Downloaded via GEORGIA INST OF TECHNOLOGY on May 27, 2021 at 14:15:38 (UTC).
See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

JAIC'S

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

pubs.acs.org/JACS

Communication

Gatekeeping Ketosynthases Dictate Initiation of Assembly Line
Biosynthesis of Pyrrolic Polyketides

Donggqi Yi, Atanu Acharya, James C. Gumbart, Will R. Gutekunst, and Vinayak Agarwal*

Cite This: J. Am. Chem. Soc. 2021, 143, 7617-7622

I: I Read Online

ACCESS |

[l Metrics & More |

Article Recommendations ‘

@ Supporting Information

ABSTRACT: Assembly line biosynthesis of polyketide natural products involves checkpoints where identities of thiotemplated
intermediates are verified before polyketide extension reactions are allowed to proceed. Determining what these checkpoints are and
how they operate is critical for reprogramming polyketide assembly lines. Here we demonstrate that ketosynthase (KS) domains can
perform this gatekeeping role. By comparing the substrate specificities for polyketide synthases that extend pyrrolyl and halogenated
pyrrolyl substrates, we find that KS domains that need to differentiate between these two substrates exercise high selectivity. We
additionally find that amino acid residues in the KS active site facilitate this selectivity and that these residues are amenable to
rational engineering. On the other hand, KS domains that do not need to make selectivity decisions in their native physiological
context are substrate-promiscuous. We also provide evidence that delivery of substrates to polyketide synthases by non-native carrier

proteins is accompanied by reduced biosynthetic efficiency.

ype I polyketide synthases (PKSs) are multimodular

enzymes that construct polyketide natural products.' The
assembly line biosynthesis of polyketides involves repetitive
steps: choice of an extender unit by the acyltransferase (AT)
domain, decarboxylative Claisen condensation of this extender
unit to the polyketide by the ketosynthase (KS) domain, and
reductive tailoring of the p-carbonyl by ketoreductase,
dehydratase, and enoyl reductase domains. Substrates for
these PKS domains are thioesterified to carrier proteins (CPs).
The AT's and the reductive tailoring domains were traditionally
thought to determine the diversity of polyketide natural
products.” The role of KSs in determining the polyketide
diversity is relatively less well studied. Intermediary KSs in
collinear PKS assembly lines are evolutionarily linked to the
CP and the tailoring domains that precede them,"”* and as
polyketide extension progresses, the selectivity of these
intermediary KSs can constrain the extension of noncognate
substrates.””* Here we demonstrate that the strict selectivity of
the very first KS in a collinear PKS assembly line can perform a
gatekeeping function by precluding the initiation of polyketide
extension of noncognate substrates and that the selectivity and
promiscuity of initiating KSs are modulated in tune with the
physiological natural product biosynthetic scheme.

The biosynthesis of several pyrrole-containing natural
products involves polyketide extensions. Thioesterified pyr-
roles are delivered by a type II nonribosomal peptide
synthetase (NRPS) adenylation—oxidation cascade that
oxidizes the L-proline pyrrolidine to pyrrole (Figure 1A).”~"'
Thiotemplated pyrroles can be modified, as exemplified by
dichlorination in the biosynthesis of pyoluteorin (1) (Figure
1B)."” The thiotemplated dichloropyrrole is then handed off,
without intermediary offloading, from the type II NRPS donor
CP PItL to the type I PKS PItB. This handoff occurs by
transthioesterification of the molecular cargo from the donor
CP to the active-site cysteine thiol of the KS. Malonylation of
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the PltB CP by the AT enables the KS to catalyze the
decarboxylative chain extension. Additional polyketide exten-
sions followed by aromatization afford 1 (Figure S1). The
precursor to 4,5-dichloropyrrolyl-S-PItL, pyrrolyl-S-PltL,12 is
also available in situ to the PItB PKS module (Figure 1B).
However, deschloro-1 is not produced (Figure S2). This is in
contrast to the biosynthetic scheme for calcimycin (2) (Figure
1C), in which pyrrole (pyrrolyl-S-CalN3) acts as the
physiological substrate to initiate polyketide extension by
CalA."”

Why is pyrrolyl-S-PItL rejected as a substrate by PltB while
pyrrolyl-S-CalN3 is accepted by CalA? To query the specificity
determinants for PItB and CalA activities, we adopted an
approach comparing the intermolecular recognition events that
dictate polyketide extension of pyrrolic molecular cargoes.
First, we determined the KS—AT—CP module boundaries for
the bimodular PltB and CalA proteins by ali§nment with other
KS—AT and CP crystal structures.* ' The tridomain
sequences were expressed in Escherichia coli, and the PItB
and CalA KS—AT—CP modules were purified (Figure S3).
The CPs PItL and CalN3 were purified in their apo forms.

A library of pyrrolyl-S-pantetheines were synthesized
(Scheme 1). The previously described synthesis of S-acyl
pantetheines involved thioesterification of the acyl groups to
give acetonide-protected pantetheine and subsequent acid
deprotection to unmask the 1,3-diol.'”'® However, we found
the halogenated pyrrole derivatives to be labile toward acidic

Received: March 2, 2021
Published: May 14, 2021

https://doi.org/10.1021/jacs.1c02371
J. Am. Chem. Soc. 2021, 143, 7617—-7622


https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Dongqi+Yi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Atanu+Acharya"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="James+C.+Gumbart"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Will+R.+Gutekunst"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Vinayak+Agarwal"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/jacs.1c02371&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c02371?ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c02371?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c02371?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c02371?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.1c02371/suppl_file/ja1c02371_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.1c02371/suppl_file/ja1c02371_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.1c02371/suppl_file/ja1c02371_si_001.pdf
https://pubs.acs.org/toc/jacsat/143/20?ref=pdf
https://pubs.acs.org/toc/jacsat/143/20?ref=pdf
https://pubs.acs.org/toc/jacsat/143/20?ref=pdf
https://pubs.acs.org/toc/jacsat/143/20?ref=pdf
pubs.acs.org/JACS?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/jacs.1c02371?rel=cite-as&ref=PDF&jav=VoR
https://pubs.acs.org/JACS?ref=pdf
https://pubs.acs.org/JACS?ref=pdf

Journal of the American Chemical Society pubs.acs.org/JACS
B pit
donor CP
halogenase @
o ! chain

v

7 NH OH
— L Crs183 m €O, hs
cl I
A molecular @ O OH
cargo X H
L-Pro S_O N
@ATP FAD —_, Q]
SH @ © C N tHod d
not produce
holo-CP ZNH CalN3 P
AMP  FADH,
PP, — ?
— Adenylation-Oxidation —
cascade 0 J
E/;NH
i = HS
S\R=Seri o o) o ?
O—E-O\X/U\N/\)J\N/\/S\R
0 oy H H
% | —

S-acyl phosphopantetheine

Cl

Cl

AT PItB

extension

Figure 1. Biosynthesis of pyrrolic polyketides. (A) A type II NRPS furnishes the pyrrolyl-S-CPs. (B) Halogenation of pyrrolyl-S-PItL and
polyketide elongation by PKS PItB (Cys183 is the KS active-site residue). (C) Polyketide extension by CalA.

Scheme 1. Synthesis of S-Acyl Pantetheines 5—12
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deprotection. Instead, D-pantetheine (4) was accessed by
disulfide reduction of D-pantethine (3) and used directly for
ligation to pyrrolyl-2-carboxylic acids to furnish 5—11 (Figures
$4—S17). Molecule 12 was accessed by tribromination of the
pyrrolyl methyl ester followed by conversion to an acyl
chloride, which was thioesterified to 4."” Compounds 5—12
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were extended to the corresponding S-acyl CoAs, followed by
enzymatic transfer of the S-acyl phosphopantetheines to the
donor CPs (Figures $18—534).!71820

With the substrates in hand, we compared the abilities of the
PItB and CalA KS—AT—CP modules to extend the pyrrolic
cargoes. Malonyl-CoA required for the malonylation of the
PItB CP by the AT was exogenously provided. For CalA,
methylmalonyl-CoA was generated in situ by the CoA ligase
MatB (Figure $35).”" PItB Cys183Ala and CalA Cys182Ala
were used to establish negative controls.”” Upon incubation of
PItB with a 2-fold molar excess of dichloropyrrolyl-S-PItL and
excess malonyl-CoA, we detected the formation of a diketide
product; this diketide was not observed with the PItB
Cys183Ala enzyme (Figure S36). Dichloropyrrolyl-S-PItL was
completely consumed; no consumption of the substrate was
observed for the PItB Cys183Ala enzyme (Figure S37).

