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Abstract
The choice of variable-selection methods to identify important variables for binary 
classification modeling is critical for producing stable statistical models that are 
interpretable, that generate accurate predictions, and have minimal bias. This work 
is motivated by the availability of data on clinical and laboratory features of dengue 
fever infections obtained from 51 individuals enrolled in a prospective observational 
study of acute human dengue infections. Our paper uses objective Bayesian method 
to identify important variables for dengue hemorrhagic fever (DHF) over the dengue 
data set. With the selected important variables by objective Bayesian method, we 
employ a Gaussian copula marginal regression model considering correlation error 
structure and a general method of semi-parametric Bayesian inference for Gauss-
ian copula model to estimate, separately, the marginal distribution and dependence 
structure. We also carry out a receiver operating characteristic (ROC) analysis for 
the predictive model for DHF and compare our proposed model with the other mod-
els of Ju and Brasier (Variable selection methods for developing a biomarker panel 
for prediction of dengue hemorrhagic fever. BMC Res Notes 6:365, 2013) tested 
on the basis of the ROC analysis. Our results extend the previous models of DHF 
by suggesting that IL-10, Days Fever, Sex and Lymphocytes are the major features 
for predicting DHF on the basis of blood chemistries and cytokine measurements. 
In addition, the dependence structure of these Days Fever, Lymphocytes, IL-10 
and Sex protein profiles associated with disease outcomes was discovered by the 
semi-parametric Bayesian Gaussian copula model and Gaussian partial correlation 
method.
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1  Introduction

Acute dengue viral infections, hyperendemic to the tropics, are major cause of mor-
bidity in tropical countries. There is no drug therapy or vaccine treatment now. Den-
gue hemorrhagic fever (DHF) is a late-stage complication of acute dengue infec-
tion primarily associated with capillary leakage, hemorrhage, circulatory shock, 
and representing life-threatening complications. Early detection of DHF may help 
identify patients that would benefit from more intensive therapy. Ahmad [2] pro-
posed hyperbolic Sine Rayleigh distribution capable of modeling bladder cancer 
susceptibility data with unimodal failure rate function. Ju and Brasier [11] proposed 
variable selection methods of discriminative features that were identified and that 
were associated with DHF. Patients’ profile of biomarkers such as blood chemistries 
and cytokine measurements can be associated with DHF outcome. However, cor-
relations of these feature variables are known to be high, and which members of 
the complex panel of biomarkers will result in the most stable and robust classifier 
is not known. The variable selection methods proposed by Ju and Brasier [11] did 
not provide clear guidelines for predicting the development of DHF. The motivation 
of this paper is to provide a copula model [21] considering the dependence struc-
ture between correlated variables of the development of DHF with high predictive 
accuracy because copula is a useful device to express joint distributions of two or 
more random variables and explain the dependence structure between variables by 
eliminating the influence of the marginal distributions of the individual variables, 
and a copula function does also not require a normal distribution and independent, 
identical distribution assumptions. Furthermore, the invariance property of copula 
has been attractive which is especially in the finance area. The other reason is to 
provide semi-parametric Bayesian Gaussian copula model of Hoff [9] to confirm 
the result which can be interpretable for the important variable coefficients to DHF 
over the dengue data set. However, most copulas have a limitation which fails to 
satisfy the copula properties when extended from bivariate to multivariate cases. 
To overcome the limitation, Aasa et  al. [1] proposed pair-copula constructions of 
multiple dependence. Gaussian bivariate copula uses the conditional distributions 
to find a partial correlation. The partial correlation coefficient has been measure by 
the Gaussian copula. To accomplish this research purpose, we employ the Bayarri 
et  al. [3] objective Bayesian method, the probability of a proposition corresponds 
to a reasonable belief which can be justified by requirements of rationality and con-
sistency, for identifying important variables to DHF over the dengue data set, and 
copula methods which are suitable for modeling highly correlated variables under a 
dependent structure regardless of the form of the marginal distributions.

