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Abstract

Peptide microarrays have emerged as a powerful technology in immunoproteomics as they provide a tool to
measure the abundance of different antibodies in patient serum samples. The high dimensionality and small
sample size of many experiments challenge conventional statistical approaches, including those aiming
to control the false discovery rate (FDR). Motivated by limitations in reproducibility and power of current
methods, we advance an empirical Bayesian tool that computes local false discovery rate statistics and
local false sign rate statistics when provided with data on estimated effects and estimated standard errors
from all the measured peptides. As the name suggests, the MixTwice tool involves the estimation of two
mixing distributions, one on underlying effects and one on underlying variance parameters. Constrained
optimization techniques provide for model fitting of mixing distributions under weak shape constraints
(unimodality of the effect distribution). Numerical experiments show that MixTwice can accurately estimate
generative parameters and powerfully identify non-null peptides. In a peptide array study of rheumatoid
arthritis (RA), MixTwice recovers meaningful peptide markers in one case where the signal is weak, and

has strong reproducibility properties in one case where the signal is strong.
Availability: MixTwice is available as an R software package. https://github.com/wiscstatman/MixTwice

Contact: newton@stat.wisc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Peptide microarray technology is used in biology, medicine, and
pharmacology to measure various forms of protein interaction. Like other
microarrays, a peptide array contains a large number of very small probes
arranged on a glass or plastic chip. Each probe occupies a spatial position
on the array, and is comprised of many molecular copies of a short amino-
acid sequence (a peptide) anchored to the surface, perhaps 12 to 16 amino
acids in length, depending on the design. In antibody profiling experiments,

the array is exposed to serum derived from a donor’s blood sample;
antibodies in the sample that recognize an anchored peptide epitope may
bind to the probe. In order to measure these antibody/antigen binding
events, a second, fluorescently tagged antibody is applied, which binds
to exposed sites on the already-bound antibodies, providing quantitative
readout at probes where there has been sufficient binding of serum antibody
recognizing the peptide epitopes. High-density peptide microarrays have
emerged as a powerful technology in immunoproteomics, as they enable
simultaneous antibody-binding measurements against millions of peptide
epitopes. Such arrays have guided the discovery of markers for viral,
bacterial, and parasitic infections (Mishra er al., 2018; Tokarz et al.,
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2020; Bailey et al., 2020) and have illuminated the serological response
to cancer (Yan et al., 2019) and cancer immunotherapy (Hoefges et al.,
2020). The photolithographic design allows for custom arrays, which have
benefited studies of autoimmunity, for example, where various forms
of post-translational modification (e.g., citrullination) create targets for
autoantibodies (Bailey et al., 2017; Zheng et al., 2020).

The high dimensionality and small sample size of many peptide-array
experiments challenge conventional statistical approaches. Zheng et al.
(2020), for example, reported a custom peptide-array having 172,828
distinct features and array data from 60 human subjects across several
disease subsets. This dimensionality is relatively high compared to gene-
expression studies, but quite low compared to other peptide-array studies;
arrays that probe the entire human proteome carry over 6 million peptide
features, for example. Methods for large-scale hypothesis testing respond
to these challenges, often aiming to control the false discovery rate (FDR)
(e.g., Efron, 2012). FDR-controlling procedures are more forgiving than
techniques that control the probability of any type I errors (e.g., Bonferroni
correction), but they still extract a high penalty for dimensionality in the
peptide-array regime involving 10°-106 features. When additional data
are available it may be possible to further limit penalties associated with
large-scale testing.

Continuing with Zheng er al. (2020), the authors sought to identify
peptides for which antibody binding levels differ between control subjects
and rheumatoid arthritis (RA) patients expressing a specific disease marker
combination (CCP+ and RF-). Sera from twelve subjects in each group
were applied to their custom-built array. After pre-processing, a univariate
statistic (t-statistic) measured statistical changes at each peptide. Peptides
with the most extreme statistics (and smallest p-values) would be set aside
for further validation. In the CCP+RF- RA example, no peptides had a
FDR-adjusted p-value less than 10% by either the Benjamini-Hochberg
(BH) method (Benjamini and Hochberg, 1995) or the more sensitive
q—value method (Storey et al., 2003), although the latter method estimated
that 21% percent of the peptides in fact have differential binding between
the two groups.