The abundance of the diketide detected was not
reproducible. Thus, we relied on quantifying the abundance
of the leftover S-acyl donor CP as a proxy for the extent of the
reaction. Compared with complete consumption of dichlor-
opyrrolyl-S-PItL, the consumption of pyrrolyl-S-PItL was
negligible (Figure 2A). Physiologically, this implies that despite
its presence in the molecular milieu within the producer of 1,
pyrrolyl-S-PItL is not accepted as a substrate by the PltB KS,
thus precluding the production of deschloro-1.

We tested the activity of PltB for other pyrrolyl derivatives.
Both 4- and S-chloropyrrolyl-S-PItL were accepted as
substrates, but with a reduced preference relative to 4,5-
dichloropyrrole (Figure 2A). Bromine could replace chlorine;
4,5-dibromopyrrolyl-S-PItL was accepted well. However, the
activity was diminished for the 3,4,5-tribromo derivative.
Methyls could not replace halides. Methylpyrroles are observed
in aminocoumarin natural products,”® where $-methylpyrrole
does not undergo polyketide extension but is instead esterified
to afford glycosyl moieties. We observed a marked decrease in
preference for S-methylpyrrole. An even further reduction in
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Figure 2. KS specificities. (A) Depletion of the end-point substrate S-
acyl CP by PItB and CalA. (B, C) Time-dependent depletion of all
substrates that demonstrated full consumption in the end-point assay

by (B) CalA and (C) PItB.

preference was observed for 4,5-dimethylpyrrolyl-S-PItL
(Figure 2A). Overall, we posit that substitutions on the
pyrrole ring have a strong influence on the PItB KS activity.

Compared with PItB, the CalA KS demonstrated relaxed
substrate selectivity. Complete consumption of pyrrolyl- and
dichloropyrrolyl-S-CalN3 substrates along with other halo-
genated derivatives was observed (Figure 2A). As before, a
reduction in substrate consumption was observed when the 3-
position was brominated. Methyl substituents were less
preferred than the halides; however, the distinction was less
pronounced compared with PItB (Figure 2A). Querying time-
dependent substrate consumption for all of the substrates that
were fully depleted by CalA revealed that the rate of
consumption of the physiological substrate pyrrole-S-CalN3
was lower than that of dichloropyrrolyl-S-CalN3 (Figure 2B).
The faster consumption of dichloropyrrolyl-S-CalN3 was not
due to substrate degradation (Figure S37). These data allow us
to posit that the PItB KS exercises substrate selectivity, as it
needs to differentiate between thiotemplated cargoes within
the biosynthetic milien. On the other hand, the CalA KS§,
which does not encounter differentially modified pyrrolic
substrates, has relaxed substrate selectivity. Without an
evolutionary pressure to maintain fidelity, relaxation in
substrate selectivity is observed for primary and secondary
metabolic enzymes.”* Dichloro- and dibromopyrrole substrates
were consumed by CalA and PItB at similar rates (Figure
2B,C).

Sequence alignment identified a methionine residue that was
conserved for all KSs that extend dichloropyrroles (PItB
Met222; Figure 3A). Homology structure of the PItB KS-AT
didomain places the Met222 side chain within the KS active
site (Figure 3B). The methionine thioether is a validated
halogen-bonding partner.””*® Electrostatic potential (ESP)
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Figure 3. KS active site. (A) KS sequence alignment. Sequences for
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role,”’ pyrrolomycin,28 pyralomycin,29 pyrronazol B,*° 2, and
DKxanthene®' KSs are illustrated. (B) The PItB KS active site. The
Cys183-His318-His355 catalytic triad®® side chains are illustrated.
(C) ESPs mapped onto the electron densities (isovalue = 0.0004) for
(top) dichloropyrrolyl- and (bottom) dibromopyrrolyl-S-N-acetylcys-
teamines. Regions of negative potential and positive potential (>0.01
au) are displayed in red and blue, respectively. ESPs between 0.00 and
0.01 are displayed with a color gradient from red to blue. (D)
Substrate specificity of the PltB Met222Leu mutant compared with
the wild type. (E, F) Time-dependent consumption of pyrrolyl- and
dichloropyrrolyl substrates by wild-type and mutant PItB (Met222-
Leu) and CalA (Leu221Met).

maps for dichloro- and dibromopyrrole-N-acetylcysteamines
computed at the wb97X-D/aug-cc-pVTZ level of theory
demonstrated the presence of complementary halogen-
bonding ¢ holes on the halogen substituents on the pyrrole
rings (Figures 3C and S38). To probe the role of Met222 in
determining the KS specificity, the substrate selectivity of the
PItB Met222Leu enzyme was queried. The PltB Met222Leu
mutant demonstrated a 4-fold increase in ability to deplete the
pyrrolyl-S-PItL substrate while maintaining activity for
dichloropyrrolyl-S-PItL. (Figure 3D,E). Consumption of 4-
and S-chloropyrrolyl-S-PItL was also enhanced, mirroring the
activity of CalA. Introducing the complementary mutation
Leu221Met in CalA led to a reduction in depletion of the
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pyrrolyl-S-CalN3 substrate while maintaining reactivity for the
dichlorinated substrate (Figure 3F). Thus, the Met222/
Leu221 side chains participate in the selection for the correct
derivatization state of the pyrrolyl molecular cargoes in KS
active sites. Active-site residues also tailor the substrate
specificities of intermediary KS domains in collinear PKS
pathways.”® Overall, our data demonstrate that the strict
substrate selectivity of the very first KS active site in collinear
PKS assembly lines can perform a gatekeeping role to
determine whether polyketide extension can be initiated.
Intermolecular protein—protein interactions underlie poly-
ketide assembly.”* CPs sequester their molecular cargoes; the
structure of pyrrolyl-S-PItL demonstrates that the phospho-
pantetheine arm folds in such a way that the pyrrole ring binds
at a hydrophobic patch on the PItL surface.”> Hence, the
exclusion of pyrrolyl-S-PItL by PItB but acceptance of pyrrolyl-
S-CalN3 by CalA could depend on how PItL and CalN3
differentially present the pyrrolyl substrates to the KS. To
query this hypothesis, we tested pyrrolyl- and dichloropyrrolyl-
S-CalN3 as substrates for PltB. Compared with dichloropyr-
rolyl-S-PltL, the preference for dichloropyrrolyl-S-CalN3 was
reduced. However, pyrrolyl-S-CalN3, just like pyrrolyl-S-PItL,
was not depleted by PItB at all (Figure 4A). This result

PItB/S-acyl CPs CalA/S-acyl CPs
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Figure 4. KS activity for noncognate donor CPs. (A) Relative
depletion of dichloropyrrolyl-S-CPs by PItB. Depletion of pyrrolyl-S-
CalN3, the cognate substrate for CalA, is marked by the arrow. (B)
Relative depletion of pyrrolyl-S-CPs by CalA. Depletion of
dichloropyrrolyl-S-PItL, the cognate substrate for PItB, is marked by
the arrow.

demonstrates that while a penalty is indeed paid when the
donor CP for PltB is changed from PItL to CalN3, the
principal determinant for catalysis is the recognition of the
molecular cargo by the KS. CalA depleted both pyrrolyl-S-PItL
and dichloropyrrolyl-S-PItL (Figure 4B). The extents and rates
of depletion of pyrrolyl-S-CalN3 and pyrrolyl-S-PItL by CalA
were similar (Figures 4B and S39).

We also tested the ability of the type II NRPS CPs MpylS,
Clz18, and HrmL to pair with PItB and CalA. Mpyl$S and
Clz18 deliver thiotemplated 4,5-dichloropyrrole to PKS
modules in the respectlve production of marinopyrroles®’
and chlorozidine,”® and HrmL delivers 5- chloropyrrole to an
NRPS module for the production of hormaomycin.*® The
activities of PItB and CalA were tested for their cognate
thiotemplated substrates acylated to these different donor CPs
(Figure S40—45). We observed that PItB was more accepting
of different donor CPs than CalA. A marked decrease in
acceptance for MpylS and Clz18 was observed for CalA

7620

compared with PItB (Figure 3A,B). Both PItB and CalA
demonstrated the least preference for HrmL. Phylogenetically,
HrmlL is more distant to PItL and CalN3 than any of the other
type II NRPS CPs tested (Figure S46).

