing

and depth discovery. AutoGrow is very robust. With the

same hyper-parameters, it adapts network depth to various

datasets including MNIST, FashionMNIST, SVHN, CIFAR10,

CIFAR100 and ImageNet. Moreover, AutoGrow can also dis-

cover shallower DNNs when the dataset is a subset.

• AutoGrow demonstrates high efficiency and scales up to Ima-

geNet, because the layer growing is as fast as training a single

DNN. On ImageNet, it discovers a new ResNets with better

trade-off between accuracy and computation complexity.

• We challenge the idea of Network Morphism, as random

initialization works equally or better when growing layers.

• We find that it is beneficial to rapidly grow layers before a

shallower net converge, contradicting previous intuition.

2 AUTOGROW – A DEPTH GROWING
ALGORITHM

Figure 1 gives an overview of the proposed AutoGrow. In this

paper, we use network, sub-networks, sub-modules and layers to

describe the architecture hierarchy. A network is composed of a

cascade of sub-networks. A sub-network is composed of sub-modules,

which typical share the same output size. A sub-module (e.g. a resid-

ual block) is an elementary growing block composed of one or a few

layers. In this section, we rigorously formulate a generic version

of AutoGrow which will be materialized in subsections. A deep

convolutional network д(X0) is a cascade of sub-networks by com-

posing functions as д(X0) = l (fM−1 (fM−2 (· · · f1 (f0 (X0)) · · ·))),
where X0 is an input image, M is the number of sub-networks,

Algorithm 1 AutoGrow Algorithm.

Input:

A seed shallow network д(X0) composed of M sub-networks

F =
{
fi (·;Wi) : i = 0 . . .M − 1}, where each sub-network has

only one sub-module (a dimension reduction sub-module);

an epoch interval K to check growing and stopping policies;

the number of fine-tuning epochs N after growing.

Initialization:

A Circular Linked List of sub-networks under growing:

subNetList = f0 (·;W0) → · · · → fM−1 (·;WM−1)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−;
The current growing sub-network:

growingSub = subNetList.head() = f0 (·;W0);
The last grown sub-network: grownSub = None;

Process:

if there exist growing sub-network(s)

while subNetList.size()>0 do

train(д(X0),K) # train the whole network д(X0) for K epochs

if meetStoppingPolicy() then

remove a sub-network from the growing list

subNetList.delete(grownSub);
end if

if meetGrowingPolicy() and subNetList.size()>0 then
the current growing sub-network growingSub ==

fi (·;Wi)
Wi =Wi ∪W # stack a sub-module on top of fi (·;Wi)
initializer(W); # initialize the new sub-moduleW
grownSub = growingSub;
growingSub = subNetList.next(growingSub);

end if

end while

Fine-tune the discovered network д(X0) for N epochs;

Output:

A trained neural network д(X0) with learned depth.

l (·) is a loss function, and Xi+1 = fi (Xi) is a sub-network that

operates on an input image or a feature tensor Xi ∈ Rci×hi×wi .

Here, ci is the number of channels, and hi andwi are spatial dimen-

sions. fi (Xi) is a simplified notation of fi (Xi ;Wi), whereWi is a

set of sub-modules’ parameters within the i-th sub-network. Thus

W = {Wi : i = 0 . . .M − 1} denotes the whole set of parameters

in the DNN. To facilitate growing, the following properties are

supported within a sub-network: (1) the first sub-module usually

reduces the size of input feature maps, e.g., using pooling or con-

volution with a stride; and (2) all sub-modules in a sub-network

maintain the same output size. As such, our framework can sup-

port popular networks, including VggNet-like plain networks [32],

GoogLeNet [35], ResNets [12] and DenseNets [15]. In this paper, we

select ResNets and VggNet-like nets as representatives of DNNs with

and without shortcuts, respectively.

With above notations, Algorithm 1 rigorously describes the Au-

toGrow algorithm. In brief, AutoGrow starts with the shallowest net

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

834

where every sub-network has only one sub-module for spatial di-

mension reduction. AutoGrow loops over all growing sub-networks

in order. For each sub-network, AutoGrow stacks a new sub-module.

When the new sub-module does not improve the accuracy, the

growth in corresponding sub-network will be permanently stopped.

The details of our method will be materialized in the following

subsections.

2.1 Seed Shallow Networks and Sub-modules

In this paper, in all datasets except ImageNet, we explore growing

depth for four types of DNNs:

• Basic3ResNet: the same ResNet used for CIFAR10 in [12],

which has 3 residual sub-networks with output spatial sizes

of 32 × 32, 16 × 16 and 8 × 8, respectively;
• Basic4ResNet: a variant of ResNet used for ImageNet in [12]

built by basic residual blocks (each of which contains two

convolutions and one shortcut). There are 4 sub-networks

with output spatial sizes of 32 × 32, 16 × 16, 8 × 8 and 4 × 4,
respectively;

• Plain3Net: a VggNet-like plain net by removing shortcuts

in Basic3ResNet;
• Plain4Net: a VggNet-like plain net by removing shortcuts

in Basic4ResNet.

In AutoGrow, the architectures of seed shallow networks and

sub-modules are pre-defined. In plain DNNs, a sub-module is a stack

of convolution, Batch Normalization and ReLU; in residual DNNs, a

sub-module is a residual block. In AutoGrow, a sub-network is a stack

of all sub-modules with the same output spatial size. Unlike [12]

which manually designed the depth, AutoGrow starts from a seed

architecture in which each sub-network has only one sub-module

and automatically learns the number of sub-modules.

