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Abstract

Peptide microarrays have emerged as a powerful technology in immunoproteomics as they provide a tool to

measure the abundance of different antibodies in patient serum samples. The high dimensionality and small

sample size of many experiments challenge conventional statistical approaches, including those aiming

to control the false discovery rate (FDR). Motivated by limitations in reproducibility and power of current

methods, we advance an empirical Bayesian tool that computes local false discovery rate statistics and

local false sign rate statistics when provided with data on estimated effects and estimated standard errors

from all the measured peptides. As the name suggests, the MixTwice tool involves the estimation of two

mixing distributions, one on underlying effects and one on underlying variance parameters. Constrained

optimization techniques provide for model fitting of mixing distributions under weak shape constraints

(unimodality of the effect distribution). Numerical experiments show that MixTwice can accurately estimate

generative parameters and powerfully identify non-null peptides. In a peptide array study of rheumatoid

arthritis (RA), MixTwice recovers meaningful peptide markers in one case where the signal is weak, and

has strong reproducibility properties in one case where the signal is strong.

Availability: MixTwice is available as an R software package. https://github.com/wiscstatman/MixTwice

Contact: newton@stat.wisc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Peptide microarray technology is used in biology, medicine, and

pharmacology to measure various forms of protein interaction. Like other

microarrays, a peptide array contains a large number of very small probes

arranged on a glass or plastic chip. Each probe occupies a spatial position

on the array, and is comprised of many molecular copies of a short amino-

acid sequence (a peptide) anchored to the surface, perhaps 12 to 16 amino

acids in length, depending on the design. In antibody profiling experiments,

the array is exposed to serum derived from a donor’s blood sample;

antibodies in the sample that recognize an anchored peptide epitope may

bind to the probe. In order to measure these antibody/antigen binding

events, a second, fluorescently tagged antibody is applied, which binds

to exposed sites on the already-bound antibodies, providing quantitative

readout at probes where there has been sufficient binding of serum antibody

recognizing the peptide epitopes. High-density peptide microarrays have

emerged as a powerful technology in immunoproteomics, as they enable

simultaneous antibody-binding measurements against millions of peptide

epitopes. Such arrays have guided the discovery of markers for viral,

bacterial, and parasitic infections (Mishra et al., 2018; Tokarz et al.,
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2020; Bailey et al., 2020) and have illuminated the serological response

to cancer (Yan et al., 2019) and cancer immunotherapy (Hoefges et al.,

2020). The photolithographic design allows for custom arrays, which have

benefited studies of autoimmunity, for example, where various forms

of post-translational modification (e.g., citrullination) create targets for

autoantibodies (Bailey et al., 2017; Zheng et al., 2020).

The high dimensionality and small sample size of many peptide-array

experiments challenge conventional statistical approaches. Zheng et al.

(2020), for example, reported a custom peptide-array having 172,828

distinct features and array data from 60 human subjects across several

disease subsets. This dimensionality is relatively high compared to gene-

expression studies, but quite low compared to other peptide-array studies;

arrays that probe the entire human proteome carry over 6 million peptide

features, for example. Methods for large-scale hypothesis testing respond

to these challenges, often aiming to control the false discovery rate (FDR)

(e.g., Efron, 2012). FDR-controlling procedures are more forgiving than

techniques that control the probability of any type I errors (e.g., Bonferroni

correction), but they still extract a high penalty for dimensionality in the

peptide-array regime involving 105-106 features. When additional data

are available it may be possible to further limit penalties associated with

large-scale testing.

Continuing with Zheng et al. (2020), the authors sought to identify

peptides for which antibody binding levels differ between control subjects

and rheumatoid arthritis (RA) patients expressing a specific disease marker

combination (CCP+ and RF-). Sera from twelve subjects in each group

were applied to their custom-built array. After pre-processing, a univariate

statistic (t-statistic) measured statistical changes at each peptide. Peptides

with the most extreme statistics (and smallest p-values) would be set aside

for further validation. In the CCP+RF- RA example, no peptides had a

FDR-adjusted p-value less than 10% by either the Benjamini-Hochberg

(BH) method (Benjamini and Hochberg, 1995) or the more sensitive

q−value method (Storey et al., 2003), although the latter method estimated

that 21% percent of the peptides in fact have differential binding between

the two groups.