Improving power while maintaining robustness and reproducibility is a
theme of contemporary large-scale inference that we explore in the peptide-
array setting. The BH and g—value procedures yield no discoveries in
the CCP+RF- RA example at one conventional FDR level. If this is due
to low statistical power, it may not be surprising since these procedures
enter quite late in data analysis, after all p-values have been computed.
Procedures that intervene earlier have access to more information, and
thereby may have better overall operating characteristics. Efron’s local
FDR approach, 1ocFDR, intervenes on test statistics just prior to p-
value computation and has improved power properties in some settings
(Efron et al., 2001). Independent filtering combines a selection statistic,
such as marginal sample variance, and then applies an FDR-controlling
procedure to the selected peptides (Bourgon et al., 2010). Neither LocFDR
nor independent filtering at 50% yielded any results in the CCP+RF- RA
example, as it happens. We have the same null finding by independent
hypothesis weighting (IHW), which generalizes independent filtering in
not requiring a specific selection rate (Ignatiadis et al., 2016).

Adaptive Shrinkage (ASH) is a recent innovation for large-scale testing
that intervenes after each peptide yields both an estimated effect and an
estimated standard error (Stephens, 2017). There are several variations
of its empirical Bayesian formulation; when using the ¢—distribution
sampling-model version of ASH (say ASH-t), we discover 76 peptides to
have differential antibody binding in the CCP+RF- RA comparison, also
at 10% FDR control. This may reflect increased power, and is consistent
with numerical studies showing increased power of ASH in many settings.
A recent report from Professor Stephens’s group points out a technical
limitation of ASH-t that could cause FDR inflation. It proposes a two-step
ASH procedure that pre-processes the standard error estimates and then

follows with the ASH-t procedure on modified input (Lu and Stephens,
2019). It happens that we discover 12 peptides with differential binding
affinity by two-step ASH at 10% FDR. The different behavior of FDR-
controlling procedures in the CCP+RF- RA example exposes ongoing
practical challenges that are also revealed in comprehensive numerical
studies (Korthauer et al., 2019).

Data analysts face many issues as they filter high-dimensional
measurements into short lists for experimental follow-up. In studying this
problem, we propose and evaluate a flexible empirical Bayesian mixture
method that, like ASH, intervenes after effect estimates and standard errors
are computed on each testing unit. The proposed MixTwice procedure
involves shape-constrained mixture distribution for latent effects and also
a separate nonparametric mixture for variance parameters (Section 2). We
leverage existing tools for constrained optimization in order to estimate the
underlying mixing distributions, and we present a variety of comparative
numerical experiments on the operating characteristics of Mix Twice. The
CCP+RF- RA peptide-array example happens to yield 44 peptides having
significant differential antibody binding at 10% FDR. A closer look at the
identified peptides reveals binding patterns consistent with other biological
information about RA, and thus provides a measure of confidence that these
discoveries are not artifacts. In a second RA example where differential
signals are stronger, MixTwice shows a higher level of reproducibility
than other approaches when presented with two independent data sets on
the same populations.

2 Mixture model

We index peptides by ¢ = 1,2, --- ,m and suppose that the two-group
peptide-array data have been obtained and pre-processed in order to yield
two summary statistics per peptide: (z;, s;). The first component, x;, is
an estimated effect. It measures the difference between the two groups,
such as a difference in sample means of log-transformed data, and is
viewed a statistical estimate of an underlying effect, say 6;. In this view,
x; is a random variable having some sampling distribution, which we
take to be Gaussian centered at 6;; this is warranted noting the behavior
of suitably-transformed fluorescence measurements coupled with central-
limit effects for modest to large sample sizes. The second component, s;, is
an estimated standard error. In the Gaussian sampling model, E(z;) = 6;
and var(z;) = 01.2, and sf is a sample-based estimate of the variance 01.2.
We seek inference about the value of 6; using local data (z;, s;) as well
as data {(z;s, s;#)} from all peptides, which informs the distribution of
effect and variance parameters across the array.