On ImageNet, we apply the same backbones in [12] as the seed

architectures. A seed architecture has only one sub-module un-

der each output spatial size. For a ResNet using basic residual

blocks or bottleneck residual blocks [12], we respectively name

it as Basic4ResNet or Bottleneck4ResNet. Plain4Net is also ob-

tained by removing shortcuts in Basic4ResNet.

2.2 Sub-module Initializers

Here we explain how to initialize a new sub-moduleW mentioned

in Algorithm 1 (initializer(W)). Network Morphism changes

DNN architecture meanwhile preserving the loss function via spe-

cial initialization of new layers, that is,

д(X0;W) = д(X0;W ∪W) ∀X0. (1)

A residual sub-module shows a nice property: when stacking a

residual block and initializing the last Batch Normalization layer as

zeros, the function of the shallower net is preserved but the DNN

is morphed to a deeper net. Thus, Network Morphism can be easily

implemented by this zero initialization (ZeroInit).
In this work, all layers inW are initialized using default ran-

domization, except for a special treatment of the last Batch Nor-

malization layer in a residual sub-module. Besides ZeroInit, we
propose a new AdamInit for Network Morphism. In AdamInit, we
freeze all parameters except the last Batch Normalization layer in

W , and then use Adam optimizer [16] to optimize the last Bath

Normalization for maximum 10 epochs till the training accuracy

of the deeper net is as good as the shallower one. After AdamInit,
all parameters are jointly optimized. We view AdamInit as a Net-
work Morphism because the training loss is similar after AdamInit.
We empirically find that AdamInit can usually find a solution in

less than 3 epochs. We also study random initialization of the last

Batch Normalization layer using uniform (UniInit) or Gaussian
(GauInit) noises with a standard deviation 1.0. We will show that

GauInit obtains the best result, challenging the idea of Network

Morphism [5, 36, 37].

2.3 Growing and Stopping Policies

In Algorithm 1, a growing policy refers to meetGrowingPolicy(),
which returns true when the network should grow a sub-module.

Two growing policies are studied here:

(1) Convergent Growth: meetGrowingPolicy() returns true

when the improvement of validation accuracy is less than τ in
the last K epochs. That is, in Convergent Growth, AutoGrow

only grows when current network has converged. This is a

similar growing criterion adopted in previous works [3, 4, 9].

(2) Periodic Growth: meetGrowingPolicy() always returns true,
that is, the network always grows every K epochs. There-

fore, K is also the growing period. In the best practice of

AutoGrow, K is small (e.g. K = 3) such that it grows before

current network converges.

Our experiments will show that Periodic Growth outperforms Con-

vergent Growth. We hypothesize that a fully converged shallower

net is an inadequate initialization to train a deeper net. We will per-

form experiments to test this hypothesis and visualize optimization

trajectory to illustrate it.

A stopping policy denotes meetStoppingPolicy() in Algorithm
1. When Convergent Growth is adopted, meetStoppingPolicy()
returns true if a recent growth does not improve validation accu-

racy more than τ within K epochs. We use a similar stopping policy

for Periodic Growth; however, as it can grow rapidly with a small

period K (e.g. K = 3) before it converges, we use a larger win-

dow size J for stop. Specifically, when Periodic Growth is adopted,

meetStoppingPolicy() returns true when the validation accuracy

improves less than τ in the last J epochs, where J � K .
Hyper-parameters τ , J and K control the operation of AutoGrow

and can be easily setup and generalize well. τ denotes the signif-

icance of accuracy improvement for classification. We simply set

τ = 0.05% in all experiments. J represents how many epochs to

wait for an accuracy improvement before stopping the growth of

a sub-network. It is more meaningful to consider stopping when

the new net is trained to some extent. As such, we set J to the

number of epochsT under the largest learning rate when training a

baseline. K means how frequently AutoGrow checks the polices. In

Convergent Growth, we simply set K = T , which is long enough to

ensure convergence. In Periodic Growth, K is set to a small fraction

of T to enable fast growth before convergence; more importantly,

K = 3 is very robust to all networks and datasets. Therefore, all

those hyper-parameters are very robust and strongly correlated to

design considerations.

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

835

Table 2: Network Morphism tested on CIFAR10.

net backbone shallower deeper initializer accu % Δ∗

Basic3ResNet 3-3-3 5-5-5
ZeroInit 92.71 -0.77

AdamInit 92.82 -0.66

Basic3ResNet 5-5-5 9-9-9
ZeroInit 93.64 -0.27

AdamInit 93.53 -0.38

Basic4ResNet 1-1-1-1 2-2-2-2
ZeroInit 94.96 -0.37

AdamInit 95.17 -0.16
∗ Δ = (accuracy of Network Morphism) − (accuracy of training from scratch)

Morphing

ResNet-32

Learning rate decay

(a) (b)

Figure 2: An optimization trajectory comparison between (a)

Network Morphism and (b) training from scratch.

3 EXPERIMENTS

In this paper, we use Basic3ResNet-2-3-2, for instance, to denote
a model architecture which contains 2, 3 and 2 sub-modules in the

first, second and third sub-networks, respectively. Sometimes we

simplify it as 2-3-2 for convenience. AutoGrow always starts from

the shallowest depth of 1-1-1 and uses the maximum validation

accuracy as the metric to guide growing and stopping. All DNN

baselines are trained by SGD with momentum 0.9 using staircase

learning rate. The initial learning rate is 0.1 in ResNets and 0.01 in

plain networks. On ImageNet, baselines are trained using batch size

256 for 90 epochs, within which learning rate is decayed by 0.1× at

epoch 30 and 60. In all other smaller datasets, baselines are trained

using batch size 128 for 200 epochs and learning rate is decayed by

0.1× at epoch 100 and 150.

