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Abstract— Using the newly introduced “occupation ker-
nels,” the present manuscript develops an approach to DMD
that treats continuous time dynamics, without discretization,
through the Liouville operator. The technical and theoretical
differences between Koopman based DMD for discrete time
systems and Liouville based DMD for continuous time systems
are highlighted, which includes an examination of these oper-
ators over several reproducing kernel Hilbert spaces (RKHSs).

I. INTRODUCTION

DMD has emerged as an effective method of extract-
ing fundamental governing principles from high-dimensional
time series data. The method has been employed successfully
in the field of fluid dynamics, where DMD methods have
demonstrated an ability to determine dynamic modes, also
known as “Koopman modes,” which agree with Proper
Orthogonal Decomposition (POD) analyses (cf. [1]–[7]).
However, DMD methods employing Koopman operators do
not address continuous time dynamical systems directly.
Instead, current DMD methods analyze discrete time proxies
of continuous time systems [3]. The discretization process
constrains Koopman based DMD methods to systems that
are forward complete [8]. The objective of the present
manuscript is to develop DMD methods that avoid discretiza-
tion of continuous time dynamical systems, while providing
convergence results that are stronger than Koopman based
DMD and applicable to a broader class of dynamical sys-
tems.

For example, discretization of the continuous time dy-
namical system ẋ = 1 + x2 with time step 1 yields the
following discrete dynamics: xi+1 = F (xi) := tan(1 +
arctan(xi)). It should be immediately apparent that F is
not well defined over R. In fact, through the consideration
of xi = tan(π/2−1) it can be seen that F (xi) is undefined.
Since the symbol for a Koopman operator must be defined
over the entire domain, there is no well defined Koopman
operator arising from this discretization. Hence, the resultant
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Koopman operator cannot be expected to be well-defined.
Note that the example above is not anecdotal. In addition
to commonly used examples in classical works, such as [9],
mass-action kinetics in thermodynamics [10, Section 6.3],
chemical reactions [11, Section 8.4], and species populations
[12, Section 4.2] often give rise to such models. In general,
unless the solutions of the continuous time dynamics are
constrained to be forward complete, (for example, by as-
suming that the dynamical systems are globally Lipschitz
[13, Chapter 1]) the resultant Koopman operator cannot be
expected to be well-defined. This observation is validated
by [8], but otherwise conditions on the dynamics are largely
absent from the literature.

Even in the case of globally Lipschitz models, results
regarding convergence of the DMD operator to the Koopman
operator rely on the assumption that the Koopman operator
is bounded over a specified RKHS (cf. [14]). Boundedness of
composition operators, like the Koopman operator, has been
an active area of study in the operator theory community.
Indeed, it turns out there are very few bounded composition
operators over many function spaces. A canonical example is
in the study of the Bargmann-Fock space, where only affine
symbols yield bounded composition operators and of those
the compact operators arise from F (z) = az + b where
|a| < 1. This is a very small collection, and reveals how
unlikely it is to have a bounded Koopman operator arising
from the discretization of continuous time nonlinear systems.

A subset of Liouville operators that require the assumption
of forward completeness on the dynamical system, called
Koopman generators, have been studied as limits of Koop-
man operators in works such as [15]–[20]. The present work
sidesteps the limiting process, and as a result, the assump-
tions regarding existence of Koopman operators, through
the use of “occupation kernels”. Specifically, occupation
kernels remove the burden of approximation from that of
operators and places it on the estimation of occupation
kernels from time-series data, which requires much less
theoretical overhead. The action of the adjoint of a Liou-
ville operator on an occupation kernel provides the input-
output relationships that enable DMD of time series data.
Consequently, Liouville operators may be directly examined
via occupation kernels, while avoiding limiting relations
involving Koopman operators that might not be well defined
for a particular discretization of a continuous time nonlinear
dynamical system.

The direct involvement of Liouville operators in a DMD
routine allows for the study of dynamics that are locally
rather than globally Lipschitz, since Liouville operators do



not impose an a priori discretization. For the adjoint of a
Liouville operator to be well defined, the operator must be
densely defined over the underlying RKHS [21], [22]. As
a result, the exact class of dynamical systems that may be
studied using Liouville operators depends on the selection
of the RKHS. However, the requirement that the Liouville
operator must be densely defined is not overly restrictive.
For example, on the real valued Bargmann-Fock space,
Liouville operators are densely defined for a wide range of
dynamics that are expressible as real entire functions (which
includes polynomials, exponential functions, sine, and cosine
functions, etc.).

