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Abstract—Objective: Functional near-infrared spectroscopy
(fNIRS) has recently gained momentum in research on motor-
imagery (MI)-based brain-computer interfaces (BCls). However,
strikingly, most of the research effort is primarily devoted to
enhancing fNIRS-based BClIs for healthy individuals. The ability
of patients with amyotrophic lateral sclerosis (ALS), among the
main BCI end-users to utilize fNIRS-based hemodynamic
responses to efficiently control an MI-based BCI, has not yet been
explored. This study aims to quantify subject-specific spatio-
temporal characteristics of ALS patients’ hemodynamic responses
to MI tasks, and to investigate the feasibility of using these
responses as a means of communication to control a binary BCI.
Methods: Hemodynamic responses were recorded using fNIRS
from eight patients with ALS while performing MI-Rest tasks. The
generalized linear model (GLM) analysis was conducted to
statistically estimate and evaluate individualized spatial
activation. Selected channel sets were statistically optimized for
classification. Subject-specific discriminative features, including a
proposed data-driven estimated coefficient obtained from GLM,
and optimized classification parameters were identified and used
to further evaluate the performance using a linear support vector
machine (SVM) classifier. Results: Inter-subject variations were
observed in spatio-temporal characteristics of patients’
hemodynamic responses. Using optimized classification
parameters and feature sets, all subjects could successfully use
their MI hemodynamic responses to control a BCI with an average
classification accuracy of 85.4%=9.8%. Significance: Our results
indicate a promising application of fNIRS-based MI hemodynamic
responses to control a binary BCI by ALS patients. These findings
highlight the importance of subject-specific data-driven
approaches for identifying discriminative spatio-temporal
characteristics for an optimized BCI performance.

Index Terms—Amyotrophic lateral sclerosis (ALS), brain-

computer interface (BCI), functional near-infrared spectroscopy
(fNIRS), subject-specific data-driven approach.

I. INTRODUCTION

RAIN-COMPUTER interface (BCI) systems can extend the
frontiers of human communication to the neural level by
encoding discriminative features of brain responses during
certain mental tasks into control signals that can be used for
communication. Probing the brain during motor imagery (MI)
tasks in which the subject imagines moving a limb has been
extensively researched in the BCI domain, as the cognitive
execution of movement induces neural responses that overlap
with actual motor execution (ME) [1], [2]. MI has naturally
been adopted as a BCI paradigm suitable for people with severe
motor disabilities, including amyotrophic lateral sclerosis
(ALS), who are incapable of any voluntary ME tasks.
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MI responses can be triggered endogenously, as they do not rely
on any external stimulus. This is vital in advanced ALS, when
patients lose most voluntary muscle control, including eye-gaze
control. MI is, therefore, a great candidate for BCI systems, as
it offers intentionally-generated, decodable brain characteristics
that can be independently controlled by users. MI tasks for BCI
systems offer a wide range of potential clinical applications, as
they offer a non-muscular neurorehabilitation technique
through the direct activation of MI neural circuits in order to
enhance motor and cognitive recovery for patients with severe
neuromuscular disorders and brain injuries [3]. These clinical
research areas further provide insight into disease-specific
neural markers, which advance diagnosis and treatment
techniques in addition to improving BCIs through optimal
designs as practical assistive technologies.

To date, electroencephalography (EEG) has been the most
extensively researched non-invasive neuroimaging modality in
MI-based BCIs, primarily due to its non-invasiveness, low-cost,
portability, and instantaneous measure of neural activity. In
particular, MI modulates oscillatory variations in EEG
sensorimotor rhythms (SMR), including the p (8—-12 Hz) and 8
(13-30 Hz) frequency bands, known as event-related
desynchronization (ERD) and event-related synchronization
(ERS) [1]. SMR-based BCI is established for both healthy and
ALS users [4], [5]. However, despite existing promising results,
many studies have shown that SMR-based BCI end-users do not
consistently achieve satisfactory performance levels, especially
without extensive training [6]. Insights from our studies and
others characterizing ALS-specific electrophysiological
alterations point to an overall reduction in ERD during motor
imagery, generally associated with ALS motor impairments [7],
[8], which raises questions about the feasibility of relying solely
on EEG to control the BCIs for these cohorts.

Functional near-infrared spectroscopy (fNIRS) is another
non-invasive neuroimaging modality that has been used in the
BCI domain for several years. fNIRS relies on optical
technology, using near-infrared spectrum light to monitor the
hemodynamic responses evoked by neural activity by
measuring changes in oxygenated hemoglobin (HbO2) and
deoxygenated hemoglobin (HbR) concentrations from the
cortical surface [9]. These variations in fNIRS measurements
reflect the increased or decreased blood supply to active cortical
areas due to neurovascular coupling and correlate with the
blood oxygen level-dependent (BOLD) signal recorded through
functional magnetic resonance imaging (fMRI) [10]. As fNIRS
offers a unique trade-off between EEG’s high temporal
resolution and fMRI’s high spatial resolution, its portability,
low cost, metabolic-based specificity, and robustness to various
types of artifacts when compared to EEG, it is a good candidate
for BCI applications. In addition, fNIRS allows for a less



restrictive natural setting that does not require patients to lay
flat or to be exposed to loud fMRI noises. Therefore, fNIRS is
important to advance BCI research for ALS towards improved
efficacy and a better understanding of brain functionality.