Improving power while maintaining robustness and reproducibility is a

theme of contemporary large-scale inference that we explore in the peptide-

array setting. The BH and q−value procedures yield no discoveries in

the CCP+RF- RA example at one conventional FDR level. If this is due

to low statistical power, it may not be surprising since these procedures

enter quite late in data analysis, after all p-values have been computed.

Procedures that intervene earlier have access to more information, and

thereby may have better overall operating characteristics. Efron’s local

FDR approach, locFDR, intervenes on test statistics just prior to p-

value computation and has improved power properties in some settings

(Efron et al., 2001). Independent filtering combines a selection statistic,

such as marginal sample variance, and then applies an FDR-controlling

procedure to the selected peptides (Bourgon et al., 2010). NeitherlocFDR

nor independent filtering at 50% yielded any results in the CCP+RF- RA

example, as it happens. We have the same null finding by independent

hypothesis weighting (IHW), which generalizes independent filtering in

not requiring a specific selection rate (Ignatiadis et al., 2016).

Adaptive Shrinkage (ASH) is a recent innovation for large-scale testing

that intervenes after each peptide yields both an estimated effect and an

estimated standard error (Stephens, 2017). There are several variations

of its empirical Bayesian formulation; when using the t−distribution

sampling-model version of ASH (say ASH-t), we discover 76 peptides to

have differential antibody binding in the CCP+RF- RA comparison, also

at 10% FDR control. This may reflect increased power, and is consistent

with numerical studies showing increased power of ASH in many settings.

A recent report from Professor Stephens’s group points out a technical

limitation of ASH-t that could cause FDR inflation. It proposes a two-step

ASH procedure that pre-processes the standard error estimates and then

follows with the ASH-t procedure on modified input (Lu and Stephens,

2019). It happens that we discover 12 peptides with differential binding

affinity by two-step ASH at 10% FDR. The different behavior of FDR-

controlling procedures in the CCP+RF- RA example exposes ongoing

practical challenges that are also revealed in comprehensive numerical

studies (Korthauer et al., 2019).

Data analysts face many issues as they filter high-dimensional

measurements into short lists for experimental follow-up. In studying this

problem, we propose and evaluate a flexible empirical Bayesian mixture

method that, like ASH, intervenes after effect estimates and standard errors

are computed on each testing unit. The proposed MixTwice procedure

involves shape-constrained mixture distribution for latent effects and also

a separate nonparametric mixture for variance parameters (Section 2). We

leverage existing tools for constrained optimization in order to estimate the

underlying mixing distributions, and we present a variety of comparative

numerical experiments on the operating characteristics ofMixTwice. The

CCP+RF- RA peptide-array example happens to yield 44 peptides having

significant differential antibody binding at 10% FDR. A closer look at the

identified peptides reveals binding patterns consistent with other biological

information about RA, and thus provides a measure of confidence that these

discoveries are not artifacts. In a second RA example where differential

signals are stronger, MixTwice shows a higher level of reproducibility

than other approaches when presented with two independent data sets on

the same populations.

2 Mixture model

We index peptides by i = 1, 2, · · · ,m and suppose that the two-group

peptide-array data have been obtained and pre-processed in order to yield

two summary statistics per peptide: (xi, si). The first component, xi, is

an estimated effect. It measures the difference between the two groups,

such as a difference in sample means of log-transformed data, and is

viewed a statistical estimate of an underlying effect, say θi. In this view,

xi is a random variable having some sampling distribution, which we

take to be Gaussian centered at θi; this is warranted noting the behavior

of suitably-transformed fluorescence measurements coupled with central-

limit effects for modest to large sample sizes. The second component, si, is

an estimated standard error. In the Gaussian sampling model, E(xi) = θi
and var(xi) = σ2

i , and s2i is a sample-based estimate of the variance σ2
i .

We seek inference about the value of θi using local data (xi, si) as well

as data {(xi′ , si′ )} from all peptides, which informs the distribution of

effect and variance parameters across the array.

Our formulation is common in large-scale inference, and we could

infer θi values in a number of ways. For example, we could produce a

peptide-specific p-value from the test statistic ti = xi/si against the null

hypothesis H0,i : θi = 0. We might refer ti to a Student-t distribution,

obtain a two-sided p-value, and then process the p-values through the

Benjamini-Hochberg (BH) or q−value methods to adjust for multiplicity

(Benjamini and Hochberg, 1995; Storey et al., 2003). Alternatively, we

might use the collection {ti} and model their fluctuations as a discrete

mixture of null and non-null cases, as in the locFDR procedure (Efron

et al., 2001; Strimmer, 2008). Both locFDR and q−value methods

are based upon discrete mixtures; interestingly the reduction of ti’s to

two-sided p-values entails a loss of sign information that is enough to

reduce statistical power in some settings. A more ambitious approach

goes beyond null/non-null mixing to allow a full probability distribution

of effects θi in order to account for fluctuations across all the peptides.

