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Abstract—Objective: Functional near-infrared spectroscopy 
(fNIRS) has recently gained momentum in research on motor-
imagery (MI)-based brain-computer interfaces (BCIs). However, 
strikingly, most of the research effort is primarily devoted to 
enhancing fNIRS-based BCIs for healthy individuals. The ability 
of patients with amyotrophic lateral sclerosis (ALS), among the 
main BCI end-users to utilize fNIRS-based hemodynamic 
responses to efficiently control an MI-based BCI, has not yet been 
explored. This study aims to quantify subject-specific spatio-
temporal characteristics of ALS patients’ hemodynamic responses 
to MI tasks, and to investigate the feasibility of using these 
responses as a means of communication to control a binary BCI. 
Methods: Hemodynamic responses were recorded using fNIRS 
from eight patients with ALS while performing MI-Rest tasks. The 
generalized linear model (GLM) analysis was conducted to 
statistically estimate and evaluate individualized spatial 
activation. Selected channel sets were statistically optimized for 
classification. Subject-specific discriminative features, including a 
proposed data-driven estimated coefficient obtained from GLM, 
and optimized classification parameters were identified and used 
to further evaluate the performance using a linear support vector 
machine (SVM) classifier. Results: Inter-subject variations were 
observed in spatio-temporal characteristics of patients’ 
hemodynamic responses. Using optimized classification 
parameters and feature sets, all subjects could successfully use 
their MI hemodynamic responses to control a BCI with an average 
classification accuracy of 85.4%±9.8%. Significance: Our results 
indicate a promising application of fNIRS-based MI hemodynamic 
responses to control a binary BCI by ALS patients. These findings 
highlight the importance of subject-specific data-driven 
approaches for identifying discriminative spatio-temporal 
characteristics for an optimized BCI performance. 
 

Index Terms—Amyotrophic lateral sclerosis (ALS), brain-
computer interface (BCI), functional near-infrared spectroscopy 
(fNIRS), subject-specific data-driven approach. 

         
I. INTRODUCTION 

RAIN-COMPUTER interface (BCI) systems can extend the 
frontiers of human communication to the neural level by 

encoding discriminative features of brain responses during 
certain mental tasks into control signals that can be used for 
communication. Probing the brain during motor imagery (MI) 
tasks in which the subject imagines moving a limb has been 
extensively researched in the BCI domain, as the cognitive 
execution of movement induces neural responses that overlap 
with actual motor execution (ME) [1], [2]. MI has naturally 
been adopted as a BCI paradigm suitable for people with severe 
motor disabilities, including amyotrophic lateral sclerosis 
(ALS), who are incapable of any voluntary ME tasks. 
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MI responses can be triggered endogenously, as they do not rely 
on any external stimulus. This is vital in advanced ALS, when 
patients lose most voluntary muscle control, including eye-gaze 
control. MI is, therefore, a great candidate for BCI systems, as 
it offers intentionally-generated, decodable brain characteristics 
that can be independently controlled by users. MI tasks for BCI 
systems offer a wide range of potential clinical applications, as 
they offer a non-muscular neurorehabilitation technique 
through the direct activation of MI neural circuits in order to 
enhance motor and cognitive recovery for patients with severe 
neuromuscular disorders and brain injuries [3]. These clinical 
research areas further provide insight into disease-specific 
neural markers, which advance diagnosis and treatment 
techniques in addition to improving BCIs through optimal 
designs as practical assistive technologies. 

To date, electroencephalography (EEG) has been the most 
extensively researched non-invasive neuroimaging modality in 
MI-based BCIs, primarily due to its non-invasiveness, low-cost, 
portability, and instantaneous measure of neural activity. In 
particular, MI modulates oscillatory variations in EEG 
sensorimotor rhythms (SMR), including the µ (8–12 Hz) and β 
(13–30 Hz) frequency bands, known as event-related 
desynchronization (ERD) and event-related synchronization 
(ERS) [1]. SMR-based BCI is established for both healthy and 
ALS users [4], [5]. However, despite existing promising results, 
many studies have shown that SMR-based BCI end-users do not 
consistently achieve satisfactory performance levels, especially 
without extensive training [6]. Insights from our studies and 
others characterizing ALS-specific electrophysiological 
alterations point to an overall reduction in ERD during motor 
imagery, generally associated with ALS motor impairments [7], 
[8], which raises questions about the feasibility of relying solely 
on EEG to control the BCIs for these cohorts. 

Functional near-infrared spectroscopy (fNIRS) is another 
non-invasive neuroimaging modality that has been used in the 
BCI domain for several years. fNIRS relies on optical 
technology, using near-infrared spectrum light to monitor the 
hemodynamic responses evoked by neural activity by 
measuring changes in oxygenated hemoglobin (HbO2) and 
deoxygenated hemoglobin (HbR) concentrations from the 
cortical surface [9]. These variations in fNIRS measurements 
reflect the increased or decreased blood supply to active cortical 
areas due to neurovascular coupling and correlate with the 
blood oxygen level-dependent (BOLD) signal recorded through 
functional magnetic resonance imaging (fMRI) [10]. As fNIRS 
offers a unique trade-off between EEG’s high temporal 
resolution and fMRI’s high spatial resolution, its portability, 
low cost, metabolic-based specificity, and robustness to various 
types of artifacts when compared to EEG, it is a good candidate 
for BCI applications. In addition, fNIRS allows for a less 
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restrictive natural setting that does not require patients to lay 
flat or to be exposed to loud fMRI noises. Therefore, fNIRS is 
important to advance BCI research for ALS towards improved 
efficacy and a better understanding of brain functionality. 

The feasibility of using fNIRS as a BCI control signal was 
first tested by Coyle et al. [2], who used a simple threshold 
technique (i.e., mean HbO2) to classify MI vs. Rest with 75% 
average accuracy. Sitaram et al. [11] confirmed fNIRS as a 
promising BCI neuroimaging modality, using mean HbO2 and 
HbR amplitude changes to distinguish left-hand MI (LMI) from 
right-hand MI (RMI), with an average offline accuracy of 73% 
and 89% with support vector machines (SVM) and hidden 
Markov models (HMM), respectively. The first online fNIRS 
MI-based BCI, “Mindswitch,” was presented as a basic BCI 
system allowing users to control an “On/Off” switch in almost 
one minute per selection. The users modulated variations in 
mean HbO2 over their motor cortices by imagining squeezing 
a softball, controlling the system with an online accuracy of 
50%-85% [12]. Various levels of complexity in MI tasks were 
investigated by Holper et al. [13]. Through a cross-validation 
process and using Fisher’s linear discriminant analysis (FLDA), 
subject-specific parameters were selected involving the best 
performing channel, the best analysis time interval, and a set of 
up to four features, including mean HbO2, variance, skewness, 
and kurtosis. Simple and complex MI tasks were distinguished, 
with an average classification accuracy of 81%. Naseer et al. 
[14] showed that including the slope along with mean HbO2 
can significantly increase accuracy, as can restricting the 
classification window to [2-7] sec relative to the imagination 
onset within a 10-sec task. The authors discriminated LMI from 
RMI with an average accuracy of 87% using linear discriminant 
analysis (LDA). In another study [15], they also demonstrated 
the feasibility of adding mental arithmetic (MA) to LMI/RMI 
tasks in a three-class BCI and thereby increase the number of 
commands. Their classifier discriminated between the three 
classes, with an average offline accuracy of 75.6% using a 
reduced time window [2-7] sec after imagination onset.  