Our early experiments followed prior wisdom by growing lay-

ers with Network Morphism [3–5, 9, 36, 37], i.e., AutoGrow with

ZeroInit (or AdamInit) and Convergent Growth policy; however,

it stopped early with very shallow DNNs, failing to find optimal

depth. We hypothesize that a converged shallow net with Network

Morphism gives a bad initialization to train a deeper neural net-

work. Section 3.1 experimentally test that the hypothesis is valid. To

tackle this issue, we intentionally avoid convergence during grow-

ing by three simple solutions, which are evaluated in Section 3.2.

Finally, Section 3.3 and Section 3.4 include extensive experiments

to show the effectiveness of our final AutoGrow.

3.1 Suboptimum of Network Morphism and
Convergent Growth

In this section, we study Network Morphism itself and its integra-

tion into our AutoGrow under Convergent Growth. When studying

Network Morphism, we take the following steps: 1) train a shal-

lower ResNet to converge, 2) stack residual blocks on top of each

sub-network tomorph to a deeper net, 3) use ZeroInit or AdamInit
to initialize new layers, and 4) train the deeper net in a standard way.

We compare the accuracy difference (“Δ”) between Network Mor-

phism and training the deeper net from scratch. Table 2 summaries

our results. Network Morphism has a lower accuracy (negative “Δ”)
in all the cases, which validates our hypothesis that a converged

shallow network with Network Morphism gives a bad initialization

to train a deeper net.

We visualize the optimization trajectories to illustrate the hy-

pothesis.We hypothesize that a converged shallower net may not be

an adequate initialization. Figure 2 visualizes and compares the op-

timization trajectories of Network Morphism and the training from

scratch. In this figure, the shallower net is Basic3ResNet-3-3-3
(ResNet-20) and the deeper one is Basic3ResNet-5-5-5 (ResNet-32)
in Table 2. The initializer is ZeroInit. The visualization method

is extended from [20]. Points on the trajectory are evenly sampled

every a few epochs. To maximize the variance of trajectory, we use

PCA to project from a high dimensional space to a 2D space and

use the first two Principle Components (PC) to form the axes in

Figure 2. The contours of training loss function and the trajectory

are visualized around the final minimum of the deeper net. When

projecting a shallower net to a deeper net space, zeros are padded

for the parameters not existing in the deeper net. We must note

that the loss increase along the trajectory does not truly represent

the situation in high dimensional space, as the trajectory is just

a projection. It is possible that the loss remains decreasing in the

high dimension while it appears in an opposite way in the 2D space.

The sharp detour at “Morphing” in Figure 2(a) may indicate that

the shallower net plausibly converges to a point that the deeper

net struggles to escape. In contrast, Figure 2(b) shows that the tra-

jectory of the direct optimization in the deeper space smoothly

converges to a better minimum.

To further validate our hypothesis, we integrate Network Mor-

phism as the initializer inAutoGrowwith Convergent Growth policy.

We refer to this version of AutoGrow as c-AutoGrow with “c-” denot-

ing “Convergent.” More specific, we take ZeroInit or AdamInit
as sub-module initializer and “Convergent Growth” policy in Al-

gorithm 1. To recap, in this setting, AutoGrow trains a shallower

net till it converges, then grows a sub-module which is initialized

by Network Morphism, and repeats the same process till there is

no further accuracy improvement. In every interval of K training

epochs (train(д(X0),K) in Algorithm 1), “staircase” learning rate

is used. The learning rate is reset to 0.1 at the first epoch, and de-

cayed by 0.1× at epoch K

2 and 3K
4 . The results are shown in Table 3

by “staircase” rows, which illustrate that c-AutoGrow can grow a

DNN multiple times and finally find a depth. However, there are

two problems: 1) the final accuracy is lower than training the found

net from scratch, as indicated by “Δ”, validating our hypothesis; 2)

the depth learning stops too early with a relatively shallower net,

while a deeper net beyond the found depth can achieve a higher

accuracy as we will show in Table 4. These problems provide a

circumstantial evidence of the hypothesis that a converged shallow

net with Network Morphism gives a bad initialization. Thus, Au-

toGrow cannot receive signals to continue growing after a limited

number of growths.

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

836

Table 3: Ablation study of c-AutoGrow.

dataset
learning

rate
initializer found net† accu % Δ∗

CIFAR10

staircase ZeroInit 2-3-6 91.77 -1.06

staircase AdamInit 3-4-3 92.21 -0.59

constant ZeroInit 2-2-4 92.23 0.16

constant AdamInit 3-4-4 92.60 -0.41

constant UniInit 3-4-4 92.93 -0.08

constant GauInit 2-4-3 93.12 0.55
† Basic3ResNet

dataset
learning

rate
initializer found net† accu % Δ∗

CIFAR100

staircase ZeroInit 4-3-4 70.04 -0.65

staircase AdamInit 3-3-3 69.85 -0.65

constant ZeroInit 3-2-4 70.22 0.35

constant AdamInit 3-3-3 70.00 -0.50

constant UniInit 4-4-3 70.39 0.36

constant GauInit 3-4-3 70.66 0.91
∗ Δ = (accuracy of c-AutoGrow) − (accuracy of training from scratch)

(a) (b) (c) (d)

Figure 3: Optimization trajectory of AutoGrow, tested by Basic3ResNet on CIFAR10. (a) c-AutoGrow with staircase learning

rate and ZeroInit during growing; (b) c-AutoGrow with constant learning rate and GauInit during growing; (c) p-AutoGrow

with K = 50; and (d) p-AutoGrow with K = 3. For better illustration, the dots on the trajectory are plotted every 4, 20, 5 and 3

epochs in (a-d), respectively.