Here we have demonstrated a gatekeeper role for KSs in
initiating polyketide extension. Combinatorial expansion of the
chemical space explored by pyrrolyl natural products will
require an understanding of the intermolecular interactions
that occur between the molecular cargo, the donor CP, and the
initiating PKS modules. While structural models have guided
modulation of KS substrate selectivities,””*”*® this study
provides evidence that certain KSs, such as CalA, are already
substrate-promiscuous and should be prioritized for further
exploration for diversity-generating efforts.
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General procedures

All chemicals, solvents and media components were obtained commercially from Sigma-Aldrich, Fisher,
Chem-Impex, Acros and Alfa Aesar, and used without further purification. Reactions were monitored by
thin layer chromatography (TLC) carried out on Merck silica gel (60 Fas4) glass plates visualized by UV
light. Silica gel (60, particle size 0.036-0.071 mm) was used for flash chromatography. 'H and *C NMR
spectra was recorded on Bruker Avance III 400 and Bruker Avance IIIHD 500 MHz instruments in the
solvents indicated, and calibrated using residual undeuterated solvent as an internal reference (CDCl; dn
7.26, (CD3)2CO 06w 2.05, MeOD 6w 3.31 and 6¢ 49.15). The splitting patterns were reported as s=singlet,
d=doublet, t=triplet, g=quadruplet, m= multiplet or unresolved, br=broad signal.

Preparative HPLC

HPLC purification of acyl-S-pantetheines was carried out on Luna 5 pm C8(2) 100 A LC column (250x10
mm) using Agilent 1260 Infinity HPLC system. Mixture of water (solvent A) and acetonitrile (solvent B)
with 0.1 % TFA (unless otherwise stated) was used as the mobile phase. A flow rate of 2 mL-min™! was
used with the following gradient: 0-3 min: 5% B, 3-15 min: linear gradient to 45% B, 15-25 min: 45% B,
25-30 min: linear gradient to 100% B, 30-34 min: 100% B, 34-35 min: linear gradient to 5% B, 35-36 min:
5 % B, 36-37 min: linear gradient to 100% B, 37-38 min: 100% B, 38-39 min: linear gradient to 5% B, 39-
40 min: 5 % B.

LC-MS/MS analysis

Reaction mixtures from all enzyme assays and proteolysis reactions were analyzed by Aeris 3.6 um
WIDEPORE XB-C18 LC column (250x4.6 mm) on an Agilent 1290 Infinity Il UHPLC system coupled to
a Bruker impact I Q-ToF mass spectrometer operating at room temperature. Mixture of water (solvent A)
and acetonitrile (solvent B) with 0.1 % formic acid was used as the mobile phase. A flow rate of 0.5 mL-min
! was used with the following gradient: 0-5 min: 5% B, 5-30 min: linear gradient to 75% B, 30-31 min:
linear gradient to 95% B, 31-35 min: 95 % B, 35-36 min: linear gradient to 5% B, 36-38 min: 5 % B, 38-
39 min: linear gradient to 95% B, 39-42 min: 95 % B, 42-43 min: linear gradient to 5% B. On the other
hand, analysis of acyl-S-pantetheines, pyoluteorin and elongated dichloro-pyrrolyl diketides was carried
out on a Kinetex 1.7 um C18 100 A LC column (50x2.1 mm) column using the same LC-MS operating
system. All MS data were collected in the positive mode from m/z 50 to 2000 Da, except MS data for

elongated dichloro-pyrrolyl diketides which were collected in the negative mode.
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Synthetic procedures

D-Pantetheine (4)!

oy H
TCEP (1.14 eq.) N N
W W s SwNJw J?@ G G e
H,0, Tris, r.t. 0 0
4

D-Pantethine (116 mg, 0.22 mmol, 1 eq.) and TCEP (68 mg, 0.24 mmol, 1.1 eq.) were dissolved in 2 mL
of 10 mM Tris-HCI buffer (pH 7.0). The reaction mixture was incubated at room temperature for 2 h, and
then extracted with 7:3 DCM/isopropanol (4 mL, 3x). The organic layer was dried with anhydrous Na>SOj.
The solvent was removed under vacuum to give 4 (98 mg, 83 %) as colorless oil. 'H NMR (400 MHz,
MeOD) 6 3.88 (s, 1H), 3.55 — 3.32 (m, 6H), 2.59 (t, ] = 6.9 Hz, 3H), 2.43 (t, ] = 6.7 Hz, 2H), 0.91 (s, 6H).

Pyrrolyl acyl-S-pantetheine (5)

D-pantetheine (1 eq.)

H EDC (1.25 eq.) OH |, H o)
N O DMAP (0.3 eq.) N H H
() HO N NN
OH DCM/ MeCN o ) |
s1 5

Pyrrole-2-carboxylic acid (80 mg, 0.72 mmol, 1 eq.), D-pantetheine (200.4 mg, 0.72 mmol, 1 eq.), EDC-HCI
(172.6 mg, 0.9 mmol, 1.25 eq.), and DMAP (26.4 mg, 0.22 mmol, 0.3 eq.) were dissolved in 9 mL 4:1
DCM/MeCN. The reaction mixture was stirred at room temperature overnight before concentrated under
vacuum. Purification by silica flash chromatography (DCM to 1:5 MeOH/DCM) gave 5 (93.8 mg, 35 %)
as colorless oil. "H NMR (400 MHz, MeOD) & 7.04 (dd, J = 2.5, 1.4 Hz, 1H), 6.97 (dd, J = 3.9, 1.4 Hz,
1H), 6.21 (dd, J = 3.9, 2.5 Hz, 1H), 3.89 (s, 1H), 3.56 — 3.37 (m, 6H), 3.14 (t, /= 6.6 Hz, 2H), 2.42 (t, /=
6.7 Hz, 2H), 0.92 (s, 6H). HRMS (ESI) m/z calculated for CisH2sN3OsS ([M+H]") 372.1588, found
372.1583.

5-Methyl-pyrrolyl acyl-S-pantetheine (6)

D-pantetheine (1 eq.)
EDC ( 1 25 eq)

H H
| )< —— = Me
7" “ogt Hz0,MeOH 7 ol W,

S2 S3

5-Methyl-1H-pyrrole-2-carboxylic acid S3 was synthesized as previous described.? 5-Methyl-1H-pyrrole-
2-carboxylic acid (540 mg, 3.53 mmol, 1 eq.) was dissolved in 24 mL MeOH and 14 mL H,O, followed by
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the addition of 1 M NaOH (10 mL). The reaction was stirred at 50 °C overnight. The reaction mixture was
concentrated under vacuum to remove MeOH, followed by the addition of NH4Cl until saturation. The
solution was added with 1 M HCI to adjust pH to 2-3, and then extracted with EtOAc (20 mL, 4x). The
organic phase was dried with anhydrous Na,SOs, concentrated under vacuum to give S3 as brown solid. 'H
NMR (400 MHz, CDCls) 6 8.99 (s, 1H), 6.96 (t, J= 3.1 Hz, 1H), 6.00 (ddd, J= 3.6, 2.7, 0.8 Hz, 1H), 2.33
(s, 2H).

Compound S3 (108 mg, 0.86 mmol, 1 eq.), D-pantetheine (240.3 mg, 0.86 mmol, 1 eq.), EDC-HCI
(206.8 mg, 1.08 mmol, 1.25 eq.), and DMAP (31.6 mg, 0.26 mmol, 0.3 eq.) were dissolved in 9 mL DCM
at room temperature. The reaction was stirred at room temperature overnight. The reaction mixture was
concentrated under vacuum and purified by silica flash chromatography (1:4 hexane/EtOAc to 5:1
EtOAc/MeOH) to give 6 (187.6 mg, 56 %) as white solid. "H NMR (400 MHz, MeOD) & 6.88 (d, J = 3.8
Hz, 1H), 5.92 (d, J = 3.8 Hz, 1H), 3.89 (s, 1H), 3.56 — 3.36 (m, 6H), 3.11 (t, /= 6.7 Hz, 2H), 2.41 (t, J =
6.6 Hz, 2H), 2.26 (s, 3H), 0.92 (s, 6H). *C NMR (101 MHz, MeOD) & 181.09, 176.21, 174.07, 137.58,
130.13, 117.89, 110.23, 77.47, 70.52, 40.99, 40.52, 36.57, 36.51, 28.24, 21.47, 21.06, 12.94. HRMS (ESI)
m/z calculated for C;7H2sN30sS ([M+H]Y) 386.1744, found 386.1745.