Since Genest et  al. [8] proposed a semiparametric estimation procedure of 
dependence parameters in multivariate families of distributions, copula methods 
have gotten more attention in the areas of finance, actuarial science, biomedical stud-
ies, and engineering. The copula method arises from Sklar’s theorem [21], which 
allows researchers to piece together joint distributions with marginal distribution of 
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individual variables. Kim et  al. [13] applied a copula method for modeling direc-
tional dependence of genes as an alternative method for a Bayesian network, which 
is a probabilistic graphical method. Kim and Kim [12] also proposed an improved 
copula method for modeling the directional dependence of genes. A copula deter-
mines the dependence relationship by joining the marginal distributions together to 
form a joint distribution. The scaling and the shape are entirely determined by the 
marginals. In contrast to correlation the copula function can be applied when vari-
ables are heavily tailed. Standard references for a detailed overview of copula appli-
cations include the books by Joe [10] and Nelsen [18]. We have now applied these 
new copula methods to investigate the relationship with the development of DHF 
and important biomarker variables that will be obtained by the Bayarri et  al. [3] 
objective Bayesian method.

The remainder of this paper is organized as follows. Section 2 presents the Bayes-
ian variable selection to find important variables to DHF over the dengue data set. 
Section 3 discusses Gaussian copula marginal regression models, semi-parametric 
Bayesian Gaussian copula estimation and Gaussian copula partial correlation with 
the selected important variables. Our conclusions are presented in last section.

2 � Statistical Method for Variable Selection

In order to improve the performance of copula methods proposed in Sect.  3, we 
seek to reduce the dimensionality of dengue data set. Feature selection is a machine 
learning technique in data mining, which reduces the number of input variables 
when developing a predictive model [19, 20]. Feature reduction removes meaning-
less features which are not related to a studied disease, leading to overfitting of our 
proposed model with the dengue data set. The previous work by Ju and Brasier [11] 
tried to identify biomarker variables that are associated with disease outcome could 
predict the development of DHF. Ju and Brasier [11] found that the important vari-
ables identified to DHF from the dengue data set were Interleukin-6 (IL-6), Inter-
leukin-10 (IL-10) and Platelets through five different feature reduction classifica-
tion methods, including generalized path seeker, multivariate adaptive regression 
splines, TreeNet, Boosting, and Random Forest and Bayesian moving averaging 
method identified three variables—IL-10, Lymphocytes, and Platelets having a high 
probability of predicting DHF. From the results, Ju and Brasier [11] suggested that 
IL-10, Platelets, and Lymphocytes counts are the major features for predicting DHF 
on the basis of blood chemistries and cytokine measurements. In this study, we also 
used the same dengue data set which can be downloaded from the NIAID Clinical 
Proteomics Center Web site at https​://bioin​fo.utmb.edu/CPC/Proje​cts/defau​lt.jsp.

The data are 51 dengue infected subjects identified at participating clinics and 
hospitals, or at a community-based active surveillance study in Maracay, Ven-
ezuela. Applying the 2009 World Health Organization (WHO) criteria, it was 
revealed that 13 subjects had developed dengue hemorrhagic fever. So the labora-
tory values of 51 individuals are 38 dengue fever (DF) and 13 DHF. The previ-
ous works by Brasier et  al. [4] and Ju and Brasier [11] motivate us to identify 
biomarker variables that are necessary for predicting the development of DHF 

https://bioinfo.utmb.edu/CPC/Projects/default.jsp
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with high probability. Bayarri et al. [3] proposed criteria in determining objective 
model selection priors by considering their application to the problem of vari-
able selection in normal linear models and obtained the methodological results 
in a new model selection objective prior with a number of compelling proper-
ties. Based on Bayarri et al. [3], Garcia-Donato and Forte [6] developed R pack-
age BayesVarSel conceiving to calculate Bayes factors, model choice and variable 
selection in linear models. To determine the optimal model for important vari-
able selection of the dengue data set, we run a Gibbs sampling on the data set by 
using R package BayesVarSel. The GibbsBvs command in the BayesVarSel pack-
age provides approximate computation of summaries of the posterior distribution 
using a Gibbs sampling algorithm to explore the model space, and frequency of 
visits to construct the estimates. We set the possible prior distribution for regres-
sion parameters within each model as constant and set the possible prior distri-
bution over the model space as gZellner which corresponds to the g-prior prob-
ability distribution function in Zellner [23]. The number of iterations is 100,000 
times after the 3000 number of iterations at the beginning of the Markov Chain 
Monte Carlo (MCMC) that are thrown away. The most complex model has 26 
covariates, plus the intercept, so there are a total of 67,108,864 competing mod-
els. All these models are kept and are used in the estimates. Table 1 shows the 
result of the inclusion probabilities of 26 feature variables in the data set. We can 
find a meaning result that Sex has the highest inclusion probability (0.91745), fol-
lowed by Interleukin-10 (IL-10, 0.9137), Lymphocytes (0.66225) and Days Fever 
(0.63847). The highest posterior probability model and median probability model 
in Table 1 indicate significant features in the Bayesian model selection. We iden-
tified Days Fever, IL-10, Lymphocytes, and Sex as important variables to DHF. 
Figure 1 verifies the result from Table 1.