0
50
100
150
200
250
300

40
50
60
70
80
90

100

0 60 120 180 240 300 360 420 480 540 600

T
he

 n
um

be
r

of
 la

ye
rs

A
cc

ur
ac

y
%

train accu
max val accu
val accu
layers

Epoch

Growing Fine-tuning

Figure 4: p-AutoGrow on CIFAR10 (K = 3). The seed net is

Basic3ResNet-1-1-1.

Figure 3(a) visualizes the trajectory of c-AutoGrow corresponding

to row “2-3-6” in Table 3. Along the trajectory, there are many

trials to detour and escape an initialization from a shallower net.

3.2 Ablation Study for AutoGrow Design

Based on the findings in Section 3.1, we propose three simple but

effective solutions to further enhance AutoGrow and refer it as

p-AutoGrow, with “p-” denoting “Periodic”:

• Use a large constant learning rate for growing, i.e., 0.1 for

residual networks and 0.01 for plain networks. Stochastic

gradient descent with a large learning rate intrinsically in-

troduces noises, which help to avoid a full convergence into

a bad initialization from a shallower net. Note that staircase

learning rate is still used for fine-tuning after discovering

the final DNN;

• Use random initialization (UniInit or GauInit) as noises to
escape from an inadequate initialization;

• Grow rapidly before a shallower net converges by taking

Periodic Growth with a small K .

p-AutoGrow is our final AutoGrow. In the rest part of this sec-

tion, we perform ablation study to prove that the three solutions

are effective. We start from c-AutoGrow, and incrementally add

above solutions one by one and eventually obtain p-AutoGrow. In

Table 3, first, we replace the staircase learning rate with a con-

stant large learning rate, the accuracy of AutoGrow improves and

therefore “Δ” improves; second, we further replace Network Mor-

phism (ZeroInit or AdamInit) with a random initializer (UniInit
or GauInit) and result in a bigger gain. Overall, combining a con-

stant learning rate with GauInit performs the best. Thus, constant

learning rate and GauInit are adopted in the remaining experi-

ments, unless we explicitly specify them. Figure 3(b) visualizes

the trajectory corresponding to row “2-4-3” in Table 3, which is

much smoother compared to Figure 3(a), implying the advantages

of constant large learning rate and GauInit.
Note that, in this paper, we are more interested in automating

depth discovery to find a final DNN (“found net”) with a high

accuracy (“accu”). Ideally, the “found net” has a minimum depth,

a larger depth than which cannot further improve “accu”. We will

show in Figure 5 that AutoGrow discovers a depth approximately

satisfying this property. The “Δ” is a metric to indicate how well

shallower nets initialize deeper nets; a negative “Δ” indicates that
weight initialization from a shallower net hurts training of a deeper

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

837

Table 5: p-AutoGrow with different growing interval K .

CIFAR10

K found net† accu %

50 6-5-3 92.95

20 7-7-7 93.26

10 19-19-19 93.46

5 23-22-22 93.98

3 42-42-42 94.27

1 77-76-76 94.30
† Basic3ResNet

CIFAR100

K found net† accu %

50 8-5-7 72.07

20 8-11-10 72.93

10 18-18-18 73.64

5 23-23-23 73.70

3 54-53-53 74.72

1 68-68-68 74.51
† Basic3ResNet

Table 6: p-AutoGrow under initializers with K = 3.

CIFAR10

initializer found net† accu

ZeroInit 31-30-30 93.57

AdamInit 37-37-36 93.79

UniInit 28-28-28 93.82

GauInit 42-42-42 94.27
† Basic3ResNet

CIFAR100

initializer found net† accu

ZeroInit 26-25-25 73.45

AdamInit 27-27-27 73.92

UniInit 41-41-41 74.31

GauInit 54-53-53 74.72
† Basic3ResNet

net; while a positive “Δ” indicates AutoGrow helps training a deeper

net, which is a byproduct of this work.

Finally, we apply the last solution – Periodic Growth, and obtain

our final p-AutoGrow. Our ablation study results for p-AutoGrow are

summarized in Table 5. Table 5 analyzes the impact of the growing

period K . In general, K is a hyper-parameter to trade off speed and

accuracy: a smaller K takes a longer learning time but discovers

a deeper net, vice versa. Our results validate the preference of a

faster growth (i.e. a smaller K). On CIFAR10/CIFAR100, the accu-

racy reaches plateau/peak at K = 3; further reducing K produces a

deeper net while the accuracy gain is marginal/impossible. In the

following, we simply select K = 3 for robustness test. More impor-

tantly, our quantitative results in Table 5 show that p-AutoGrow

finds much deeper nets, overcoming the very-early stop issue in

c-AutoGrow in Table 3. That is, Periodic Growth proposed in this

work is much more effective than Convergent Growth utilized in

previous work.

Figure 3(c)(d) visualize the trajectories of p-AutoGrow with K =
50 and 3. The 2D projection gives limited information to reveal the

Table 7: p-AutoGrow with different seed architecture.

dataset seed net† found net† accuracy %

CIFAR10
1-1-1 42-42-42 94.27

5-5-5 46-46-46 94.16

CIFAR10
1-1-1-1 22-22-22-22 95.49

5-5-5-5 23-22-22-22 95.62
† Basic3ResNet or Basic4ResNet.

advantages of p-AutoGrow comparing to c-AutoGrow in Figure 3(b),

although the trajectory of our final p-AutoGrow in Figure 3(d) is

plausibly more similar to the one of training from scratch in Fig-

ure 2(b).