Research investigating the performance of fNIRS-based 
BCIs in ALS patients is scarce. Naito et al. [16] were the first 
to investigate fNIRS-based BCI for ALS in 2007. MA and 
mental singing cognitive activities were used to answer a series 
of “yes/no” questions by inducing brain activity variations 
reflected in cortical blood volume changes detected with near-
infrared light. To assess patients’ ability to modulate cerebral 
blood volume changes with intention, their detected light 
intensity signals were analyzed for the separability of “yes” and 
“no” patterns, i.e., patients were categorized into two groups, 
based on the separability of their responses. The average 
classification accuracy was 80% for patients in the higher 
separation group but did not exceed 42% for the other group. 
However, the proposed system only reached acceptable 
accuracies for 70% of ALS participants and only 40% of the 
locked-in patients. One possible explanation for the limited 
applicability of their approach is a lack of subject-specific 
features. The authors employed the same features for all ALS 
subjects and did not accommodate for possible inter-individual 
hemodynamic response variabilities. Similar results were 
demonstrated in a case study of a completely locked-in 
syndrome (CLIS) patient with ALS [17] by classifying 
hemodynamic responses to correct and incorrect statements, 

with classification accuracy significantly above chance. 
Despite a considerable number of studies devoted to the 

enhancement of MI-based BCIs relying on fNIRS techniques, 
no study confirms that ALS patients can use MI-hemodynamic 
responses (MI-HR) to control a BCI. The inter-individual 
variabilities of fNIRS-based hemodynamic responses remain a 
challenge further augmented for ALS patients with potentially 
altered responses due to underlying neurological conditions.  

This study aims to quantify the subject-specific spatio-
temporal characteristics of ALS patient’s MI-HR measured 
using fNIRS and to assess the feasibility of using MI-HR to 
control a binary BCI in these cohorts. This paper focused on the 
classification of MI versus Rest to verify MI activation for ALS 
patients. The individualized spatio-temporal characteristics of 
MI (combined LMI and RMI) hemodynamic responses were 
characterized and used to optimize the classification parameters 
and feature sets. As the exact shape of MI-HR has not been yet 
evaluated for ALS, and given the potential contamination of 
fNIRS signals with physiological noise, the fNIRS-measured 
cortical activation of MI tasks was statistically estimated and 
verified using a generalized linear model (GLM) with respect 
to a canonical hemodynamic response function (cHR). To 
accommodate for atypical responses using the subject’s 
individual patterns, we further proposed a data-driven estimated 
coefficient obtained from GLM as a novel feature to enhance 
classification performance. The performance of the binary BCI 
(MI vs. Rest) was finally evaluated through 5-fold cross-
validation using an SVM classifier.  

II.  METHODS  
A. Participants 

Eight ALS patients were recruited for our study (age: 
57.9 ± 13.8 years, two females), with varying degrees of 
disability, assessed using the ALS functional rating scale-
revised (ALSFRS-R: 18.2 ± 14.6) on a 48-point scale [18]. 
Three patients (ALS-1, ALS-2, and ALS-4) were completely 
dependent on mechanical ventilation, and had very low 
ALSFRS-R scores (0-7). These patients had no verbal 
communication abilities. The youngest (ALS-1) was in a late-
stage locked-in state (LIS) with no objective means of 
communication, due to the loss of all muscle control, including 
eye movement. All participants except for ALS-6 were right-
handed. ALS-8 was right-hand dominant, but could write with 
both hands. Table I shows the patients’ demographics 
information. The study protocol was approved by the 
institutional review board (IRB) of the University of Rhode 
Island (URI), and written informed consents were provided 
either by each patient or their caregiver. 

B.  Data Acquisition and Experimental Protocol 
fNIRS data were recorded using NIRScout (NIRx Inc.), with 

two near-infrared light wavelengths (760 nm and 850 nm) to 
acquire HbR and HbO2 responses, respectively. The signals 
were digitized at 15.6 Hz, and the optode montage was 
configured using 16 probes, eight sources, and eight detectors 
mounted on a standard EEG cap, with a separation distance of 
~3 cm to maintain acceptable signal quality and sensing depth. 
The probe-layout resulted in 14 channels, as shown in (Fig. 1-
left), following previous research, which commonly reports the 
engagement of the pre/frontal cortex in addition to the primary 
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motor cortex in MI-related tasks [19]. As depicted in Fig. 1-left, 
for simplicity, we used source (S) and detector (D) numbers to 
illustrate our probe-layout. The sources were located according 
to the 10-5 electrode placement system as follows—AF3 (S1), 
AF4 (S5), FCC5h (S3), FCC1h (S2), FCC2h (S6), FCC6h (S7), 
CCP3h (S4), and CCP4h (S8)—while the detectors were placed 
at AFF1 (D2), AFF2 (D6), F5 (D1), F6 (D5), FCC3h (D3), 
FCC4h (D7), CCP1h (D4), and CCP2h (D8). Four fNIRS 
channels covered the pre/frontal cortex (CH1, CH2, CH8, and 
CH9) associated with the pre/supplementary motor area 
(pre/SMA), involved in motor preparation. In the proximity of 
the primary motor cortex, ten channels (CH3, CH4, CH5, CH6, 
CH7, CH10, CH11, CH12, CH13, and CH14) were positioned 
to surround the standard C1, C2, C3, and C4 areas as reference 
points for hand MI-related activation of the motor cortex. 

Data was recorded from ALS patients in their homes or care 
centers. Subjects who retained the ability to move their arms 
were instructed to relax their arms and avoid movement. The 
MI stimulation paradigm was designed using BCI2000 
software. The recording session consisted of three runs 
separated by approximately five minutes of rest. During each 
run, the subject was instructed to respond to three types of 
visual cues presented on-screen with three types of mental 
motor activities: (a) left-hand motor imagery (LMI) when the 
cue appears on the left side of the screen; (b) right-hand motor 
imagery (RMI) when the cue appears on the right side of the 
screen; and (c) resting when the cue appears in the middle of 
the screen (Fig. 1-right). Each run consisted of 10 trials for each 
type of MI task randomly, with Rest trials in between (20 MI 
trials and 20 Rest trials per run). The resting cue was a green 
circle positioned in the middle of the screen to help them relax, 
allowing hemodynamic responses to return to baseline. Since 
our paradigm was designed for BCI communication purposes, 
the resting period was shortened to 10 seconds, similar to the 
MI period, which was assumed satisfactory for practical BCI 
communication. No participants had prior BCI experience, but 
all participants except ALS-7 and ALS-8 had a single 
familiarization session before the main recording session. 

C. Data Analysis  
1) Signal Preprocessing  

The modified Beer-Lambert Law was used to calculate 
changes in the concentrations of HbO2 and HbR using recorded 
alterations in the reflected light attenuation [20]. fNIRS data 
were then band-pass filtered at 0.01-0.09 Hz to eliminate 
physiological noises caused by respiration (~0.3 Hz), cardiac 
activities (~1 Hz), and Mayer waves (~0.1 Hz). As fNIRS signal 
quality can be heavily compromised by the poor coupling of 
optodes to the head, by optical interference from dense and 
heavily pigmented hair, the quality of the signal was 
automatically evaluated through the signal-to-noise-ratio 
(SNR) of each channel using NIRScout. Further, an exclusion 
criterion was considered based on a correlation threshold 
between HbO2 and HbR, indicating a high-level physiological 
motion artifact [21]. The running correlation between HbO2 
and HbR was calculated for each channel, and if it exceeded an 
0.5 threshold, or was strictly -1, the channel was discarded. 
Data was initially segmented into 10-sec trials of LMI, RMI, 
and Rest, according to the stimulus presentation time. To 
discriminate MI-HR from Rest-HR, trials were combined to 
form two sets, with 60 trials for each condition of MI-HR and 
Rest-HR, representing the two classes. Individual MI tasks that 
contained artifacts were automatically rejected based on 
subject-specific thresholds. To analyze the spatio-temporal 
characteristics of the complete hemodynamic response pattern, 
MI trials were concatenated to the following Rest trials in a 
single MI-Rest trial (10 sec LMI/RMI, followed by 10 sec Rest) 
to form a total of 60 MI-Rest trials. Due to fNIRS oscillatory 
nature, MI task data was then down-sampled by a factor of 8.6 
to account for serial autocorrelations that could impact further 
hemodynamic response analysis [22]. 