5-Chloro-pyrrolyl acyl-S-pantetheine (7)

D-pantetheine (1 eq.)
H EDC (1.25 eq.) OH 0]
Cl H H
N 0 DMAP (0.3 eq.) N N~ H
| HO > S R
OH DCM 0 0 /
S4 7

5-Chloro-1H-pyrrole-2-carboxylic acid (27 mg, 0.19 mmol, 1 eq.), D-pantetheine (51.6 mg, 0.19 mmol, 1
eq.), EDC-HCI (44.5 mg, 0.24 mmol, 1.25 eq.), and DMAP (6.8 mg, 0.06 mmol, 0.3 eq.) were dissolved in
2 mL DCM at room temperature. The reaction was stirred at room temperature overnight. The reaction
mixture was concentrated under vacuum and purified by preparative HPLC (no addition of TFA) to give 7
as white solid (11.4 mg, 15 %). 'H NMR (400 MHz, MeOD) § 6.94 (d, J = 3.9 Hz, 1H), 6.10 (d, /= 4.0
Hz, 1H), 3.89 (s, 1H), 3.54 — 3.36 (m, 6H), 3.14 (t, J = 6.6 Hz, 2H), 2.41 (t, /= 6.7 Hz, 2H), 0.91 (s, 6H).
BCNMR (126 MHz, MeOD) 6 181.19, 176.22, 174.11, 130.70, 123.96, 117.34, 109.66, 77.41, 70.48, 40.72,
40.52, 36.56, 36.50, 28.44, 21.48, 21.05. HRMS (ESI) m/z calculated for Ci¢H2sCIN3OsS ([M+H]")
406.1198, found 406.1199.

4-Chloro-pyrrolyl acyl-S-pantetheine (8)
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D-pantetheine (1 eq.)
EDC (1.25 eq.)

N0 DEl\Bls/L\lP“éSseq') T N N 1 v
W (0.3 eq.) HO%{ \/\n/ \/\Sj\ENg
cl OH DCM/ MeCN o] o] /
S5 8 cl

4-Chloro-1H-pyrrole-2-carboxylic acid (50 mg, 0.34 mmol, 1 eq.), D-pantetheine (95.6 mg, 0.34 mmol, 1
eq.), EDC-HCI (82.3 mg, 0.43 mmol, 1.25 eq.), and DMAP (12.6 mg, 0.10 mmol, 0.3 eq.) were dissolved
in 4.5 mL 2:1 DCM/acetonitrile at room temperature, followed by the addition of Et3N (52.1 mg, 0.52 mmol,
1.5 eq.). The reaction was stirred at room temperature overnight. The reaction mixture was concentrated
under vacuum and purified by silica flash chromatography (1:2 hexane/EtOAc to 5:1 EtOAc/MeOH) to
give 8 (42.1 mg, 30 %) as colorless oil. 'H NMR (400 MHz, MeOD) & 7.01 (d, J= 1.6 Hz, 1H), 6.87 (d, J
= 1.6 Hz, 1H), 3.90 (s, 1H), 3.56 — 3.36 (m, 6H), 3.15 (t, /= 6.6 Hz, 2H), 2.42 (t, J = 6.7 Hz, 2H), 0.92 (s,
6H). *C NMR (101 MHz, MeOD) & 181.88, 176.17, 174.08, 130.66, 123.20, 114.93, 114.77, 77.43, 70.49,
40.60, 40.50, 36.55, 36.48, 28.59, 21.47, 21.07. HRMS (ESI) m/z calculated for CisH2sCIN3OsS ([M+H]")
406.1198, found 406.1202.

4,5-Dichloro-pyrrolyl acyl-S-pantetheine (9)

D-pantetheine (1 eq.)

H H EDC (1.25 eq.) OH o]
EN)_/(O S0Clb(3eq) CN_N O DMAP (0.3 eq.) HWH\/\ H
/ T ooM Ao I/)—/< Ho S cl
OH DCM, Ag:/oetone o OH DCM o) o) W,
st S6 9 cl

4,5-Dichloro-1H-pyrrole-2-carboxylic acid S6 was synthesized as previous described.’ To a stirring
solution of pyrrole-2-carboxylic acid (2 g, 18 mmol, 1 eq.) in45 mL 4:1 dry DCM/acetone, sulfuryl chloride
(7.3 g, 4.4 mL, 54 mmol, 3 eq.) was added dropwise. The reaction was stirred at room temperature for 40
min before slowly poured into water (45 mL). The layers were separated, and the aqueous phase was
extracted with EtOAc (50 mL, 3x). The combined organic extracts were washed with brine, dried with
anhydrous Na,SOs, and concentrated under vacuum. Purification by silica flash column (1:1 hexane/EtOAc
to 1:9 MeOH/EtOAc) gave S6 (1.4 g, 40 %) as dark grey solid. "H NMR (400 MHz, (CDs),CO) § 6.83 (s,
1H).

Compound S6 (40 mg, 0.22 mmol, 1 eq.), D-pantetheine (61.9 mg, 0.22 mmol, 1 eq.), EDC-HCI
(52.3 mg, 0.28 mmol, 1.25 eq.), and DMAP (8.2 mg, 0.07 mmol, 0.3 eq.) were dissolved in 2.2 mL DCM
at room temperature. The reaction was stirred at room temperature overnight. The reaction mixture was

concentrated under vacuum and purified by preparative HPLC (no addition of TFA) to give 9 as green solid

(10.3 mg, 11 %). 'H NMR (400 MHz, MeOD) & 6.93 (s, 1H), 3.89 (s, 1H), 3.53 — 3.36 (m, 6H), 3.15 (t, J
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= 6.5 Hz, 2H), 2.41 (t, J = 6.6 Hz, 2H), 0.92 (s, 6H). 3C NMR (101 MHz, MeOD) 5 181.16, 176.21, 174.12,
129.13, 121.11, 115.39, 111.95, 77.45, 70.51, 40.52, 36.57, 36.49, 28.68, 21.47, 21.07. HRMS (ESI) m/z
calculated for C6Ha4CLN30sS ([M+H]") 440.0808, found 440.0802.

4,5-Dibromo-pyrrolyl acyl-S-pantetheine (10)

D-pantetheine (1 eq.)

B N 0 bwanioasd) W H
M v\ﬂ/ \/ Br
B OH DCM/ MeCN

S7 10 Br

4,5-Dibromo-1H-pyrrole-2-carboxylic acid (50 mg, 0.19 mmol, 1 eq.), D-pantetheine (51.8 mg, 0.19 mmol,

1 eq.), EDC-HCI (44.6 mg, 0.23 mmol, 1.25 eq.), and DMAP (6.8 mg, 0.056 mmol, 0.3 eq.) were dissolved

in 3 mL 2:1 DCM/acetonitrile at room temperature. The reaction was stirred at room temperature overnight.

The reaction mixture was concentrated under vacuum and purified by preparative HPLC to give 10 (9 mg,

9 %) as white solid. "H NMR (500 MHz, MeOD) 6 6.99 (s, 1H), 3.89 (s, 1H), 3.53 — 3.36 (m, 6H), 3.15 (t,

J = 6.6 Hz, 2H), 2.41 (t, J = 6.7 Hz, 2H), 0.91 (s, 6H). *C NMR (126 MHz, MeOD) & 180.96, 176.22,

174.13,132.53,118.31,110.57, 101.04, 77.41, 70.48, 40.52, 36.56, 36.48, 28.68, 21.48, 21.07. HRMS (ESI)
m/z calculated for C;6H24Br,N3OsS ([M+H]") 527.9798, found 527.9795.

4,5-Dimethyl-pyrrolyl acyl-S-pantetheine (11)

Pantetheine (1 eq

H EDC (1. 25 eq.)
Me . N O DMAP _ DMAP (03eq)
T )~ “ﬁr e
Me o4  DCM/MeCN
S8 Me

4,5-Dimethyl-1H-pyrrole-2-carboxylic acid (94 mg, 0.68 mmol, 1 eq.), D-pantetheine (188.1 mg, 0.68
mmol, 1 eq.), EDC-HCI (161.9 mg, 0.84 mmol, 1.25 eq.), and DMAP (24.8 mg, 0.20 mmol, 0.3 eq.) were
dissolved in 6.8 mL DCM. The reaction was stirred at room temperature overnight. The reaction mixture
was concentrated under vacuum and purified by silica flash chromatography (1:2 hexane/EtOAc to 5:1
EtOAc/MeOH) to give 11 (93.8 mg, 35 %) as pink solid. 'H NMR (400 MHz, MeOD) § 6.73 (s, 1H), 3.89
(s, 1H), 3.54 — 3.33 (m, 6H), 3.09 (t, J = 6.7 Hz, 2H), 2.41 (t, J = 6.6 Hz, 2H), 2.17 (s, 3H), 1.98 (s, 3H),
0.91 (s, 6H). *C NMR (101 MHz, MeOD) 6 180.70, 176.16, 174.02, 134.80, 128.34, 118.90, 118.52, 77.45,
70.50, 41.02, 40.50, 36.56, 36.50, 28.19, 21.47, 21.07, 11.07, 10.92. HRMS (ESI) m/z calculated for
CisH30N30sS ([M+H]") 400.1901, found 400.1900.
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3,4,5-Tribromo-pyrrolyl acyl-S-pantetheine (12)

H Br__N H
N O NBS (3 eq.) N O LiOH (3.4 eq.) BN 0O
W MeCN, 0 °C Ly W,
OMe MeCN,0 C-rt g, OMe  Dioxane/H,0, 85°C g, OH
Br Br
s9 $10 s11

1) (COCI), (2 eq.)