Our formulation is common in large-scale inference, and we could
infer 6; values in a number of ways. For example, we could produce a
peptide-specific p-value from the test statistic t; = x; /s; against the null
hypothesis Ho ; : 0; = 0. We might refer ¢; to a Student-t distribution,
obtain a two-sided p-value, and then process the p-values through the
Benjamini-Hochberg (BH) or ¢g—value methods to adjust for multiplicity
(Benjamini and Hochberg, 1995; Storey ef al., 2003). Alternatively, we
might use the collection {¢;} and model their fluctuations as a discrete
mixture of null and non-null cases, as in the LocFDR procedure (Efron
et al., 2001; Strimmer, 2008). Both 1ocFDR and g—value methods
are based upon discrete mixtures; interestingly the reduction of ¢;’s to
two-sided p-values entails a loss of sign information that is enough to
reduce statistical power in some settings. A more ambitious approach
goes beyond null/non-null mixing to allow a full probability distribution
of effects 6; in order to account for fluctuations across all the peptides.
Adaptive shrinkage (ASH) is appealing because it acquires robustness
through a nonparametric treatment of this distribution, say g(6), while
using reasonable shape constraints to regularize the estimation (Stephens,
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2017). Power advantages of ASH over other methods stem in part from its
use of more data per peptide.

In the context of an estimated mixture model there are two useful
empirical-Bayesian inference statistics. The first is local false discovery
rate (Ifdr), [; = P(6; = O|x;, sf) The term local false discovery rate was
coined by Professor Efron, and the statistic may be computed in various
settings beyond the specific mixture deployed in Efron et al. (2001). The
list £ of statistically significant peptides willbe £ = {i : I; < ¢} for some
threshold c. Notably, small /; warrants peptide ¢ to be placed in £; but the
value [; is also the probability (conditional on data) that such placement
is erroneous (Newton et al., 2006). Given the data, the expected rate of
false discoveries in £ is dominated by c. The local false sign rate (Ifsr) is
analogous to Ifdr, but it avoids relying on effects being precisely zero; when
the estimated effect is positive for example, the Ifsr is P(6; < 0|z, s2).
Lists controlling Ifsr may be constructed in the same way as £, and may
be slightly smaller for the same value of c. (In the CCP+RF- RA example
in Section 1, ASH Ifsr and 1fdr lists are the same at the 10% level.)

With modest sample sizes, differences between estimated standard
errors {s; } and actual standard errors {o; } can affect the performance of
existing tools for Ifdr and Ifds. To better account for these differences
we propose an additional mixture layer involving a sampling model
p(s?|o?), which we derive from normal-theory considerations, and a
flexible nonparametric mixing distribution i.(o2). For both nonparametric
components — g on effects 6; and h on squared standard errors 0'2»2 —we
use finite grids and treat each distribution as a vector of probabilities.
We estimate g and A by maximum likelihood, respecting unimodal shape
constraints for g (as in ASH), but otherwise allowing any distributional
forms.

Suppose that effects take values in a finite, regular grid
{a_k,a_k4+1,"-,a0,a1, - ,ax } where ag is the presumed mode,
taken to be ag = 0 in typical applications in which we aim to retain the
null hypothesis of no group difference. We use K = 15 in numerical
work reported here. Unimodality of the mixing distribution g = (gx)
is expressed as a set of ordering constraints: g, > g4 for b =
0,1,--- ,Kand gy < gg41fork = —-K,—K+1,---,—1. Wealsoset
a second regular grid {0 < b1, ba, - -
and impose no constraints on the mixing distribution A = (h;) aside from
the basic nonparametric essentials: oy > Oand }, h; = 1.

The contribution to the likelihood objective from peptide ¢ is

p(x’i» S?‘gv h)

-, b } for squared standard errors,

DD PO = ar) P(o] = b)) p(wi, 57 10; = ak, 07 = by)
k l

> gk p(zil0i = ax, 07 = by) p(si|o} = by)
ko1

1 xi—ak) v (1/8?)
SN Tgkh = (B} D (S 1
T ok l\/5¢( Vb b3\, M

where ¢ is the standard normal probability density, x2,, is the density of
a chi-square random variable on v degrees of freedom. Under a normal
data model, v is determined by design (e.g. total samples minus two in
the traditional two-sample comparison). The chi-square model is accurate
asymptotically for a wide range of non-normal sampling distributions,
however the degrees of freedom needs estimation in these cases (O’ Neill,
2014).