Fig. 1   A Bayesian variable selection plot for DHF
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3 � Copula Methods

A copula is a multivariate distribution function defined on the unit [0, 1]n, with uni-
formly distributed marginals. In this paper, we focus on a bivariate (two-dimen-
sional) copula, where n = 2. Sklar [21] shows that any bivariate distribution function, 
FXY (x, y), can be represented as a function of its marginal distribution of X and Y,  FX(x) 
and FY (y), by using a two-dimensional copula C(⋅, ⋅). More specifically, the copula may 
be written as

FXY (x, y) = C(FX(x),FY (y)) = C(u, v),

Table 1   Bayesian variable 
selection

Bold values indicates Correlation between Class and Variable
*Significant biomarker to DHF

Incl. prob. Highest poste-
rior probability

Median 
posterior 
probability

Intercept 1.00000 * *
Sex 0.91745 * *
Headache 0.25941
Chills 0.18360
Rash 0.14631
Myalgia 0.15174
Cough 0.24120
Diarrhea 0.48210
Age 0.15691
Weight 0.14867
Temperature Max 0.13248
Days Fever 0.63847 * *
Hemoglobin 0.14742
Hematocrit 0.14381
Platelets 0.44191
RBC 0.13603
Lymphocytes 0.66225 * *
Neutrophils 0.41384
IFNG 0.45733
IL-2 0.14376
IL-6 0.53249 *
IL-10 0.91370 * *
IP10 0.22165
MIP1A 0.13333
TNFA 0.18261
TRAIL 0.36322
VEGF 0.24498
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where u and v are the continuous empirical marginal distribution functions FX(x) 
and FY (y), respectively. Note that u and v have an uniform distribution U(0, 1).

Therefore, the copula function represents how the function, FXY (x, y), is coupled 
with its marginal distribution functions, FX(x) and FY (y). Using copula is the general 
way to describes the dependence mechanism between correlated random variables 
by eliminating the influence of the marginals or any monotone transformation of the 
marginals. It also be useful for constructing joint distributions, especially with non-
normal random variables.

Let X, Y be random variables with continuous distribution functions FX(x) and 
FY (y), respectively, let X and Y be continuous random variables with copula C and 
marginal distribution functions FX(x) and FY (y) so that X ∼ FX(x), Y ∼ FY (y), and 
(X, Y) ∼ FXY (x, y), and let u = FX(x), v = FY (y), and (u, v) ∼ C. Then Spearman’s � 
and Kendall’s � are given, respectively, by

and

[18].

3.1 � Gaussian Copula Marginal Regression Model

To provide a stable statistical model considering correlation error structure with 
important variables (Days Fever, IL-10, Lymphocytes, and Sex) to DHF by objec-
tive Bayesian variable selection method, we used the Gaussian copula marginal 
regression models described by Song [22] and Masarotto and Varin [17], because 
such models provide a flexible general framework for modeling dependent responses 
of any type. Since we have mixed binary and continuous data types in our data, 
we have determined that the Gaussian copula marginal regression (GCMR) model 
is suitable for our analysis. The R package gcmr in Masarotto and Varin [17] fits 
Gaussian copula marginal regression models. Inference is performed through a like-
lihood approach. Computation of the exact likelihood is possible only for continuous 
responses. Otherwise, the likelihood function is approximated by importance sam-
pling. See Masarotto and Varin [17] for details.