2) The Generalized Linear Model (GLM) Formulation 
An estimation of individualized cortical activation for each 

MI-Rest trial was performed by fitting the measured 
hemodynamic response (mHR) corresponding to the MI-Rest 
trial to a generalized linear model (GLM) using a robust 
regression algorithm [23]. The GLM was formulated according 
to [23] using the following equation: 

 

𝑚𝐻𝑅𝑗 
𝑖 =  𝛽𝑗

𝑖 . 𝑑𝐻𝑅 + 𝜓𝑗
𝑖  . 1 +  𝜀𝑗

𝑖                     (1) 
 

where 𝑚𝐻𝑅𝑗 
𝑖  𝜖 𝑅𝑁×1 is the measured hemodynamic response, 

corresponding to the 𝑗th MI-Rest trial at each channel 𝑖 , and 𝑁 
is the size of the fNIRS data (𝑁=36 samples for the down-
sampled segments of 10 sec MI and 10 sec Rest). 𝑚𝐻𝑅 is 
modeled as a linear combination of the desired (ideal) 
hemodynamic response (𝑑𝐻𝑅), 𝛽 is the unknown regression 
coefficient quantifying the 𝑑𝐻𝑅 magnitude,  𝜓 is a coefficient 
to compensate for the baseline drift, 1𝜖 𝑅𝑁×1 is the constant 
term to model the baseline, and 𝜀 is the “error” or “residual” 
term minimized in fitting the measured 𝑚𝐻𝑅 to the 𝑑𝐻𝑅.  

Cortical activation was evaluated based on the statistical 
comparison of the 𝑚𝐻𝑅 to the 𝑑𝐻𝑅. The 𝑑𝐻𝑅 is typically 
modeled as a linear time-invariant system, computed by 
convolving the stimulus pattern, defined as a boxcar-shaped 
function, 𝐵𝑜𝑥(𝑘), where 𝑘 references time samples (i.e., 10 sec 
MI task and 10 sec Rest), with the canonical hemodynamic 
response function (𝑐𝐻𝑅) as follows: 

TABLE I  
PARTICIPANT’S DEMOGRAPHIC INFORMATION.  

Participant 
No. Age Sex 

ALSFRS-
R  

(max 48) 

Disease 
Duration 
(years) 

Handedness 

ALS-1 29 M 0 4 R 
ALS-2 55 M 4 11 R 
ALS-3 70 M 14 8 R  
ALS-4 67 M 7 2 R 
ALS-5 69 F 23 11 R 
ALS-6 52 M 22 3 L 
ALS-7 54 F 39 2 R 
ALS-8 67 M 37 0.6 R 

Mean±SD 57.9±13.8 - 18.2±14.6 5.2±4.2 - 
 
  
 

 
Fig. 1. Left: The fNIRS probe-layout. Right: The motor imagery (MI) task 
experimental protocol. 
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𝑑𝐻𝑅(𝑘) = ∑ 𝐵𝑜𝑥(𝑘) . 𝑐𝐻𝑅( 𝑘 − 𝑛)∞
𝑛=−∞                 (2) 

𝐵𝑜𝑥(𝑘) = 0, 𝑖𝑓 𝑘 𝜖 𝑅𝑒𝑠𝑡 
                 1, 𝑖𝑓 𝑘 𝜖 𝑀𝐼 

 

The 𝑐𝐻𝑅 is a specific time series shape generated by a statistical 
parametric mapping (SPM) consisting of a linear combination 
of two gamma functions (𝛤) as shown below [24]: 

 

𝑐𝐻𝑅(𝑘) = (
𝑘

𝛼1−1
.𝛾1

𝛼1 . 𝑒−𝛾1𝑘

𝛤(𝛼1)
− 𝑐

𝑘
𝛼2−1

.𝛾2
𝛼2 . 𝑒−𝛾2𝑘

𝛤(𝛼21)
)       (3) 

 

where 𝛼1 =6 sec represents the delay of the hemodynamic 
response relative to the MI onset, 𝛾1 = 𝛾2 = 1 sec respectively 
represent the dispersion of hemodynamic response and the 
undershoot, 𝛼2 = 16 sec represents the delay of the undershoot 
relative to MI onset, and 𝑐 = 1/6 represents the amplitude ratio 
of the undershoot to the peak response. The gamma function 
(𝛤) acts as a normalization parameter, and our kernel length is 
20 sec. Robust regression estimates of 𝛽 weights were obtained 
to indicate 𝑑𝐻𝑅 activity strength and used in further analysis. 
Note that the 𝑐𝐻𝑅 parameters followed previous studies [23]. 

Based on the main patterns of the fNIRS hemodynamic 
responses for motor tasks in healthy individuals, two main 
responses could be identified: a typical response of a delayed 
increase in HbO2, and a slower, lower amplitude decrease in 
HbR [25], and/or an inverted response, characterized by a 
decrease in HbO2 and/or an increase in HbR [26]. As the MI-
hemodynamic responses (MI-HR) characteristics of ALS and 
the respective inter-subject variability are still under evaluation, 
we performed a temporal-response evaluation prior to the GLM 
analysis, where each trials’ MI-HR pattern was evaluated to 
determine whether the HbO2 response was typical or inverted. 
Following this evaluation, the GLM was applied based on the 
conventional 𝑐𝐻𝑅 for the typical response, or an inverted 𝑐𝐻𝑅 
for the inverted response. In this way, we ensured that our GLM 
was built based on subject-specific cortical activations for both 
response shapes, highlighting individualized differences. 

3) Brain Activation Maps  
A key factor in designing a robust BCI based on MI 

responses is to detect a satisfactory level of cortical activation 
in response to the task and to investigate its consistency across 
trials. In this study, a statistical t-value comparison between the 
measured data for each MI-Rest trial and the 𝑑𝐻𝑅 was adopted 
based on the estimated 𝛽 weights obtained from our GLM 
model. The t-value was defined as the ratio of the regression 
coefficient to its standard error [23], as shown follows: 

 

𝑡𝑗
𝑖 =

𝛽𝑗
𝑖

𝑆𝐸(𝛽𝑗
𝑖)

                                               (4) 
 

where 𝑆𝐸 is the standard error of the estimated coefficient to 
measure the size of the difference between the 𝑚𝐻𝑅𝑗 

𝑖  of 
channel 𝑗 and the 𝑑𝐻𝑅. The t-values for HbO2 responses were 
calculated for individual MI-Rest trials and used to create brain 
activation maps to illustrate the statistically significant active 
channels across trials. Significantly active channels were 
defined through a one-sample t-test using a t-value based 
channel selection approach [27]. The selection reliability was 
assessed using t-values above the critical t-value (tcrt=1.69), 
computed based on the degrees of freedom for the data (𝑁-

1=35) and the statistical significance level (𝛼= 0.05). A 
significant positive t-value (t>tcrt) indicates that the channel is 
significantly active, i.e., highly correlated with the 𝑑𝐻𝑅, 
whereas a negative t-value indicates an inactive channel. To 
keep equal standards across trials, the t-values were normalized 
within the range of 0-1 using the following equation: 

                                 𝑎′ =  
𝑎−min (𝑎)

max(𝑎)−min (𝑎)
                                    (5) 

where 𝑎 denotes the actual t-value, 𝑎′ the normalized t-value, 
and min (𝑎) and max (𝑎) the minimum and maximum t-values 
across the trials. 