The feasibility of using fNIRS as a BCI control signal was
first tested by Coyle et al. [2], who used a simple threshold
technique (i.e., mean HbO2) to classify MI vs. Rest with 75%
average accuracy. Sitaram et al. [11] confirmed fNIRS as a
promising BCI neuroimaging modality, using mean HbO2 and
HbR amplitude changes to distinguish left-hand MI (LMI) from
right-hand MI (RMI), with an average offline accuracy of 73%
and 89% with support vector machines (SVM) and hidden
Markov models (HMM), respectively. The first online fNIRS
MlI-based BCI, “Mindswitch,” was presented as a basic BCI
system allowing users to control an “On/Off” switch in almost
one minute per selection. The users modulated variations in
mean HbO2 over their motor cortices by imagining squeezing
a softball, controlling the system with an online accuracy of
50%-85% [12]. Various levels of complexity in MI tasks were
investigated by Holper et al. [13]. Through a cross-validation
process and using Fisher’s linear discriminant analysis (FLDA),
subject-specific parameters were selected involving the best
performing channel, the best analysis time interval, and a set of
up to four features, including mean HbO2, variance, skewness,
and kurtosis. Simple and complex MI tasks were distinguished,
with an average classification accuracy of 81%. Naseer et al.
[14] showed that including the slope along with mean HbO2
can significantly increase accuracy, as can restricting the
classification window to [2-7] sec relative to the imagination
onset within a 10-sec task. The authors discriminated LMI from
RMI with an average accuracy of 87% using linear discriminant
analysis (LDA). In another study [15], they also demonstrated
the feasibility of adding mental arithmetic (MA) to LMI/RMI
tasks in a three-class BCI and thereby increase the number of
commands. Their classifier discriminated between the three
classes, with an average offline accuracy of 75.6% using a
reduced time window [2-7] sec after imagination onset.

Research investigating the performance of fNIRS-based
BCIs in ALS patients is scarce. Naito et al. [16] were the first
to investigate fNIRS-based BCI for ALS in 2007. MA and
mental singing cognitive activities were used to answer a series
of “yes/no” questions by inducing brain activity variations
reflected in cortical blood volume changes detected with near-
infrared light. To assess patients’ ability to modulate cerebral
blood volume changes with intention, their detected light
intensity signals were analyzed for the separability of “yes” and
“no” patterns, i.e., patients were categorized into two groups,
based on the separability of their responses. The average
classification accuracy was 80% for patients in the higher
separation group but did not exceed 42% for the other group.
However, the proposed system only reached acceptable
accuracies for 70% of ALS participants and only 40% of the
locked-in patients. One possible explanation for the limited
applicability of their approach is a lack of subject-specific
features. The authors employed the same features for all ALS
subjects and did not accommodate for possible inter-individual
hemodynamic response variabilities. Similar results were
demonstrated in a case study of a completely locked-in
syndrome (CLIS) patient with ALS [17] by classifying
hemodynamic responses to correct and incorrect statements,

with classification accuracy significantly above chance.

Despite a considerable number of studies devoted to the
enhancement of MI-based BClIs relying on fNIRS techniques,
no study confirms that ALS patients can use MI-hemodynamic
responses (MI-HR) to control a BCI. The inter-individual
variabilities of fNIRS-based hemodynamic responses remain a
challenge further augmented for ALS patients with potentially
altered responses due to underlying neurological conditions.

This study aims to quantify the subject-specific spatio-
temporal characteristics of ALS patient’s MI-HR measured
using fNIRS and to assess the feasibility of using MI-HR to
control a binary BCI in these cohorts. This paper focused on the
classification of MI versus Rest to verify MI activation for ALS
patients. The individualized spatio-temporal characteristics of
MI (combined LMI and RMI) hemodynamic responses were
characterized and used to optimize the classification parameters
and feature sets. As the exact shape of MI-HR has not been yet
evaluated for ALS, and given the potential contamination of
fNIRS signals with physiological noise, the fNIRS-measured
cortical activation of MI tasks was statistically estimated and
verified using a generalized linear model (GLM) with respect
to a canonical hemodynamic response function (cHR). To
accommodate for atypical responses using the subject’s
individual patterns, we further proposed a data-driven estimated
coefficient obtained from GLM as a novel feature to enhance
classification performance. The performance of the binary BCI
(MI vs. Rest) was finally evaluated through 5-fold cross-
validation using an SVM classifier.

II. METHODS
A. Participants

Eight ALS patients were recruited for our study (age:
57.9+13.8 years, two females), with varying degrees of
disability, assessed using the ALS functional rating scale-
revised (ALSFRS-R: 18.2+14.6) on a 48-point scale [18].
Three patients (ALS-1, ALS-2, and ALS-4) were completely
dependent on mechanical ventilation, and had very low
ALSFRS-R scores (0-7). These patients had no verbal
communication abilities. The youngest (ALS-1) was in a late-
stage locked-in state (LIS) with no objective means of
communication, due to the loss of all muscle control, including
eye movement. All participants except for ALS-6 were right-
handed. ALS-8 was right-hand dominant, but could write with
both hands. Table I shows the patients’ demographics
information. The study protocol was approved by the
institutional review board (IRB) of the University of Rhode
Island (URI), and written informed consents were provided
either by each patient or their caregiver.

B.  Data Acquisition and Experimental Protocol

fNIRS data were recorded using NIRScout (NIRx Inc.), with
two near-infrared light wavelengths (760 nm and 850 nm) to
acquire HbR and HbO2 responses, respectively. The signals
were digitized at 15.6 Hz, and the optode montage was
configured using 16 probes, eight sources, and eight detectors
mounted on a standard EEG cap, with a separation distance of
~3 cm to maintain acceptable signal quality and sensing depth.
The probe-layout resulted in 14 channels, as shown in (Fig. 1-
left), following previous research, which commonly reports the
engagement of the pre/frontal cortex in addition to the primary