We compared three different models, as shown in Table 2. Model 1 consists of 
the important variables (IL-6, IL-10, Platelets) identified by learning ensemble, 
Model 2 with the important variables (IL-10, Lymphocytes, and Platelets) identified 
by Bayesian moving averaging method, and Model 3 with the important variables 
(Days Fever, IL-10, Lymphocytes and Sex) found in Sect.  2. Ju and Brasier [11] 
proposed Models 1 and 2, and suggested that the important variables (Days Fever, 
IL-10, Lymphocytes and Sex) in Model 2 are the major features for predicting DHF 
on the basis of blood chemistries and cytokine measurements.

�C = 12∫
1

0 ∫
1

0

[
C(u, v) − uv

]
dudv,

�C = 4∫
1

0 ∫
1

0

C(u, v)dC(u, v) − 1
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Based on Table 2, we compared three models considering correlation structure in 
Table 3. Model 3 was the best of the these three models in terms of the Akaike infor-
mation criterion (AIC). To find the optimal residual error structure between variables 
on Table 2, ARMA-type process has been tested and the optimal dependence structure 
was a ARMA(0, 0) for Model 3, meaning that no correlation structure was needed. This 
allows us to apply the GCMR model without auto-correlation structure to the important 
variables (Days Fever, IL-10, Lymphocytes and Sex) in Sect. 2. The result shown in 
Table 3 is very different from the results from the variable selection methods described 
by Ju and Brasier [11] because Model 3 including Sex (male and female) and Days 
Fever are better models than Models 1 and 2 without the Sex and Days Fever variables.

Logistic regression is appropriate when the response variable is categorical with two 
possible outcomes (DF, DHF) in Class target variable over the dengue data set. Binary 
variables can be represented using an indicator variable Yi, taking on values 0 (DH) or 
1 (DHF), and modeled using a binomial distribution with probability P(Yi = 1) = �i, 
where i = 1, 2,… , 51. Logistic regression using GCMR with ARMA(0, 0) for Class 
(DH, DHF) models this probability as a function of Days Fever, IL-10, Lymphocytes 
and Sex explanatory variables. We are interested in determining the probability that a 
dengue infected subject develops DHF given the subject’s selected information (Days 
Fever, IL-10, Lymphocytes and Sex). According to the output in Table 4, the model is

where the residual, �i, follows the normal distribution with mean zero and variance, 
�2
�
 and �i does not need a correlation structure for the GCMR model with important 

variables (Sex, Days Fever, Lymphocytes, and IL-10) for the class (DH, DHF). To 
test H0 ∶ �1 = 0, we use z = 8.253 (p-value < 2e−16).

Hence, a dengue infected subject’s Days Fever information appears to have 
a significant positive impact on the probability of developing DHF, while 

logit(�i) = − 71.479 + 49.366Days Fever + 63.866IL-10

− 19.709Lymphocytes + 23.403Sex + �i,

Table 2   Proposed model vs. two 
models by Ju and Brasier [11]

Bold values indicates Correlation between Class and Variable

Model Variables

Model 1 IL-6, IL-10, Platelets
Model 2 IL-10, Lymphocytes, Platelets
Model 3 (Proposed Model) Days Fever, IL-10, Lymphocytes, Sex

Table 3   Model comparison 
of GCMR with correlation 
structure

Bold values indicates Correlation between Class and Variable

AIC ARMA(0, 0) ARMA(1, 0) ARMA(0, 1) ARMA(1,1)

Model 1 36.4825 37.4079 38.2078 40.0747
Model 2 29.1127 31.0996 28.7083 32.9836
Model 3 18.4654 20.4517 20.2364 22.1141