The relevant preliminary concepts for the theoretical un-
derpinnings of the approach taken in the present manuscript
are reviewed in Section II-A. This includes definitions and
properties of RKHSs as well as densely defined operators
and their adjoints.

II. TECHNICAL PRELIMINARIES

A. Reproducing Kernel Hilbert Spaces

Definition 1. A reproducing kernel Hilbert space (RKHS)
over a set X is a Hilbert space of functions from X to R such
that for each x ∈ X , the evaluation functional Exg := g(x)
is bounded.

By the Reisz representation theorem, corresponding to
each x ∈ X there is a function kx ∈ H such that for all
g ∈ H , 〈g, kx〉H = g(x). The kernel function corresponding
to H is given as K(x, y) = 〈ky, kx〉H . The kernel function
is a positive definite function in the sense that for any finite
number of points {c1, c2, . . . , cM} ⊂ X , the corresponding
Gram matrix is positive semi-definite.

B. Adjoints of Densely Defined Liouville Operators

Unbounded operators over a Hilbert space are linear oper-
ators given as W : D(W )→ H , where D(W ) is the domain
contained within H on which the operator W is defined [23,
Chapter 5]. When the domain of W is dense in H , W is said
to be a densely defined operator over H . While unbounded
operators are by definition discontinuous, closed operators
over a Hilbert space satisfy weaker limiting relations. That
is, an operator is closed if {gm}∞m=1 ∈ D(W ), and both
{gm}∞m=1 and {Wgm}∞m=1 are convergent sequences where
gm → g ∈ H and Wgm → h ∈ H , then g ∈ D(W ) and
Wg = h [23, Chapter 5]. The Closed Graph Theorem states
that if W is a closed operator such that D(W ) = H , then
W is bounded.

Lemma 2. A Liouville Operator with symbol f that has the
canonical domain

D(Af ) := {g ∈ H : ∇g · f ∈ H},

is closed over RKHSs that are composed of continuously
differentiable functions.

Proof. See [22].

The closedness of Koopman operators is well known in
the study of RKHS, where they are more commonly known

as composition operators (cf. [24], [25]). Beyond the limit
relations provided by closed operators, the closedness of an
unbounded operator plays a signficant role in the study of
the adjoints of unbounded operators [23, Chapter 5].

Definition 3. For an operator W let

D(W ∗) := {h ∈ H : g 7→ 〈Wg, h〉H is bounded }

be dense in H . For each h ∈ D(W ∗) the Reisz theorem
guarantees a function W ∗h ∈ H such that 〈Wg, h〉H =
〈g,W ∗h〉H . The adjoint of the operator W is thus given as
W ∗ : D(W ∗)→ H via the assignment h 7→W ∗h.

For a closed operator over a Hilbert space, the adjoint
is densely defined [23]. Hence, Liouville operators with
domains given as in Lemma 2, their adjoints are densely
defined. To characterize the interaction between the trajec-
tories of a dynamical system and the Liouville operator, the
notion of occupation kernels must be introduced (cf. [22]).

Definition 4. Let X be a metric space, γ : [0, T ] → X be
an essentially bounded measurable trajectory, and let H be
a RKHS over X consisting of continuous functions. Then
the functional g 7→

∫ T
0
g(γ(t))dt is bounded, and the Reisz

theorem guarantees a function Γγ ∈ H such that

〈g,Γγ〉H =

∫ T

0

g(γ(t))dt

for all g ∈ H . The function Γγ is the occupation kernel
corresponding to γ in H .

Lemma 5. Let f : Rn → Rn be the dynamics for a
dynamical system, and suppose that γ : [0, T ] → Rn is
a trajectory satisfying γ̇ = f(γ(t)) in the Caretheodory
sense. In this setting, Γγ ∈ D(A∗f ). Moreover, A∗fΓγ =
K(·, γ(T ))−K(·, γ(0)).

Proof. See [22].

III. OCCUPATION KERNEL DYNAMIC MODE
DECOMPOSITION

With the relevant theoretical background presented, this
section develops the Occupation Kernel-based DMD method
for continuous time systems. This method differs from the
kernel-based extended DMD method of [7], where the kernel
functions for the inputs are now replaced by occupation
kernels, and the output is now a difference of kernel func-
tions. This formulation allows for the snapshots of typical
DMD methods to be strung together as trajectories. The
occupation kernel-based DMD method then allows for the
incorporation of all the snapshots of a given system to be
incorporated into the DMD analysis in a way that reduces
the dimensionality of the resultant problem to be less than
the number of snapshots, while simultaneously allowing for
the direct treatment of continuous time dynamical systems. If
the rank of the resulting matrices needs to be increased, the
trajectories may be segmented up to the number of snapshots.