TABLE I
PARTICIPANT’S DEMOGRAPHIC INFORMATION.
Participant ALSFRS- Disea:ve
No. Age Sex R Duration Handedness
(max 48) (years)
ALS-1 29 M 0 4 R
ALS-2 55 M 4 11 R
ALS-3 70 M 14 8 R
ALS-4 67 M 7 2 R
ALS-5 69 F 23 11 R
ALS-6 52 M 22 3 L
ALS-7 54 F 39 2 R
ALS-8 67 M 37 0.6 R
Mean+SD  57.9+13.8 - 18.2+14.6 5.2+4.2

motor cortex in MI-related tasks [19]. As depicted in Fig. 1-left,
for simplicity, we used source (S) and detector (D) numbers to
illustrate our probe-layout. The sources were located according
to the 10-5 electrode placement system as follows—AF3 (S1),
AF4 (S5), FCC5h (S3), FCC1h (S2), FCC2h (S6), FCC6h (S7),
CCP3h (S4), and CCP4h (S8)—while the detectors were placed
at AFF1 (D2), AFF2 (D6), F5 (D1), F6 (D5), FCC3h (D3),
FCC4h (D7), CCP1h (D4), and CCP2h (D8). Four fNIRS
channels covered the pre/frontal cortex (CH1, CH2, CHS8, and
CH9) associated with the pre/supplementary motor area
(pre/SMA), involved in motor preparation. In the proximity of
the primary motor cortex, ten channels (CH3, CH4, CHS, CH6,
CH7, CH10, CH11, CH12, CH13, and CH14) were positioned
to surround the standard C1, C2, C3, and C4 areas as reference
points for hand Ml-related activation of the motor cortex.

Data was recorded from ALS patients in their homes or care
centers. Subjects who retained the ability to move their arms
were instructed to relax their arms and avoid movement. The
MI stimulation paradigm was designed using BCI2000
software. The recording session consisted of three runs
separated by approximately five minutes of rest. During each
run, the subject was instructed to respond to three types of
visual cues presented on-screen with three types of mental
motor activities: (a) left-hand motor imagery (LMI) when the
cue appears on the left side of the screen; (b) right-hand motor
imagery (RMI) when the cue appears on the right side of the
screen; and (c) resting when the cue appears in the middle of
the screen (Fig. 1-right). Each run consisted of 10 trials for each
type of MI task randomly, with Rest trials in between (20 MI
trials and 20 Rest trials per run). The resting cue was a green
circle positioned in the middle of the screen to help them relax,
allowing hemodynamic responses to return to baseline. Since
our paradigm was designed for BCI communication purposes,
the resting period was shortened to 10 seconds, similar to the
MI period, which was assumed satisfactory for practical BCI
communication. No participants had prior BCI experience, but
all participants except ALS-7 and ALS-8 had a single
familiarization session before the main recording session.
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Fig. 1. Left: The fNIRS probe-layout. Right: The motor imagery (MI) task
experimental protocol.

C. Data Analysis

1) Signal Preprocessing

The modified Beer-Lambert Law was used to calculate
changes in the concentrations of HbO2 and HbR using recorded
alterations in the reflected light attenuation [20]. fNIRS data
were then band-pass filtered at 0.01-0.09 Hz to eliminate
physiological noises caused by respiration (~0.3 Hz), cardiac
activities (~1 Hz), and Mayer waves (~0.1 Hz). As fNIRS signal
quality can be heavily compromised by the poor coupling of
optodes to the head, by optical interference from dense and
heavily pigmented hair, the quality of the signal was
automatically evaluated through the signal-to-noise-ratio
(SNR) of each channel using NIRScout. Further, an exclusion
criterion was considered based on a correlation threshold
between HbO2 and HbR, indicating a high-level physiological
motion artifact [21]. The running correlation between HbO2
and HbR was calculated for each channel, and if it exceeded an
0.5 threshold, or was strictly -1, the channel was discarded.
Data was initially segmented into 10-sec trials of LMI, RMI,
and Rest, according to the stimulus presentation time. To
discriminate MI-HR from Rest-HR, trials were combined to
form two sets, with 60 trials for each condition of MI-HR and
Rest-HR, representing the two classes. Individual MI tasks that
contained artifacts were automatically rejected based on
subject-specific thresholds. To analyze the spatio-temporal
characteristics of the complete hemodynamic response pattern,
MI trials were concatenated to the following Rest trials in a
single MI-Rest trial (10 sec LMI/RMI, followed by 10 sec Rest)
to form a total of 60 MI-Rest trials. Due to fNIRS oscillatory
nature, MI task data was then down-sampled by a factor of 8.6
to account for serial autocorrelations that could impact further
hemodynamic response analysis [22].

2) The Generalized Linear Model (GLM) Formulation

An estimation of individualized cortical activation for each
MI-Rest trial was performed by fitting the measured
hemodynamic response (mHR) corresponding to the MI-Rest
trial to a generalized linear model (GLM) using a robust
regression algorithm [23]. The GLM was formulated according
to [23] using the following equation:

mHR} = Bj.dHR + ¥} .1 + ¢ (1)

where mHR; € RM*1 is the measured hemodynamic response,

corresponding to the j® MI-Rest trial at each channel i , and N
is the size of the fNIRS data (N=36 samples for the down-
sampled segments of 10 sec MI and 10 sec Rest). mHR is
modeled as a linear combination of the desired (ideal)
hemodynamic response (dHR), 8 is the unknown regression
coefficient quantifying the dHR magnitude, i is a coefficient
to compensate for the baseline drift, 1¢ R¥*? is the constant
term to model the baseline, and € is the “error” or “residual”
term minimized in fitting the measured mHR to the dHR.