To estimate the mixing distributions & and g we use the log-likelihood
objective function, with terms as in (1). In MixTwice, we solve the

3
constrained optimization:
m
min—l(g,h) = — > logp(wi, s7lg, h) @)
’ i=1
Subject to: gr,h; >0 Vk,l

So=Th=t
k 1
gk < gk+1, ke {-K,—-K+1,..,—1}

9k > gr+1, ke€{0,1,..,K}

The gradient and Hessian of (g, h) are readily available, and so (2)
may be solved efficiently using augmented Lagrangian for constrained
optimization, using the BFGS algorithm for inner loop optimization, which
is implemented in the R package alabama (Varadhan, 2015). We extract
Ifdr and Ifsr statistics from the peptide-specific posterior distributions at
the optimized vectors §, h: P(6; = ay,|a;, s2)

= YOPO; = ag, 07 = bilwi,s7)
l

N ~ 1 T, —ap\ vV l/s?
0 Sh e (U) e (5) 0

Proportionality is resolved by summation over the grid k, and we get:

Ifdr; = P(6; :ao\zi,s?),

Ifsr; = min Z P(6; = ag|z;,s?), Z P(6; = aglz;, s?)
k<0 k>0

It may be helpful to recognize that by contrast to (3), ASH-normal would
entail

P(0; = alwi,s7) o< gk lfﬁ (M) ; (C)
Si Si

and ASH-t would replace the normal density ¢ in (4) with a Student ¢
density; in both cases the ASH-estimated mixing density g would come
not from (2) but from an objective in which mixing over variances is
not explicitly accommodated. The initial implementation of MixTwice
invokes unimodality shape constraint, but not symmetry, and, for
computational convenience, allows that a random subset of the testing
units is used in the optimization. We investigate this approximation in
Supplementary Material.

3 Simulation Study

‘We are interested in the performance of MixTwice in scenarios reflecting
what might be expected to occur in practice and have performed numerical
experiments involving different generative distributions of both effects (g)
and variances (h). Noting the special role of the null value, 8 = 0, our
experiments involve mixtures g(6) = modo + (1 — m0)gart (@), where
mo = P(6; = 0) and ga¢ provides various ways to distribute mass
away from zero. Following Stephens (2017) and Lu and Stephens (2019),
we entertain different general shapes, including so-called big-variance,
bi-modal, flattop, normal, and spiky. MixTwice accounts for explicit
differences between sample and underlying standard errors, and mixes
nonparametrically over these underlying standard errors. Our numerical
experiments consider the simplest case in which the data generating h
is a point mass, a case involving a finite mixture of two values, and
also a continuous case of inverse-Gamma-distributed parameters. Patterns
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in the error of estimation and the hypothesis testing error rates are very
comparable across different choices of h, and so for simplicity here we
report only experiments when this true h is a point mass distribution at
o = 1. Figures | and 2 summarize, respectively, properties of estimation
accuracy and testing error rates. Experiments are based on Gaussian
samples, m = 1000 peptides, and various sample size settings for the
two-group comparison.

If a method tends to overestimate g, then power may be reduced;
in case of underestimation the FDR may be inflated. Figure 1, Panel B,
focuses on the estimation of this marginal null frequency for one choice of
sample size, namely n = 10 observations per group. In each setting of g
(column), 500 data sets are generated, each drawn after its own mq value
was uniformly drawn in [0.5, 1]. All methods respond appropriately to
changes in g, though they exhibit different biases; MixTwice tracks the
identity line (no bias) case closely in all scenarios except the challenging
spiky case of g,)4. By contrast 1ocFDR is conservatively biased, tending
to over-estimate 7o in most cases. Our experiments include an oracle case,
namely ASH—normal, which takes the true value 02»2 = 1 as known. This
numerical control helps us gauge the magnitude of statistical errors induced
by estimation error of the variance profile.

Figure 1, Panel C, amplifies one case from the second row, when
mo = 0.9, and shows how estimation error drops as the sample size
per peptide grows. Most methods display a level of convergence in this
setting, with MixTwice performing relatively well especially at low
sample sizes. Going beyond the estimation of 7, we compared methods
by their 1-Wassertstein error in estimating the entire mixture distribution
g; MixTwice showed relatively small error in this setting also (data not
shown). Without parametric assumptions, 7q is not identifiable and only
a upper bound may be reliably estimated (Efron et al., 2001; Stephens,
2017).