704	 Annals of Data Science (2020) 7(4):697–712

1 3

controlling for IL-10, Lymphocytes and Sex. To test H0 ∶ �2 = 0, we use z = 11.299 
(p-value  =  0.0000). The dengue infected subject develops to DHF given the sub-
ject’s IL-10 information appears to have a significant positive impact on the proba-
bility of developing DHF, while controlling for Lymphocytes and Sex but including 
Days Fever. To test H0 ∶ �3 = 0, we use z = −3.734 (p-value = 0.0002). The den-
gue infected subject develops to DHF given the subject’s Lymphocytes information 
appears to have a significant negative impact on the probability of developing DHF, 
while controlling for Sex but including Days Fever and IL-10. To test H0 ∶ �4 = 0, 
we use z = 8.427 (p-value = 0.0000). The dengue infected subject develops to DHF 
given the subject’s Sex information appears to have a significant positive impact on 
the probability of developing DHF, including Days Fever, IL-10 and Lymphocytes 
information. So all variables in Model 3 are statistically significant based on the 
estimates and standard errors generated by the GCMR with ARMA(0, 0) correlation 
structure. Furthermore, Days Fever, IL-10, Lymphocytes and Sex are significantly 
positive influence on DHF and Lymphocytes is significantly negative effect on DHF. 
It is the most meaningful result made by using our GCMR model.

We also look at the odds ratio (OR) corresponding to Days Fever is 2.75 × 1021 
[95% CI ( 2.23 × 1016, 3.40 × 1026 )] in Table  5. This implies that increasing Days 
Fever by one unit will increase the odds of developing DHF significantly if we fix 
IL-10, Lymphocytes and Sex. Likewise, increasing LIL10 or Sex by one unit will 
increase the odds of developing DHF significantly. But increasing Lymphocytes 
by one unit will decrease the odds of developing DHF significantly if we fix Days 
Fever, IL-10 and Lymphocytes.

The best possible test for DHF can be chosen based on the sensitivity, specific-
ity and accuracy. These are widely used to describe a diagnostic test. Sensitivity is 
defined as the rate of true positives that are correctly identified, and specificity is 
defined as the rate of true negatives that are correctly identified. Accuracy measures 

Table 4   Logistic regression 
using GCMR with ARMA(0, 0) 
for Class (DH, DHF)

Variable Estimate Std. error Z-value p-value

(Intercept) − 71.479 4.167 − 17.153 < 2e−16
Days Fever 49.366 5.982 8.253 < 2e−16
IL-10 63.866 5.652 11.299 < 2e−16
Lymphocytes − 19.709 5.278 − 3.734 0.000189
Sex 23.403 2.777 8.427 < 2e−16

Table 5   Odds ratio (OR) and 
95% confidence interval for OR

OR 2.5% 97.5%

Intercept 9.06 × 10−32 2.57 × 10−35 3.19 × 10−28

Days Fever 2.75 × 1021 2.23 × 1016 3.40 × 1026

LIL10 5.45 × 1027 8.42 × 1022 3.53 × 1032

Lymphocytes 2.76 × 10−9 8.86 × 10−14 8.58 × 10−5

Sex 1.46 × 1010 6.31 × 107 3.37 × 1012
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how correct a diagnostic test identifies and can be determined from sensitivity and 
specificity with the presence of prevalence. A receiver operating characteristic 
(ROC) curve is a graphical presentation of the relationship between both sensitivity 
and specificity and is created by plotting the true positive rate against the false posi-
tive rate at various threshold settings.

An area under the curve (AUC) is used in classification analysis in order to 
determine which of the used models predicts the classes best. The closer AUC for 
a model comes to 1, the better it is. So models with higher AUCs are preferred over 
those with lower AUCs. So we performed ROC analysis which can illustrate the 
performance of a binary classification by our proposed copula modeling. Table  6 
shows the summary of accuracy, sensitivity, specificity and AUC with the three dif-
ferent models for Class (DHF, DH) with Days Fever, IL-10, Lymphocytes and Sex. 
Our proposed model, Model 3, in Table 6 shows that the accuracy is about 94%, the 
sensitivity is about 97%, the specificity is about 85% and the AUC is about 91%. 
Therefore, the accuracy, sensitivity, specificity and AUC of the proposed model are 
fairly better than other two models (Models 1 and 2).

The test of accuracy was performed by binomial test so that the p-value 
(0.0003045) of the test in Model 3 is statistically significant. Therefore we can say 
that our proposed model is a good prediction model for DHF over the dengue data 
set. Figure 2 shows ROC curves for three different models. The straight line in the 
ROC curve of Model 3 is y = x, which passes through (0, 0) and (1, 1), so the ROC 
curve are far above the straight line compared to the models by Ju and Brasier [11]. 
This means that the proposed model illustrates the great performance of a binary 
classifier.