Adaptive shrinkage (ASH) is appealing because it acquires robustness

through a nonparametric treatment of this distribution, say g(θ), while

using reasonable shape constraints to regularize the estimation (Stephens,
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2017). Power advantages of ASH over other methods stem in part from its

use of more data per peptide.

In the context of an estimated mixture model there are two useful

empirical-Bayesian inference statistics. The first is local false discovery

rate (lfdr), li = P(θi = 0|xi, s
2
i ). The term local false discovery rate was

coined by Professor Efron, and the statistic may be computed in various

settings beyond the specific mixture deployed in Efron et al. (2001). The

listL of statistically significant peptides will beL = {i : li ≤ c} for some

threshold c. Notably, small li warrants peptide i to be placed in L; but the

value li is also the probability (conditional on data) that such placement

is erroneous (Newton et al., 2006). Given the data, the expected rate of

false discoveries in L is dominated by c. The local false sign rate (lfsr) is

analogous to lfdr, but it avoids relying on effects being precisely zero; when

the estimated effect is positive for example, the lfsr is P(θi ≤ 0|xi, s
2
i ).

Lists controlling lfsr may be constructed in the same way as L, and may

be slightly smaller for the same value of c. (In the CCP+RF- RA example

in Section 1, ASH lfsr and lfdr lists are the same at the 10% level.)

With modest sample sizes, differences between estimated standard

errors {si} and actual standard errors {σi} can affect the performance of

existing tools for lfdr and lfds. To better account for these differences

we propose an additional mixture layer involving a sampling model

p(s2i |σ2
i ), which we derive from normal-theory considerations, and a

flexible nonparametric mixing distributionh(σ2). For both nonparametric

components – g on effects θi and h on squared standard errors σ2
i – we

use finite grids and treat each distribution as a vector of probabilities.

We estimate g and h by maximum likelihood, respecting unimodal shape

constraints for g (as in ASH), but otherwise allowing any distributional

forms.

Suppose that effects take values in a finite, regular grid

{a−K , a−K+1, · · · , a0, a1, · · · , aK} where a0 is the presumed mode,

taken to be a0 = 0 in typical applications in which we aim to retain the

null hypothesis of no group difference. We use K = 15 in numerical

work reported here. Unimodality of the mixing distribution g = (gk)

is expressed as a set of ordering constraints: gk ≥ gk+1 for k =

0, 1, · · · ,K and gk ≤ gk+1 for k = −K,−K+1, · · · ,−1. We also set

a second regular grid {0 < b1, b2, · · · , bL} for squared standard errors,

and impose no constraints on the mixing distribution h = (hl) aside from

the basic nonparametric essentials: hl ≥ 0 and
∑

l hl = 1.

The contribution to the likelihood objective from peptide i is

p(xi, s
2
i |g, h):

=
∑

k

∑

l

P(θi = ak)P(σ
2
i = bl) p(xi, s

2
i |θi = ak, σ

2
i = bl)

=
∑

k

∑

l

gkhl p(xi|θi = ak, σ
2
i = bl) p(s

2
i |σ2

i = bl)

=
∑

k

∑

l

gkhl

1√
bl
φ

(

xi − ak√
bl

)

ν

bl
χ2,ν

(

νs2i
bl

)

(1)

where φ is the standard normal probability density, χ2,ν is the density of

a chi-square random variable on ν degrees of freedom. Under a normal

data model, ν is determined by design (e.g. total samples minus two in

the traditional two-sample comparison). The chi-square model is accurate

asymptotically for a wide range of non-normal sampling distributions,

however the degrees of freedom needs estimation in these cases (O’Neill,

2014).