Figure 2 confirms that most methods are controlling FDR as advertised.
The empirical false discovery rate is plotted against the controlled rate;
the latter is the nominal target FDR value where we threshold the Ifdr’s;
the former is what is evident from knowing the simulation states (in
other terminology, it is the average, over simulated data sets, of the false
discovery proportion). Colored lines are used to distinguish different levels
of 7, when the signal is dense (with a lower null proportion 7r) or when
the signal is sparse (with a higher null proportion 7p). Recall we simulated
independent data sets each governed by a randomly chosen 7o from
[0.5, 1]. In order to visualize the results, we stratified data sets into four
groups and averaged internally: 0.5 < 7o < 0.625,0.625 < 79 < 0.75,
0.75 < mo < 0.875,0.875 < mp < 1. The FDR inflation by ASH-t at
high 7¢ is evident in this simulation.

4 Empirical studies
4.1 Antibodies in rheumatoid arthritis

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized
by inflammation and pain, primarily in the joints. RA patients produce
autoantibodies against many different "self" proteins. Most famously, they
generate antibodies against proteins in which arginine amino acids have
been post-translationally modified to citrullines (Schellekens et al., 1998)
as well as antibodies that bind to antibodies, called rheumatoid factor
(RF) (Waaler, 1940). Both autoantibody types appear to be pathogenic
(Sokolove et al., 2014) and both are used diagnostically (Aletaha et al.,
2010), the former detected by the anti-cyclic citrullinated peptide (CCP)
test. Most RA patients make both autoantibody types (CCP+RF+ RA),
but some have only one type like in CCP+RF- RA. Little is known
about why CCP+RF+ versus CCP+RF- RA develops. However, a better
understanding of the autoantibody repertoires in each RA subset could
provide insights, a task for which peptide arrays are perfect.
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simulated data sets.The identity line (dashed) indicates no bias. ASH-normal is an oracle
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number of observations grows, in 79 = 0.9.

The custom high-density peptide array reported in Zheng et al. (2020)
probed 172,828 distinct 12 amino acid length peptides derived from 122
human proteins suspected to be involved in RA, including peptides in
which all arginines were replaced by citrullines. We reconsider here two
distinct comparisons from that study, namely the comparison between
CCP+RF- RA patients and controls, and a second comparison between
CCP+RF+ RA patients and controls, in which differential signals are
much stronger. Both comparisons have 12 subjects in each group. To
assess reproducibility, we take advantage of a second peptide array data
set derived from an independent set of 8 controls and 8 CCP+RF+ RA
patients.

4.2 CCP+RF- RA: weak signals

We applied MixTwice to fit the shape-constrained mixture model of
Section 2. Fitted mixing distributions are visualized in Figure 3 and
provide a measure of the magnitude of changes in mean antibody levels as
well as the magnitude of sampling variation. For example, the effect-size
distribution estimates no probability for effects larger than 0.037. Also,
the median standard error is 0.10 (squared standard error 0.01), which is
large compared to the probable effect sizes.

In Section 1 we presented summary counts of peptides identified at
10% FDR that exhibit differential binding between CCP+RF- RA patients
and non-RA controls. MixTwice, ASH-t, and two-step ASH distinguish
themselves in being the only methods among many standard large-scale
tools to populate non-empty lists of discovered peptides at that FDR level.
Recognizing that the magnitude of signal intensities on the peptide array is
an important aspect of downstream analysis, Figure 4 shows a summary of
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the identified peptides by various methods. Notably, MixTwice and two-
step ASH detect peptides in this case with higher average signal intensity
than ASH-t; these may correspond to higher antibody abundance or affinity
and potentially easier validation. ASH-t tends to select peptides with low
standard errors, even when the estimated effects are very low.
Interestingly, the 44 peptides found by MixTwice have a strong
pattern in their peptide sequences: all are citrulline (3)-containing peptides
(which would be predicted for CCP+ RA patients) and contain citrulline