3.2 � Semi‑parametric Bayesian Gaussian Copula Model

We want to confirm our results in Sect.  3.1 with a different copula method. Hoff 
[9] provided the semi-parametric inference for copula models via a type of rank-
likelihood function for the association parameters. The semi-parametric inference is 
based on a generalization of marginal likelihood, called an extended rank likelihood, 
that does not depend on the univariate marginal distributions of the data.

Table 6   Accuracy, sensitivity, specificity and AUC​

Bold values indicates Correlation between Class and Variable

Model 1 Model 2 Model 3

Accuracy 0.8627 0.902 0.9412
Accuracy 95% CI (0.7374, 0.943) (0.7859, 0.9674) (0.8376, 0.9877)
Accuracy p-value 0.03277 0.004691 0.0003045
Sensitivity 0.9211 0.9474 0.9737
Specificity 0.6923 0.7692 0.8462
Positive predictive value 0.8974 0.9231 0.9487
Negative predictive value 0.75 0.8333 0.9167
AUC​ 0.8067 0.8583 0.9099
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Estimation and inference for parameters of the Gaussian copula are available 
via a straightforward Markov Chain Monte Carlo algorithm based on Gibbs sam-
pling. Specification of prior distributions or a parametric form for the univari-
ate marginal distributions of the data is not necessary. With the selected impor-
tant dengue data set (Days Fever, IL-10, Lymphocytes, and Sex) and the Hoff [9] 
model we want to look at the relationship between Class (DF and DHF) and one 
of Days Fever, IL-10, Lymphocytes, and Sex is positive, negative or zero. By 
using the semi-parametric Bayesian Gaussian copula estimation, we made poste-
rior quantiles of regression coefficients for Days Fever, IL-10, Lymphocytes, and 
Sex after the number of iterations was 25,000 times (also see Table 7). If we look 
at the 50% quantile of regression coefficients in Table 7, then we found that the 
estimates in Table 7 are consistent with the estimates in Table 4 if the scale of the 

Fig. 2   ROC analysis. Shown are ROC curves for the three predictive models for DHF. Y axis, sensitivity; 
X axis, 1−  specificity
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estimates is standardized. We also wanted to see the relationship between Class 
and Sex (Males and Females) with each one of the variables (Days Fever, Lym-
phocytes, and IL-10). Figure  3 displays meaningful results based on Sex. The 
IL-10 versus Sex plots in Fig. 3 show that IL-10 is the most important variable 
for classifying DF and DHF and more females develop DHF. Days Fever versus 
Sex plots in Fig. 3 also show that Days Fever is an important variable to use to 
classify DF and DHF, and shows that more females develop DHF. Lymphocytes 
versus Sex plots in Fig.  3 show that Lymphocytes is an important variable for 
classifying DF and DHF, and indicate that more females develop DHF. In addi-
tion, we find that the classification using IL-10 is more efficient than the classifi-
cations using Days Fever and Lymphocytes.

3.3 � Gaussian Copula Partial Correlation

In this paper, we want to apply the Kim et al. [14] Gaussian copula partial cor-
relation to dengue infection data to see the dependence structure. Given an 
n-dimensional distribution function F with continuous marginal (cumulative) dis-
tributions F1,… ,Fn, there exists a unique n-copula C ∶ [0, 1]n → [0, 1] such that

Suppose Y and Z are real-valued random variables with conditional distribution 
functions

Then the basic property of

is as follows: suppose, for all x,  F2|1(y|x) is continuous in y and F3|1(z|x) is continu-
ous in z. Then U and V have uniform marginal distributions. Likewise, if X1,… ,Xn 
is a vector of n random variables with absolutely continuous multivariate distribu-
tion function F, then the n random variables

are i.i.d. U(0, 1).

F(x1,… , xn) = C(F(x1),… ,F(xn)).

F2|1(y|x) = p(Y ≤ y|X = x) and F3|1(z|x) = p(Z ≤ z|X = x).