H
DCM, r.t. %{ \/\n/ H
2) D-pantetheine (1.5 eq.) | // Br
Br

DMAP (0.7 eq.), Et3N (8 eq.)
MeCN, r.t. 12 Br

Methyl 1H-pyrrole-2-carboxylate (2 g, 15.98 mmol, 1 eq.) and N-Bromosuccinimide (9.9 g, 55.94 mmol,
3.5 eq.) were dissolved in 100 mL MeCN. The reaction was stirred at 0 °C for 1.5 h before quenched with
water (100 mL). The layers were separated and the aqueous phase was extracted with EtOAc (100 mL, 3x).
The organic layers were combined, washed with brine, dried with anhydrous Na,SO4, and concentrated
under vacuum. Purification by silica flash column (hexane to 4:1 hexane/EtOAc) afforded S10 (3.8 g, 66 %)
as brown solid. "H NMR (400 MHz, CDCI3) 8 9.67 (s, 1H), 3.92 (s, 3H).

Compound S10 (100 mg, 0.28 mmol, 1 eq.) and LiOH (40.4 mg, 0.96 mmol, 3.4 eq.) were dissolved
in 3 mL 1:1 dioxane/H»O. The reaction was stirred at 85 °C for 6 h before quenched with 1 M HCI (3 mL)
and extracted with 7:3 DCM/isopropanol (5 mL, 3x). The organic phase was dried with anhydrous Na;SOs,
and concentrated under vacuum. Purification by silica flash column (1:1 hexane/EtOAc to 1:9
MeOH/EtOAc) gave S11 (91.8 mg, 93 %) as brown solid. *C NMR (101 MHz, MeOD) § 162.46, 125.00,
106.53, 105.66, 104.76.

Molecule S11 (75 mg, 0.22 mmol, 1 eq.) was dissolved in dry DCM (2.5 mL). Oxalyl chloride
(0.04 mL, 0.44 mmol, 2 eq.) was added dropwise to the solution. The reaction was stirred at room
temperature for 2 h before concentrated under vacuum to afford an orange solid. The solid (35 mg, 0.096
mmol, 1 eq.) together with D-pantetheine (40 mg, 0.143 mmol, 1.5 eq.) and DMAP (8.17 mg, 0.067 mmol,
0.7 eq.) were dissolved in 1 mL dry MeCN, followed by the addition of Et;N (77.36 mg, 0.765 mmol, 8
eq.). The reaction was stirred at room temperature for 2 h before the removal of solvent. The residue was
purified by preparative HPLC to give 12 (13.3 mg, 23%) as white solid. "H NMR (400 MHz, MeOD)
3.89 (s, 1H), 3.55 — 3.37 (m, 6H), 3.21 (t, J = 6.6 Hz, 2H), 2.42 (t, J = 6.7 Hz, 2H), 0.91 (s, 6H). HRMS
(ESI) m/z calculated for C16H23Br;sN3OsS ([M+H]") 605.8903, found 605.8892.

Cloning, expression and purification of holo-PKS M1
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On the basis of primary sequence, PItB KS-AT-CP domain boundary was mapped to residues 1 through
1031, and CalA KS-AT-CP boundary was mapped to residues 1 through 1070. PItB M1 was amplified from
the genomic DNA extracted from Pseudomonas protegens Pf-5 using PrimeSTAR DNA polymerase, and
cloned into pET24(+) vector by NEBuilder HiFi DNA Assembly master mix. CalA M1 carried by pET28(+)
vector was synthesized and cloned by Twist Bioscience. Sfp gene was amplified from pET24(+)-Sfp, a
construct reported previously,* using Phusion DNA polymerase, and cloned into MCS1 of pCDFDuet-1
vector. Plasmids for PKS mutants were generated by site-directed mutagenesis using primers containing

desired mutations.

For overexpression of holo-PKS M1 proteins, two plasmids carried PKS M1 and Sfp were co-
transformed into Escherichia coli BL21Gold(DE3). The cell cultures were grown in terrific broth medium
(2-4 L) supplemented with appropriate antibiotics and calcium pantothenate (15 mg/L) at 30 °C until ODgoo
reached 0.4-0.5. The culture temperature was reduced to 18 *C. When ODsggo reached 0.7-0.8, protein
expression was induced by the addition of 0.05-0.1 mM IPTG. The induced culture was grown at 18 °C for
an addition of 18 h. All subsequent steps of protein purification were conducted at 4 °C or on ice. Cells
were harvested by centrifugation, resuspended in binding buffer (20 mM Tris-HCI (pH=8.0), 500 mM
NaCl), and lysed by sonication (15 s amplification, 45 s settlement per circle). The lysate was clarified by
centrifugation at 18000 rpm for 45 min, and loaded on 5 mL HisTrap HP column using AKTAprime plus
FPLC system. The protein-bound column was washed extensively with wash buffer (20 mM Tris-HCl
(pH=8.0), 30 mM imidazole, 500 mM NaCl), and then eluted with a linear gradient to 100 % of elution
buffer (20 mM Tris-HCI (pH=8.0), 250 mM imidazole, 500 mM NaCl) over 10 column volumes. Purity of
eluent fractions were checked by SDS-PAGE. The fractions containing desired proteins were pooled,
concentrated using 50 kDa Amicon centrifugal filters, and desalted into storage buffer (20 mM Tris-HCl
(pH=8.0), 500 mM NacCl, 10 % glycerol) with PD-10 columns. Purified proteins were stored as small

aliquots at -80 °C and fresh aliquots were used each time for enzyme assays.

Cloning, expression and purification of CPs and other enzymes

CoaA, CoaD, CoaE, Sfp and MatB enzymes were obtained as previously described.*> CalN3, Mpy15 and
Clz18 gene fragments synthesized by Twist Bioscience or Integrated DNA Technologies were used as
templates for PCR, while PItL gene was amplified directly from P. protegens Pf-5 genomic DNA. CP DNA
fragments were cloned into pET28(+) vector using NEBuilder HiFi DNA Assembly master mix. HrmL
carried by pET28(+) vector was provided by Twist Bioscience. Plasmids containing CP sequences were
transformed into £. coli BL21Gold(DE3) for expression of CPs. The cell cultures were grown in 1 L terrific

broth medium supplemented with kanamycin at 30 °C until ODeoo reached 0.4-0.5. The culture temperature
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was reduced to 18 °C. When ODgoo reached 0.7-0.8, protein expression was induced by the addition of 0.2
mM IPTG. The induced culture was grown at 18 °C for an addition of 18 h. CPs were purified following
similar procedures described for PKS M1 proteins, except that the protein fractions were added with

thrombin prior to dialysis in binding buffer overnight, and stored at -80 “C with 10% glycerol.

Preparation of pyrrolyl-S-CPs

Synthesized pyrrolyl acyl-S-pantetheines were dissolved in DMSO to a concentration of 100 mM. Assays
to prepare pyrrolyl-S-CPs were performed as previously described.* In brief, the assay was composed of 1
mM pyrrolyl acyl-S-pantetheines, 10 mM MgCl,, 50 mM HEPES-Na (pH=7.9), 200 uM CPs, 2.5 uM Sfp,
and 1 uM each of CoaA, CoaD, and CoaE in a total volume of 2.5 mL. The enzymatic reaction was initiated
by the addition of 9 mM ATP after incubation at 30 °C for 5 min. The assay was incubated at 30 °C for 4.5
h, followed by 4 °C overnight, and then desalted into storage buffer with PD-10 columns. Biosynthesized
pyrrolyl-S-CPs were analyzed using LC-MS/MS described above. Protein solutions were stored as small

aliquots at -80 °C and fresh aliquots were used each time for enzyme assay.