Group B3 CCP+RF- RA B3 Control

ASH-t MixTwice two step ASH

N N
— >

Signal intensity, log-log scale
o »

CCP+RF-RA  Control CCP+RF-RA  Control

Group

CCP+RF- RA  Control

Fig. 4. Signal intensity of differentially abundant peptides: Boxplots show averaged
signal values on double natural log scale (both CCP+RF- RA and control subjects) for
peptides found by ASH-t (76 peptides), MixTwice (44 peptides), and two-step ASH (11
peptides) all discovered at 10% FDR.
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Fig. 5. Motif logo for significant peptides in CCP+RF- RA: Consensus sequences were
generated using online software MEME Suite (Bailey et al., 2009) and the significant
peptides from the different methods: ASH-t (left), MixTwice (middle) and two-step ASH
(right). Each position of the motif logo represents the empirical distribution of amino acids
at that site, with size proportional to frequency. B found in the middle and right panels
is citrulline, a post-transitionally modified arginine. The overall height of each stack is an
information measure (bits) related to the concentration of the empirical distribution on its
support.

next to glycine (B-G or G-B), as shown in the motif in Figure 5. Binding
of antigens in which citrulline is next to glycine is consistent with a growing
body of literature on the reactivity of anti-citrullinated protein antibodies
in RA (e.g., Burkhardt et al., 2002; Szarka et al., 2018; Steen et al., 2019;
Zheng et al., 2020).

As a further negative control calculation, we applied MixTwice to
each of 500 permuted data sets obtained by fixing the peptide data and
randomly shuffling the 24 subject labels (12 control, 12 CCP+RF- RA).
In 493 cases, the 10% FDR list is empty; 6 cases find a single peptide and
one case finds 2 peptides at this threshold.

Among a number of large-scale testing methods applied to the
CCP+RF- RA example, MixTwice identifies a comparatively large
number of statistically significant peptides. By contrast to other methods,
these peptides contain patterns in their amino acid sequences consistent
with emerging evidence on this disease, and they correspond to relatively
high fluorescence intensity measurements. Together, these observations
provide some assurance that the MixTwice findings are not artifacts.

4.3 CCP+RF+ RA: strong signals

One of the findings from Zheng er al. (2020) concerns the extensive
antibody-profile differences between RA patients who are positive for
both biomarkers (CCP+RF+) and control subjects. Statistically, it
represents an interesting non-sparse, large-scale testing situation, and the
immunological mechanisms driving this remain only partially understood.
To check the reproducibility of peptide-array findings, a new experiment



“output” — 2021/7/29 — 1:03 — page 6 — #6

6 Zheng et al.
A tudy? tudy2 B - N ) L -
Slely SIUE type Not significant = Significant in both studies Significant in study1 Significant in study2
0.4
{ \ 8
0.3 ,
Qq 4
>
] )
= 2
= 7]
8 0.2 ' o
S £
° <4
] o
s
?
' N 0
0.1
0.0 -4
-5 0 5 -5 0 5 -4 0 4 8
z-score z-score in study1
¢ method MixTwice -e= ASH-t two-step ASH locFDR I?,, method MixTwice -e= ASH-t two-step ASH locFDR
g
<
» -
=
2 3
=
<
<L o4 5
= Q
@ 3 10000
° £
s £
8 :
< 0.3 =
4 0
E s
£ “g
c
o 5000
.% 0.2 =
< 8
w =
c
S 5
£ 01 e ee——— " »
Eol] s - IR
o
£ 0
1e-05 1e-03 2 1e-05 1e-04 1e-03

1e-0.
Significance Level

Significance Level

Fig. 6. Reproducibility comparison. Panel A shows empirical z-score distributions for CCP+RF+ RA vs control at 172,828 peptides in two independent studies. The scatterplot in Panel

B highlights peptides identified uniquely at 0.1% FDR by MixTwice in either study (yellow, green) and those reproducibly found in both studies (blue). Metrics in Panels C and D compare

performance of MixTwice as a function of FDR threshold.

was performed using the same procedures and 172,828 peptide array to
detect IgG binding as in Zheng et al. (2020), but with serum samples from
16 different subjects: 8 CCP+RF+ RA and 8 controls. CCP+RF+ RA and
control subjects were similar in regards to age, sex, race, ethnicity, and
overall health. Preprocessing followed the same protocol and provided a
data set (study 2) for us to look at reproducibility of large-scale hypothesis
testing methods.