To estimate the mixing distributions h and g we use the log-likelihood

objective function, with terms as in (1). In MixTwice, we solve the

constrained optimization:

min
g,h

−l(g, h) = −
m
∑

i=1

log p(xi, s
2
i |g, h) (2)

Subject to: gk, hl ≥ 0 ∀k, l
∑

k

gk =
∑

l

hl = 1

gk ≤ gk+1, k ∈ {−K,−K + 1, ...,−1}

gk ≥ gk+1, k ∈ {0, 1, ...,K}

The gradient and Hessian of l(g, h) are readily available, and so (2)

may be solved efficiently using augmented Lagrangian for constrained

optimization, using the BFGS algorithm for inner loop optimization, which

is implemented in the R package alabama (Varadhan, 2015). We extract

lfdr and lfsr statistics from the peptide-specific posterior distributions at

the optimized vectors ĝ, ĥ: P(θi = ak|xi, s
2
i )

=
∑

l

P(θi = ak, σ
2
i = bl|xi, s

2
i )

∝ ĝk
∑

l

ĥl

1√
bl
φ

(

xi − ak√
bl

)

ν

bl
χ2,ν

(

νs2i
bl

)

. (3)

Proportionality is resolved by summation over the grid k, and we get:

lfdri = P(θi = a0|xi, s
2
i ),

lfsri = min







∑

k≤0

P(θi = ak|xi, s
2
i ),

∑

k≥0

P(θi = ak|xi, s
2
i )







.

It may be helpful to recognize that by contrast to (3), ASH-normal would

entail

P(θi = ak|xi, s
2
i ) ∝ ĝk

1

si
φ

(

xi − ak

si

)

, (4)

and ASH-t would replace the normal density φ in (4) with a Student t

density; in both cases the ASH-estimated mixing density ĝ would come

not from (2) but from an objective in which mixing over variances is

not explicitly accommodated. The initial implementation of MixTwice

invokes unimodality shape constraint, but not symmetry, and, for

computational convenience, allows that a random subset of the testing

units is used in the optimization. We investigate this approximation in

Supplementary Material.

3 Simulation Study

We are interested in the performance of MixTwice in scenarios reflecting

what might be expected to occur in practice and have performed numerical

experiments involving different generative distributions of both effects (g)

and variances (h). Noting the special role of the null value, θ = 0, our

experiments involve mixtures g(θ) = π0δ0 + (1 − π0)galt(θ), where

π0 = P(θi = 0) and galt provides various ways to distribute mass

away from zero. Following Stephens (2017) and Lu and Stephens (2019),

we entertain different general shapes, including so-called big-variance,

bi-modal, flattop, normal, and spiky. MixTwice accounts for explicit

differences between sample and underlying standard errors, and mixes

nonparametrically over these underlying standard errors. Our numerical

experiments consider the simplest case in which the data generating h

is a point mass, a case involving a finite mixture of two values, and

also a continuous case of inverse-Gamma-distributed parameters. Patterns
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in the error of estimation and the hypothesis testing error rates are very

comparable across different choices of h, and so for simplicity here we

report only experiments when this true h is a point mass distribution at

σ = 1. Figures 1 and 2 summarize, respectively, properties of estimation

accuracy and testing error rates. Experiments are based on Gaussian

samples, m = 1000 peptides, and various sample size settings for the

two-group comparison.

If a method tends to overestimate π0, then power may be reduced;

in case of underestimation the FDR may be inflated. Figure 1, Panel B,

focuses on the estimation of this marginal null frequency for one choice of

sample size, namely n = 10 observations per group. In each setting of g

(column), 500 data sets are generated, each drawn after its own π0 value

was uniformly drawn in [0.5, 1]. All methods respond appropriately to

changes in π0, though they exhibit different biases; MixTwice tracks the

identity line (no bias) case closely in all scenarios except the challenging

spiky case of galt. By contrast locFDR is conservatively biased, tending

to over-estimate π0 in most cases. Our experiments include an oracle case,

namely ASH−normal, which takes the true value σ2
i = 1 as known. This

numerical control helps us gauge the magnitude of statistical errors induced

by estimation error of the variance profile.

Figure 1, Panel C, amplifies one case from the second row, when

π0 = 0.9, and shows how estimation error drops as the sample size

per peptide grows. Most methods display a level of convergence in this

setting, with MixTwice performing relatively well especially at low

sample sizes. Going beyond the estimation of π0, we compared methods

by their 1-Wassertstein error in estimating the entire mixture distribution

g; MixTwice showed relatively small error in this setting also (data not

shown). Without parametric assumptions, π0 is not identifiable and only

a upper bound may be reliably estimated (Efron et al., 2001; Stephens,

2017).

Figure 2 confirms that most methods are controlling FDR as advertised.