Cortical activation was evaluated based on the statistical
comparison of the mHR to the dHR. The dHR is typically
modeled as a linear time-invariant system, computed by
convolving the stimulus pattern, defined as a boxcar-shaped
function, Box (k), where k references time samples (i.e., 10 sec
MI task and 10 sec Rest), with the canonical hemodynamic
response function (cHR) as follows:
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The cHR is a specific time series shape generated by a statistical
parametric mapping (SPM) consisting of a linear combination
of two gamma functions (I") as shown below [24]:
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where a; =6 sec represents the delay of the hemodynamic
response relative to the MI onset, y; = y, = 1 sec respectively
represent the dispersion of hemodynamic response and the
undershoot, a, = 16 sec represents the delay of the undershoot
relative to MI onset, and ¢ = 1/6 represents the amplitude ratio
of the undershoot to the peak response. The gamma function
(') acts as a normalization parameter, and our kernel length is
20 sec. Robust regression estimates of § weights were obtained
to indicate dHR activity strength and used in further analysis.
Note that the cHR parameters followed previous studies [23].
Based on the main patterns of the fNIRS hemodynamic
responses for motor tasks in healthy individuals, two main
responses could be identified: a typical response of a delayed
increase in HbO2, and a slower, lower amplitude decrease in
HbR [25], and/or an inverted response, characterized by a
decrease in HbO2 and/or an increase in HbR [26]. As the MI-
hemodynamic responses (MI-HR) characteristics of ALS and
the respective inter-subject variability are still under evaluation,
we performed a temporal-response evaluation prior to the GLM
analysis, where each trials’ MI-HR pattern was evaluated to
determine whether the HbO2 response was typical or inverted.
Following this evaluation, the GLM was applied based on the
conventional cHR for the typical response, or an inverted cHR
for the inverted response. In this way, we ensured that our GLM
was built based on subject-specific cortical activations for both
response shapes, highlighting individualized differences.

3) Brain Activation Maps

A key factor in designing a robust BCI based on MI
responses is to detect a satisfactory level of cortical activation
in response to the task and to investigate its consistency across
trials. In this study, a statistical #-value comparison between the
measured data for each MI-Rest trial and the dHR was adopted
based on the estimated [ weights obtained from our GLM
model. The t-value was defined as the ratio of the regression
coefficient to its standard error [23], as shown follows:

i_ P

T SEB) @
where SE is the standard error of the estimated coefficient to
measure the size of the difference between the mHR} of
channel j and the dHR. The #-values for HbO2 responses were
calculated for individual MI-Rest trials and used to create brain
activation maps to illustrate the statistically significant active
channels across trials. Significantly active channels were
defined through a one-sample #-test using a t-value based
channel selection approach [27]. The selection reliability was
assessed using #-values above the critical #-value (f.=1.69),
computed based on the degrees of freedom for the data (N-

1=35) and the statistical significance level (a= 0.05). A
significant positive ¢-value (£>t.) indicates that the channel is
significantly active, i.e., highly correlated with the dHR,
whereas a negative t-value indicates an inactive channel. To
keep equal standards across trials, the ¢-values were normalized

within the range of 0-1 using the following equation:
a = a—-min(a) (5)
max(a)—-min(a)
where a denotes the actual z-value, a’ the normalized -value,
and min(a) and max(a) the minimum and maximum #-values

across the trials.

4) Classification Procedure

Linear SVM, commonly used to classify hemodynamic
responses, were used to evaluate the performance of each
subject and the ability to discriminate between their MI-HR and
Rest-HR responses using 5-fold cross-validation. For channel
selection, the ¢-value-based channel selection approach
explained in section II.C.3, was adopted, where at most eight
significantly active channels (£>t./) out of fourteen were
considered for classification [27]. The #-value-based channel
optimization used only the training set to avoid biased
estimation. For each training set, the #-values obtained from the
GLM analysis were averaged across the training trials to
determine the overall significantly active channels. Incremental
sets of significantly active channels starting from a single
channel (the most significantly active) up to a maximum of
eight significant channels were then selected and considered for
further analysis.

In order to distinguish MI-HR from the Rest-HR condition,
eight discriminative features commonly used in fNIRS-BCI
studies were extracted from each HbO2 and HbR response,
corresponding to MI and Rest trials. The features included
signal mean (Meanmupo2, Meangpr), signal maximum (Maxspo2,
Maxmr), signal slope (Slopemvo2, Slopemnsr), signal variance
(Varmpo2, Varmsr), signal skewness (Skewwpo2, Skewrnr), signal
kurtosis (Kurtgr, Kurtusr), and the difference between the
mean and the minimum (DMMub02, DMMipr). In addition, as
the MI-hemodynamic response (MI-HMR) for ALS is still
under evaluation, and considering individual MI-HR
differences [28], an additional feature was proposed to account
for subject-specific hemodynamic characteristics instead of
typical cHR. This was inspired by promising prior results in
which the f coefficients were adaptively estimated for real-
time fNIRS imaging and used as features for classification [29].
For the estimated data-driven [ coefficient (ddf) feature, the
GLM model formulation was built based on subject-specific,
data-driven hemodynamic responses (ddHR) within a 10 sec
period (i.e., only the MI period), instead of the typical 20-sec
period used in the dHR. The subject-specific ddHR was
defined as the overall average MI-HR activation across all the
MI trials in the training set to specifically capture individual
hemodynamic patterns. Estimated ddp regression coefficients
for each trial were then used as additional features representing
the cortical activation strength for each channel.

Features were optimized for each subject through the 5-fold
cross-validation iterative procedure to ensure that the subject-
specific combination of features that contains the most
discriminative information was properly identified. To do so,
all possible combinations of two to eight of the eight features



(246 possible combinations, i.c., (g) + (§)+. o +(g), possible
one- to eight- channels selected based on the previously
explained #-value brain activation procedure, and time-windows
([0-10] sec, and [2-7] sec), were considered for each subject’s
HbO2, HbR, and combined HbO2 and HbR fNIRS responses.
If both HbO2 and HbR data were used, the feature combinations
were created and concatenated from both signals. The choice of
time windows was guided by promising results from previous
studies, reporting that confining the time window to [2-7] sec
post-stimulus within the overall 10 sec MI task period improves
classification performance, as typical hemodynamic responses
lag the neuronal event by ~2 sec and take ~5 sec to reach peak
value [14]. Notably, the subject-specific ddHR necessary to
estimate the ddfregression coefficients was calculated by
averaging the MI trials for each training set over the selected
significantly active channels. Results are reported for optimal
subject-specific classification outcomes out of all possible
classification problems for each subject (3 fNIRS response
combinations, 246 feature combinations, 2 time-windows, and
up to 8 possible sets of selected channels). The performance
was evaluated using 2 metrics: accuracy (Acc) and the F-score.
An experimental analysis to investigate the effect of the number
of selected channels and the length of time window on optimal
classification performance was implemented and reported in the
supplementary material (see Fig. S1). As this study primarily
focused on the classification of MI vs. Rest to verify
hemodynamic-based MI activation for ALS, the proposed
methods focused on characterizing the spatio-temporal
characteristics of MI-Rest trials (combining LMI and RMI) for
optimal classification. However, considering the practical
importance of discriminating LMI vs. RMI, preliminary results
were also reported in the supplementary material to avoid
distracting from the main focus of this work (see Table S1).