It should also be noted that this method differs from [7] in
that it avoids direct evaluations of the feature space. Thus, the



succeeding method keeps with the spirit of the “kernel trick,”
where the feature space is only accessed through evaluation
of the kernel functions [26, pg. 19].

Let K be the kernel function for a RKHS, H , over Rn con-
sisting of continuously differentiable functions. Let ẋ = f(x)
be a dynamical system corresponding to a densely defined
Liouville operator, Af , over H . Suppose that {γi : [0, Ti]→
X}Mi=1 is a collection of trajectories satisfying γ̇i = f(γi).
There is a corresponding collection of occupation kernels,
α := {Γγi}Mi=1 ⊂ H , given as Γγi(x) :=

∫ Ti

0
K(x, γi(t))dt.

For each γi the action of A∗f on the corresponding occupation
kernel is A∗fΓγi = K(·, γi(Ti))−K(·, γi(0)).

Thus, when α is selected as an ordered basis for a vector
space, the action of A∗f is known on span(α). The objective
of the DMD procedure is to express a matrix representation
of the operator A∗f on the finite dimensional vector space
spanned by α followed by projection onto span(α).

Let w1, · · · , wM be the coefficients for the projection of
a function g ∈ H onto span(α) ⊂ H , written as Pαg =∑M
i=1 wiΓγi . The coefficients w1, · · · , wM may be obtained

through the solution of the linear system

 〈Γγ1 ,Γγ1〉H ··· 〈ΓγM ,Γγ1〉H
...

. . .
...

〈Γγ1 ,ΓγM 〉H ··· 〈ΓγM ,ΓγM 〉H


w1

...
wM

=

 〈g,Γγ1〉H...
〈g,ΓγM 〉H

,

(1)
where each of the inner products may be

expressed as either single or double integrals as
〈Γγj ,Γγi〉H =

∫ Ti

0

∫ Tj

0
K(γi(τ), γj(t))dtdτ , and

〈g,Γγi〉H =
∫ Ti

0
g(γi(t))dt. Furthermore, given

h =
∑M
i=1 viΓγi ∈ span(α), then A∗fh ∈ H , and it

follows that

〈A∗fh,Γγj 〉 =

〈
M∑
i=1

viA
∗
fΓγi ,Γγj

〉
H

=

(〈
A∗fΓγ1 ,Γγj

〉
H
, · · · ,

〈
A∗fΓγM ,Γγj

〉
H

) v1
...
vM

 , (2)

for all j = 1, · · · ,M . Using (1) and (2), the coefficients
w1, · · · , wM in the projection of A∗fh onto span(α) can be
expressed as

 w1

...
wM

 =

 〈Γγ1 ,Γγ1〉H · · · 〈ΓγM ,Γγ1〉H
...

. . .
...

〈Γγ1 ,ΓγM 〉H · · · 〈ΓγM ,ΓγM 〉H


−1

×

 〈A
∗
fΓγ1 ,Γγ1〉H · · · 〈A∗fΓγM ,Γγ1〉H

...
. . .

...
〈A∗fΓγ1 ,ΓγM 〉H · · · 〈A∗fΓγM ,ΓγM 〉H


 v1

...
vM

 .

Lemma 5 then yields the finite rank representation for PαA∗f ,

restricted to the occupation kernel basis, span(α), as

[PαA
∗
f ]αα =

 〈Γγ1 ,Γγ1〉H · · · 〈Γγ1 ,ΓγM 〉H
...

. . .
...

〈ΓγM ,Γγ1〉H · · · 〈ΓγM ,ΓγM 〉H


−1

×

K1,1 · · · K1,M

...
. . .

...
KM,1 · · · KM,M


where

Ki,j := 〈K(·, γj(Tj))−K(·, γj(0)),Γγi〉H

Suppose that λi is the eigenvalue corresponding to the
eigenvector, vi := (vi1, vi2, . . . , viM )T , i = 1, . . . ,M , of
([PαA

∗
f ]αα)T , the matrix representation of1 (PαA

∗
f )∗ re-

stricted to span(α). The eigenvector vi can be used to
construct a normalized eigenfunction of (PαA

∗
f )∗ restricted

to span(α), given as ϕi = 1
Ni

∑M
j=1 vijΓγj , where Ni :=√

vTGv and G := (〈Γγi ,Γγj 〉H)Mi,j=1 is the Gram matrix
corresponding to the occupation kernel basis.