CP occupancy assay

PItB assay was performed in a total volume of 100 pL containing 2 mM malonyl CoA, 2 mM TCEP, 7.7
uM PItB (KS-AT-CP modulel, Fig. S1), 15.4 uM pyrrolyl-S-CPs or substituted pyrrolyl-S-CPs, and 50
mM HEPES-Na (pH 7.5). For CalA assay, methylmalonyl CoA was synthesized in situ using MatB enzyme
as previously described.® The MatB reaction comprised of 5 mM CoA-SH, 10 mM methylmalonate, 10 mM
ATP, 10 mM MgCl,, 5 mM TCEP, 15 % glycerol, 100 mM HEPES-Na (pH 7.5) and 5 pM MatB in a total
volume of 100 pL. After incubation at 30 °C for 18 h, 30 uL of MatB reaction mixture was added to CalA
assay to a total volume of 100 pL which contained 2 mM TCEP, 10 uM CalA (KS-AT-CP modulel, Fig.
S1), 20 uM pyrrolyl-S-CPs or substituted pyrrolyl-S-CPs, and 50 mM HEPES-Na (pH 7.5). Assays were
incubated at 30 °C for 1 h. 50 pg protein samples from the assays were digested with 1 ug trypsin
(proteomics grade, Sigma-Aldrich T7575) for 5 h, following the manufacturer’s protocol. For PKS time-
dependent assay, at each time point, 42 ul. sample was taken from enzyme assays and added to 28 uL
MeCN. The precipitate was removed by centrifugation, and the supernatant was used for trypsin digestion
following the same protocol describe above. The proteolysis reactions were quenched by the addition of

equal volume of MeCN with 5 % formic acid and analyzed by LC/MS.

In PKS assays, three different acyl states of the donor CPs were detected: (substituted)pyrrole-S-
CPs (state a) corresponding to leftover donor CP substrate; holo-CPs (b), the product of KS
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transesterification reaction which transferred pyrrolyl cargos from donor CPs and generated a free thiol;
(methyl)malonyl CPs (c¢), the production of (methyl)malonyl CPs resulted from the nonspecific
transacylation activity of AT domain that loaded (methyl)malonyl group onto the newly produced holo-
CPs after the transthiolation of pyrrolyl cargos by KS domain. In order to demonstrate the selectivity of
PKS KS domains toward different CP substrates, we calculated the percentage of donor CP substrates that
were consumed by KS domain in PKS assays. After the first round of polyketide extension, the acceptor
CP (acceptor CP is the CP of the KS-AT-CP PKS module) is acylated with the pyrrolic diketide. Hydrolysis
of this pyrrolic diketide, the detection of which is illustrated in Figure S36, resets the acceptor CP for the
next round of polyketide extension. As shown in the figure below, EICs corresponding to trypsin digested
CP peptide fragments containing these three different acyl states of Ppant arms were generated (the trypsin
fragments for each CP that we detected in our assays is listed in Table S1). EIC peak areas of CP peptide
fragments were then integrated using Bruker DataAnalysis software. The total abundance of all CPs was
represented by the sum of EIC peak areas for (substituted)pyrrolyl- (state a), holo- (state b), and
(methyl)malonyl-S-CPs (state ¢). The CP substrate consumption was then calculated by the ratio of sum of
states b and ¢ to the sum of states a, b, and c. Note that state ¢ is generated after the donor CP delivers the
molecular cargo to the KS domain. Hence, states b and ¢, together, represent the amount of donor CP that
was consumed in the reaction. State a represents the donor CP that was not consumed during the course of
the reaction. The retention times for trypsin peptide fragments corresponding to states a, b, and ¢ are
different as illustrated in the figure below. Hence, ions detected as state b are not in source degradative

fragments generated in the mass spectrometer.

CP fragments EIC peak area

PKS ? w a.
C  Module1 N ts
| R
Trypsin
... digestion LC-MS/MS | P
/ NH SH b ———— "

)J\l)J\SCoA ((:SMOH c Az/

R, = H or Me R, Retention Time
donor CP fragments Total abundance of CPs = (a+ b +¢)
% substrate _ (b +¢)
consumption (a+b+0)

Analysis of elongated dichloro-pyrrolyl diketides

A 300 puL PItB assay was set up as described above. After incubation at 30 °C for 1 h, the reaction
mixture was added with equal volume of 1 M KOH, incubated at 30 °C for another 30 min, quenched with
300 puL 1.5 M HCI, and then lyophilized to remove water. The solid was dissolved in 100 pL MeOH. The
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solution was clarified by centrifugation and analyzed by LC-MS using the following conditions at a flow
rate of 0.5 mL-min™": 0-5 min: 5% B, 5-20 min: linear gradient to 70% B, 20-25 min: linear gradient to 100%
B, 25-28 min: 100% B, 28-29 min: linear gradient to 5% B, 29-30 min: 5 % B, 30-31 min: linear gradient
to 100% B, 31-32 min: 100% B, 32-33 min: linear gradient to 5% B, 33-34 min: 5 % B

Organic extraction of Pseudomonas protegens Pf-5

P. protegens Pf-5 was inoculated into 10 mL LB media from glycerol stock and grown at 30 “C overnight.
Cell pellets and liquid media was separated by centrifugation. The cell pellets were resuspended in 2 mL
MeOH and sonicated for 15 min. The extracts from cell pellets were clarified by centrifugation. Otherwise,
the liquid media was extracted with EtOAc (10 mL, 3x). The organic layers were combined, dried with
anhydrous Na,SOs, and concentrated under vacuum. The concentrated residue was dissolved in 2 mL
MeCN. The organic extracts from both cell pellets and liquid media were analyzed by LC-MS at a flow
rate of 0.5 mL-min™! using the following gradient: 0-6 min: 5% B, 6-15 min: linear gradient to 70% B, 15-
25 min: linear gradient to 85% B, 25-30 min: linear gradient to 100% B, 30-34 min: 100% B, 34-35 min:
linear gradient to 5% B, 35-36 min: 5 % B, 36-37 min: linear gradient to 100% B, 37-39 min: 100% B, 39-
41 min: linear gradient to 5% B, 41-43 min: 5 % B.

Computation of electrostatic potential maps

The geometries of all molecules were optimized using the wb97xd functional’ and the aug-cc-pvtz basis set
with CPCM continuum solvation model.® We used water as the model solvent in all calculations. In each
case, the minimized geometry is confirmed by the absence of imaginary frequency in computed frequencies
at the optimized geometry. Electrostatic potential was computed and mapped onto the electron density
surface computed plotted with an isovalue of 0.0004. All calculations were performed using Gaussian16°
and visualization was done with Gaussview6.'® The respective geometries of the molecules are provided
below. Free rotation around C-C single bond may originate different conformation between these molecules
(Fig. S38). However, the C-C single bond is away from the pyrrole ring and therefore, unlikely to

significantly influence the electrostatic potential of the 5S-membered pyrrole rings.

dichloro-substituted pyrrole:
Nuclear repulsion energy before empirical dispersion term = 1432.6511293513 hartree

C -0.2490499316 -0.6303987386 1.3485999095
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C -1.3307833197 -0.2620618828 0.5784439513

N -0.9389973154 0.7233044065 -0.245664639

Cl -2.92273143 -0.8682908234 0.580105548

C 0.3861235753 1.0132329091 -0.0256173551

H -1.5061999147 1.1925444985 -0.9328119428

C 0.8392619181 0.1704306134 0.973030818

C 0.9436358678 2.0622341325 -0.8727486836

H 1.8250521049 0.0856336868 1.3994277075

Cl -0.2519900643 -1.8597063024 2.5509914368

S

zZ O O 0

@)

T T X =T I =m Z =T O O

2.5642541176 2.7675024428 -0.726111141

3.4982794077

4.2429837732

0.2644359677

5.1413620328

4.7161027366

5.7681004651

3.5323390477

2.8562266864

4.2157016914

3.5401997158

4.8346281977

6.1134936179

6.7719271748

5.7410396882

5.5196041889

2.0297561874 0.6416927394

0.7566714851 0.2465411193

2.5481077502 -1.7602373731

0.3162807534 1.2919140014

-0.3399137347 2.3878810218

-0.7168479444 3.3969819967

-0.6213348544 2.5550782184

1.88532085 1.5055839343

2.8085306197 0.8971784485

-0.0432783316 0.0179089521

0.9417205586 -0.6469242351

0.5545655011 1.2166700846

-0.4193483519 3.1035649941

-1.795845485 3.5393615841

-0.2488099462 4.3481589039
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dibromo-substituted pyrrole:

Nuclear repulsion energy before empirical dispersion term = 1994.5664656622 hartree

C -0.2533992285 -0.6120349891 1.3762283125

C -1.3390448937 -0.2421285167 0.6102039543

N -0.9444091277 0.7364362351 -0.2220521925

Br -3.081240266 -0.8856822531 0.6188077645

C 0.3829936953 1.0206367566 -0.0135074381

H -1.511115102 1.2071782388 -0.9086476316

C 0.83718853 0.1814368561 0.9873354596

C 0.9393789692 2.0621906324 -0.8722322924

H 1.8259498053 0.096113208 1.4067812513

Br -0.241069165 -1.9382066419 2.694611269

S 2.5636518053 2.7610584859 -0.7431657839

C 3.5058542153 2.0261061651 0.6202897126

@)

4.2404677198 0.7471703277 0.225295764

0.2551020268 2.5446828607 -1.7574690307

5.1492986285 0.3102925459 1.2630751612

4.7330579156 -0.3293347588 2.3722144772

5.7951068696 -0.703167056 3.3719344877

3.5492822451 -0.5984307593 2.5581205682

2.870832809 1.8894901622 1.4905822986

4.2295609963 2.8025383306 0.8650164273

3.5315348627 -0.0512479556 0.0104908642

4.8225309793 0.9233897787 -0.6762036133

6.1220728769 0.5404894067 1.1728077215

ZT T Zz T T =T O O o zZ O

6.7979594333 -0.4215708228 3.0599648885
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H 5.7579100165 -1.7794694193 3.53124059

H 5.565543383 -0.2179368177 4.3192770103
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Table S1. CP tryptic fragments detected and quantified in LC/MS data.