4) Classification Procedure  
Linear SVM, commonly used to classify hemodynamic 

responses, were used to evaluate the performance of each 
subject and the ability to discriminate between their MI-HR and 
Rest-HR responses using 5-fold cross-validation. For channel 
selection, the t-value-based channel selection approach 
explained in section II.C.3, was adopted, where at most eight 
significantly active channels (t>tcrt) out of fourteen were 
considered for classification [27]. The t-value-based channel 
optimization used only the training set to avoid biased 
estimation. For each training set, the t-values obtained from the 
GLM analysis were averaged across the training trials to 
determine the overall significantly active channels. Incremental 
sets of significantly active channels starting from a single 
channel (the most significantly active) up to a maximum of 
eight significant channels were then selected and considered for 
further analysis.  

In order to distinguish MI-HR from the Rest-HR condition, 
eight discriminative features commonly used in fNIRS-BCI 
studies were extracted from each HbO2 and HbR response, 
corresponding to MI and Rest trials. The features included 
signal mean (MeanHbO2, MeanHbR), signal maximum (MaxHbO2, 
MaxHbR), signal slope (SlopeHbO2, SlopeHbR), signal variance 
(VarHbO2, VarHbR), signal skewness (SkewHbO2, SkewHbR), signal 
kurtosis (KurtHbR, KurtHbR), and the difference between the 
mean and the minimum (DMMHbO2, DMMHbR). In addition, as 
the MI-hemodynamic response (MI-HMR) for ALS is still 
under evaluation, and considering individual MI-HR 
differences [28], an additional feature was proposed to account 
for subject-specific hemodynamic characteristics instead of 
typical cHR. This was inspired by promising prior results in 
which the 𝛽 coefficients were adaptively estimated for real-
time fNIRS imaging  and used as features for classification [29]. 
For the estimated data-driven 𝛽 coefficient (𝑑𝑑𝛽) feature, the 
GLM model formulation was built based on subject-specific, 
data-driven hemodynamic responses (𝑑𝑑𝐻𝑅) within a 10 sec 
period (i.e., only the MI period), instead of the typical 20-sec 
period used in the 𝑑𝐻𝑅. The subject-specific 𝑑𝑑𝐻𝑅 was 
defined as the overall average MI-HR activation across all the 
MI trials in the training set to specifically capture individual 
hemodynamic patterns. Estimated 𝑑𝑑𝛽 regression coefficients 
for each trial were then used as additional features representing 
the cortical activation strength for each channel.  

Features were optimized for each subject through the 5-fold 
cross-validation iterative procedure to ensure that the subject-
specific combination of features that contains the most 
discriminative information was properly identified. To do so, 
all possible combinations of two to eight of the eight features 
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(246 possible combinations, i.e., (8
2
) + (8

3
)+. . . +(8

8
), possible 

one- to eight- channels selected based on the previously 
explained t-value brain activation procedure, and time-windows 
([0-10] sec, and [2-7] sec), were considered for each subject’s 
HbO2, HbR, and combined HbO2 and HbR fNIRS responses. 
If both HbO2 and HbR data were used, the feature combinations 
were created and concatenated from both signals. The choice of 
time windows was guided by promising results from previous 
studies, reporting that confining the time window to [2-7] sec 
post-stimulus within the overall 10 sec MI task period improves 
classification performance, as typical hemodynamic responses 
lag the neuronal event by ~2 sec and take ~5 sec to reach peak 
value [14]. Notably, the subject-specific 𝑑𝑑𝐻𝑅 necessary to 
estimate the 𝑑𝑑𝛽regression coefficients was calculated by 
averaging the MI trials for each training set over the selected 
significantly active channels. Results are reported for optimal 
subject-specific classification outcomes out of all possible 
classification problems for each subject (3 fNIRS response 
combinations, 246 feature combinations, 2 time-windows, and 
up to 8 possible sets of selected channels). The performance 
was evaluated using 2 metrics: accuracy (Acc) and the F-score. 
An experimental analysis to investigate the effect of the number 
of selected channels and the length of time window on optimal 
classification performance was implemented and reported in the 
supplementary material (see Fig. S1). As this study primarily 
focused on the classification of MI vs. Rest to verify 
hemodynamic-based MI activation for ALS, the proposed 
methods focused on characterizing the spatio-temporal 
characteristics of MI-Rest trials (combining LMI and RMI) for 
optimal classification. However, considering the practical 
importance of discriminating LMI vs. RMI, preliminary results 
were also reported in the supplementary material to avoid 
distracting from the main focus of this work (see Table S1). 

5) Correlation Analysis  
Correlation between classification accuracies corresponding 

to each ALS patient and their clinical scores (ALSFRS-R) was 
performed using the Spearman correlation coefficient (rho) 
with a significance level of 𝛼= 0.05. This analysis assessed the 
effect of patients’ disability levels on BCI performance. 

III. RESULTS 
In order to show the consistency of MI-HR cortical activation 

across trials, GLM analysis results are displayed in Fig. 2, 
which shows brain activation maps for ten representative MI-
Rest trials, and the averaged map showing overall activation 
across the ten trials, for each participant. The brain activation 
maps show the normalized t-values within the range of 0-1, for 
illustration only. The normalized t-values represent the level of 
activation of each channel, encoded by color intensity. The 
numbers in the maps refer to channel numbers. We observed 
consistent significant (t>tcrt) cortical activation for all subjects 
across most trials, which indicates the reliability of MI-HR as a 
control signal for a single trial BCI for ALS patients. However, 
cortical activation topographies were not consistent between 
subjects, except for primary motor cortex activation. This 
indicates variable spatial characteristics of MI-HR across ALS 
subjects, and highlights the importance of determining subject-
specific active channels for an improved BCI performance. 

Fig. 3 illustrates the averaged brain activation maps (actual t-

values) across all MI-Rest trials. Subject-specific significant 
activation patterns were observed for all subjects, with different 
cortical activation patterns for each individual. ALS-1 showed 
significant bilaterally diffused activation over the pre/frontal 
and motor cortex, with significant t-values occurring at CH8 (t-
value=2.43), CH6 (t-value=2.36), CH1 (t-value=2.37), CH2 (t-
value=2.13), CH12 (t-value=2.05), CH7 (t-value= 2.00), and 
CH9 (t-value= 1.95). For ALS-2, the most significant activation 
was localized in the dominant (left) hemisphere in the motor 
cortex CH3 (t-value=4.80), CH5 (t-value=3.91), particularly 
the area for right-hand movement (C1 and C3) and the 
pre/frontal cortex CH1 (t-value=4.82), and CH2 (t-value=4.39). 
Slightly lower levels of activation were centered in the motor 
cortex (surrounding Cz) in CH4 (t-value=3.45) and CH11 (t-
value=3.91). ALS-3’s activity was bilaterally localized in both 
the pre/frontal and primary motor areas, where CH12 (t-
value=3.24), CH5 (t-value=3.10), and CH3 (t-value=2.44) 
surrounding the cortical hand-areas in both hemispheres (C4 
and C3, respectively) were the most activated areas. ALS-3 also 
had the highest pre/frontal activation at CH1 (t-value=2.68) and 
CH8 (t-value=1.93). For ALS-4, the most significant activation 
was observed in CH11 (t-value=3.57), covering the central-
right primary motor cortex (C2 and Cz) along with CH9 (t-
value=2.70), and CH2 (t-value=2.59) in the pre/frontal cortex. 
For ALS-5, activation was highly localized in the primary 
motor cortex, CH3 (t-value=5.84), and CH5 (t-value=4.93) 
surrounding the right-hand area (C1 and C3), in the dominant 
(left) hemisphere, while in the pre/frontal cortex, CH8 (t-
value=5.31), and CH9 (t-value=5.28), covering the pre/frontal 
cortex in the opposite (right) hemisphere, were the most 
activated locations in the right hemisphere. For ALS-6, the 
activity was more localized in the left-hand area in the dominant 
(right) hemisphere, and more diffused in the left hemisphere. 
Specifically, CH12 (t-value=5.02) was the most significantly 
activated, along with CH4 (t-value=4.57), CH5 (t-value=4.21), 
and CH1 (t-value=4.05), in both the primary motor and 
pre/frontal cortex, respectively. For ALS-7, activity was more 
diffused bilaterally in both the pre/frontal and the primary 
motor cortex, with CH12 (t-value=3.88), CH10 (t-value=3.42), 
CH1 (t-value=3.46), CH5 (t-value=3.40), CH2 (t-value=3.34), 
CH6 (t-value=3.21), and CH3 (t-value=3.00) showing the 
highest activation levels. For ALS-8, the activity was mainly 
localized on the right primary motor cortex in CH13 (t-
value=4.55) and CH12 (t-value=3.75) surrounding the left-hand 
area (C2 and C4). The right pre/frontal cortex also had a high 
activation level, primarily located around CH8 (t-value=3.69). 