The empirical false discovery rate is plotted against the controlled rate;

the latter is the nominal target FDR value where we threshold the lfdr’s;

the former is what is evident from knowing the simulation states (in

other terminology, it is the average, over simulated data sets, of the false

discovery proportion). Colored lines are used to distinguish different levels

of π0, when the signal is dense (with a lower null proportion π0) or when

the signal is sparse (with a higher null proportion π0). Recall we simulated

independent data sets each governed by a randomly chosen π0 from

[0.5, 1]. In order to visualize the results, we stratified data sets into four

groups and averaged internally: 0.5 ≤ π0 ≤ 0.625, 0.625 ≤ π0 ≤ 0.75,

0.75 ≤ π0 ≤ 0.875, 0.875 ≤ π0 ≤ 1. The FDR inflation by ASH-t at

high π0 is evident in this simulation.

4 Empirical studies

4.1 Antibodies in rheumatoid arthritis

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized

by inflammation and pain, primarily in the joints. RA patients produce

autoantibodies against many different "self" proteins. Most famously, they

generate antibodies against proteins in which arginine amino acids have

been post-translationally modified to citrullines (Schellekens et al., 1998)

as well as antibodies that bind to antibodies, called rheumatoid factor

(RF) (Waaler, 1940). Both autoantibody types appear to be pathogenic

(Sokolove et al., 2014) and both are used diagnostically (Aletaha et al.,

2010), the former detected by the anti-cyclic citrullinated peptide (CCP)

test. Most RA patients make both autoantibody types (CCP+RF+ RA),

but some have only one type like in CCP+RF- RA. Little is known

about why CCP+RF+ versus CCP+RF- RA develops. However, a better

understanding of the autoantibody repertoires in each RA subset could

provide insights, a task for which peptide arrays are perfect.
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Fig. 1. Errors in Estimation of π0 . Panel A shows distributions used for galt(θ). Panel

B shows the estimation of null proportion π0 in case of equal samples in each group of 10.

Methods are distinguished by color, where we report average parameter estimates from 500

simulated data sets.The identity line (dashed) indicates no bias. ASH-normal is an oracle

case in which σ2

i
= 1 is provided to the algorithm. Panel C shows error estimation as the

number of observations grows, in π0 = 0.9.

The custom high-density peptide array reported in Zheng et al. (2020)

probed 172,828 distinct 12 amino acid length peptides derived from 122

human proteins suspected to be involved in RA, including peptides in

which all arginines were replaced by citrullines. We reconsider here two

distinct comparisons from that study, namely the comparison between

CCP+RF- RA patients and controls, and a second comparison between

CCP+RF+ RA patients and controls, in which differential signals are

much stronger. Both comparisons have 12 subjects in each group. To

assess reproducibility, we take advantage of a second peptide array data

set derived from an independent set of 8 controls and 8 CCP+RF+ RA

patients.

4.2 CCP+RF- RA: weak signals

We applied MixTwice to fit the shape-constrained mixture model of

Section 2. Fitted mixing distributions are visualized in Figure 3 and

provide a measure of the magnitude of changes in mean antibody levels as

well as the magnitude of sampling variation. For example, the effect-size

distribution estimates no probability for effects larger than 0.037. Also,

the median standard error is 0.10 (squared standard error 0.01), which is

large compared to the probable effect sizes.

In Section 1 we presented summary counts of peptides identified at

10% FDR that exhibit differential binding between CCP+RF- RA patients

and non-RA controls. MixTwice, ASH-t, and two-step ASH distinguish

themselves in being the only methods among many standard large-scale

tools to populate non-empty lists of discovered peptides at that FDR level.

Recognizing that the magnitude of signal intensities on the peptide array is

an important aspect of downstream analysis, Figure 4 shows a summary of
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Fig. 3. Estimated mixing distributions: For both effect distribution g (Panel A) and

squared-standard-error distribution h (Panel B), shown are the maximum likelihood

estimated mixing distributions as cumulative distribution functions (cdfs) in double natural

log scale. The CCP+RF- RA example is shown on the left and the two CCP+RF+ RA

examples are on the right.

the identified peptides by various methods. Notably, MixTwice and two-

step ASH detect peptides in this case with higher average signal intensity

than ASH-t; these may correspond to higher antibody abundance or affinity

and potentially easier validation. ASH-t tends to select peptides with low

standard errors, even when the estimated effects are very low.