5) Correlation Analysis

Correlation between classification accuracies corresponding
to each ALS patient and their clinical scores (ALSFRS-R) was
performed using the Spearman correlation coefficient (rho)
with a significance level of a= 0.05. This analysis assessed the
effect of patients’ disability levels on BCI performance.

III. RESULTS

In order to show the consistency of MI-HR cortical activation
across trials, GLM analysis results are displayed in Fig. 2,
which shows brain activation maps for ten representative MI-
Rest trials, and the averaged map showing overall activation
across the ten trials, for each participant. The brain activation
maps show the normalized #-values within the range of 0-1, for
illustration only. The normalized ¢-values represent the level of
activation of each channel, encoded by color intensity. The
numbers in the maps refer to channel numbers. We observed
consistent significant (£7.) cortical activation for all subjects
across most trials, which indicates the reliability of MI-HR as a
control signal for a single trial BCI for ALS patients. However,
cortical activation topographies were not consistent between
subjects, except for primary motor cortex activation. This
indicates variable spatial characteristics of MI-HR across ALS
subjects, and highlights the importance of determining subject-
specific active channels for an improved BCI performance.

Fig. 3 illustrates the averaged brain activation maps (actual ¢-

values) across all MI-Rest trials. Subject-specific significant
activation patterns were observed for all subjects, with different
cortical activation patterns for each individual. ALS-1 showed
significant bilaterally diffused activation over the pre/frontal
and motor cortex, with significant t-values occurring at CH8 (z-
value=2.43), CH6 (t-value=2.36), CH1 (¢-value=2.37), CH2 (t-
value=2.13), CH12 (t-value=2.05), CH7 (¢-value= 2.00), and
CHO (t-value= 1.95). For ALS-2, the most significant activation
was localized in the dominant (left) hemisphere in the motor
cortex CH3 (z-value=4.80), CH5 (#-value=3.91), particularly
the area for right-hand movement (Cl1 and C3) and the
pre/frontal cortex CH1 (#-value=4.82), and CH2 (z-value=4.39).
Slightly lower levels of activation were centered in the motor
cortex (surrounding Cz) in CH4 (z-value=3.45) and CH11 (#-
value=3.91). ALS-3’s activity was bilaterally localized in both
the pre/frontal and primary motor areas, where CHI12 (z-
value=3.24), CHS (t-value=3.10), and CH3 (z-value=2.44)
surrounding the cortical hand-areas in both hemispheres (C4
and C3, respectively) were the most activated areas. ALS-3 also
had the highest pre/frontal activation at CH1 (¢-value=2.68) and
CHS (t-value=1.93). For ALS-4, the most significant activation
was observed in CHI1 (#value=3.57), covering the central-
right primary motor cortex (C2 and Cz) along with CH9 (#-
value=2.70), and CH2 (#-value=2.59) in the pre/frontal cortex.
For ALS-5, activation was highly localized in the primary
motor cortex, CH3 (z-value=5.84), and CHS5 (z-value=4.93)
surrounding the right-hand area (C1 and C3), in the dominant
(left) hemisphere, while in the pre/frontal cortex, CH8 (z-
value=5.31), and CH9 (¢-value=5.28), covering the pre/frontal
cortex in the opposite (right) hemisphere, were the most
activated locations in the right hemisphere. For ALS-6, the
activity was more localized in the left-hand area in the dominant
(right) hemisphere, and more diffused in the left hemisphere.
Specifically, CH12 (z-value=5.02) was the most significantly
activated, along with CH4 (#-value=4.57), CHS5 (#-value=4.21),
and CH1 (#-value=4.05), in both the primary motor and
pre/frontal cortex, respectively. For ALS-7, activity was more
diffused bilaterally in both the pre/frontal and the primary
motor cortex, with CH12 (z-value=3.88), CH10 (¢-value=3.42),
CH1 (#-value=3.46), CHS (t-value=3.40), CH2 (#-value=3.34),
CH6 (t-value=3.21), and CH3 (¢-value=3.00) showing the
highest activation levels. For ALS-8, the activity was mainly
localized on the right primary motor cortex in CHI13 (-
value=4.55) and CH12 (¢-value=3.75) surrounding the left-hand
area (C2 and C4). The right pre/frontal cortex also had a high
activation level, primarily located around CHS (#-value=3.69).

Fig. 4 illustrates the overall normalized grand-average of
HbO2 and HbR responses for each subject over all of the MI-
Rest trials for representative significantly active channels. The
figure illustrates the responses starting 5 sec prior to the MI
stimulus, followed by the 20-sec MI-Rest trial. In general, we
observed a variability in the temporal characteristics of
hemodynamic responses both at the subject level (i.e., across
subjects) and at the channel level (i.e., within each subject).
Comparing subject-specific representative significantly active
channels, individual variations in the temporal characteristics
of the hemodynamic responses were observed in the onset of
the rise and the peak time. For ALS-2, ALS-4, and ALS-6, the
HbO?2 rise started ~2 sec after MI stimulus onset.
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Fig. 2 Brain activation maps for ten representatlve MI—Rest trials (1nc1ud1ng both LMI and RMI) for all subjects to show the consistency of MI activation for
ALS patients across trials. The channel locations are displayed as numbers on the plots. The maps showed the normalized z-values based on the GLM analysis,
and the color bar shows the level of brain activation. The last column on the right represents the averaged brain activation map across the ten selected trials.