For sanity check, we perform the ablation study of initializers

for p-AutoGrow. The results are in Table 6, which further validates

our wisdom on selecting GauInit. The motivation of Network

Morphism in previous work was to start a deeper net from a loss

function that has been well optimized by a shallower net, so as not

to restart the deeper net training from scratch [3–5, 9, 36, 37]. In

all our experiments, we find that simple random initialization can

achieve the same goal. Figure 4 plots the convergence curves and

learning process for “42-42-42” in Table 5. Even with GauInit,
the loss and accuracy rapidly recover and no restart is observed.

The convergence pattern in the “Growing” stage is similar to the

“Fine-tuning” stage under the same learning rate (the initial learning

rate 0.1). Similar results on ImageNet will be shown in Figure 8.

Our results challenge the necessity of Network Morphism when

growing neural networks.

At last, we perform the ablation study on the initial depth of

the seed network. Table 7 demonstrates that a shallowest DNN

works as well as a deeper seed. This implies that AutoGrow can

appropriately stop regardless of the depth of the seed network. As

the focus of this work is on depth automation, we prefer starting

with the shallowest seed to avoid a manual search of a seed depth.

3.3 Adaptability of AutoGrow

To verify the adaptability of AutoGrow, we use an identical configu-

ration (p-AutoGrow with K = 3) and test over 5 datasets and 4 seed

architectures. Table 4 includes the results of all 20 combinations.

Table 4: The adaptability of AutoGrow to datasets

net dataset found net accu % Δ∗

Basic3ResNet

CIFAR10 42-42-42 94.27 -0.03

CIFAR100 54-53-53 74.72 -0.95

SVHN 34-34-34 97.22 0.04

FashionMNIST 30-29-29 94.57 -0.06

MNIST 33-33-33 99.64 -0.03

Basic4ResNet

CIFAR10 22-22-22-22 95.49 -0.10

CIFAR100 17-51-16-16 79.47 1.22

SVHN 20-20-19-19 97.32 -0.08

FashionMNIST 27-27-27-26 94.62 -0.17

MNIST 11-10-10-10 99.66 0.01
∗ Δ = (accuracy of AutoGrow) − (accuracy of training from scratch)

net dataset found net accu % Δ∗

Plain3Net

CIFAR10 23-22-22 90.82 6.49

CIFAR100 28-28-27 66.34 31.53

SVHN 36-35-35 96.79 77.20

FashionMNIST 17-17-17 94.49 0.56

MNIST 20-20-20 99.66 0.12

Plain4Net

CIFAR10 17-17-17-17 94.20 5.72

CIFAR100 16-15-15-15 73.91 29.34

SVHN 12-12-12-11 97.08 0.32

FashionMNIST 13-13-13-13 94.47 0.72

MNIST 13-12-12-12 99.57 0.03

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

838

Figure 5 compares AutoGrow with manual search which is obtained

by training many DNNs with different depths from scratch. The

results lead to the following conclusions and contributions:

(1) In Table 4, AutoGrow discovers layer depth across all scenar-

ios without any tuning, achieving the main goal of this work.

Manual design needsm ·n ·k trials, wherem and n are respec-

tively the numbers of datasets and sub-module categories,

and k is the number of trials per dataset per sub-module

category;

(2) For ResNets, a discovered depth (“�” in Figure 5) falls at the

location where accuracy saturates. This means AutoGrow

discovers a near-optimal depth: a shallower depth will lose

accuracy while a deeper one gains little. The final accuracy

of AutoGrow is as good as training the discovered net from

scratch as indicated by “Δ” in Table 4, indicating that initial-

ization from shallower nets does not hurt training of deeper

nets. As a byproduct, in plain networks, there are large posi-

tive “Δ”s in Table 4. It implies that baselines fail to train very

deep plain networks even using Batch Normalization, but

AutoGrow enables the training of these networks; Table 9

shows the accuracy improvement of plain networks by tun-

ing K , approaching the accuracy of ResNets with the same

depth. Figure 6 visualizes loss surfaces around minima by

AutoGrow and baseline. Intuitively, AutoGrow finds wider or

deeper minima with less chaotic landscapes.

(3) For robustness and generalization study purpose, we stick to

K = 3 in our experiments, however, we can tune K to trade

off accuracy and model size. As shown in Figure 5, AutoGrow

discovers smaller DNNs when increasing K from 3 (“�”)
to 50 (“�”). Interestingly, the accuracy of plain networks

even increases at K = 50. This implies the possibility of

discovering a better accuracy-depth trade-off by tuning K ,
although we stick to K = 3 for generalizability study and it

generalizes well.

(4) In Table 4, AutoGrow discovers different depths under differ-

ent sub-modules. The final accuracy is limited by the sub-

module design, not by our AutoGrow. Given a sub-module

architecture, our AutoGrow can always find a near-optimal

depth.

Finally, our supposition is that: when the size of dataset is smaller,

the optimal depth should be smaller. Under this supposition, we

test the effectiveness of AutoGrow by sampling a subset of dataset

and verify if AutoGrow can discover a shallower depth. Table 8 sum-

marizes the results. In each set of experiments, dataset is randomly

down-sampled to 100%, 75%, 50% and 25%. For a fair comparison,

K is divided by the percentage of dataset such that the number of

mini-batches between growths remains the same. As expected, our

experiments show that AutoGrow adapts to shallower networks

when the datasets are smaller.