U = F2|1(Y|X) and V = F3|1(Z|X)

U1 = F1(X1), U2 = F2|1(X2|X1),… ,Un = Fn|1,2,…,n−1(Xn|X1,… ,Xn−1)

Table 7   Posterior quantiles of 
regression coefficients

2.5% Quantile 50% Quantile 97.5% Quantile

Days Fever -0.49 1.14 2.70
IL-10 0.86 2.13 3.50
Lymphocytes − 2.92 − 1.35 0.22
Sex 0.14 1.08 2.09
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The conditional distribution of �� given �� is also normal with mean vector

and covariance matrix

�� = �� + Σ12Σ22
−1
(
�� − �2

)

�� = Σ11 − Σ12Σ22
−1Σ21.
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It follows that the conditional density function f1|2(⋅|��) of ��, when �� = ��, is 
specified at the point �� by the equation

The cumulative distribution function is

where �� = (z1,… , zp) and z1,… , zp ∈ �.

By using the Eq. (1), we can derive the Gaussian conditional distributions, and 
then by using the CML method by Genest et al. [8] and the IFM method by Joe [10], 
we can estimate the Gaussian copula parameter, a n-th order conditional correlation, 
�YX|Z1,Z2,…,Zn

, using the following:

To use the Gaussian partial correlation to dengue infection data, we needed to trans-
form Class and Sex variables from binary data type to continuous data type. Before 
obtaining the ranks for each variable, however, notice that the Class and Sex vari-
ables are discrete variables valued in a subset of the set of the binary integers, and 
there are ties in the data. Note that the presence of ties in the data may substantially 
affect the copula estimation Genest and Nes̆lehová [7]. In order to fully facilitate the 
good properties of the copula, one needs to deal with the discreteness of the variable 
and the presence of ties in an appropriate way.

Thus, we obtained a continuous extension of the Class and Sex variables by using 
the randomization technique proposed by Denuit and Lambert [5]: given integer-
valued Xi, consider a continuous random variable X⋆

i
= Xi + (Ui − 0.001) where 

Ui is uniform on (0, 0.001) and independent of Xi in Table 8. As shown in Denuit 
and Lambert [5] and Madsen and Fang [16], the original variable can be recovered 

f1|2(��|��) =
f (��, ��)

f (��)

=

(
1

2�

)p∕2
√

|Σ22|
|Σ|

exp

{
−

(�� − ��)
T�−1

�
(�� − ��)

2

}
.

(1)F1|2(��|��) = ∫
zp

−∞

⋯∫
z1

−∞

f1|2(��|��)dx1 ⋯ dxp

Fxy|z1,…,zn
(Y ,X|Z1, Z2,… , Zn) = CGa(Fx|z1,…,zn

(X|Z1, Z2,… , Zn),

Fy|z1,…,zn
(Y|Z1, Z2,… , Zn);�YX|Z1,Z2,…,Zn

).

Table 8   Descriptive statistics for Class and Sex from 51 subjects, and the continuous version of Class 
and Sex

Class Continuous version 
of Class

Sex Continuous 
version of Sex

Mean 0.2549 0.2544 0.5882 0.5877
Median 0.0000 − 0.0004 1.0000 0.9991
Standard deviation 0.4401 0.4402 0.4971 0.4970
Skewness 1.0919 1.1248 − 0.3481 − 0.3586
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from its continuous extension, and the distribution function of the original variable 
is exactly the same as that of its continuous extension. Furthermore, this approach 
randomly breaks the ties in the data. Kojadinovic and Yan [15] verified that the ran-
domization (designed to randomly break the ties) does not change the results for 
the copula inference. Table 9 shows the Gaussian copula correlation between Class 
and each of the important variables (Sex, Days Fever, Lymphocytes and IL-10). The 
value of the Gaussian copula correlation between Class and IL-10 is higher (0.3862) 
and the value of the Gaussian copula correlation between Class and Lymphocytes is 
lower ( −0.2206 ) when compared with other relationships, as shown in Table 9.