For ALS-3 and ALS-5, the HbO2 response had a relatively
early rise, starting almost 0.5 sec after MI stimulus onset.
However, for ALS-1 and ALS-7, the HbO2 rise was delayed,
starting ~3 sec and ~4 sec, respectively. These subjects’ fNIRS
response, illustrated in Fig. 4, was a typical pattern in which the
HbO?2 response was coupled with a decrease in HbR response
at approximately the same time of the HbO2 rise. We further
observed individual variations in a few individuals’ HbO2
response peak times, starting ~5 sec (for ALS-4), ~6 sec (for
ALS-3, ALS-5, and ALS-6), ~8 sec (for ALS-1, and ALS-7),
and ~9 sec (for ALS-2). For almost all subjects, the HbR
response reached its lowest level later than its peak HbO2
response. The lowest HbR responses were ~8 sec (for ALS-5),
~11 sec (for ALS-1), ~14 sec (for ALS-6), and ~15-sec (for
ALS-2 and ALS-4), relative to MI stimulus onset. For ALS-3
and ALS-7, the HbR response reached the lowest level ~ 7 and
~8 sec, respectively; however, their responses were extended
along the Rest period (i.e., there was less difference between
the response in the MI period and the Rest period). For ALS-3,
the HbR response maintained a slightly flat decrease, before
both HbO2 and HbR responses slowly returned to baseline at
the end of the Rest period. For ALS-7, the HbO2 response had
a second peak ~14 sec, while the HbR response reached another
low level ~15 sec after the MI stimulus onset. Finally, the
observed hemodynamic response pattern for ALS-8 was
inverted. His HbO2 response started decreasing ~2 sec prior to
stimulus onset, reaching its lowest level ~1.5 sec, while the
HbR started increasing around the stimulus onset, peaking ~5

sec, as illustrated in Fig. 4.

Notably, we observed variability in response patterns (i.e.,
typical versus inverted) at the channel level for several subjects
(ALS-1, ALS-2, ALS-3, and ALS-7), while one subject (ALS-
8) showed inverted responses in all channels, and three (ALS-
4, ALS-5, and ALS-6) had typical patterns in all channels. Fig.
5 illustrates the overall normalized grand-average of HbO2 and
HbR inverted responses, observed for some subjects, averaged
across MI-Rest trials for representative significantly active
channels. For ALS-1, and ALS-2, the HbR response started
increasing ~1.5 sec and ~2 sec after the MI stimulus onset,
while their HbO2 response had a relatively early decrease,
starting almost 2 sec before stimulus onset. For ALS-3, HbR
started increasing ~3 sec, while the HbO2 response of the Rest
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Fig.3 Brain activation maps for each subJect averaged over all of the MI-Rest
trials to show the overall subject-specific activation levels. The channel
locations are displayed as numbers on the plots. The maps show the actual ¢-
values (averaged over all the MI-Rest trials) based on the GLM analysis, and
the individual color bars show the averaged level of brain activation for each
subject (significant activation: t-value>z.=1.69).
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channels (#>t.,) with typical HbO2 responses during MI-Rest task (10 sec MI, both LMI and RMI combined, and 10 sec Rest). Each plot shows the
hemodynamic response from 5 sec prior to the MI stimulus onset to 20 sec post-stimulus.

period. For ALS-7, the HbR response started increasing around
5 sec, coupled with an HbO2 decrease around 7 sec relative to
MI onset. Individual variations were also observed in response
peak and trough times. For ALS-1, the HbR response peaked
around 6.5 sec, and the HbO2 response reached its lowest level
about 2.5 sec after the stimulus onset. Similarly, for ALS-2, the
HbR response peaked around 6.5 sec, while the HbO2 reached
its lowest level around 1.5 sec post-stimulus.

For ALS-3 and ALS-7, a relatively late peak of HbR
response appeared around 11 sec and 17 sec, respectively. ALS-
7’s HbO2 response reached its lowest level around 16 sec. For
both ALS-3 and ALS-7, the observed inverted response was
extended along the Rest period, similar to their typical response,
and differences between responses during MI and Rest
conditions are minimal for these two subjects maintained a
slightly flat pattern, below HbR, before both HbO2 and HbR
responses slowly returned to baseline at the end
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Fig. 5 Grand-averaged relative changes of the oxygenated (HbO2) and
deoxygenated (HbR) responses across all the trials to illustrate the observed
inverted responses for the most significantly active channels (#>t..) for four
ALS subjects performing a MI-Rest task (10 sec MI, both LMI and RMI
combined, and 10 sec Rest). Each plot shows the hemodynamic response from
5 sec prior to the MI stimulus onset to 20 sec post-stimulus.

Table II shows subject-specific optimized classification
features, parameters, and performance. For each subject, the
optimal number of active channels (up to 8), the optimal time
window relative to the stimulus-onset ([0-10] sec, or [2-7] sec),
the most discriminative fNIRS responses (HbO2, HbR, or
both), and the optimal feature combination (of 2 to 8 features)
used to obtain the maximum classification performance are
displayed. The performance metrics used averaged 5-fold
cross-validation classification accuracy and F-score.

The classification outcomes show that all participants in this
study were able to use their MI-HR to successfully reach an
acceptable BCI performance. The performance metrics reported
in Table II utilized subject-specific features, channels, and
parameters related to each ALS patient’s individual
hemodynamic responses. Overall, ALS subjects achieved an
average classification accuracy of 85.4%+9.8% and an average
F-score of 0.87+0.09, reaching a maximum accuracy of 98.6%
and an F-score of 0.99 (for ALS-4) using a [2-7] sec response
window relative to imagination onset, and only two features
(Max and Slope). The minimum accuracy reached was 73.8%,
with an F-score of 0.83 for ALS-1, who was in late-stage LIS.
It is worth noting that using data from both HbO2 and HbR
optimized the performance for almost all subjects (except ALS-
1 and ALS-2). Similarly, confining the time window to [2-7]
sec post-stimulus within the 10 sec MI task period improved the
classification performance for three subjects (ALS-4, ALS-6,
and ALS-7). In addition, a combination of two features was
sufficient to obtain a satisfactory performance for most
subjects, while the maximum number of features used was four
(for ALS-2) out of all of the possible combinations (i.e., sets of
2 to 8 features) investigated in this study. As for the number of
channels, the optimal subject-specific number of channels
varied across subjects from a single channel to 8 channels.