92.5

93

93.5

94

94.5

0 2 4 6 8
94

94.5

95

95.5

96

0 50 100 150

Millions

85
87
89
91
93
95
97

0 20 40 60
82
84
86
88
90
92
94

0 0.5 1 1.5

MillionsMillions

Millions

A
cc

ur
ac

y
A

cc
ur

ac
y

Basic3ResNet Basic4ResNet

Plain4NetPlain3Net

Baselines training from scratch AutoGrow K=3 AutoGrow K=50

Figure 5: AutoGrow vs manual search obtained by training

many baselines from scratch. x − axis is the number of pa-

rameters. Dataset is CIFAR10.

Table 9: AutoGrow improves accuracy of plain nets.

dataset net layer # method accu %

CIFAR10

Plain4Net-6-6-6-6 26 baseline 93.90

Plain4Net-6-6-6-6 26
AutoGrow

K = 30
95.17

Basic4ResNet-3-3-3-3 26 baseline 95.33

CIFAR10

Plain3Net-11-11-10 34 baseline 90.45

Plain3Net-11-11-10 34
AutoGrow

K = 50
93.13

Basic3ResNet-6-6-5 36 baseline 93.60

P
l
a
i
n
3
N
e
t
-
1
1
-
1
1
-
1
0

(c) Baseline 88.48 %

(d) AutoGrow 94.20%

(a) Baseline 90.45%

(b) AutoGrow 93.13%

P
l
a
i
n
4
N
e
t
-
1
7
-
1
7
-
1
7
-
1
7

P
l
a
i
n
3
N
e
t
-
2
3
-
2
2
-
2
2

(a) Baseline 84.33%

(b) AutoGrow 90.82%

Figure 6: Loss surfaces around minima found by baselines

and AutoGrow. Dataset is CIFAR10.

Table 8: The adaptability of AutoGrow to dataset sizes

Basic3ResNet on CIFAR10

dataset size found net accu %

100% 42-42-42 94.27

75% 32-31-31 93.54

50% 17-17-17 91.34

25% 21-12-7 88.18

Basic4ResNet on CIFAR100

dataset size found net accu %

100% 17-51-16-16 79.47

75% 17-17-16-16 77.26

50% 12-12-12-11 72.91

25% 6-6-6-6 62.53

Plain3Net on MNIST

dataset size found net accu %

100% 20-20-20 99.66

75% 12-12-12 99.54

50% 12-11-11 99.46

25% 10-9-9 99.33

Plain4Net on SVHN

dataset size found net accu %

100% 12-12-12-11 97.08

75% 9-9-9-9 96.71

50% 8-8-8-8 96.37

25% 5-5-5-5 95.68

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

839

Table 10: Scaling up to ImageNet

net K found net Top-1 Top-5 †Δ Top-1

Basic4ResNet
2 12-12-11-11 76.28 92.79 0.43

5 9-3-6-4 74.75 91.97 0.72

Bottleneck4ResNet
2 6-6-6-17 77.99 93.91 0.83

5 6-7-3-9 77.33 93.65 0.83

Plain4Net
2 6-6-6-6 71.22 90.08 0.70

5 5-5-5-4 70.54 89.76 0.93
† Δ = (Top-1 of AutoGrow) − (Top-1 of training from scratch)

69
70
71
72
73
74
75
76
77
78
79

0 5 10 15

To
p-

1
A

cc
ur

ac
y

%

GFlops

Manual (basic)
AutoGrow (basic)
Manual (bottleneck)
AutoGrow (bottleneck)

Figure 7: AutoGrow vs. manual design [12] on ImageNet.

Marker area is proportional to model size determined by

depth. “basic”(“bottleneck”) refers toResNetswith basic (bot-

tleneck) residual blocks.

3.4 Scaling to ImageNet and Efficiency

In ImageNet, K = 3 should generalize well, but we explore Auto-

Grow with K = 2 and K = 5 to obtain an accuracy-depth trade-off

line for comparison with human experts. The larger K = 5 enables

AutoGrow to obtain a smaller DNN to trade-off accuracy and model

size (computation) and the smaller K = 2 achieves higher accuracy.

The results are shown in Table 10, which proves that AutoGrow au-

tomatically finds a good depth without any tuning. As a byproduct,

the accuracy is even higher than training the found net from scratch,

indicating that the Periodic Growth in AutoGrow helps training

deeper nets. The comparison of AutoGrow and manual depth de-

sign [12] is in Figure 7, which shows that AutoGrow achieves better

trade-off between accuracy and computation (measured by floating

point operations).

Table 11 summarizes the breakdown of wall-clock time in Au-

toGrow. The growing/searching time is as efficient as (often more

efficient than) fine-tuning the single discovered DNN. The scalabil-

ity of AutoGrow comes from its intrinsic features that (1) it grows

quickly with a short period K and stops immediately if no improve-

ment is sensed; and (2) the network is small at the beginning of

growing. Figure 8 plots the growing and converging curves for two

DNNs in Table 11. Even with random initialization in new layers,

the accuracy converges stably.