Interestingly, the 44 peptides found by MixTwice have a strong

pattern in their peptide sequences: all are citrulline (B)-containing peptides

(which would be predicted for CCP+ RA patients) and contain citrulline
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Fig. 4. Signal intensity of differentially abundant peptides: Boxplots show averaged

signal values on double natural log scale (both CCP+RF- RA and control subjects) for

peptides found by ASH-t (76 peptides), MixTwice (44 peptides), and two-step ASH (11

peptides) all discovered at 10% FDR.

Fig. 5. Motif logo for significant peptides in CCP+RF- RA: Consensus sequences were

generated using online software MEME Suite (Bailey et al., 2009) and the significant

peptides from the different methods: ASH-t (left), MixTwice (middle) and two-step ASH

(right). Each position of the motif logo represents the empirical distribution of amino acids

at that site, with size proportional to frequency. B found in the middle and right panels

is citrulline, a post-transitionally modified arginine. The overall height of each stack is an

information measure (bits) related to the concentration of the empirical distribution on its

support.

next to glycine (B-G or G-B), as shown in the motif in Figure 5. Binding

of antigens in which citrulline is next to glycine is consistent with a growing

body of literature on the reactivity of anti-citrullinated protein antibodies

in RA (e.g., Burkhardt et al., 2002; Szarka et al., 2018; Steen et al., 2019;

Zheng et al., 2020).

As a further negative control calculation, we applied MixTwice to

each of 500 permuted data sets obtained by fixing the peptide data and

randomly shuffling the 24 subject labels (12 control, 12 CCP+RF- RA).

In 493 cases, the 10% FDR list is empty; 6 cases find a single peptide and

one case finds 2 peptides at this threshold.

Among a number of large-scale testing methods applied to the

CCP+RF- RA example, MixTwice identifies a comparatively large

number of statistically significant peptides. By contrast to other methods,

these peptides contain patterns in their amino acid sequences consistent

with emerging evidence on this disease, and they correspond to relatively

high fluorescence intensity measurements. Together, these observations

provide some assurance that the MixTwice findings are not artifacts.

4.3 CCP+RF+ RA: strong signals

One of the findings from Zheng et al. (2020) concerns the extensive

antibody-profile differences between RA patients who are positive for

both biomarkers (CCP+RF+) and control subjects. Statistically, it

represents an interesting non-sparse, large-scale testing situation, and the

immunological mechanisms driving this remain only partially understood.

To check the reproducibility of peptide-array findings, a new experiment
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Fig. 6. Reproducibility comparison. Panel A shows empirical z-score distributions for CCP+RF+ RA vs control at 172,828 peptides in two independent studies. The scatterplot in Panel

B highlights peptides identified uniquely at 0.1% FDR by MixTwice in either study (yellow, green) and those reproducibly found in both studies (blue). Metrics in Panels C and D compare

performance of MixTwice as a function of FDR threshold.

was performed using the same procedures and 172,828 peptide array to

detect IgG binding as in Zheng et al. (2020), but with serum samples from

16 different subjects: 8 CCP+RF+ RA and 8 controls. CCP+RF+ RA and

control subjects were similar in regards to age, sex, race, ethnicity, and

overall health. Preprocessing followed the same protocol and provided a

data set (study 2) for us to look at reproducibility of large-scale hypothesis

testing methods.

Z-score histograms in Figure 6, Panel A, show that both studies reveal

extensive increased antibody binding in the CCP+RF+ RA group. The

scatterplot in Panel B reveals concordance between the studies on this

z-score metric. The color-coding highlights discovered peptides at the

0.1% FDR method by MixTwice, both uniquely in one study (green or

yellow) and reproducibly in both studies (blue). Of course MixTwice

uses more information than is in the z-score summary, but the scatterplot

provides a convenient visualization. The lower panels in Figure 6 compare

reproducibility statistics of different testing methods at various FDR

thresholds. Denoting by Lj(α) the list of significant peptides in study

j and FDR level α, we have |L1(α)∩L2(α))| as the number of peptides

identified in both studies (Panel D) and
|L1(α)∩L2(α))|
|L1(α)∪L2(α))|

as the common

fraction (Panel C). By connecting separate, independent studies of the

same group difference, these statistics measure the reproducibility of

various large-scale testing methods. MixTwice shows substantially better

reproducibility than other testing methods, such as ASH-t, two-step ASH,

and locFDR in this example.