The DMD procedure begins by expressing the identity
function, also known as the full state observable, gid(x) :=
x ∈ Rn as a combination of the approximate eigenfunc-
tions of Af and Liouville modes ξi ∈ Rn as gid(x) ≈∑M
i=1 ξiϕi(x), where

ξi =
(
〈(x)1, ϕi〉H · · · 〈(x)n, ϕi〉H

)T
and (x)j is viewed here as the mapping x 7→ xj . In turn,
this yields

ξi =
1

Ni

M∑
j=1

vij

∫ Tj

0

γj(t)dt.

Given a trajectory x satisfying ẋ = f(x), each eigenfunction
of Af satisfies ϕ̇i(x(t)) = λiϕi(x(t)) and hence, ϕi(x(t)) =
ϕi(x(0))eλit, and the following data driven model is ob-
tained:

x(t) ≈
M∑
i=1

ξiϕi(x(0))eλit.

IV. NUMERICAL EXPERIMENTS

This section gives the results two collections of numer-
ical experiments using the methods of the paper. The first
surround the problem of flow across a cylinder, which has
become a classic example for DMD. This provides a bench-
mark for comparison of the present method with kernel-
based extended DMD. The second experiment performs a
decomposition using electroencephalography (EEG) data,
which has been sampled at 250 hz over a period of 8
seconds. The high sampling frequency gives a large number
of snapshots, which then leads to a high dimensional learning
problem when using the snapshots alone. The purpose of

1Here the notation (PαA∗
f )

∗ is used in place of PαAf as Af is an
unbounded operator, and its domain may not include the occupation kernels
that form the basis for span(α). This technicality can be overcome when
compact scaled Liouville operators are leveraged for DMD analysis (see
[27])



Fig. 1. This figure presents the real and imaginary parts of a selection
of ten Liouville modes determined by the continuous time DMD method
given in the present manuscript corresponding to the flow across a cylinder
data given in [3].

this experiment is to demonstrate how the Liouville operator
based DMD can incorporate the large number of snapshots
to generate Liouville modes without discarding data.

A. Flow Across a Cylinder

This experiment utilizes standard data from [3], which
provides a simulation from fluid dynamics. The data corre-
sponds to a wake behind a circular cylinder, and the Reynolds
number for this flow is 100. The simulation was generated
with time steps of ∆t = 0.02 second and ultimately sampled
every 10∆t seconds yielding 150 snapshots. Each snapshot
of the system is a vector of dimension 89, 351. More details
may be found in [3, Chapter 2].

Figure 1 presents the Liouville modes obtained from the
cylinder flow data set. The modes were generated using the
exponential dot product kernel with µ = 50, 000 and the
collection snapshots was subdivided into 50 trajectories of
length 3.
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Fig. 2. Eigenvalues corresponding to the ssVEP dataset from [28].

B. SsVEP Dataset

This experiment uses data from [28]. The data for this ex-
periment was taken from an electroencephalography (EEG)
recording of the visual cortex of one human participant
during the active viewing of flickering images [28]. By
modulating luminance or contrast of an image at a constant
rate (e.g. 12Hz), image flickering reliably evokes the steady
state visually evoked potential (ssVEP) in early visual cortex
[29], [30], reflecting entrainment of neuronal oscillations at
the same driving frequency. SsVEP in the current data was
evoked by pattern-reversal Gabor patch flickering at 12Hz
(i.e. contrast-modulated) for a trial length of 7 seconds,
with greatest signal strength originating from the occipital
pole (Oz) of a 129-electrode cap. Data was sampled at
500Hz, band-pass filtered online from 0.5 48Hz, offline
from 3 40Hz, with 53 trials retained for this individual
after artifact rejection. Of these trials, the first 40 trials were
used in the continuous time DMD method and each trial
was subdivided into 50 trajectories. SsVEP data have the
advantage of having an exceedingly high signal-to-noise ratio
and high phase coherence due to the oscillatory nature of the
signal, ideally suited for signal detection algorithms (such as
brain-computer interfaces [31]–[33]).