Fig. 4 illustrates the overall normalized grand-average of 
HbO2 and HbR responses for each subject over all of the MI-
Rest trials for representative significantly active channels. The 
figure illustrates the responses starting 5 sec prior to the MI 
stimulus, followed by the 20-sec MI-Rest trial. In general, we 
observed a variability in the temporal characteristics of 
hemodynamic responses both at the subject level (i.e., across 
subjects) and at the channel level (i.e., within each subject). 
Comparing subject-specific representative significantly active 
channels, individual variations in the temporal characteristics 
of the hemodynamic responses were observed in the onset of 
the rise and the peak time. For ALS-2, ALS-4, and ALS-6, the 
HbO2 rise started ~2 sec after MI stimulus onset. 
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 For ALS-3 and ALS-5, the HbO2 response had a relatively 
early rise, starting almost 0.5 sec after MI stimulus onset. 
However, for ALS-1 and ALS-7, the HbO2 rise was delayed, 
starting ~3 sec and ~4 sec, respectively. These subjects’ fNIRS 
response, illustrated in Fig. 4, was a typical pattern in which the 
HbO2 response was coupled with a decrease in HbR response 
at approximately the same time of the HbO2 rise. We further 
observed individual variations in a few individuals’ HbO2 
response peak times, starting ~5 sec (for ALS-4), ~6 sec (for 
ALS-3, ALS-5, and ALS-6), ~8 sec (for ALS-1, and ALS-7), 
and ~9 sec (for ALS-2). For almost all subjects, the HbR 
response reached its lowest level later than its peak HbO2 
response. The lowest HbR responses were ~8 sec (for ALS-5), 
~11 sec (for ALS-1), ~14 sec (for ALS-6), and ~15-sec (for 
ALS-2 and ALS-4), relative to MI stimulus onset. For ALS-3 
and ALS-7, the HbR response reached the lowest level ~ 7 and 
~8 sec, respectively; however, their responses were extended 
along the Rest period (i.e., there was less difference between 
the response in the MI period and the Rest period). For ALS-3, 
the HbR response maintained a slightly flat decrease, before 
both HbO2 and HbR responses slowly returned to baseline at 
the end of the Rest period. For ALS-7, the HbO2 response had 
a second peak ~14 sec, while the HbR response reached another 
low level ~15 sec after the MI stimulus onset. Finally, the 
observed hemodynamic response pattern for ALS-8 was 
inverted. His HbO2 response started decreasing ~2 sec prior to 
stimulus onset, reaching its lowest level ~1.5 sec, while the 
HbR started increasing around the stimulus onset, peaking ~5 

sec, as illustrated in Fig. 4.  
Notably, we observed variability in response patterns (i.e., 
typical versus inverted) at the channel level for several subjects 
(ALS-1, ALS-2, ALS-3, and ALS-7), while one subject (ALS-
8) showed inverted responses in all channels, and three (ALS-
4, ALS-5, and ALS-6) had typical patterns in all channels. Fig. 
5 illustrates the overall normalized grand-average of HbO2 and 
HbR inverted responses, observed for some subjects, averaged 
across MI-Rest trials for representative significantly active 
channels. For ALS-1, and ALS-2, the HbR response started 
increasing ~1.5 sec and ~2 sec after the MI stimulus onset, 
while their HbO2 response had a relatively early decrease, 
starting almost 2 sec before stimulus onset. For ALS-3, HbR 
started increasing ~3 sec, while the HbO2 response of the Rest 

 
Fig. 2 Brain activation maps for ten representative MI-Rest trials (including both LMI and RMI) for all subjects to show the consistency of MI activation for 
ALS patients across trials. The channel locations are displayed as numbers on the plots. The maps showed the normalized t-values based on the GLM analysis, 
and the color bar shows the level of brain activation. The last column on the right represents the averaged brain activation map across the ten selected trials. 
 

 
Fig.3 Brain activation maps for each subject averaged over all of the MI-Rest 
trials to show the overall subject-specific activation levels. The channel 
locations are displayed as numbers on the plots. The maps show the actual t-
values (averaged over all the MI-Rest trials) based on the GLM analysis, and 
the individual color bars show the averaged level of brain activation for each 
subject (significant activation: t-value>tcrt=1.69).  
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period. For ALS-7, the HbR response started increasing around 
5 sec, coupled with an HbO2 decrease around 7 sec relative to 
MI onset. Individual variations were also observed in response 
peak and trough times. For ALS-1, the HbR response peaked 
around 6.5 sec, and the HbO2 response reached its lowest level 
about 2.5 sec after the stimulus onset. Similarly, for ALS-2, the 
HbR response peaked around 6.5 sec, while the HbO2 reached 
its lowest level around 1.5 sec post-stimulus.  

 For ALS-3 and ALS-7, a relatively late peak of HbR 
response appeared around 11 sec and 17 sec, respectively. ALS-
7’s HbO2 response reached its lowest level around 16 sec. For 
both ALS-3 and ALS-7, the observed inverted response was 
extended along the Rest period, similar to their typical response, 
and differences between responses during MI and Rest 
conditions are minimal for these two subjects maintained a 
slightly flat pattern, below HbR, before both HbO2 and HbR 
responses slowly returned to baseline at the end  

Table II shows subject-specific optimized classification 
features, parameters, and performance. For each subject, the 
optimal number of active channels (up to 8), the optimal time 
window relative to the stimulus-onset ([0-10] sec, or [2-7] sec), 
the most discriminative fNIRS responses (HbO2, HbR, or 
both), and the optimal feature combination (of 2 to 8 features) 
used to obtain the maximum classification performance are 
displayed. The performance metrics used averaged 5-fold 
cross-validation classification accuracy and F-score.  

The classification outcomes show that all participants in this 
study were able to use their MI-HR to successfully reach an 
acceptable BCI performance. The performance metrics reported 
in Table II utilized subject-specific features, channels, and 
parameters related to each ALS patient’s individual 
hemodynamic responses. Overall, ALS subjects achieved an 
average classification accuracy of 85.4%±9.8% and an average 
F-score of 0.87±0.09, reaching a maximum accuracy of 98.6% 
and an F-score of 0.99 (for ALS-4) using a [2-7] sec response 
window relative to imagination onset, and only two features 
(Max and Slope). The minimum accuracy reached was 73.8%, 
with an F-score of 0.83 for ALS-1, who was in late-stage LIS. 
It is worth noting that using data from both HbO2 and HbR 
optimized the performance for almost all subjects (except ALS-
1 and ALS-2). Similarly, confining the time window to [2-7] 
sec post-stimulus within the 10 sec MI task period improved the 
classification performance for three subjects (ALS-4, ALS-6, 
and ALS-7). In addition, a combination of two features was 
sufficient to obtain a satisfactory performance for most 
subjects, while the maximum number of features used was four 
(for ALS-2) out of all of the possible combinations (i.e., sets of 
2 to 8 features) investigated in this study. As for the number of 
channels, the optimal subject-specific number of channels 
varied across subjects from a single channel to 8 channels. 