5 Discussion

High-throughput biomedical experiments, such as those involving peptide

arrays and immunological studies, continue to provide challenging

problems for large-scale hypothesis testing. Readily applied techniques,

such as q−value, locFDR, IHW, and ASH are often very effective at

reporting lists of testing units (peptides) showing statistically significant

effects at a targeted false discovery rate. In the case of high-density peptide

arrays, we find several examples where these tools are deficient. One

issue is the number of testing units, which is an order of magnitude larger

than what is seen in transcript studies, for example. In the CCP+RF- RA

comparison, most existing tools exhibit low power, which may stem in

part from when they intervene in the data analysis. Methods that intervene

earlier have access to more information and thereby may gain some

advantage. The risk to intervening early is that more assumptions may

be required to deliver relevant testing statistics (e.g., lfdr, lsdr). We rely

on external validation, such as on sequence properties of the identified

peptides, to assess practical utility. The CCP+RF+ RA example showcases

a situation where power is high by all methods, and the differences boil

down to how testing units are prioritized. The proposed MixTwice

procedure shows impressive reproducibility in this case.

Structurally, MixTwice is similar to the ASH method for large-scale

testing: it aims to estimate a mixing distribution of effects in an empirical

Bayesian formulation. It adopts ASH’s nonparametric, shape-constrained

model for effects, but deviates from that approach by incorporating a
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second mixing layer over underlying effect-variance parameters. A number

of methodological issues deserve further study. For example, MixTwice

treats the sampling model of squared standard errors as chi-square on a

design-based degrees of freedom, which is rooted in a normal-data model.

We expect that suitable transformation of the original data will make

this treatment reasonable; for example, Zheng et al. (2020) proposed a

double-log transform to stabilize variance. An interesting alternative is to

use a bootstrap scheme to assess the sampling distributions directly, in

order to thereby estimate the degrees of freedom that would be justified

asymptotically for non-normal cases.

There are computational issues that warrant further investigation. The

objective function (2) may not be convex in the pair of arguments (g, h).

Numerical experiments indicate good performance of the augmented

Lagrangian optimization approach in a range of scenarios, though

alternative approaches may have benefits. For example, the conditional

optimizations of g given h or h given g are both convex, though attempts

so far to leverage this have been less computationally efficient than the

augmented Lagrangian method. Related to this are questions of grid sizes

K and L, which have to balance fidelity to the data and computational

efficiency.

Though our presentation has focused on the classical two-group

comparison problem, it should be evident that the core methodology is

not restricted to this case. Estimated effects xi, for example, could arise

from a contrast of interest after adjusting for blocking variables or other

covariates. These will be useful to consider as we expect them to emerge

in experiments that further investigate mechanisms of immune-system

disregulation.

Finally, we point out that other forms of information may be usefully

integrated with the testing methodology. Peptides tile proteins, though we

have treated them as anonymous testing units. More sophisticated peptide

prioritization could leverage amino-acid structure, protein content, or other

features of the immunological context.

Acknowledgements

This work was supported by the Peer Reviewed Medical Research

Program (US Army Medical Research, W81XWH1810717) as well

as by the University of Wisconsin-Madison, Office of the Vice

Chancellor for Research and Graduate Education with funding from

the Wisconsin Alumni Research Foundation to MAS and also NIH

R01 GM102756, NIH P50 DE026787, and NSF 1740707 supporting

MAN. I.M.O. acknowledges support by the Clinical and Translational

Science Award (CTSA) program, through the NIH National Center

for Advancing Translational Sciences (NCATS), grants UL1TR002373

and KL2TR002374. This research was also supported by the Data

Science Initiative grant from the University of Wisconsin-Madison

Office of the Chancellor and the Vice Chancellor for Research and

Graduate Education (with funding from the Wisconsin Alumni Research

Foundation) (I.M.O.). The authors acknowledge Sean McIlwain for

assistance with reproducibility calculations.

References

Aletaha, D. et al. (2010). 2010 rheumatoid arthritis classification

criteria: an american college of rheumatology/european league against

rheumatism collaborative initiative. Arthritis & rheumatism, 62(9),

2569–2581.

Bailey, A. L. et al. (2017). Pegivirus avoids immune recognition but does

not attenuate acute-phase disease in a macaque model of hiv infection.

PLoS pathogens, 13(10), e1006692.

Bailey, J. A. et al. (2020). Microarray analyses reveal strain-specific

antibody responses to plasmodium falciparum apical membrane antigen

1 variants following natural infection and vaccination. Scientific reports,

10(1), 1–12.

Bailey, T. L. et al. (2009). Meme suite: tools for motif discovery and

searching. Nucleic acids research, 37(suppl_2), W202–W208.