Table 10 shows the Gaussian copula partial correlation between Class and one of 
the important variables (Sex, Days Fever, Lymphocytes and IL-10) given the other 
variable. The value of Gaussian copula partial correlation between Class and Lym-
phocytes given on the fixed variable, Days Fever, in Table 10 is −0.2426. It is lower 
than the value of Gaussian copula correlation between Class and Lymphocytes in 
Table 9. The value of Gaussian copula partial correlation between Class and IL-10 
given on the fixed variable (Days Fever or Lymphocytes or Sex) in Table 10 is lower 
than the value of Gaussian copula correlation between Class and IL-10 in Table 9.

Table 11 shows the Gaussian copula partial correlation between Class and one 
of the important variables (Sex, Days Fever, Lymphocytes and IL-10) given the 
other two variables. The value of the Gaussian copula partial correlation between 

Table 9   Gaussian copula 
correlation

Sex Days Fever Lymphocytes IL-10

Class 0.2615 0.3448 −�.���� 0.3862

Table 10   Gaussian copula partial correlation conditioning on one variable

Bold values indicates Correlation between Class and Variable

Sex Days Fever Lymphocytes IL-10

Class, Sex 0.2794 0.2738 0.2694
Class, Days Fever 0.3519 0.361 0.2505
Class, Lymphocytes − 0.2 − 0.2426 − 0.1465
Class, IL-10 0.331 0.2625 0.3011

Table 11   Gaussian copula partial correlation conditioning on two variables

Bold values indicates Correlation between Class and Variable
S Sex, D Days Fever, L Lymphocytes

(S, D) (S, L) (S, IL-10) (D, L) (D, IL-10) (L, IL-10)

Class, Sex 0.3294 0.2989 0.3208
Class, Days Fever 0.4003 0.3025 0.3053
Class, Lymphocytes − 0.2673 − 0.1803 − 0.2028
Class, IL-10 0.2526 0.3077 0.2118
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Class and Days Fever given the fixed variables, (Sex and Lymphocytes), is the 
highest (0.4003) when compared with the other relationships shown in subsec-
tion. The value of Gaussian copula partial correlation between Class and Lympho-
cytes given on the fixed variables, (Sex and Days Fever), in Table 11 is the lowest 
( −0.2673 ) when compared with the other relationships shown in subsection.

The value of Gaussian copula partial correlation between Class and IL-10 
given on the fixed variables (Days Fever and Lymphocytes) in Table 11 is lower 
than the value of Gaussian copula correlation between Class and IL-10 given on 
the fixed variable (Days Fever or Lymphocytes or Sex) in Table 10.

Table  12 shows the Gaussian copula partial correlation between Class and 
one of the important variables (Sex, Days Fever, Lymphocytes and IL-10) given 
the other three variables. The value of the Gaussian copula partial correlation 
between Class and Days Fever given on Sex, Lymphocytes and IL-10 is the 
higher compared with the other relationships in Table 12.

4 � Results and Discussion

In this study, we found that IL-10, Days Fever, Sex and Lymphocytes associated 
with disease outcomes are the most important variables by objective Bayesian 
variable selection method. We employed three different copula models to find 
the relationship and dependence structure between Class (DHF DHF) and the 
selected important variables. Our proposed GCMR modeling outperformed the 
other models by Ju and Brasier [11] tested on the basis of accuracy, sensitivity, 
specificity, and the area under the receiver operating characteristic (AUC) and 
predicted ability to generalize. Dependence structure of these four component 
protein profiles (Days Fever, Lymphocytes, IL-10 and Sex) associated with dis-
ease outcomes was discovered by the semi-parametric Bayesian Gaussian copula 
model and Gaussian partial correlation method. From the results of these copula 
methods, we found that IL-10 is the main variable to develop DHF and Lympho-
cytes is the main variable not to develop DHF. These findings suggest optimal 
approaches for modeling a predictive biomarker panel in human host response to 
an infectious disease.

Table 12   Gaussian copula partial correlation conditioning on three variables

S Sex, D Days Fever, L Lymphocytes

(S, D, L) (S, D, IL-10) (S, L, IL-10) (D, L, IL-10)

(Class, Sex) 0.3738
(Class, Days Fever) 0.3783
(Class, Lymphocytes) −�.����

(Class, IL-10) 0.2262
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