Carrier protein

CP fragment sequence with active site Ser

Exacted ions

[M-+nH]™*
pyrrolyl-S-CalN3 1063.2930
dichloro-pyrrolyl-S-CalN3 1080.2736
monochlgra(iﬁglrrolyl—S— 1071.7833
5-methylpyrrolyl-S-CalN3 1066.7969
dibromo-pyrrolyl-S-CalN3 1102.7483
dimethyl-pyrrolyl-S- FLDGDPQGELEETTPLLELGVLNSLNTVVLLAHIR 1070.3009
CalN3
trlbrom((:)apl)lz/érolyl S 1121.7259
holo-CalN3 1040.0377
malonyl-S-CalN3 1061.5378
methylmalonyl-S-CalN3 1065.0417
pyrrolyl-S-PItL 1106.7764
dichloro-pyrrolyl-S-PItL 1123.7569
monochlogl)t—fyrrolyl—S— 1115.2666
5-methylpyrrolyl-S-PItL 1110.2803
dibromo-pyrrolyl-S-PItL | yMEDLIGPSAKEDELDDQTPLLEWGILNSMNIVK | 1145.7316
dimethyl-pyrrolyl-S-PItL 1113.7842
tribromo-pyrrolyl-S-PltL 1165.2092
holo-PItL 1083.5210
malonyl-S-PItL 1105.0211
methylmalonyl-S-PItL 1108.5250
pyrrolyl-S-Mpy15 1214.2260
dlchloﬁgggolyl-S- 1236.8667
holo-Mpy15 SFLDDDTTALEPNTPLLEWGILNSMNTAK 1183.2189
malonyl-S-Mpy15 1211.8857
methylmalonyl-S-Mpy15 1216.5578
pyrrolyl-S-Clz18 1103.3033
dichloro-pyrrolyl-S-Clz18 1120.2839
holo-Clz18 YLPEGESGLQPSSPLLEWGILTSLSTTELISFILER 1080.0480
malonyl-S-Clz18 1101.5481
methylmalonyl-S-Clz18 1105.0520
pyrrolyl-S-Clz18 1159.8416
dichloro-pyrrolyl-S-HrmL | LLDLGILDSLAVLSVVSEIEQTLDLEFPETEIVATNFR 1176.8221
holo-HrmL 1136.5862
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malonyl-S-HrmL

1158.0863
methylmalonyl-S-HrmL 1161.5902
holo-PItB CP 757.0495
dichloro-pyrrolyl-diketide
acylated to PItB CP 824.7008
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Figure S1: Pyoluteorin (top) and calcimycin (bottom) PKS pathways. PItB and CalAl are bimodular
PKSs. The PItB and CalA1 KS-AT-CP modules investigated in this study are highlighted in red.
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Figure S2: Organic extracts of P. protegens Pf-5 (cell pellets and liquid media) analyzed by LC-MS.
Pyoluteorin (1), as denoted by extracted ion chromatograms (EICs) corresponding to m/z 271.99 Da, was
detected in culture supernatant and the cell pellet. However, deschloro-pyoluteorin, denoted EICs

corresponding to m/z 204.07 Da, was not detected in either the culture supernatant or the cell pellet.
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Figure S3: SDS-PAGE demonstrating purified PKS modules (from left to right): ladder, (lane 1) PItB
(111.5 kDa), (lane 2) PItB Cys183Ala, (lane 3) PItB Met222Leu, (lane 4) CalA (113.4 kDa), (lane 5)
CalA Cys182Ala mutant, and (lane 6) CalA Leu221Met.
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Figure S4: 'H NMR spectrum (400 MHz, MeOD) of compound 5
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Figure S5: '"H NMR spectrum (400 MHz, MeOD) of compound 6
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Figure S6: *C NMR spectrum (101 MHz, MeOD) of compound 6
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Figure S7: '"H NMR spectrum (400 MHz, MeOD) of compound 7
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Figure S8: *C NMR spectrum (126 MHz, MeOD) of compound 7
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Figure S9: '"H NMR spectrum (400 MHz, MeOD) of compound 8
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Figure S10: 3C NMR spectrum (101 MHz, MeOD) of compound 8
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Figure S11: '"H NMR spectrum (400 MHz, MeOD) of compound 9
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Figure S12: 3C NMR spectrum (101 MHz, MeOD) of compound 9
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Figure S13: '"H NMR spectrum (500 MHz, MeOD) of compound 10
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Figure S14: 3C NMR spectrum (126 MHz, MeOD) of compound 10
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Figure S15: '"H NMR spectrum (400 MHz, MeOD) of compound 11
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Figure S16: 3*C NMR spectrum (101 MHz, MeOD) of compound 11
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Figure S18: Reaction scheme for the one-pot enzymatic synthesis of pyrrolyl-S-CPs starting from

pyrrolyl acyl-S-pantetheines using CoaA, CoaD, CoaE and Sfp enzymes
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Figure S19: MS! (top) and MS? (bottom) spectra demonstrating pyrrolyl-S-PItL. In the MS!' spectra,

multiple charge states for peptides are observed. The [M+12H

]1'2* ion generates the characteristic pyrrolyl-

S-cyclopantetheine MS? ejection ion (354.15 Da) and cyclopantetheine MS? ejection ion (261.13 Da).
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Figure S20: MS' (top) and MS? (bottom) spectra demonstrating 5-chloro-pyrrolyl-S-PItL. In the MS'!
spectra, multiple charge states for peptides are observed. The [M+12H]'** ion generates the characteristic
5-chloro-pyrrolyl-S-cyclopantetheine MS? ejection ion (388.11 Da) and cyclopantetheine MS? ejection ion
(261.13 Da).
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Figure S21: MS' (top) and MS? (bottom) spectra demonstrating 4-chloro-pyrrolyl-S-PItL. In the MS'!
spectra, multiple charge states for peptides are observed. The [M+8H]®" ion generates the characteristic 4-
chloro-pyrrolyl-S-cyclopantetheine MS? ejection ion (388.11 Da) and cyclopantetheine MS? ejection ion
(261.13 Da).
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Figure S22: MS! (top) and MS? (bottom) spectra demonstrating 5-methyl-pyrrolyl-S-PItL. In the MS'!

spectra, multiple charge states for peptides are observed. The [M+10H

1'% ion generates the characteristic

5-methyl-pyrrolyl-S-cyclopantetheine MS? ejection ion (368.16 Da) and cyclopantetheine MS? ejection ion

(261.13 Da).
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Figure S23: MS! (top) and MS? (bottom) spectra demonstrating 4,5-dichloro-pyrrolyl-S-PItL. In the MS!
spectra, multiple charge states for peptides are observed. The [M+9H]* ion generates the characteristic 4,5-
dichloro-pyrrolyl-S-cyclopantetheine MS? ejection ion (422.07 Da) and cyclopantetheine MS? ejection ion
(261.13 Da).
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Figure S24: MS! (top) and MS? (bottom) spectra demonstrating 4,5-dibromo-pyrrolyl-S-PItL. In the MS!
spectra, multiple charge states for peptides are observed. The [M+12H]'?* ion generates the characteristic

4,5-dibromo-pyrrolyl-S-cyclopantetheine MS? ejection ion (509.97 Da) and cyclopantetheine MS? ejection
ion (261.13 Da).
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Figure S25: MS' (top) and MS? (bottom) spectra demonstrating 4,5-dimethyl-pyrrolyl-S-PItL. In the MS!
spectra, multiple charge states for peptides are observed. The [M+9H]* ion generates the characteristic 4,5-

dimethyl-pyrrolyl-S-cyclopantetheine MS? ejection ion (382.18 Da) and cyclopantetheine MS? ejection ion
(261.13 Da).
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Figure S26: MS' (top) and MS? (bottom) spectra demonstrating 3,4,5-tribromo-pyrrolyl-S-PltL. In the MS!
spectra, multiple charge states for peptides are observed. The [M+12H]'?* ion generates the characteristic
3,4,5-tribromo-pyrrolyl-S-cyclopantetheine MS? ejection ion (587.88 Da) and cyclopantetheine MS?
ejection ion (261.13 Da).