Fig. 6 illustrates the discriminative ability of the features by
comparing their frequencies in the optimized subject-specific
features across all subjects. Signal Max was selected as an
optimum feature for half of the subjects, and Mean, Slope, Kurt,
and ddf were included in the combination for three subjects, as
shown in Table II and Figure 6. Signal Skew and DMM were
included in optimizing the performance for two subjects (ALS-



Table II
OPTIMIZED SUBJECT-SPECIFIC CLASSIFICATION PARAMETERS,
FEATURES, AND PERFORMANCE.

Subject Number T ime /NIRS Optimal Acc (%) F-Score
Number of Window Sional Feature
Channels  (sec) 8 Combination
1 5 0-10 HbO2  Kurt, DMM  73.8 0.83
Slope, Mean,
2 8 0-10 HbO2 Max, Kurt 88.6 0.89
HbO2,
3 5 0-10 HbR Skew, ddp 74.4 0.74
HbO?2,
4 8 2-7 HbR Slope, Max ~ 98.6 0.99
HbO?2,
5 3 0-10 HbR Mean, Kurt ~ 95.0 0.95
HbO2, Slope, Max,
6 6 2-7 HbR Skew 92.9 0.93
HbO?2,
7 6 2-7 HbR Max, ddf 76.4 0.74
HbO?2,
8 1 2-7 HbR Mean, ddp 83.3 0.88
Average ~5 - - - 85.4+9.8 0.87+0.09

3 and ALS-6) and a single subject (ALS-1), respectively.

Our Results did not identify any statistical correlation
between the ALS patients’ classification accuracy and their
ALSFRS-R score (tho=0.12, p=0.79). This is consistent with
previous studies related to BCI performance evaluation for ALS
patients [30]. While the minimum classification accuracy in this
study (73.8%) corresponded to the subject with the lowest
ALSFRS-R score (ALS-1), i.e., the highest level of disability,
this did not hold for other subjects, such as ALS-4, who had a
relatively high degree of disability (ALSFRS-R=7), but
achieved the highest accuracy in this study (98.6%).
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Fig. 6 Histogram showing the selection frequencies of the features in the
optimized subject-specific feature sets.

IV. DISCUSSION

The complex neurobiological substrates underlying ALS,
along with the variabilities commonly identified in human
fNIRS hemodynamic responses [26], can result in potential
subject-specific hemodynamic response changes, adding
further challenges to the practical design of fNIRS-based BCI
systems for these patient. In the present work, we proposed a
subject-specific data-driven approach to optimize fNIRS-based

BCI performance for ALS patients. Our findings demonstrated
that regardless of their disability level, ALS patients can reach
a satisfactory level of performance (>85%), indicating an
acceptable level of separability in a binary BCI.

Despite inter-individual variations, our findings showed
overall consistent intra-individual cortical activation across
trials. Relatively limited inconsistency in the intra-individual
cortical topographies can be attributed to general hemodynamic
variations commonly reported for fNIRS signals [31]. The
observed consistency across trials demonstrated that MI-HR
can be utilized as a potential input for a practical MI-BCIL.
Furthermore, an overall significant level of cortical activation
was observed for all subjects, indicating that MI-HR can be
identified in ALS patients using fNIRS signals. As expected,
the overall activation across all trials for each subject revealed
individual cortical spatial distribution, with both the pre/frontal
and primary motor cortices having significant bilaterally-
localized activation in almost all subjects. This is consistent
with the previous findings indicating pre-frontal [32] and
primary motor activation [11], [33] during MI tasks that follow
the same organization as ME, and is not due to muscle activity.
Moreover, as previously reported [34], the spatial distribution
of MI-HR are more bilateral rather than contralateral when
compared to ME, consistent with our results, showing bilateral
spatial distribution of activation for most subjects.

Evaluating the individualized temporal characteristics of the
MI-HR, our results showed that the main pattern identified for
most subjects was a typical MI-HR (i.e., increase in HbO2 and
decrease in HbR) associated with the MI stimulus onset.
However, the observed temporal characteristics of the typical
MI-HR varied across subjects. It is worth noting that only one
subject (ALS-8) had an inverted MI-HR in all channels. This is
consistent with previous fNIRS-based MI studies, observing
inverse oxygenation responses during ME and MI tasks [26],
[35], [36], more likely associated with the MI rather than ME,
as indicated in [26]. Interestingly, in our study, both typical and
inverted patterns were observed in different channels for half of
the subjects. This suggests fNIRS response variability on the
channel level, within the same subject, and emphasizes the need
for personalized feature sets, capturing subject-specific spatial
hemodynamic variations. Moreover, the inconsistency of
hemodynamic patterns (i.e, typical or inverted) across channels
might explain why some subjects who had more consistent
patterns across channels (e.g., ALS-5 and ALS-8) needed fewer
channels for optimized BCI performance than other subjects
(see Table IT). However, this was not the case for some subjects
(ALS-4 and ALS-6), whose typical patterns were also
consistent across channels, but more channels were required to
reach their optimal outcomes. Whether this could be explained
by variability in the temporal responses across channels, or
distinct spatial activations, requires further investigation.