Fig. 6 illustrates the discriminative ability of the features by 
comparing their frequencies in the optimized subject-specific 
features across all subjects. Signal Max was selected as an 
optimum feature for half of the subjects, and Mean, Slope, Kurt, 
and 𝑑𝑑𝛽 were included in the combination for three subjects, as 
shown in Table II and Figure 6. Signal Skew and DMM were 
included in optimizing the performance for two subjects (ALS-

 
Fig. 4 Grand-averaged relative changes of the oxygenated (HbO2) and deoxygenated (HbR) responses across all the trials for the most significantly active 
channels (t>tcrt) with typical HbO2 responses during MI-Rest task (10 sec MI, both LMI and RMI combined, and 10 sec Rest). Each plot shows the 
hemodynamic response from 5 sec prior to the MI stimulus onset to 20 sec post-stimulus.  
 

 
Fig. 5 Grand-averaged relative changes of the oxygenated (HbO2) and 
deoxygenated (HbR) responses across all the trials to illustrate the observed 
inverted responses for the most significantly active channels (t>tcrt) for four 
ALS subjects performing a MI-Rest task (10 sec MI, both LMI and RMI 
combined, and 10 sec Rest). Each plot shows the hemodynamic response from 
5 sec prior to the MI stimulus onset to 20 sec post-stimulus.  
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3 and ALS-6) and a single subject (ALS-1), respectively. 
Our Results did not identify any statistical correlation 

between the ALS patients’ classification accuracy and their 
ALSFRS-R score (rho=0.12, p=0.79). This is consistent with 
previous studies related to BCI performance evaluation for ALS 
patients [30]. While the minimum classification accuracy in this 
study (73.8%) corresponded to the subject with the lowest 
ALSFRS-R score (ALS-1), i.e., the highest level of disability, 
this did not hold for other subjects, such as ALS-4, who had a 
relatively high degree of disability (ALSFRS-R=7), but 
achieved the highest accuracy in this study (98.6%). 

IV. DISCUSSION 
The complex neurobiological substrates underlying ALS, 

along with the variabilities commonly identified in human 
fNIRS hemodynamic responses [26], can result in potential 
subject-specific hemodynamic response changes, adding 
further challenges to the practical design of fNIRS-based BCI 
systems for these patient. In the present work, we proposed a 
subject-specific data-driven approach to optimize fNIRS-based 

BCI performance for ALS patients. Our findings demonstrated 
that regardless of their disability level, ALS patients can reach 
a satisfactory level of performance (>85%), indicating an 
acceptable level of separability in a binary BCI.  

Despite inter-individual variations, our findings showed 
overall consistent intra-individual cortical activation across 
trials. Relatively limited inconsistency in the intra-individual 
cortical topographies can be attributed to general hemodynamic 
variations commonly reported for fNIRS signals [31]. The 
observed consistency across trials demonstrated that MI-HR 
can be utilized as a potential input for a practical MI-BCI. 
Furthermore, an overall significant level of cortical activation 
was observed for all subjects, indicating that MI-HR can be 
identified in ALS patients using fNIRS signals. As expected, 
the overall activation across all trials for each subject revealed 
individual cortical spatial distribution, with both the pre/frontal 
and primary motor cortices having significant bilaterally-
localized activation in almost all subjects. This is consistent 
with the previous findings indicating pre-frontal [32] and 
primary motor activation [11], [33] during MI tasks that follow 
the same organization as ME, and is not due to muscle activity. 
Moreover, as previously reported [34], the spatial distribution 
of MI-HR are more bilateral rather than contralateral when 
compared to ME, consistent with our results, showing bilateral 
spatial distribution of activation for most subjects.  

Evaluating the individualized temporal characteristics of the 
MI-HR, our results showed that the main pattern identified for 
most subjects was a typical MI-HR (i.e., increase in HbO2 and 
decrease in HbR) associated with the MI stimulus onset. 
However, the observed temporal characteristics of the typical 
MI-HR varied across subjects. It is worth noting that only one 
subject (ALS-8) had an inverted MI-HR in all channels. This is 
consistent with previous fNIRS-based MI studies, observing 
inverse oxygenation responses during ME and MI tasks [26], 
[35], [36], more likely associated with the MI rather than ME, 
as indicated in [26]. Interestingly, in our study, both typical and 
inverted patterns were observed in different channels for half of 
the subjects. This suggests fNIRS response variability on the 
channel level, within the same subject, and emphasizes the need 
for personalized feature sets, capturing subject-specific spatial 
hemodynamic variations. Moreover, the inconsistency of 
hemodynamic patterns (i.e, typical or inverted) across channels 
might explain why some subjects who had more consistent 
patterns across channels (e.g., ALS-5 and ALS-8) needed fewer 
channels for optimized BCI performance than other subjects 
(see Table II). However, this was not the case for some subjects 
(ALS-4 and ALS-6), whose typical patterns were also 
consistent across channels, but more channels were required to 
reach their optimal outcomes. Whether this could be explained 
by variability in the temporal responses across channels, or 
distinct spatial activations, requires further investigation.  

Generally, fNIRS measures brain activity indirectly based on 
the cortical neurovascular coupling. In typical responses, the 
rise of HbO2 levels has been interpreted as the result of the 
increase in cerebral blood flow (CBF) to active regions 
stimulated by the increase in neural activity. Typically, this 
physiological response remains as long as the CBF 
overcompensates for tissues’ energy demand in the active areas. 
Hence the typical response observed in several subjects in this 
study is explained by localized changes in their cortical 

 
Fig. 6 Histogram showing the selection frequencies of the features in the 
optimized subject-specific feature sets.  
 

Table II 
OPTIMIZED SUBJECT-SPECIFIC CLASSIFICATION PARAMETERS, 

FEATURES, AND PERFORMANCE.  

Subject 
Number 

Number 
of 

Channels 

Time 
Window 

(sec) 

fNIRS 
Signal 

Optimal 
Feature 

Combination 

 

Acc (%)  F-Score 
 

   

1 5 0-10  HbO2 Kurt, DMM 73.8 0.83 

2 8 0-10  HbO2 Slope, Mean, 
Max, Kurt 88.6 0.89 

3 5 0-10 HbO2, 
HbR Skew, ddβ 74.4 0.74 

4 8 2-7  HbO2, 
HbR Slope, Max 98.6 0.99 

5 3 0-10  HbO2, 
HbR Mean, Kurt 95.0 0.95 

6 6 2-7  HbO2, 
HbR 

Slope, Max, 
Skew 92.9 0.93 

7 6 2-7  HbO2, 
HbR Max, ddβ 76.4 0.74 

8 1 2-7 HbO2, 
HbR Mean, ddβ 83.3 0.88 

Average ~5 -  -   - 85.4±9.8 0.87±0.09 
 



 9 

activities through blood oxygenation levels, before slowly 
returning to baseline upon the task ends [25]. The physiological 
mechanisms underlying inverted hemodynamic responses have 
not yet been clearly explained. Holper et al. [26] reported that 
the inverted response observed in some healthy subjects, during 
simple and/or complex MI tasks, is likely due to individual 
variations in the cognitive mechanisms underlying simple vs. 
complex tasks. A behavioral interpretation was suggested in the 
context of the empirical relation [37] (i.e., the Yerkes-Dodson 
law) between attention and performance, speculating that the 
inverse response might be related to the increased mental load 
of MI, to the point where the engaged cortical area starts 
deactivating. The inverted hemodynamic patterns observed in 
five subjects throughout this study support these findings, and 
suggest a different spatial mechanism underlying their MI 
experiences. However, individual variations in fNIRS 
responses and their relationship with underlying cognitive 
mechanisms in fNIRS-based BCI studies requires further 
investigation. Another plausible interpretation is based on 
similar fMRI findings describing negative BOLD responses  
[38], suggesting that the inverted response can also reflect local 
neural deactivation due to a decrease in CBF as a result of a 
decrease in neural activation. Considering the comparison 
between fMRI and fNIRS, the increase of HbO2 and/or 
decrease of HbR are commonly suggested to reflect hyper-
oxygenation that explains a localized increased cortical activity 
and, similarly, the decrease of HbO2 and/or increase of HbR 
reflects hypo-oxygenation during decreased activation [26]. 
Although the deactivation process during ME and MI has been 
recently reported in fMRI studies [39], [40], the underlying 
mechanisms of the negative BOLD remains a matter of debate. 
Whether the negative responses are of neural origins, or non-
neural origins such as “blood steal” phenomena [38], which 
occurs due to a decrease in CBF adjacent to active regions with 
increased CBF, requires further investigation.  