Z-score histograms in Figure 6, Panel A, show that both studies reveal
extensive increased antibody binding in the CCP+RF+ RA group. The
scatterplot in Panel B reveals concordance between the studies on this
z-score metric. The color-coding highlights discovered peptides at the
0.1% FDR method by MixTwice, both uniquely in one study (green or
yellow) and reproducibly in both studies (blue). Of course MixTwice
uses more information than is in the z-score summary, but the scatterplot
provides a convenient visualization. The lower panels in Figure 6 compare
reproducibility statistics of different testing methods at various FDR
thresholds. Denoting by £ () the list of significant peptides in study
j and FDR level r, we have |£1(a) N L2 («))| as the number of peptides
identified in both studies (Panel D) and 1£1(e)nL2(e))]

[£1(a)ULa(a))]
fraction (Panel C). By connecting separate, independent studies of the

as the common

same group difference, these statistics measure the reproducibility of
various large-scale testing methods. Mix Twice shows substantially better
reproducibility than other testing methods, such as ASH-t, two-step ASH,
and 1ocFDR in this example.

5 Discussion

High-throughput biomedical experiments, such as those involving peptide
arrays and immunological studies, continue to provide challenging
problems for large-scale hypothesis testing. Readily applied techniques,
such as g—value, 1ocFDR, IHW, and ASH are often very effective at
reporting lists of testing units (peptides) showing statistically significant
effects at a targeted false discovery rate. In the case of high-density peptide
arrays, we find several examples where these tools are deficient. One
issue is the number of testing units, which is an order of magnitude larger
than what is seen in transcript studies, for example. In the CCP+RF- RA
comparison, most existing tools exhibit low power, which may stem in
part from when they intervene in the data analysis. Methods that intervene
earlier have access to more information and thereby may gain some
advantage. The risk to intervening early is that more assumptions may
be required to deliver relevant testing statistics (e.g., 1fdr, 1sdr). We rely
on external validation, such as on sequence properties of the identified
peptides, to assess practical utility. The CCP+RF+ RA example showcases
a situation where power is high by all methods, and the differences boil
down to how testing units are prioritized. The proposed MixTwice
procedure shows impressive reproducibility in this case.

Structurally, MixTwice is similar to the ASH method for large-scale
testing: it aims to estimate a mixing distribution of effects in an empirical
Bayesian formulation. It adopts ASH’s nonparametric, shape-constrained
model for effects, but deviates from that approach by incorporating a
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second mixing layer over underlying effect-variance parameters. A number
of methodological issues deserve further study. For example, MixTwice
treats the sampling model of squared standard errors as chi-square on a
design-based degrees of freedom, which is rooted in a normal-data model.
We expect that suitable transformation of the original data will make
this treatment reasonable; for example, Zheng et al. (2020) proposed a
double-log transform to stabilize variance. An interesting alternative is to
use a bootstrap scheme to assess the sampling distributions directly, in
order to thereby estimate the degrees of freedom that would be justified
asymptotically for non-normal cases.

There are computational issues that warrant further investigation. The
objective function (2) may not be convex in the pair of arguments (g, h).
Numerical experiments indicate good performance of the augmented
Lagrangian optimization approach in a range of scenarios, though
alternative approaches may have benefits. For example, the conditional
optimizations of g given h or h given g are both convex, though attempts
so far to leverage this have been less computationally efficient than the
augmented Lagrangian method. Related to this are questions of grid sizes
K and L, which have to balance fidelity to the data and computational
efficiency.

Though our presentation has focused on the classical two-group
comparison problem, it should be evident that the core methodology is
not restricted to this case. Estimated effects x;, for example, could arise
from a contrast of interest after adjusting for blocking variables or other
covariates. These will be useful to consider as we expect them to emerge
in experiments that further investigate mechanisms of immune-system
disregulation.

Finally, we point out that other forms of information may be usefully
integrated with the testing methodology. Peptides tile proteins, though we
have treated them as anonymous testing units. More sophisticated peptide
prioritization could leverage amino-acid structure, protein content, or other
features of the immunological context.
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