Generally, fNIRS measures brain activity indirectly based on
the cortical neurovascular coupling. In typical responses, the
rise of HbO2 levels has been interpreted as the result of the
increase in cerebral blood flow (CBF) to active regions
stimulated by the increase in neural activity. Typically, this
physiological response remains as long as the CBF
overcompensates for tissues’ energy demand in the active areas.
Hence the typical response observed in several subjects in this
study is explained by localized changes in their cortical



activities through blood oxygenation levels, before slowly
returning to baseline upon the task ends [25]. The physiological
mechanisms underlying inverted hemodynamic responses have
not yet been clearly explained. Holper et al. [26] reported that
the inverted response observed in some healthy subjects, during
simple and/or complex MI tasks, is likely due to individual
variations in the cognitive mechanisms underlying simple vs.
complex tasks. A behavioral interpretation was suggested in the
context of the empirical relation [37] (i.e., the Yerkes-Dodson
law) between attention and performance, speculating that the
inverse response might be related to the increased mental load
of MI, to the point where the engaged cortical area starts
deactivating. The inverted hemodynamic patterns observed in
five subjects throughout this study support these findings, and
suggest a different spatial mechanism underlying their MI
experiences. However, individual variations in fNIRS
responses and their relationship with underlying cognitive
mechanisms in fNIRS-based BCI studies requires further
investigation. Another plausible interpretation is based on
similar fMRI findings describing negative BOLD responses
[38], suggesting that the inverted response can also reflect local
neural deactivation due to a decrease in CBF as a result of a
decrease in neural activation. Considering the comparison
between fMRI and fNIRS, the increase of HbO2 and/or
decrease of HbR are commonly suggested to reflect hyper-
oxygenation that explains a localized increased cortical activity
and, similarly, the decrease of HbO2 and/or increase of HbR
reflects hypo-oxygenation during decreased activation [26].
Although the deactivation process during ME and MI has been
recently reported in fMRI studies [39], [40], the underlying
mechanisms of the negative BOLD remains a matter of debate.
Whether the negative responses are of neural origins, or non-
neural origins such as “blood steal” phenomena [38], which
occurs due to a decrease in CBF adjacent to active regions with
increased CBF, requires further investigation.

Our results showed that MI-HR-based BCI performance
could be optimized using subject-specific feature sets and
classification parameters. The optimal features fundamentally
captured discriminative characteristics of morphological
variations between MI and Rest conditions from significantly
active channels. Notably, the proposed data-driven approach for
estimating the dd coefficient was comparable to the Mean and
the Slope features, and had a relatively high discrimination
ability for a few of subjects. Exploring temporal MI-HR
characteristics for these subjects, the difference between their
hemodynamic response during MI and Rest period was less
prominent in comparison to other subjects. This might explain
the reason why conventionally used features, such as
maximum, slope, and mean, could not discriminate between MI
and Rest. However, modeling a subject-specific ddHR for these
subjects and using the ddf to estimate the strength of the
observed activity could achieve a satisfactory performance for
these subjects. This highlights the importance of a subject-
specific data-driven approach in fNIRS-based BCI design to
achieve acceptable performance, especially for atypical
responses, potentially altered by neurological diseases,
including ALS. Considering the fact that the fNIRS signal
provides information about underlying hemodynamic activities
which might be affected by neurological conditions, and the
fact that the characteristics of MI-based hemodynamic

responses in ALS patients have not been yet thoroughly
identified, it is plausible that the hemodynamic response
characteristics might not maintain a consistent pattern across
ALS patients and/or overtime, within the same subject as their
disease progress. The empirical subject-specific data-driven
approach proposed in this study minimizes general assumptions
about the expected hemodynamic responses, and might
represent a solution to this problem, specifically when observed
hemodynamic responses do not follow typically expected
patterns.

V. LIMITATIONS AND FUTURE DIRECTIONS

The main focus of the present work is limited to spatio-
temporal investigations of hemodynamic responses to guide an
optimal subject-specific BCI for ALS patients. Our protocol
operated primarily as a switch function by offering a binary
fNIRS-based BCI control that relies solely on motor imagery
(MI vs. Rest) for ALS patients. Preliminary results were further
provided for discrimination between LMI vs. RMI in the
supplementary part. However, further analysis characterizing
spatio-temporal differences in cortical activation between LMI
and RMI, as well as optimizing the corresponding parameters
for an enhanced classification task are required, to efficiently
distinguish between the two MI tasks. Adopting powerful
spatial filters, including common spatial patterns (CSP) may
also advance the separability of the two classes. Increasing the
degrees of freedom (DOF) by investigating MI for other limbs
and adding different levels of complexity to the MI task can also
improve the efficacy of the proposed BCI for more practical
applications. Future analysis will involve testing the feasibility
of the proposed methods for a real-time MI BCI scenarios that
involve investigating sliding short time windows for an
enhanced information transfer rate (ITR), which takes both time
and accuracy into account. Future work might also involve
characterizing the neuropathological effects of ALS on MI-HR
by involving healthy controls. In addition, the statistical power
of this study was limited, due to the relative difficulty of
recruiting and recording from ALS patients. However, our
primary goal was characterization for an optimal BCI use, not
the neurophysiological quantification of ALS.

VI. CONCLUSION

This study focused on characterizing and evaluating the
spatio-temporal dynamics of hemodynamic responses evoked
by MI tasks in order to investigate the feasibility of fNIRS-
based hemodynamic responses evoked by MI tasks as a means
of BCI control for people with ALS. The proposed methods
evaluated the hemodynamic responses and statistically verified
MI activation, taking into account both typical and inverted
responses. A subject-specific data-driven approach was
proposed to accommodate for the individual spatio-temporal
characteristics of hemodynamic responses. The proposed data-
driven coefficient (ddf) feature improved the classification
performance of subjects with less prominent temporal
differences between MI and Rest tasks, suggesting its potential
to enhance classification performance for atypical response
patterns that might be observed for ALS patients in comparison
with conventionally used features (e.g., Max, Mean, and Slope).
Despite the observed inter-individual variations in the ALS
hemodynamic responses, an optimized performance was



achieved for each subject regardless of their disability level.
Our results revealed an average accuracy of 85.4%+9.8%, while
no significant correlation was observed between classification
accuracies and patients’ ALSFRS-R scores. These results
highlight the importance of adopting an individualized design
that takes into account subject-specific variations, both spatially
and temporally, to improve BCI performance for ALS patients.
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