Our results showed that MI-HR-based BCI performance 
could be optimized using subject-specific feature sets and 
classification parameters. The optimal features fundamentally 
captured discriminative characteristics of morphological 
variations between MI and Rest conditions from significantly 
active channels. Notably, the proposed data-driven approach for 
estimating the 𝑑𝑑𝛽 coefficient was comparable to the Mean and 
the Slope features, and had a relatively high discrimination 
ability for a few of subjects. Exploring temporal MI-HR 
characteristics for these subjects, the difference between their 
hemodynamic response during MI and Rest period was less 
prominent in comparison to other subjects. This might explain 
the reason why conventionally used features, such as 
maximum, slope, and mean, could not discriminate between MI 
and Rest. However, modeling a subject-specific 𝑑𝑑𝐻𝑅 for these 
subjects and using the 𝑑𝑑𝛽 to estimate the strength of the 
observed activity could achieve a satisfactory performance for 
these subjects. This highlights the importance of a subject-
specific data-driven approach in fNIRS-based BCI design to 
achieve acceptable performance, especially for atypical 
responses, potentially altered by neurological diseases, 
including ALS. Considering the fact that the fNIRS signal 
provides information about underlying hemodynamic activities 
which might be affected by neurological conditions, and the 
fact that the characteristics of MI-based hemodynamic 

responses in ALS patients have not been yet thoroughly 
identified, it is plausible that the hemodynamic response 
characteristics might not maintain a consistent pattern across 
ALS patients and/or overtime, within the same subject as their 
disease progress. The empirical subject-specific data-driven 
approach proposed in this study minimizes general assumptions 
about the expected hemodynamic responses, and might 
represent a solution to this problem, specifically when observed 
hemodynamic responses do not follow typically expected 
patterns.  

V.  LIMITATIONS AND FUTURE DIRECTIONS 
The main focus of the present work is limited to spatio-

temporal investigations of hemodynamic responses to guide an 
optimal subject-specific BCI for ALS patients. Our protocol 
operated primarily as a switch function by offering a binary 
fNIRS-based BCI control that relies solely on motor imagery 
(MI vs. Rest) for ALS patients. Preliminary results were further 
provided for discrimination between LMI vs. RMI in the 
supplementary part. However, further analysis characterizing 
spatio-temporal differences in cortical activation between LMI 
and RMI, as well as optimizing the corresponding parameters 
for an enhanced classification task are required, to efficiently 
distinguish between the two MI tasks. Adopting powerful 
spatial filters, including common spatial patterns (CSP) may 
also advance the separability of the two classes. Increasing the 
degrees of freedom (DOF) by investigating MI for other limbs 
and adding different levels of complexity to the MI task can also 
improve the efficacy of the proposed BCI for more practical 
applications. Future analysis will involve testing the feasibility 
of the proposed methods for a real-time MI BCI scenarios that 
involve investigating sliding short time windows for an 
enhanced information transfer rate (ITR), which takes both time 
and accuracy into account. Future work might also involve 
characterizing the neuropathological effects of ALS on MI-HR 
by involving healthy controls. In addition, the statistical power 
of this study was limited, due to the relative difficulty of 
recruiting and recording from ALS patients. However, our 
primary goal was characterization for an optimal BCI use, not 
the neurophysiological quantification of ALS. 

VI. CONCLUSION 
This study focused on characterizing and evaluating the 

spatio-temporal dynamics of hemodynamic responses evoked 
by MI tasks in order to investigate the feasibility of fNIRS-
based hemodynamic responses evoked by MI tasks as a means 
of BCI control for people with ALS. The proposed methods 
evaluated the hemodynamic responses and statistically verified 
MI activation, taking into account both typical and inverted 
responses. A subject-specific data-driven approach was 
proposed to accommodate for the individual spatio-temporal 
characteristics of hemodynamic responses. The proposed data-
driven coefficient (𝑑𝑑𝛽) feature improved the classification 
performance of subjects with less prominent temporal 
differences between MI and Rest tasks, suggesting its potential 
to enhance classification performance for atypical response 
patterns that might be observed for ALS patients in comparison 
with conventionally used features (e.g., Max, Mean, and Slope). 
Despite the observed inter-individual variations in the ALS 
hemodynamic responses, an optimized performance was 
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achieved for each subject regardless of their disability level. 
Our results revealed an average accuracy of 85.4%±9.8%, while 
no significant correlation was observed between classification 
accuracies and patients’ ALSFRS-R scores. These results 
highlight the importance of adopting an individualized design 
that takes into account subject-specific variations, both spatially 
and temporally, to improve BCI performance for ALS patients. 

ACKNOWLEDGMENT 
 This study was supported by the National Science Foundation (NSF-
1913492) and the Institutional Development Award (IDeA) Network for 
Biomedical Research Excellence (P20GM103430). The authors would like to 
thank the participants who took part in this study, without whom this study 
would not have been possible. We would also like to thank the ALS 
Association, Rhode Island Chapter, for their continuous support, and Alyssa 
Zisk for proofreading this manuscript.  

REFERENCES 
[1] G. Pfurtscheller and C. Neuper, “Motor imagery activates primary 

sensorimotor area in humans,” Neurosci. Lett., 1997. 
[2] S. Coyle, T. Ward, and C. Markham, “Cerebral blood flow changes 

related to motor imagery, using near infrared spectroscopy (NIRS),” in 
World Congress on Medical Physics and Biomedical Engineering, 
Sydney, Australia, 2003. 

[3] A. Vourvopoulos, C. Jorge, R. Abreu, P. Figueiredo, J. C. Fernandes, and 
S. Bermúdez i Badia, “Efficacy and brain imaging correlates of an 
immersive motor imagery BCI-driven VR system for upper limb motor 
rehabilitation: A clinical case report,” Front. Hum. Neurosci., 2019. 

[4] H. Yuan & B. He, “Brain-computer interfaces using sensorimotor rhythms: 
Current state and future perspectives,” IEEE Trans. Biom Eng, 2014. 

[5] A. Kübler, F. Nijboer, J. Mellinger, T. M. Vaughan, H. Pawelzik, G. 
Schalk, D. J. McFarland, N. Birbaumer, and J. R. Wolpaw, “Patients with 
ALS can use sensorimotor rhythms to operate a brain-computer 
interface,” Neurology, 2005. 

[6] C. Guger, G. Edlinger, W. Harkam, I. Niedermayer, and G. Pfurtscheller, 
“How many people are able to operate an EEG-based brain-computer 
interface (BCI)?,” IEEE Trans. Neural Syst. Rehabil. Eng., 2003. 

[7] S. M. Hosni, R. J. Deligani, A. Zisk, J. McLinden, S. B. Borgheai, and Y. 
Shahriari, “An exploration of neural dynamics of motor imagery for 
people with amyotrophic lateral sclerosis,” Journal of Neural Eng, 2020. 

[8] T. Kasahara et al., “The correlation between motor impairments and 
event-related desynchronization during motor imagery in ALS patients,” 
BMC Neurosci., 2012. 