4 RELATEDWORK

Neural Architecture Search (NAS) [42] and neural evolution [1, 22,

26, 30, 34] can search network architectures from a gigantic search

space. In NAS, the depth of DNNs in the search space is fixed,

while AutoGrow learns the depth. Some NAS methods [2, 6, 23]

can find DNNs with different depths, however, the maximum depth

is pre-defined and shallower depths are obtained by padding zero

Table 11: The efficiency of AutoGrow

net GPUs growing fine-tuning

Basic4ResNet-12-12-11-11 4 GTX 1080 Ti 56.7 hours 157.9 hours

Basic4ResNet-9-3-6-4 4 GTX 1080 47.9 hours 65.8 hours

Bottleneck4ResNet-6-6-6-17 4 TITAN V 45.3 hours 114.0 hours

Bottleneck4ResNet-6-7-3-9 4 TITAN V 61.6 hours 78.6 hours

Plain4Net-6-6-6-6 4 GTX 1080 Ti 11.7 hours 29.7 hours

Plain4Net-5-5-5-4 4 GTX 1080 Ti 25.6 hours 25.3 hours

5
10
15
20
25
30
35
40
45
50
55

10

20

30

40

50

60

70

80

0 30 60 90 120 150 180

T
he

 n
um

be
r

of
 la

ye
rs

To
p-

1
A

cc
ur

ac
y

%

max val accu
val accu
layers

5

10

15

20

25

30

10

20

30

40

50

60

70

80

0 30 60 90 120

T
he

 n
um

be
r

of
 la

ye
rs

A
cc

ur
ac

y
%

max val accu
val accu
layers

6-6-6-6
9-3-6-4

1-1-1-1 1-1-1-1

Growing
Fine-tuning

Growing
Fine-tuning

(a) (b)

epoch # epoch #

Figure 8: The convergence curves and growing pro-

cess on ImageNet for (a) Basic4ResNet-9-3-6-4 and (b)

Plain4Net-6-6-6-6 in Table 11.

operations or selecting shallower branches, while our AutoGrow

learns the depth in an open domain to find a minimum depth,

beyond which no accuracy improvement can be obtained. Moreover,

NAS is very computation and memory intensive. To accelerate NAS,

one-shot models [2, 28, 31], DARTS [23] and NAS with Transferable

Cell [21, 43] were proposed. The search time reduces dramatically

but is still long from practical perspective. It is still very challenging

to deploy these methods to larger datasets such as ImageNet. In

contrast, our AutoGrow can scale up to ImageNet thanks to its short

depth learning time, which is as efficient as training a single DNN.

In addition to architecture search which requires to train lots of

DNNs from scratch, there are also many studies on learning neural

structures within a single training. Structure pruning and growing

were proposed for different goals, such as efficient inference [7,

8, 11, 13, 14, 18, 19, 24, 25, 27, 38–40], lifelong learning [41] and

model adaptation [10, 29]. However, those works fixed the network

depth and limited structure learning within the existing layers.

Optimization over a DNN with fixed depth is easier as the skeleton

architecture is known. AutoGrow performs in a scenario where the

DNN depth is unknown hence we must seek for the optimal depth.

5 CONCLUSION

In this paper, we propose a simple but effective layer growing

algorithm (AutoGrow) to automate the depth design of deep neu-

ral networks. We empirically show that AutoGrow can adapt to

different datasets for different layer architectures without tuning

hyper-parameters. AutoGrow can significantly reduce human effort

on searching layer depth. We surprisingly find that a rapid growing

(under a large constant learning rate with random initialization of

new layers) outperforms more intuitively-correct growing method,

such as Network Morphism growing after a shallower net con-

verged. We believe our initiative results can inspire future research

on structure growth of neural networks and related theory.

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

840

Acknowledgments. This work was supported in part by NSF CCF-

1725456, NSF 1937435, NSF 1822085, NSF CCF-1756013, NSF IIS-

1838024 and DOE DE-SC0018064. Any opinions, findings, conclu-

sions or recommendations expressed in this material are those of the

authors and do not necessarily reflect the views of NSF, DOE or its

contractors. We also thank Dr. Yandan Wang (yandonw@unr.edu)

at University of Nevada Reno for valuable feedback on this work.

REFERENCES
[1] Peter J Angeline, Gregory M Saunders, and Jordan B Pollack. 1994. An evolution-

ary algorithm that constructs recurrent neural networks. IEEE transactions on
Neural Networks 5, 1 (1994), 54–65.

[2] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc
Le. 2018. Understanding and simplifying one-shot architecture search. In Inter-
national Conference on Machine Learning. 549–558.

[3] Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, and Jun Wang. 2018. Efficient
architecture search by network transformation. In Thirty-Second AAAI Conference
on Artificial Intelligence.

[4] Han Cai, Jiacheng Yang, Weinan Zhang, Song Han, and Yong Yu. 2018. Path-
level network transformation for efficient architecture search. arXiv preprint
arXiv:1806.02639 (2018).

[5] Tianqi Chen, Ian Goodfellow, and Jonathon Shlens. 2015. Net2net: Accelerating
learning via knowledge transfer. arXiv preprint arXiv:1511.05641 (2015).

[6] Corinna Cortes, Xavier Gonzalvo, Vitaly Kuznetsov, Mehryar Mohri, and Scott
Yang. 2017. Adanet: Adaptive structural learning of artificial neural networks. In
Proceedings of the 34th International Conference on Machine Learning-Volume 70.
JMLR. org, 874–883.

[7] Xiaoliang Dai, Hongxu Yin, and Niraj K Jha. 2017. NeST: A neural network
synthesis tool based on a grow-and-prune paradigm. arXiv:1711.02017 (2017).

[8] Xiaocong Du, Zheng Li, and Yu Cao. 2019. CGaP: Continuous Growth and
Pruning for Efficient Deep Learning. arXiv preprint arXiv:1905.11533 (2019).