In this setting each independent trial can be used as a
trajectory for a single occupation kernel. This differs from
the implementation of Koopman based DMD, where most
often each snapshot corresponds to a single trajectory. The
continuous time DMD method was performed using the
Gaussian kernel function with µ = 50.

Figure 2 presents the obtained eigenvalues, and Figure 3
gives log scaled spectrum obtained from the eigenvectors. It
can be seen that the spectrum has strong peaks near the 12
Hz range, which suggests that the continuous time DMD
procedure using occupation kernels can extract frequency
information without using shifted copies of the trajectories
as in [3].

For this example, the resultant dimensionality of Koopman
based DMD makes the analysis of this data set intractable
without discarding a significant number of samples.
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Fig. 3. Rescaled spectrum obtained from the ssVEP dataset. This doesn’t
quite correspond to the spectrum that would be computed through the
Fourier transform. However, note the significant peak around 12 Hz, which
corresponds to the ssVEP.

V. DISCUSSION

A. Finite Rank Representations

Since a Liouville operator is generally unbounded, con-
vergence of the finite rank representation (in the norm
topology) of Section III cannot be established for most
selections of f . Note that Lemma 5 and the finite rank
representation above work with the adjoint of the Liouville
operator (i.e., PαA∗f ) whose domain contains the occupation
kernels corresponding to the observed trajectories. As a re-
sult, to generate approximate eigenfunctions for the Liouville
operator (i.e., PαAf ), a relationship between PαA

∗
f and

PαAf must be established. Since PαA∗f is finite-rank, it has
a well-defined finite-rank adjoint (PαA

∗
f )∗ on H restricted

to span(α), though it may not agree with PαAf restricted
to span(α), since D(Af ) would have to contain span(α). If
Af is compact then (PαA

∗
f )∗ is equivalent to (PαAf ) when

restricted to span(α). This follows since PαA∗f = PαA
∗
fPα,

when restricted to span(α), and (PαA
∗
fPα)∗ = PαAfPα =

PαAf on span(α). While the modally unbounded nature
of Af limits the usefulness of the above observation, it is
utilized in the DMD procedure to generate a representation
for PαAf , which introduces a layer of heuristics. Since
Koopman operators are also modally unbounded, they are
subject to similar restrictions.

B. Approximating the Full State Observable

The establishment the decomposition of the full state
observable relies very strongly on the selection of RKHS.
In the case of the Bargmann-Fock space, x 7→ (x)i is a
function in the space for each i = 1, . . . , n. However, this
is not the case for the native space of the Gaussian RBF,
which does not contain any polynomials in its native space.
In both cases, these spaces are universal, which means that
any continuous function may be arbitrarily well estimated by
a function in the space with respect to the supremum norm
over a compact subset. Thus, it is not expected that a good
approximation of the full state observable will hold over all
of Rn, but a sufficiently small estimation error is possible
over a compact workspace.

C. Scaled Liouville Operators

One advantage of the Liouville approach to DMD is that
the Liouville operators may be readily modified to generate
a compact operator through the so-called scaled Liouville
operator (see [27]). A large class of dynamics correspond
to a compact operator in this scale Liouville operator case,
while Koopman operators cannot be modified in the same
fashion. Allowing this compact modification, indicates that
on an operator theoretic level, the study of nonlinear dy-
namical systems through Liouville operators allows for more
flexibility in a certain sense.

The experiments presented in Section IV demonstrate
that the Liouville modes obtained with the continuous time
DMD procedure using Liouville operators and occupation
kernels are similar in form to the Koopman modes obtained
using kernel-based extended DMD [7]. Moreover, occupation
kernels allow for trajectories to be utilized as a fundamental
unit of data, which can reduce the dimensionality of the
learning problem while retaining some fidelity that would
be otherwise lost through discarding data.

VI. CONCLUSIONS

By targeting the DMD decomposition on Liouville opera-
tors, which includes Koopman generators as a proper subset,
a decomposition of a continuous time dynamical system can
be performed directly rather than that of a discrete time proxy
for the dynamical system with the Koopman operator. More-
over, by obviating the limiting process using the Koopman
operators in the definition of Liouville operators, a broader
class of dynamics is accessible through this method, since
the requirement of forward completeness may be relaxed.
The notion of occupation kernels were leveraged to enable
a DMD analysis of the Liouville operator. Two examples
were presented, one from fluid dynamics and another EEG
dataset. The method presented here provides a new approach
to DMD, which impacts the fundamental operator theory
underlying traditional DMD with the Koopman operator.
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