[9] H. Ayaz et al., “Continuous monitoring of brain dynamics with functional 
near infrared spectroscopy as a tool for neuroergonomic research: 
Empirical examples and a technological development,” Front. Hum. 
Neurosci., 2013. 

[10] T. J. Huppert, R. D. Hoge, S. G. Diamond, M. A. Franceschini, and D. A. 
Boas, “A temporal comparison of BOLD, ASL, and NIRS hemodynamic 
responses to motor stimuli in adult humans,” Neuroimage, 2006. 

[11] R. Sitaram, H. Zhang, C. Guan, M. Thulasidas, Y. Hoshi, A. Ishikawa, K. 
Shimizu, and N. Birbaumer, “Temporal classification of multichannel 
near-infrared spectroscopy signals of motor imagery for developing a 
brain-computer interface,” Neuroimage, 2007. 

[12] S. M. Coyle, T. E. Ward, and C. M. Markham, “Brain-computer interface 
using a simplified functional near-infrared spectroscopy system.,” J. 
Neural Eng., 2007. 

[13] L. Holper and M. Wolf, “Single-trial classification of motor imagery 
differing in task complexity: A functional near-infrared spectroscopy 
study,” J. Neuroeng. Rehabil., 2011. 

[14] N. Naseer and K. S. Hong, “Classification of functional near-infrared 
spectroscopy signals corresponding to the right- and left-wrist motor 
imagery for development of a brain-computer interface,” Neurosci. Lett., 
2013. 

[15]  K. S. Hong, N. Naseer, and Y. H. Kim, “Classification of prefrontal and 
motor cortex signals for three-class fNIRS-BCI,” Neurosci. Lett., 2015. 

[16] M. Naito, Y. Michioka, K. Ozawa, Y. I. Ito, M. Kiguchi, and T. 
Kanazawa, “A communication means for totally locked-in ALS patients 
based on changes in cerebral blood volume measured with near-infrared 
light,” IEICE Trans. Inf. Syst., 2007. 

[17] G. Gallegos-Ayala, A. Furdea, K. Takano, C. A. Ruf, H. Flor, and N. 
Birbaumer, “Brain communication in a completely locked-in patient using 

bedside near-infrared spectroscopy,” Neurology, 2014. 
[18] J. M. Cedarbaum et al., “The ALSFRS-R: A revised ALS functional 

rating scale that incorporates assessments of respiratory function,” J. 
Neurol. Sci., 1999. 

[19] H. Peng, J. Chao, S. Wang, J. Dang, F et al., “Single-trial classification of 
fNIRS signals in four directions motor imagery tasks measured from 
prefrontal cortex,” IEEE Trans. Nanobioscience, 2018. 

[20] A. Sassaroli and S. Fantini, “Comment on the modified Beer-Lambert law 
for scattering media,” Physics in Medicine and Biology. 2004. 

[21] X. Cui, S. Bray, and A. L. Reiss, “Functional near infrared spectroscopy 
signal improvement based on negative correlation between oxygenated 
and deoxygenated hemoglobin dynamics,” Neuroimage, 2010. 

[22] P. Pinti, F. Scholkmann, A. Hamilton, P. Burgess, and I. Tachtsidis, 
“Current Status and Issues Regarding Pre-processing of fNIRS 
Neuroimaging Data: An Investigation of Diverse Signal Filtering 
Methods Within a General Linear Model Framework,” Front. Hum. 
Neurosci., 2019. 

[23] H. Santosa, M. J. Hong, and K. S. Hong, “Lateralization of music 
processing with noises in the auditory cortex: An fNIRS study,” Front. 
Behav. Neurosci., 2014. 

[24] M. A. Lindquist, J. Meng Loh, L. Y. Atlas, and T. D. Wager, “Modeling 
the hemodynamic response function in fMRI: efficiency, bias and mis-
modeling.,” Neuroimage, 2009. 

[25] D. R. Leff, F. Orihuela-Espina, C. E. Elwell, T. Athanasiou, D. T. Delpy, 
A. W. Darzi, and G. Z. Yang, “Assessment of the cerebral cortex during 
motor task behaviours in adults: A systematic review of functional near 
infrared spectroscopy (fNIRS) studies,” NeuroImage. 2011. 

[26] L. Holper, D. E. Shalóm, M. Wolf, and M. Sigman, “Understanding 
inverse oxygenation responses during motor imagery: A functional near-
infrared spectroscopy study,” Eur. J. Neurosci., 2011. 

[27] K. S. Hong, M. J. Khan, and M. J. Hong, “Feature Extraction and 
Classification Methods for Hybrid fNIRS-EEG Brain-Computer 
Interfaces,” Frontiers in Human Neuroscience. 2018. 

[28] G. Jasdzewski, G. Strangman, J. Wagner et al., “Differences in the 
hemodynamic response to event-related motor and visual paradigms as 
measured by near-infrared spectroscopy,” Neuroimage, 2003. 

[29] N. K. Qureshi, N. Naseer, F. M. Noori, H. Nazeer, R. A. Khan, and S. 
Saleem, “Enhancing classification performance of functional near-
infrared spectroscopy-brain-computer interface using adaptive estimation 
of general linear model coefficients,” Front. Neurorobot., 2017. 

[30] L. M. McCane, E. W. Sellers, D. J. Mcfarland, J. N. Mak, C. S. Carmack, 
D. Zeitlin, J. R. Wolpaw, and T. M. Vaughan, “Brain-computer interface 
(BCI) evaluation in people with amyotrophic lateral sclerosis,” 
Amyotroph. Lateral Scler. Front. Degener., 2014. 

[31] K. S. Hong, M. R. Bhutta, X. Liu, and Y. Il Shin, “Classification of 
somatosensory cortex activities using fNIRS,” Behav. Brain Res., 2017. 

[32] E. Gerardin, “Partially Overlapping Neural Networks for Real and 
Imagined Hand Movements,” Cereb. Cortex, 2000. 

[33] S. C. Wriessnegger et al., “Spatio-temporal differences in brain 
oxygenation between movement execution and imagery: A multichannel 
near-infrared spectroscopy study,” Int. J. Psychophysiol., 2008. 

[34] A. M. Batula, J. A. Mark, Y. E. Kim, and H. Ayaz, “Comparison of Brain 
Activation during Motor Imagery and Motor Movement Using fNIRS,” 
Comput. Intell. Neurosci., 2017. 

[35] L. Holper, N. Kobashi, D. Kiper, F. Scholkmann, M. Wolf, and K. Eng, 
“Trial-to-trial variability differentiates motor imagery during observation 
between low versus high responders: A functional near-infrared 
spectroscopy study,” Behav. Brain Res., 2012. 

[36] H. Sato, Y. Fuchino, M. Kiguchi, T. Katura, A. Maki, T. Yoro, and H. 
Koizumi, “Intersubject variability of near-infrared spectroscopy signals 
during sensorimotor cortex activation,” J. Biomed. Opt., 2005. 

[37] R. M. Yerkes and J. D. Dodson, “The relation of strength of stimulus to 
rapidity of habit-formation,” J. Comp. Neurol. Psychol., 1908. 

[38] A. Shmuel, E. Yacoub, J. Pfeuffer, P. F. Van de Moortele, G. Adriany, X. 
Hu, and K. Ugurbil, “Sustained negative BOLD, blood flow and oxygen 
consumption response and its coupling to the positive response in the 
human brain,” Neuron, 2002. 

[39] H. Nakata, R. Domoto, N. Mizuguchi, K. Sakamoto, and K. Kanosue, 
“Negative BOLD responses during hand and foot movements: An fMRI 
study,” PLoS One, 2019. 

[40] N. Zeharia, U. Hertz, T. Flash, and A. Amedi, “Negative blood   
  oxygenation level dependent homunculus and somatotopic information  
  in primary motor cortex and supplementary motor area,” Proc. Natl.  
  Acad. Sci. U. S. A., 2012. 