[9] Thomas Elsken, Jan-HendrikMetzen, and Frank Hutter. 2017. Simple and Efficient
Architecture Search for CNNs. InWorkshop on Meta-Learning (MetaLearn 2017)
at NIPS.

[10] Jiashi Feng and Trevor Darrell. 2015. Learning the structure of deep convolutional
networks. In Proceedings of the IEEE international conference on computer vision.
2749–2757.

[11] Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Hao Wu, Tien-Ju Yang, and
Edward Choi. 2018. Morphnet: Fast & simple resource-constrained structure
learning of deep networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 1586–1595.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[13] Yihui He, Xiangyu Zhang, and Jian Sun. 2017. Channel pruning for accelerating
very deep neural networks. In Proceedings of the IEEE International Conference on
Computer Vision. 1389–1397.

[14] Gao Huang, Shichen Liu, Laurens Van der Maaten, and Kilian Q Weinberger.
2018. Condensenet: An efficient densenet using learned group convolutions. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2752–2761.

[15] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
2017. Densely connected convolutional networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 4700–4708.

[16] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

[18] Vadim Lebedev and Victor Lempitsky. 2016. Fast convnets using group-wise
brain damage. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2554–2564.

[19] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. 2016.
Pruning filters for efficient convnets. arXiv preprint arXiv:1608.08710 (2016).

[20] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. 2018.
Visualizing the loss landscape of neural nets. In Advances in Neural Information
Processing Systems. 6391–6401.

[21] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li,
Li Fei-Fei, Alan Yuille, Jonathan Huang, and Kevin Murphy. 2018. Progressive
neural architecture search. In Proceedings of the European Conference on Computer
Vision (ECCV). 19–34.

[22] Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray
Kavukcuoglu. 2017. Hierarchical representations for efficient architecture search.
arXiv preprint arXiv:1711.00436 (2017).

[23] Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2018. Darts: Differentiable
architecture search. arXiv preprint arXiv:1806.09055 (2018).

[24] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Chang-
shui Zhang. 2017. Learning efficient convolutional networks through network
slimming. In Proceedings of the IEEE International Conference on Computer Vision.
2736–2744.

[25] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. 2017. Thinet: A filter level prun-
ing method for deep neural network compression. In Proceedings of the IEEE
international conference on computer vision. 5058–5066.

[26] Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya Rawal, Daniel Fink,
Olivier Francon, Bala Raju, Hormoz Shahrzad, Arshak Navruzyan, Nigel Duffy,
et al. 2019. Evolving deep neural networks. In Artificial Intelligence in the Age of
Neural Networks and Brain Computing. Elsevier, 293–312.

[27] Jongsoo Park, Sheng Li, Wei Wen, Ping Tak Peter Tang, Hai Li, Yiran Chen, and
Pradeep Dubey. 2017. Faster cnns with direct sparse convolutions and guided
pruning. In International Conference on Learning Representations (ICLR).

[28] Hieu Pham,Melody Y Guan, Barret Zoph, Quoc V Le, and Jeff Dean. 2018. Efficient
neural architecture search via parameter sharing. arXiv preprint arXiv:1802.03268
(2018).

[29] George Philipp and Jaime G Carbonell. 2017. Nonparametric neural networks.
arXiv preprint arXiv:1712.05440 (2017).

[30] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Sue-
matsu, Jie Tan, Quoc V Le, and Alexey Kurakin. 2017. Large-scale evolution of
image classifiers. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70. JMLR. org, 2902–2911.

[31] Shreyas Saxena and Jakob Verbeek. 2016. Convolutional neural fabrics. In Ad-
vances in Neural Information Processing Systems. 4053–4061.

[32] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[33] Leslie N Smith, Emily M Hand, and Timothy Doster. 2016. Gradual dropin of
layers to train very deep neural networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 4763–4771.

[34] Kenneth O Stanley and Risto Miikkulainen. 2002. Evolving neural networks
through augmenting topologies. Evolutionary computation 10, 2 (2002), 99–127.

[35] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.
Going deeper with convolutions. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 1–9.

[36] Tao Wei, Changhu Wang, and Chang Wen Chen. 2017. Modularized morphing
of neural networks. arXiv preprint arXiv:1701.03281 (2017).

[37] Tao Wei, Changhu Wang, Yong Rui, and Chang Wen Chen. 2016. Network
morphism. In International Conference on Machine Learning. 564–572.

[38] Wei Wen, Yuxiong He, Samyam Rajbhandari, Minjia Zhang, Wenhan Wang,
Fang Liu, Bin Hu, Yiran Chen, and Hai Li. 2018. Learning intrinsic sparse struc-
tures within long short-term memory. In International Conference on Learning
Representations (ICLR).

[39] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. 2016. Learning
structured sparsity in deep neural networks. In Advances in neural information
processing systems. 2074–2082.

[40] Huanrui Yang, Wei Wen, and Hai Li. 2020. DeepHoyer: Learning Sparser Neural
Network with Differentiable Scale-Invariant Sparsity Measures. In International
Conference on Learning Representations (ICLR).

[41] Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. 2017. Lifelong
learning with dynamically expandable networks. arXiv preprint arXiv:1708.01547
(2017).

[42] Barret Zoph and Quoc V Le. 2016. Neural architecture search with reinforcement
learning. arXiv preprint arXiv:1611.01578 (2016).

[43] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. 2018. Learning
transferable architectures for scalable image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 8697–8710.

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

841