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery

rate: a practical and powerful approach to multiple testing. Journal of

the Royal statistical society: series B (Methodological), 57(1), 289–300.

Bourgon, R. et al. (2010). Independent filtering increases detection power

for high-throughput experiments. Proceedings of the National Academy

of Sciences, 107(21), 9546–9551.

Burkhardt, H. et al. (2002). Epitope-specific recognition of type ii

collagen by rheumatoid arthritis antibodies is shared with recognition

by antibodies that are arthritogenic in collagen-induced arthritis in the

mouse. Arthritis & Rheumatism, 46(9), 2339–2348.

Efron, B. (2012). Large-scale inference: empirical Bayes methods for

estimation, testing, and prediction, volume 1. Cambridge University

Press.

Efron, B. et al. (2001). Empirical bayes analysis of a microarray

experiment. Journal of the American statistical association, 96(456),

1151–1160.

Hoefges, A. et al. (2020). Thousands of new antigens are recognized in

mice via endogenous antibodies after being cured of a b78 melanoma

via immunotherapy.

Ignatiadis, N. et al. (2016). Data-driven hypothesis weighting increases

detection power in genome-scale multiple testing. Nature methods,

13(7), 577–580.

Korthauer, K. et al. (2019). A practical guide to methods controlling false

discoveries in computational biology. Genome biology, 20(1), 1–21.

Lu, M. and Stephens, M. (2019). Empirical bayes estimation of normal

means, accounting for uncertainty in estimated standard errors. arXiv

preprint arXiv:1901.10679.

Mishra, N. et al. (2018). Diagnosis of zika virus infection by peptide array

and enzyme-linked immunosorbent assay. MBio, 9(2).

Newton, M. et al. (2006). Hierarchical mixture models for expression

profiles. In Bayesian inference for gene expression and proteomics,

chapter 2, pages 40–52. Cambridge University Press New York.

O’Neill, B. (2014). Some useful moment results in sampling problems.

The American Statistician, 68(4), 282–296.

Schellekens, G. A. et al. (1998). Citrulline is an essential constituent

of antigenic determinants recognized by rheumatoid arthritis-specific

autoantibodies. The Journal of clinical investigation, 101(1), 273–281.

Sokolove, J. et al. (2014). Rheumatoid factor as a potentiator of anti–

citrullinated protein antibody–mediated inflammation in rheumatoid

arthritis. Arthritis & rheumatology, 66(4), 813–821.

Steen, J. et al. (2019). Recognition of amino acid motifs, rather than

specific proteins, by human plasma cell–derived monoclonal antibodies

to posttranslationally modified proteins in rheumatoid arthritis. Arthritis

& Rheumatology, 71(2), 196–209.

Stephens, M. (2017). False discovery rates: a new deal. Biostatistics,

18(2), 275–294.

Storey, J. D. et al. (2003). The positive false discovery rate: a bayesian

interpretation and the q-value. The Annals of Statistics, 31(6), 2013–

2035.

Strimmer, K. (2008). fdrtool: a versatile r package for estimating local and

tail area-based false discovery rates. Bioinformatics, 24(12), 1461–1462.

Szarka, E. et al. (2018). Affinity purification and comparative biosensor

analysis of citrulline-peptide-specific antibodies in rheumatoid arthritis.

International Journal of Molecular Sciences, 19(1), 326.

Tokarz, R. et al. (2020). Identification of immunoreactive linear epitopes

of borrelia miyamotoi. Ticks and tick-borne diseases, 11(1), 101314.



✐

✐

“output” — 2021/7/29 — 1:03 — page 8 — #8
✐

✐

✐

✐

✐

✐

8 Zheng et al.

Varadhan, R. (2015). alabama: Constrained Nonlinear Optimization. R

package version 2015.3-1.

Waaler, E. (1940). On the occurrence of a factor in human serum activating

the specific agglutination of sheep blood corpuscles. Acta Pathologica

Microbiologica Scandinavica, 17(2), 172–188.

Yan, Y. et al. (2019). Whole genome–derived tiled peptide arrays detect

prediagnostic autoantibody signatures in non–small-cell lung cancer.

Cancer research, 79(7), 1549–1557.

Zheng, Z. et al. (2020). Disordered antigens and epitope overlap between

anti–citrullinated protein antibodies and rheumatoid factor in rheumatoid

arthritis. Arthritis & Rheumatology, 72(2), 262–272.