S42



hiens
x109

254

204

05+

0.0

13

HoS H oM
VEaS 06 0 0

—

B
o ¥ 5
B SE
&H

@
PN

"

*109

204

0.54

0.0

H

i

L
T

A

Xy

261.1262

L

3541475 HO

——

—
1000

Ho R
XY

T
1200

kil 4 4

T
1400

1027.2342

bl

Ao

Li

T
1600 mz

200

400

T
600

T
800

T
1000

T
1200 mz

Figure S27: MS' (top) and MS? (bottom) spectra demonstrating pyrrolyl-S-CalN3. In the MS' spectra,

multiple charge states for peptides are observed. The [M+10H]'"" ion generates the characteristic pyrrolyl-

S-cyclopantetheine MS? ejection ion (354.15 Da) and cyclopantetheine MS? ejection ion (261.13 Da).
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Figure S28: MS! (top) and MS? (bottom) spectra demonstrating 5-chloro-pyrrolyl-S-CalN3. In the MS'!
spectra, multiple charge states for peptides are observed. The [M+12H]'** ion generates the characteristic

5-chloro-pyrrolyl-S-cyclopantetheine MS? ejection ion (388.11 Da) and cyclopantetheine MS? ejection ion
(261.13 Da).
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Figure S29: MS! (top) and MS? (bottom) spectra demonstrating 4-chloro-pyrrolyl-S-CalN3. In the MS!
spectra, multiple charge states for peptides are observed. The [M+12H]'?* ion generates the characteristic

4-chloro-pyrrolyl-S-cyclopantetheine MS? ejection ion (388.11 Da) and cyclopantetheine MS? ejection ion
(261.13 Da).
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Figure S30: MS' (top) and MS? (bottom) spectra demonstrating 5-methyl-pyrrolyl-S-CaIN3. In the MS!
spectra, multiple charge states for peptides are observed. The [M+12H]'?* ion generates the characteristic
5-methyl-pyrrolyl-S-cyclopantetheine MS? ejection ion (368.16 Da) and cyclopantetheine MS? ejection ion
(261.13 Da).
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Figure S31: MS' (top) and MS? (bottom) spectra demonstrating 4,5-dichloro-pyrrolyl-S-CaIN3. In the MS!
spectra, multiple charge states for peptides are observed. The [M+11H]'!" ion generates the characteristic
4,5-dichloro-pyrrolyl-S-cyclopantetheine MS? ejection ion (422.07 Da) and cyclopantetheine MS? ejection
ion (261.13 Da).
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Figure S32: MS! (top) and MS? (bottom) spectra demonstrating 4,5-dibromo-pyrrolyl-S-CalN3. In the MS!

spectra, multiple charge states for peptides are observed. The [M+11H]'!" ion generates the characteristic

4,5-dibromo-pyrrolyl-S-cyclopantetheine MS? ejection ion (509.97 Da) and cyclopantetheine MS? ejection
ion (261.13 Da).
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Figure S33: MS! (top) and MS? (bottom) spectra demonstrating 4,5-dimethyl-pyrrolyl-S-CalN3. In the MS!
spectra, multiple charge states for peptides are observed. The [M+10H]'*" ion generates the characteristic

4,5-dimethyl-pyrrolyl-S-cyclopantetheine MS? ejection ion (382.18 Da) and cyclopantetheine MS? ejection
ion (261.13 Da).
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Figure S34: MS' (top) and MS? (bottom) spectra demonstrating 3,4,5-tribromo-pyrrolyl-S-CalN3. In the

MS! spectra, multiple charge states for peptides are observed. The [M+9H]%" ion generates the characteristic

3,4,5-tribromo-pyrrolyl-S-cyclopantetheine MS? ejection ion (587.88 Da) and cyclopantetheine MS?
ejection ion (261.13 Da).
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Figure S35: MS! (top) and MS? (bottom) spectra of methylmalonate CoA generated using enzyme MatB
and methylmalonate (sodium salt), ATP/Mg?*, and CoA-SH as substrates. In the MS! spectra, the [M+H]*
(868.14 Da) and [M+2H]*" (434.57 Da) ions are observed that correspond to molecular formula

C2sH4iN7O19P3S. The [M+H]" ion generates the characteristic methylmalonyl-S-cyclopantetheine MS?

ejection ion (361.14 Da) and decarboxylated methylmalonyl-S-cyclopantetheine MS? ejection ion (317.15
Da).
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Figure S36: Elongated dichloro-pyrrolyl diketide from PItB assay analyzed by LC-MS. Dichloro-pyrrolyl-
S-PItL was incubated with PItB WT or C183A mutant as well as malonylCoA. EIC for m/z 219.96 Da
corresponding to [M-H] of elongated dichloro-pyrrolyl diketide was observed in the assay preformed with
PItB WT, while EIC for m/z 219.96 was not detected in the assay with PItB C183A mutant.
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Figure S37: Comparison of substrate consumption by wild type and Cys-to-Ala mutant (dKS) PItB and
CalA under identical reaction conditions. Physiological substrates were tested, dichloropyrrolyl-S-PItL for
PItB and pyrrolyl-S-CalN3 for CalA. Lack of substrate consumption by the mutant enzymes is suggestive

of the substrate stability and lack of substrate degradation during the course of the reaction.
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Figure S38: Optimized geometries of (A) dichloropyrrole, and (B) dibromopyrrole. Carbon, nitrogen,
oxygen, sulfur, hydrogen, chlorine, and bromine atoms are shown in grey, blue, red, yellow, white, green,

and brown spheres, respectively.
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Figure S39: Time dependent depletion of pyrrolyl-S-CalN3 and pyrrolyl-S-PItL by CalA.
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Figure S40: MS! (top) and MS? (bottom) spectra demonstrating 4,5-dichloro-pyrrolyl-S-Clz18. In the MS!
spectra, multiple charge states for peptides are observed. The [M+11H]'!" ion generates the characteristic
4,5-dichloro-pyrrolyl-S-cyclopantetheine MS? ejection ion (422.07 Da) and cyclopantetheine MS? ejection
ion (261.13 Da).
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Figure S41: MS' (top) and MS? (bottom) spectra demonstrating 4,5-dichloro-pyrrolyl-S-Mpy15. In the
MS! spectra, multiple charge states for peptides are observed. The [M+12H]'?* ion generates the
characteristic 4,5-dichloro-pyrrolyl-S-cyclopantetheine MS? ejection ion (422.07 Da) and cyclopantetheine
MS? gjection ion (261.13 Da).
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Figure S42: MS' (top) and MS? (bottom) spectra demonstrating 4,5-dichloro-pyrrolyl-S-HrmL. In the MS!
spectra, multiple charge states for peptides are observed. The [M+8H]*" ion generates the characteristic 4,5-
dichloro-pyrrolyl-S-cyclopantetheine MS? ejection ion (422.07 Da) and cyclopantetheine MS? ejection ion
(261.13 Da).
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Figure S43: MS! (top) and MS? (bottom) spectra demonstrating pyrrolyl-S-Clz18. In the MS! spectra,

multiple charge states for peptides are observed. The [M+12H

]12+

ion generates the characteristic pyrrolyl-

S-cyclopantetheine MS? ejection ion (354.15 Da) and cyclopantetheine MS? ejection ion (261.13 Da).
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Figure S44: MS! (top) and MS? (bottom) spectra demonstrating pyrrolyl-S-Mpy15. In the MS' spectra,
multiple charge states for peptides are observed. The [M+12H]'?" ion generates the characteristic pyrrolyl-
S-cyclopantetheine MS? ejection ion (354.15 Da) and cyclopantetheine MS? ejection ion (261.13 Da).
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Figure S45: MS! (top) and MS? (bottom) spectra demonstrating pyrrolyl-S-HrmL. In the MS! spectra,
multiple charge states for peptides are observed. The [M+11H]''" ion generates the characteristic pyrrolyl-
S-cyclopantetheine MS? ejection ion (354.15 Da) and cyclopantetheine MS? ejection ion (261.13 Da).
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Figure S46: Phylogenetic analysis of CPs. The amino acid sequences of CPs were aligned using CLC

Sequence Viewer with gap open cost 10.0 and gap extension 1.0. The alignment was then used for

phylogenetic analysis in which Neighbor Joining was used as tree constructing method and Jukes-Cantor

as protein distance measurements.
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